JP2004107158A - Low loss ferrite material and ferrite core using the same - Google Patents

Low loss ferrite material and ferrite core using the same Download PDF

Info

Publication number
JP2004107158A
JP2004107158A JP2002273929A JP2002273929A JP2004107158A JP 2004107158 A JP2004107158 A JP 2004107158A JP 2002273929 A JP2002273929 A JP 2002273929A JP 2002273929 A JP2002273929 A JP 2002273929A JP 2004107158 A JP2004107158 A JP 2004107158A
Authority
JP
Japan
Prior art keywords
weight
low
loss
ferrite material
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002273929A
Other languages
Japanese (ja)
Inventor
Masayuki Moriyama
森山 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002273929A priority Critical patent/JP2004107158A/en
Publication of JP2004107158A publication Critical patent/JP2004107158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easily sinterable low loss Ni-Zn-based ferrite material in which core loss is low to be ≤400 kW/m<SP>3</SP>, resistance is high to be ≥10<SP>8</SP>Ωcm at the room temperature, magnetic permeability is high to be ≥1,200, Bs is ≥3,000 Gauss, and Tc is ≥150°C. <P>SOLUTION: The ferrite material contains a prescribed quantity of Fe<SB>2</SB>O<SB>3</SB>, CuO, ZnO and MnO and has 1-30 μm average crystal grain diameter and ≥5.1 g/cm<SP>3</SP>sintered density. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フェライト材料組成物に関する。特に、低損失、高透磁率、高磁束密度(Bs)、高抵抗、高キュリー温度(Tc)、及び易焼結を示すフェライト材料、及びこれを用いたフェライトコアに関する。
【0002】
【従来の技術】
Ni−Zn系のフェライト材料は、インダクター・変圧器・安定器・電磁石・ノイズ除去等のコアとして広く使用されている。
【0003】
特に、近年液晶ディスプレイの電子機器への応用拡大に伴い、バックライト点灯用のトランスの市場が拡大している。パソコン、ワープロ、液晶テレビ、カメラ一体型VTRをはじめ、情報通信機器、ゲーム機、車載用途など液晶搭載機器が広がりを見せる中、トランス回路の小型化・薄型化・高効率化の要求は低コスト化と同時に一段と強まっている。
【0004】
液晶ディスプレイのバックライトシステムは、輝度、効率、寿命などから冷陰極管方式が主流となっている。冷陰極管を点灯するためには、トランス回路に比較的低圧の直流電圧入力から数千Vの交流高電圧出力を発生する必要があり、低電圧側と高電圧側の接点にあるトランスでは耐絶縁性が信頼性向上の重要な課題である。
【0005】
このため、トランス回路の小型・薄型化・高効率化を実現する上では、トランスの開発が重要なポイントとなっている。
【0006】
Ni−Zn系フェライトに各種添加物を加えることによって特性を高めることも提案されているが、(特許文献1、特許文献2、特許文献3)、いずれも上記問題を解決するものではなかった。
【0007】
このトランスの車載用途として小型化・薄型化・高効率化を実現するためにはフェライト材料としては、低損失・高透磁率・高Bs・高Tc・高抵抗であることが要求されている。
【0008】
損失の大きいフェライト材料を用いると電力損失が増え、これに伴い、発熱量が増える。発熱量が増加すれば、放熱スペースを取る必要性がでてくる。この放熱スペースが大きくなれば、トランス回路の小型化・薄型化は、実現できないのである。また抵抗においても同様で、低抵抗では種々の絶縁対策を行うため小型化・薄型化できないのである。また透磁率、Bsにおいては、トランスは偏磁なので飽和し易く発熱する為、小型化しても飽和しにくく発熱しない為に高透磁率及び高Bs、及び高Tc温度の特性が必要である。
【0009】
また、使用周波数40〜100kHzの範囲で低損失なMn−Zn系フェライト材料がトランス用フェライト材料として使用されている。
【0010】
【特許文献1】
特開2001−176717号公報
【特許文献2】
特開2001−102209号公報
【特許文献3】
特開1999−035369号公報
【0011】
【発明が解決しようとする課題】
Mn−Zn系フェライトは、フェライト材料の中では電気抵抗が数Ω・cmと低く、トランスとして耐電圧を確保する設計が必要であり、小型化、低コスト化の要求に対し限界状態にある。
【0012】
これに対し、Ni−Zn系フェライトはMn−Zn系フェライトに比べ約10倍も電気抵抗が高く、絶縁性に優れており、トランスとしての絶縁対策が容易に行える。さらに、コア・コイル間、コア・端子間などの絶縁対策が不要なため絶縁距離を短くできることで、トランスの小型化が容易に行えると同時に低コストが可能となるという大きな利点がある。ところが、Ni−Zn系フェライトは、Mn−Zn系フェライトに比べ損失(コア損失)が約10倍と大きく、発熱のためトランスとしての実用性に欠けているという欠点がある。コア損失とは、フェライトコアをトランスとして使用する場合において、電圧を変換する際に生じるコアの損失を表すフェライトの材料定数である。発熱を抑えるためには、コア損失の絶対値は小さい方が好ましい。
本発明はコア損失が400kW/m以下と低く、室温で10Ω・cm以上の高抵抗、1200以上の高い透磁率、3000ガウス以上のBsを示し、Tc が150℃以上で且つ易焼結である低損失のNi−Zn系フェライト材料を得ることを目的とする。
【0013】
【課題を解決する為の手段】
本発明の低損失フェライト材料は、Fe、Cu、Zn、Ni及びMnの酸化物を、それぞれFe換算で47〜50モル%、CuO換算で0.1〜10モル%、ZnO換算で10〜33モル%、NiO換算で15〜35モル%及びMnO換算で0.01〜1.0モル%含有し、ZnO/NiOのモル比が1.7〜1.99である主成分において、平均結晶粒径が1〜30μm、且つ焼結密度が5.1g/cmであることを特徴とする。
【0014】
また、前記本発明のフェライト材料100重量部に対して、Si、Crの酸化物をそれぞれSiO換算で0.05〜1.0重量部、Cr換算で0.05〜1.5重量部含有する事を特徴とする。
【0015】
また、前記フェライト材料100重量部に対して、Biの酸化物をBi換算で0.05〜2.0重量部含有することを特徴とする。
【0016】
また、前記フェライト材料100重量部に対して、Zr、Yの酸化物をそれぞれZrO換算で0.001〜0.1重量部、Y換算で0.001〜0.1重量部含有することを特徴とする。
【0017】
更に、本発明のフェライトコアは、前記低損失フェライト材料でもって所定形状になしたことを特徴とする。
【0018】
【発明の実施の形態】
本発明の低損失フェライト材料は、Ni−Zn−Cu−Mn系フェライトに対して、必要に応じて、SiO、Cr及びBi及びZrO、Yを添加すること、さらに好ましくは所定の成分含有量、平均結晶粒径そして、焼結密度を満足することによって、コア損失が、400kW/m以下、好適には350kW/m以下となり、更に好適には300kW/m以下となり、更に好適には、250kW/m以下となり、室温で10Ω・cm以上の高抵抗、透磁率が1200以上、3000ガウス以上のBs、150℃以上のTc且つ易焼結である低損失のフェライト材料を得られる点が特徴である。
【0019】
本発明の低損失フェライト材料においては、Fe、Cu、Ni、Zn及びMnをそれぞれFe換算で47〜50モル%、CuO換算で0.1〜10モル%、及びMnO換算で0.01〜1.0モル%含有し、ZnO/NiOのモル比が1.7〜1.99である主成分の平均結晶粒径が1〜30μm、且つ焼結密度が5.1g/cm以上とすることが低損失フェライト材料を得るために重要である。
【0020】
本発明において、Feを47〜50モル%としたのは、Feが47モル%未満では、Bs及び透磁率が低下し、50モル%を超えると抵抗値の低下及びコア損失の増大が生じる為である。
【0021】
また、CuOを0.1〜10モル%としたのは、CuOが0.1モル%未満では、焼結性が低下し、10モル%を超えると透磁率が低下するためである。
【0022】
また、MnOを0.01〜1.0モル%としたのは、この範囲外では透磁率、Bsが低下するためである。
【0023】
また、ZnO/NiO=1.7〜1.99としたのは、1.7未満では、透磁率が低下し、1.99を超えると、Bs、Tcが低下する為である。
【0024】
また、低いコア損失及び高い透磁率を同時に実現するために、フェライト材料の平均結晶粒径を1〜30μmとする。この数値に限定される理由は、1μm未満又は30μmを超えると、更に低いコア損失及び高い透磁率を同時に実現することが出来ない為である。
【0025】
また、本発明のフェライト材料においては、低いコア損失及び高い透磁率を同時に実現するために、焼結密度を5.1g/cm以上とする。この数値に限定される理由は、5.1g/cm未満では、実効的な磁性体占有率が低くなるため、低いコア損失及び高い透磁率を同時に実現することが出来ないためである。
【0026】
なお、平均結晶粒径は焼結体の結晶写真の画像解析、焼結密度はアルキメデス法により測定する。
【0027】
また、本発明の低損失フェライト材料は、前記低損失フェライト材料100重量部に対して、Si及びCrをそれぞれSiO換算で0.05〜1.0重量部、Cr換算で0.05〜1.5重量部含有することが好ましい。SiOを0.05〜1.0重量部含有することが好ましいのは、0.05重量部未満では、コア損失を著しく向上させることができないからであり、1.0重量部を超えると透磁率とBsを著しく向上させることができないからである。
【0028】
また、Crを0.05〜1.5重量部含有することが好ましいのは、0.05重量部未満では、コア損失を著しく小さくすることができないからであり、1.5重量部を超えると透磁率とBsの向上が著しくないからである。
【0029】
また、本発明の低損失フェライト材料は、前記低損失フェライト材料100重量部に対してBiをBi換算で0.05〜2.0重量部含有することが好ましい。Bi含有量がBi換算で0.05重量部未満では、コア損失の向上が著しくなく、2.0重量部を超えると透磁率とBsの向上が著しくないからである。
【0030】
また、本発明の低損失フェライト材料は、前記低損失フェライト材料100重量部に対してZr及びYをそれぞれZrO換算で0.001〜0.1重量部及びY換算で0.001〜0.1重量部含有することで、さらにコア損失を低くすることができる。ZrO及びYの添加量を共に0.001〜0.1重量部としたのは、0.001重量部未満では、コア損失を著しく向上することができないからであり、0.1重量部を超えると透磁率とBsを著しく向上することができないからである。
【0031】
また、本発明においては、さらに低いコア損失及び高い透磁率を同時に実現するために、低損失フェライト材料を構成する上記成分の含有量を99〜99.99重量%とすることが好ましい。この数値が好ましい理由は、99重量%未満では、非磁性体の影響により、更にコア損失及び透磁率を同時に著しく高くすることができないからであり、99.99重量%を超える成分含有量のものを得るには、原料精製上大変困難であるからである。
【0032】
なお、本発明の低損失フェライト材料は上記成分以外のものとして例えば、MgO、KO、P、WO、PbO、等をいずれも0.05重量部未満の範囲で含んでもよい。
【0033】
本発明の低損失フェライト材料の製造方法は、例えばFe、Zn、Ni、Cu及びMnの酸化物あるいは焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用い、これらを前述した範囲になるように主成分の各原料を調合し、振動ミル等で粉砕混合した後仮焼し、この仮焼粉体に例えばSi、Cr及びBi及びZr、Yの酸化物あるいは焼成により酸化物を生成する炭酸塩、硝酸塩等の金属塩を用い、これらを前述した範囲になるように副成分を加え、ボールミルで粉砕した後、バインダーを加えて造粒し、得られた粉体をプレス成形にて所定形状に成形し、400〜800℃の範囲で脱バインダーを行い、焼成する事によって得られる。本発明の製造方法においては、粉砕後の仮焼粉の粒子の90%以上を粒径0.9μm以下、成形体の密度を3.0g/cm以上、かつ焼成条件を1000℃〜1300℃で1〜10時間保持とすることが、平均結晶粒径を1〜30μmかつ焼結密度を5.1 g/cm以上とするために重要である。
【0034】
また、副成分は仮焼後に加えることを拘束するのではなく、仮焼前に主成分へ加えても特性に何ら影響するものではない。
【0035】
また、本発明のフェライトコアは、前記フェライト材料を用いてフェライトコアを形成したことを特徴とする。
【0036】
ここで、フェライトコアとしては、図1(a)に示すようなリング状のトロイダルコア1、あるいは、図1(b)に示すようなボビン状コア2とすれば良く、それぞれ巻き線部1a、2aに巻き線を施す事によってコイルとすることができる。
【0037】
この様な本発明のNi−Zn系フェライトコアは、特に、DC−DCコンバーター等、各種電源のトランス等に好適に使用することが出来る。
【0038】
【実施例】
実施例1
表1に示すFe、CuO、MnO、ZnOおよびNiOから成る原料を振動ミルで混合した後、800℃〜950℃で仮焼した。この仮焼粉体をボールミルにて粉砕した後、所定のバインダーを加えて造粒し、圧縮成型して図1に示すトロイダルコア1の形状に成形し、この成形体を昇温速度75℃/時間、温度600℃及び5時間キープの脱バインダー工程を行い昇温速度200℃、温度300℃及び1時間キープの脱バインダー工程を行い1000〜1300℃で焼成し、これによって試料No.1〜18を作製した。この焼成において、焼結性の良否を○と×で2分した。○は1300℃以下でもって焼結する場合であり、×は1300℃を超える温度にまで高めることで焼結する場合である。なお、いずれの試料も平均結晶粒径が1μm以上、焼結密度が5.1g/cm以上であった。
【0039】
得られた焼結体をトロイダルコア1とし、これに線径0.2mmの被膜銅線を7ターン巻き付けて100kHzで初透磁率を測定した。次にTcを透磁率と同じ条件で10ターン巻き付けて測定した。トロイダルコア1に、図2に示すように線径0.2mmの被膜銅線を用いて一次側巻き線3を100ターン、二次側巻き線4を30ターン巻き付けて、一次側巻き線3に電源5を、二次側巻き線4に磁束計6をそれぞれ接続し、100Hz、100エルステッドの条件でBsを測定した。次に、コア損失の測定はBs測定と同方法で、一次巻き線3を10ターン、二次巻き線4を10ターン巻き付けて、50kHz、150mTの条件で測定した。また、抵抗値はJIS C−2141の規格に添って測定を行った。
【0040】
その結果、Feの含有量が47モル%未満の試料(No.1)では、Bs及び透磁率が低くなった。一方、Feが50モル%を超える試料(No.2)は抵抗値が低く、コア損失が大きくなった。また、CuOの含有量が0.1モル%未満の試料(No.3)では、焼結性が悪く、10モル%を超える試料(No.4)では透磁率及びBsが低くなった。また、MnOの含有量が0.1モル%未満または1モル%を超える試料(No.5、6)では、透磁率及びBsが低くかった。また、ZnO/NiOのモル比が1.7未満の試料(No.7)では透磁率が低く、1.99を超える試料(No.8)ではBs、Tcが低くなった。なお、平均結晶粒径は1μm以上で焼結密度は、5.1g/cm以上であった。
【0041】
これらに対し、Feを47〜50モル%、CuOを0.1〜10モル%、MnOを0.1〜1モル%含有し、ZnO/NiOのモル比が1.7〜1.99である試料(No.9〜18)では、Bsが3000ガウス以上、透磁率が1200以上、Tcが150℃以上、抵抗値が10Ω・cm以上で焼結性が良好で、且つコア損失が400kW/m以下と優れた特性が得られた。
【0042】
【表1】

Figure 2004107158
【0043】
次に、主成分を49.5モル%のFe、5モル%のCuO、0.4モル%のMnO及びZnO/NiO=1.90と固定し、平均結晶粒径と焼結密度を変化させ、その他条件は、上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.19〜22を得た。また、上記成分含有量は、99重量%以上であった。
【0044】
この結果より、平均結晶粒径を1〜30μm、焼結密度を5.1g/cm以上の本発明実施例の範囲外の試料(No.19、20)では、コア損失を更に低くできなかった。
これに対し平均結晶粒径を1〜30μm焼結密度を5.1g/cm以上の本発明の実施例
(No.21、22)では、Bsが3000G以上、透磁率が1200以上、Tcが150℃以上、抵抗値が10Ω・cm以上と高く、コア損失も400kW/m以下と優れた特性が得られた。
【0045】
【表2】
Figure 2004107158
【0046】
実施例2
次に、Feを49.5モル%、CuOを5モル%、MnOを0.4モル%、ZnO/NiOのモル比が1.90とし、さらにSiOとCrを表2に示すように変化させて添加し、その他条件は上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.23〜30を得た。なお、平均結晶粒径は1μm以上で、焼結密度は5.1g/cm以上であった。
【0047】
得られた焼結体について、実施例1と同様にしてコア損失、透磁率、Bs、Tc及び抵抗値を測定したところ、表3に示すような結果が得られた。
【0048】
この結果より、SiOの添加量を0.05〜1.0重量部の範囲外、Crの添加量を0.05〜1.5重量部の範囲外とした実施例(試料No.23〜26)では、コア損失を著しく低くすることはできなかった。
【0049】
これに対し、SiOの添加量を0.05〜1.0重量部、Crの添加量を0.05〜1.5重量部とした試料(No.27〜30)では、Bsが3000G以上、透磁率が1200以上、Tcが150℃以上、抵抗値が10Ω・cm以上と高く、コア損失が350kW/m以下と更に優れた特性が得られた。
【0050】
【表3】
Figure 2004107158
【0051】
実施例3
次に、Feを49.5モル%、CuOを5モル%、MnOを0.4モル%含有し、ZnO/NiOのモル比を1.90とし、さらにSiO、Cr、Biを表4に示すように変化させて、その他条件は上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.31〜36を得た。なお、平均結晶粒径は、1μm以上で焼結密度は5.1g/cm以上であった。得られた焼結体に対して、実施例1と同様にしてコア損失、透磁率、Bs、Tc及び抵抗値を測定したところ、表4に示すような結果が得られた。
【0052】
この結果より、Biを0.05〜2.0重量部含有する試料(No.31〜32)ではコア損失を低下することができた。
【0053】
特に、SiOを0.2重量部、Crを0.05重量部含有しBiを範囲外の試料(No.33〜34)ではコア損失を著しく低くすることはできなかった。
【0054】
これに対し、SiOを0.2重量部、Crを0.05重量部含有しBiを0.05〜2.0重量部含有する試料(No.35〜36)ではBsが3000ガウス以上、透磁率が1200以上、Tcが150℃以上、抵抗が10Ω・cm以上と高く、コア損失が300kW/m以下と更に優れた特性が得られた。
【0055】
【表4】
Figure 2004107158
【0056】
実施例4
次に、Feを49.5モル%、CuOを5モル%、MnOを0.4モル%含有し、ZnO/NiOのモル比を1.90とし、さらにSiO、Cr、Bi、ZrOとYの添加量を表4に示すように変化させて、その他条件は、上記実施例1と同様にしてトロイダルコア1の形状をなす試料No.37〜48を得た。なお、いずれの試料も平均結晶粒径は、1μm以上で焼結密度は、5.1g/cm以上であった。得られた焼結体に対して、実施例1と同様にしてコア損失、透磁率、Bs、Tc及び抵抗値を測定したところ、表5に示すような結果が得られた。
【0057】
この結果より、ZrO、Yを添加した試料(No.37〜38)はコア損失を低くすることができた。
【0058】
特に、SiOを0.2重量部、Crを0.05重量部及びBiを0.1重量部に固定しZrO、Yの添加量が0.001〜0.1重量部の範囲内の試料(No.39〜42)ではBsが3000ガウス以上、透磁率が1200以上、Tcが150℃以上、抵抗が10Ω・cm以上と高くコア損失が250kW/mと低く更に優れた特性が得られた。
【0059】
【表5】
Figure 2004107158
【0060】
【発明の効果】
以上のようにFe、Cu、Ni、Zn及びMnをそれぞれFe換算で47〜50モル%、CuO換算で0.1〜10モル%、ZnO換算で10〜33モル%、NiO換算で15〜35モル%、及びMnO換算で0.01〜1.0モル%含有し、ZnO/NiOのモル比が1.7〜1.99であり、平均結晶粒径が1〜30μm、且つ焼結密度が5.1g/cm以上である本発明の低損失フェライト材料を用いることにより、優れた焼結性、透磁率、Bs及び抵抗値を維持し、かつコア損失を小さくすることができる。
【0061】
また、本発明の低損失フェライト材料でフェライトコアを形成することによって、絶縁対策が不要で低損失化が可能となる。従って、このフェライトコアを電源用に用いれば、各種電子機器の小型化・薄型化・高効率化に大きく貢献することが出来る。
【図面の簡単な説明】
【図1】(a)(b)は本発明のフェライトコアを示す図である。
【図2】本発明のフェライトコアの特性を測定する方法を示す図である。
【符号の説明】
1:トロイダルコア
1a:巻線部
2:ボビンコア
2a:巻線部
3:一次側巻線
4:二次側巻線
5:電源
6:磁束計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ferrite material composition. In particular, the present invention relates to a ferrite material exhibiting low loss, high magnetic permeability, high magnetic flux density (Bs), high resistance, high Curie temperature (Tc), and easy sintering, and a ferrite core using the same.
[0002]
[Prior art]
Ni-Zn ferrite materials are widely used as cores for inductors, transformers, stabilizers, electromagnets, noise removal, and the like.
[0003]
In particular, in recent years, the market for transformers for backlighting has been expanding with the application of liquid crystal displays to electronic devices. As PCs, word processors, LCD TVs, VTRs with built-in cameras, information communication devices, game consoles, and in-vehicle applications are becoming more widespread, demand for smaller, thinner, and more efficient transformer circuits is low. It is becoming stronger at the same time.
[0004]
As a backlight system for a liquid crystal display, a cold cathode fluorescent lamp system is predominant in view of luminance, efficiency, and life. In order to light a cold cathode tube, it is necessary to generate an AC high voltage output of several thousand volts from a relatively low voltage DC voltage input to a transformer circuit. Insulation is an important issue for improving reliability.
[0005]
For this reason, development of a transformer is an important point in realizing a compact, thin, and highly efficient transformer circuit.
[0006]
It has also been proposed to add various additives to Ni-Zn based ferrite to improve the characteristics, but none of the above-mentioned patents (Patent Document 1, Patent Document 2, Patent Document 3) solves the above problem.
[0007]
In order to realize miniaturization, thinning, and high efficiency of the transformer for use in vehicles, ferrite materials are required to have low loss, high magnetic permeability, high Bs, high Tc, and high resistance.
[0008]
When a ferrite material having a large loss is used, the power loss increases, and accordingly, the heat generation increases. As the amount of generated heat increases, it becomes necessary to take a space for heat radiation. If the heat radiation space becomes large, the size and thickness of the transformer circuit cannot be reduced. Similarly, the resistance cannot be reduced and the thickness cannot be reduced at low resistance because various insulation measures are taken. In terms of magnetic permeability and Bs, the transformer is polarized and easily saturates and generates heat. Therefore, even if the size is reduced, the transformer is hardly saturated and does not generate heat. Therefore, characteristics of high magnetic permeability, high Bs, and high Tc temperature are required.
[0009]
Further, a low-loss Mn-Zn-based ferrite material in a frequency range of 40 to 100 kHz is used as a ferrite material for a transformer.
[0010]
[Patent Document 1]
JP 2001-176717 A [Patent Document 2]
JP 2001-102209 A [Patent Document 3]
JP-A-1999-035369
[Problems to be solved by the invention]
The Mn-Zn ferrite has a low electric resistance of several Ω · cm among ferrite materials, requires a design to ensure a withstand voltage as a transformer, and is in a limit state with respect to a demand for miniaturization and cost reduction.
[0012]
In contrast, Ni-Zn ferrite is about 106 times that of Mn-Zn ferrite have high electrical resistance, and excellent insulating properties, can be easily insulation measures as transformers. Furthermore, since there is no need to take measures for insulation between the core and the coil, between the core and the terminal, the insulation distance can be shortened, and there is a great advantage that the size of the transformer can be easily reduced and the cost can be reduced. However, Ni-Zn based ferrite has a disadvantage that the loss (core loss) is about 10 times as large as that of Mn-Zn based ferrite, and is not practical as a transformer due to heat generation. The core loss is a material constant of ferrite that indicates a loss of the core that occurs when converting a voltage when a ferrite core is used as a transformer. In order to suppress heat generation, it is preferable that the absolute value of the core loss is smaller.
The present invention has a low core loss of 400 kW / m 3 or less, a high resistance of 10 8 Ω · cm or more at room temperature, a high magnetic permeability of 1200 or more, a Bs of 3000 gauss or more, a Tc of 150 ° C. or more, and an easy burning. It is an object of the present invention to obtain a low-loss Ni—Zn-based ferrite material that is consequently formed.
[0013]
[Means for solving the problem]
Low-loss ferrite material of the present invention, Fe, Cu, Zn, an oxide of Ni and Mn, 47 to 50 mol% calculated as Fe 2 O 3, respectively, from 0.1 to 10 mol% in terms of CuO, calculated as ZnO In the main component containing 10 to 33 mol%, 15 to 35 mol% in terms of NiO, and 0.01 to 1.0 mol% in terms of MnO, and the molar ratio of ZnO / NiO is 1.7 to 1.99, It is characterized in that the average crystal grain size is 1 to 30 μm and the sintered density is 5.1 g / cm 3 .
[0014]
Further, based on 100 parts by weight of the ferrite material of the present invention, the oxides of Si and Cr are respectively 0.05 to 1.0 part by weight in terms of SiO 2 and 0.05 to 1.5 parts in terms of Cr 2 O 3. It is characterized by containing parts by weight.
[0015]
In addition, Bi is contained in an amount of 0.05 to 2.0 parts by weight in terms of Bi 2 O 3 with respect to 100 parts by weight of the ferrite material.
[0016]
In addition, based on 100 parts by weight of the ferrite material, 0.001 to 0.1 parts by weight of oxides of Zr and Y in terms of ZrO 2 and 0.001 to 0.1 parts by weight in terms of Y 2 O 3 are contained. It is characterized by doing.
[0017]
Further, the ferrite core of the present invention is characterized in that the ferrite core is formed into a predetermined shape with the low-loss ferrite material.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In the low-loss ferrite material of the present invention, SiO 2 , Cr 2 O 3, Bi 2 O 3, ZrO 2 , and Y 2 O 3 are added to a Ni—Zn—Cu—Mn-based ferrite as needed. More preferably, by satisfying the predetermined component content, the average crystal grain size, and the sintering density, the core loss becomes 400 kW / m 3 or less, preferably 350 kW / m 3 or less, and more preferably. 300 kW / m 3 or less, more preferably 250 kW / m 3 or less, high resistance of 10 8 Ω · cm or more at room temperature, Bs of 1200 to 3000 gauss or more, and Tc of 150 ° C. or more at room temperature. The feature is that a low-loss ferrite material that is sintered can be obtained.
[0019]
In the low-loss ferrite material of the present invention, Fe, Cu, Ni, Zn and Mn are respectively 47 to 50 mol% in terms of Fe 2 O 3 , 0.1 to 10 mol% in terms of CuO, and 0.1 to 0.1 in terms of MnO. The main component having a molar ratio of ZnO / NiO of 1.7 to 1.99 has an average crystal grain size of 1 to 30 μm and a sintered density of 5.1 g / cm 3 or more. Is important to obtain a low loss ferrite material.
[0020]
In the present invention, the reason why the content of Fe 2 O 3 is set to 47 to 50 mol% is that when Fe 2 O 3 is less than 47 mol%, Bs and magnetic permeability decrease, and when it exceeds 50 mol%, the resistance value decreases and the core becomes less. This is because loss increases.
[0021]
The reason why CuO is set to 0.1 to 10 mol% is that if CuO is less than 0.1 mol%, sinterability is reduced, and if it exceeds 10 mol%, magnetic permeability is reduced.
[0022]
Further, the reason why MnO is set to 0.01 to 1.0 mol% is that the magnetic permeability and Bs are reduced outside this range.
[0023]
The reason why ZnO / NiO is set to 1.7 to 1.99 is that if it is less than 1.7, the magnetic permeability decreases, and if it exceeds 1.99, Bs and Tc decrease.
[0024]
In order to simultaneously achieve low core loss and high magnetic permeability, the average crystal grain size of the ferrite material is set to 1 to 30 μm. The reason for being limited to this value is that if it is less than 1 μm or exceeds 30 μm, it is not possible to simultaneously realize a lower core loss and a higher magnetic permeability.
[0025]
In the ferrite material of the present invention, the sintered density is set to 5.1 g / cm 3 or more in order to simultaneously achieve low core loss and high magnetic permeability. If the value is less than 5.1 g / cm 3 , the effective magnetic material occupancy is low, so that a low core loss and a high magnetic permeability cannot be realized at the same time.
[0026]
The average crystal grain size is measured by image analysis of a crystal photograph of the sintered body, and the sintered density is measured by Archimedes' method.
[0027]
In the low-loss ferrite material of the present invention, Si and Cr are each added in an amount of 0.05 to 1.0 part by weight in terms of SiO 2 , and 0.1% in terms of Cr 2 O 3 with respect to 100 parts by weight of the low-loss ferrite material. It is preferably contained in an amount of from 0.5 to 1.5 parts by weight. The reason that the content of SiO 2 is preferably 0.05 to 1.0 part by weight is that if the content is less than 0.05 part by weight, the core loss cannot be remarkably improved. This is because magnetic susceptibility and Bs cannot be significantly improved.
[0028]
Also, it is preferable to contain 0.05 to 1.5 parts by weight of Cr 2 O 3 because if less than 0.05 part by weight, the core loss cannot be remarkably reduced. This is because, if the ratio exceeds 2, the magnetic permeability and Bs are not significantly improved.
[0029]
The low-loss ferrite material of the present invention, it is preferable that the Bi containing 0.05 to 2.0 parts by weight in terms of Bi 2 O 3 with respect to the low-loss ferrite material 100 parts by weight. If the Bi content is less than 0.05 parts by weight in terms of Bi 2 O 3 , the core loss is not significantly improved, and if it exceeds 2.0 parts by weight, the magnetic permeability and Bs are not significantly improved.
[0030]
In the low-loss ferrite material of the present invention, Zr and Y are each 0.001 to 0.1 part by weight in terms of ZrO 2 and 0.001 in terms of Y 2 O 3 with respect to 100 parts by weight of the low-loss ferrite material. By containing 0.1 to 0.1 parts by weight, the core loss can be further reduced. The reason that the addition amounts of ZrO 2 and Y 2 O 3 are both 0.001 to 0.1 parts by weight is that if less than 0.001 part by weight, core loss cannot be remarkably improved. If the amount exceeds the weight part, the magnetic permeability and Bs cannot be remarkably improved.
[0031]
In the present invention, the content of the above-mentioned components constituting the low-loss ferrite material is preferably set to 99 to 99.99% by weight in order to simultaneously realize a lower core loss and a higher magnetic permeability. The reason why this numerical value is preferable is that when the content is less than 99% by weight, the core loss and the magnetic permeability cannot be significantly increased at the same time due to the influence of the non-magnetic material. This is because it is very difficult to obtain the raw material in terms of material purification.
[0032]
In addition, the low-loss ferrite material of the present invention may contain, for example, MgO, K 2 O, P 2 O 5 , WO 3 , PbO, etc. in a range of less than 0.05 part by weight as other than the above components. .
[0033]
The method for producing a low-loss ferrite material of the present invention uses, for example, oxides of Fe, Zn, Ni, Cu, and Mn or metal salts such as carbonates and nitrates that generate oxides by firing, and these are contained in the above-described range. The raw materials of the main components are blended so as to be mixed, pulverized and mixed by a vibration mill or the like, and then calcined. For example, oxides of Si, Cr, Bi, Zr, and Y are formed on the calcined powder, or oxides are formed by firing. Using metal salts such as carbonates and nitrates, adding these subcomponents so as to be in the above-mentioned range, pulverizing them with a ball mill, adding a binder, granulating, and pressing the obtained powder by press molding. It is obtained by molding into a predetermined shape, removing the binder in the range of 400 to 800 ° C., and firing. In the production method of the present invention, 90% or more of the particles of the calcined powder after pulverization have a particle size of 0.9 μm or less, the density of the compact is 3.0 g / cm 3 or more, and the firing conditions are 1000 ° C. to 1300 ° C. Holding for 1 to 10 hours is important for controlling the average crystal grain size to 1 to 30 μm and the sintered density to 5.1 g / cm 3 or more.
[0034]
Further, the subcomponent does not restrict the addition after the calcination, and the addition to the main component before the calcination does not affect the characteristics at all.
[0035]
Further, the ferrite core of the present invention is characterized in that a ferrite core is formed using the ferrite material.
[0036]
Here, the ferrite core may be a ring-shaped toroidal core 1 as shown in FIG. 1 (a) or a bobbin-shaped core 2 as shown in FIG. 1 (b). A coil can be obtained by winding the wire 2a.
[0037]
Such a Ni-Zn ferrite core of the present invention can be suitably used especially for transformers of various power supplies, such as DC-DC converters.
[0038]
【Example】
Example 1
Fe 2 O 3 shown in Table 1, CuO, MnO, after a raw material consisting of ZnO and NiO were mixed by a vibration mill, and then calcined at 800 ° C. to 950 ° C.. This calcined powder is pulverized by a ball mill, granulated by adding a predetermined binder, compression-molded and formed into the shape of the toroidal core 1 shown in FIG. 1, and the formed body is heated at a rate of 75 ° C. / Time, a temperature of 600 ° C. and a keeping time of 5 hours, a debinding step of 200 ° C., a temperature of 300 ° C. and a keeping time of 1 hour, and firing at 1000 to 1300 ° C. 1 to 18 were produced. In this firing, the quality of the sinterability was divided into two for ○ and ×. ○ indicates a case where sintering is performed at 1300 ° C. or lower, and x indicates a case where sintering is performed at a temperature exceeding 1300 ° C. Each sample had an average crystal grain size of 1 μm or more and a sintered density of 5.1 g / cm 3 or more.
[0039]
The obtained sintered body was used as a toroidal core 1, and a coated copper wire having a wire diameter of 0.2 mm was wound around this for 7 turns, and the initial magnetic permeability was measured at 100 kHz. Next, Tc was measured by winding 10 turns under the same condition as the magnetic permeability. As shown in FIG. 2, the primary winding 3 is wound 100 turns and the secondary winding 4 is wound 30 turns around the toroidal core 1 using a coated copper wire having a wire diameter of 0.2 mm. The power supply 5 was connected to the magnetometer 6 on the secondary winding 4 respectively, and Bs was measured under the conditions of 100 Hz and 100 Oe. Next, the core loss was measured in the same manner as in the Bs measurement, with the primary winding 3 wound 10 turns and the secondary winding 4 wound 10 turns, and measured at 50 kHz and 150 mT. The resistance was measured according to JIS C-2141.
[0040]
As a result, in the sample (No. 1) in which the content of Fe 2 O 3 was less than 47 mol%, Bs and the magnetic permeability were low. On the other hand, the sample (No. 2) in which Fe 2 O 3 exceeds 50 mol% has a low resistance value and a large core loss. Further, in the sample (No. 3) having a CuO content of less than 0.1 mol%, the sinterability was poor, and in the sample (No. 4) exceeding 10 mol%, the magnetic permeability and Bs were low. In the samples (Nos. 5 and 6) in which the content of MnO was less than 0.1 mol% or more than 1 mol%, the magnetic permeability and Bs were low. Further, in the sample (No. 7) in which the molar ratio of ZnO / NiO was less than 1.7, the magnetic permeability was low, and in the sample (No. 8) exceeding 1.99, Bs and Tc were low. The average crystal grain size was 1 μm or more, and the sintered density was 5.1 g / cm 3 or more.
[0041]
On the other hand, 47 to 50 mol% of Fe 2 O 3 , 0.1 to 10 mol% of CuO, and 0.1 to 1 mol% of MnO are contained, and the molar ratio of ZnO / NiO is 1.7 to 1. Sample No. 99 (Nos. 9 to 18) had Bs of 3000 Gauss or more, magnetic permeability of 1200 or more, Tc of 150 ° C. or more, resistance of 10 8 Ω · cm or more, good sinterability, and a good core. Excellent characteristics with a loss of 400 kW / m 3 or less were obtained.
[0042]
[Table 1]
Figure 2004107158
[0043]
Next, the main components were fixed at 49.5 mol% of Fe 2 O 3 , 5 mol% of CuO, 0.4 mol% of MnO and ZnO / NiO = 1.90, and the average crystal grain size and sintered density were fixed. , And the other conditions were the same as in Example 1 above, and the sample No. having the shape of the toroidal core 1 was used. 19-22 were obtained. Further, the content of the above components was 99% by weight or more.
[0044]
From these results, it is not possible to further reduce the core loss in the samples (Nos. 19 and 20) having an average crystal grain size of 1 to 30 μm and a sintered density of 5.1 g / cm 3 or more and out of the range of the examples of the present invention. Was.
On the other hand, in Examples (Nos. 21 and 22) of the present invention having an average crystal grain size of 1 to 30 μm and a sintered density of 5.1 g / cm 3 or more, Bs is 3000 G or more, magnetic permeability is 1200 or more, and Tc is Excellent characteristics were obtained at a temperature of 150 ° C. or higher, a resistance value as high as 10 8 Ω · cm or more, and a core loss of 400 kW / m 3 or less.
[0045]
[Table 2]
Figure 2004107158
[0046]
Example 2
Next, 49.5 mol% of Fe 2 O 3 , 5 mol% of CuO, 0.4 mol% of MnO, the molar ratio of ZnO / NiO were set to 1.90, and SiO 2 and Cr 2 O 3 were further expressed. Sample No. 2 having the shape of the toroidal core 1 was added in the same manner as in Example 1 except that the addition was changed as shown in FIG. 23-30 were obtained. The average crystal grain size was 1 μm or more, and the sintered density was 5.1 g / cm 3 or more.
[0047]
The core loss, magnetic permeability, Bs, Tc, and resistance of the obtained sintered body were measured in the same manner as in Example 1, and the results shown in Table 3 were obtained.
[0048]
From these results, an example (Sample No.) in which the added amount of SiO 2 was out of the range of 0.05 to 1.0 part by weight and the added amount of Cr 2 O 3 was out of the range of 0.05 to 1.5 part by weight. .23-26), the core loss could not be significantly reduced.
[0049]
On the other hand, in the sample (Nos. 27 to 30) in which the added amount of SiO 2 was 0.05 to 1.0 part by weight and the added amount of Cr 2 O 3 was 0.05 to 1.5 parts by weight, Bs 3,000 G or more, magnetic permeability of 1200 or more, Tc of 150 ° C. or more, high resistance of 10 8 Ω · cm or more, and core loss of 350 kW / m 3 or less.
[0050]
[Table 3]
Figure 2004107158
[0051]
Example 3
Next, 49.5 mol% of Fe 2 O 3 , 5 mol% of CuO and 0.4 mol% of MnO are contained, the molar ratio of ZnO / NiO is set to 1.90, and further, SiO 2 and Cr 2 O 3 , Bi 2 O 3 were changed as shown in Table 4, and the other conditions were the same as in Example 1 above, and the sample No. 1 having the shape of the toroidal core 1 was used. 31-36 were obtained. The average crystal grain size was 1 μm or more, and the sintered density was 5.1 g / cm 3 or more. The core loss, magnetic permeability, Bs, Tc and resistance of the obtained sintered body were measured in the same manner as in Example 1, and the results shown in Table 4 were obtained.
[0052]
From this result, it was possible to reduce the sample (No.31~32) In the core loss of Bi 2 O 3 containing 0.05 to 2.0 parts by weight.
[0053]
In particular, the core loss cannot be significantly reduced in the samples (No. 33 to 34) containing 0.2 parts by weight of SiO 2 and 0.05 parts by weight of Cr 2 O 3 and containing Bi 2 O 3 out of the range. Was.
[0054]
On the other hand, in the sample containing 0.2 parts by weight of SiO 2 , 0.05 parts by weight of Cr 2 O 3 and 0.05 to 2.0 parts by weight of Bi 2 O 3 (Nos. 35 to 36), Bs was 3000 gauss or more, magnetic permeability was 1200 or more, Tc was 150 ° C. or more, resistance was 10 8 Ω · cm or more, and core loss was 300 kW / m 3 or less.
[0055]
[Table 4]
Figure 2004107158
[0056]
Example 4
Next, 49.5 mol% of Fe 2 O 3 , 5 mol% of CuO and 0.4 mol% of MnO are contained, the molar ratio of ZnO / NiO is set to 1.90, and further, SiO 2 and Cr 2 O 3 , Bi 2 O 3 , ZrO 2 and Y 2 O 3 were varied as shown in Table 4 and the other conditions were the same as in Example 1 above, and the sample No. 1 having the shape of the toroidal core 1 was used. 37-48 were obtained. Each sample had an average crystal grain size of 1 μm or more and a sintered density of 5.1 g / cm 3 or more. The core loss, magnetic permeability, Bs, Tc and resistance value of the obtained sintered body were measured in the same manner as in Example 1, and the results shown in Table 5 were obtained.
[0057]
From these results, the samples to which ZrO 2 and Y 2 O 3 were added (Nos. 37 to 38) were able to reduce the core loss.
[0058]
In particular, 0.2 parts by weight of SiO 2 , 0.05 parts by weight of Cr 2 O 3 , and 0.1 parts by weight of Bi 2 O 3 were fixed, and the added amount of ZrO 2 and Y 2 O 3 was 0.001 to 0.001. Samples within the range of 0.1 parts by weight (Nos. 39 to 42) had a Bs of 3000 Gauss or more, a magnetic permeability of 1200 or more, a Tc of 150 ° C. or more, a resistance of 10 8 Ω · cm or more, and a high core loss of 250 kW. / M 3 and more excellent characteristics were obtained.
[0059]
[Table 5]
Figure 2004107158
[0060]
【The invention's effect】
Fe Thus, Cu, Ni, 47 to 50 mol% of Zn and Mn, respectively in terms of Fe 2 O 3, 0.1 to 10 mol% in terms of CuO, 10 to 33 mol% in terms of ZnO, in terms of NiO 15 to 35 mol%, and 0.01 to 1.0 mol% in terms of MnO, the molar ratio of ZnO / NiO is 1.7 to 1.99, the average crystal grain size is 1 to 30 μm, and the By using the low-loss ferrite material of the present invention having a consolidation density of 5.1 g / cm 3 or more, excellent sinterability, magnetic permeability, Bs and resistance can be maintained, and core loss can be reduced. .
[0061]
Further, by forming a ferrite core with the low-loss ferrite material of the present invention, it is not necessary to take measures against insulation, and it is possible to reduce the loss. Therefore, if this ferrite core is used for a power supply, it can greatly contribute to miniaturization, thinning, and high efficiency of various electronic devices.
[Brief description of the drawings]
FIGS. 1A and 1B are views showing a ferrite core of the present invention.
FIG. 2 is a diagram illustrating a method for measuring characteristics of a ferrite core according to the present invention.
[Explanation of symbols]
1: Toroidal core 1a: Winding section 2: Bobbin core 2a: Winding section 3: Primary winding 4: Secondary winding 5: Power supply 6: Flux meter

Claims (5)

Fe、Cu、Ni、Zn及びMnをそれぞれFe換算で47〜50モル%、CuO換算で0.1〜10モル%、及びMnO換算で0.01〜1.0モル%含有し、ZnO/NiOのモル比が1.7〜1.99であり、平均結晶粒径が1〜30μm、且つ焼結密度が5.1g/cm以上であることを特徴とする低損失フェライト材料。Fe, Cu, Ni, 47 to 50 mol% of Zn and Mn, respectively in terms of Fe 2 O 3, 0.1 to 10 mol% in terms of CuO, and containing 0.01 to 1.0 mol% in terms of MnO, A low-loss ferrite material having a ZnO / NiO molar ratio of 1.7 to 1.99, an average crystal grain size of 1 to 30 μm, and a sintered density of 5.1 g / cm 3 or more. 請求項1記載の低損失フェライト材料100重量部に対して、Si及びCrをそれぞれSiO換算で0.05〜1.0重量部、Cr換算で0.05〜1.5重量部含有することを特徴とする低損失フェライト材料。The Si and Cr are respectively 0.05 to 1.0 parts by weight in terms of SiO 2 and 0.05 to 1.5 parts by weight in terms of Cr 2 O 3 based on 100 parts by weight of the low loss ferrite material according to claim 1. Low loss ferrite material characterized by containing. 請求項1、2のいずれかに記載の低損失フェライト材料100重量部に対して、BiをBi換算で0.05〜2.0重量部含有することを特徴とする低損失フェライト材料。Low-loss ferrite material for the low-loss ferrite material 100 parts by weight of any one of claims 1, 2, characterized in that it contains 0.05 to 2.0 parts by weight of Bi in terms of Bi 2 O 3 . 請求項1乃至3のいずれかに記載の低損失フェライト材料の100重量部に対して、Zr及びYの酸化物をZrO換算で0.001〜0.1重量部、Y換算で0.001〜0.1重量部含有することを特徴とする低損失フェライト材料。An oxide of Zr and Y is used in an amount of 0.001 to 0.1 part by weight in terms of ZrO 2 and in terms of Y 2 O 3 based on 100 parts by weight of the low loss ferrite material according to claim 1. A low-loss ferrite material containing 0.001 to 0.1 part by weight. 請求項1乃至4のいずれかに記載した低損失フェライト材料でもって所定形状になしたことを特徴とするフェライトコア。A ferrite core formed into a predetermined shape with the low-loss ferrite material according to any one of claims 1 to 4.
JP2002273929A 2002-09-19 2002-09-19 Low loss ferrite material and ferrite core using the same Pending JP2004107158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273929A JP2004107158A (en) 2002-09-19 2002-09-19 Low loss ferrite material and ferrite core using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273929A JP2004107158A (en) 2002-09-19 2002-09-19 Low loss ferrite material and ferrite core using the same

Publications (1)

Publication Number Publication Date
JP2004107158A true JP2004107158A (en) 2004-04-08

Family

ID=32270558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273929A Pending JP2004107158A (en) 2002-09-19 2002-09-19 Low loss ferrite material and ferrite core using the same

Country Status (1)

Country Link
JP (1) JP2004107158A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1661869A2 (en) * 2004-11-29 2006-05-31 TDK Corporation Ferrite material and electronic component using same
JP2011096977A (en) * 2009-11-02 2011-05-12 Tdk Corp Ferrite composition, ferrite core, and electronic component
JP2012099662A (en) * 2010-11-02 2012-05-24 Tdk Corp Ferrite composition, ferrite core, and electronic component
JP2012124216A (en) * 2010-12-06 2012-06-28 Tdk Corp Ferrite composition, ferrite core and electronic component
WO2013015074A1 (en) * 2011-07-28 2013-01-31 京セラ株式会社 Ferrite sintered compact and ferrite core provided with same
JP2014028710A (en) * 2012-07-31 2014-02-13 Kyocera Corp Ferrite sintered body and noise filter equipped with the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1661869A2 (en) * 2004-11-29 2006-05-31 TDK Corporation Ferrite material and electronic component using same
EP1661869B1 (en) * 2004-11-29 2012-10-24 TDK Corporation Ferrite material and electronic component using same
JP2011096977A (en) * 2009-11-02 2011-05-12 Tdk Corp Ferrite composition, ferrite core, and electronic component
JP2012099662A (en) * 2010-11-02 2012-05-24 Tdk Corp Ferrite composition, ferrite core, and electronic component
JP2012124216A (en) * 2010-12-06 2012-06-28 Tdk Corp Ferrite composition, ferrite core and electronic component
WO2013015074A1 (en) * 2011-07-28 2013-01-31 京セラ株式会社 Ferrite sintered compact and ferrite core provided with same
JP2014028710A (en) * 2012-07-31 2014-02-13 Kyocera Corp Ferrite sintered body and noise filter equipped with the same

Similar Documents

Publication Publication Date Title
JP2007051052A (en) LOW LOSS MnZnNi-BASED FERRITE AND ELECTRONIC COMPONENT USING IT, AND SWITCHING POWER SUPPLY
JP4436509B2 (en) Low loss ferrite material and ferrite core using the same
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
JP5089963B2 (en) Method for producing MnZnNi ferrite
JP4404408B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2004107158A (en) Low loss ferrite material and ferrite core using the same
JP4443175B2 (en) Ferrite sintered body and ferrite core and ferrite coil using the same
JP2005330126A (en) MnZn FERRITE AND METHOD OF MANUFACTURING THE SAME
JP5137275B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP4683718B2 (en) Ferrite material and ferrite core using the same
TWI751302B (en) Nickel-based ferrite sintered body, coil parts, and manufacturing method of nickel-based ferrite sintered body
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP2004269316A (en) Ferrite material and ferrite core using the same
JP4587541B2 (en) Ferrite material and ferrite core using the same
JP3464100B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2004338997A (en) Ferrite material and ferrite core using the same
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP2004107103A (en) Ferrite material and ferrite core using the same
JP2011162366A (en) MnZnNi-BASED FERRITE
JP5458302B2 (en) Mn-Zn-Ni ferrite
JP2003267777A (en) Ferrite material and ferrite core using the same
JP3544615B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP2010150053A (en) SINTERED COMPACT OF SPINEL TYPE Ni-Cu-Zn-BASED FERRITE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205