JP4433154B2 - Manufacturing method of laminate film - Google Patents

Manufacturing method of laminate film Download PDF

Info

Publication number
JP4433154B2
JP4433154B2 JP2003414520A JP2003414520A JP4433154B2 JP 4433154 B2 JP4433154 B2 JP 4433154B2 JP 2003414520 A JP2003414520 A JP 2003414520A JP 2003414520 A JP2003414520 A JP 2003414520A JP 4433154 B2 JP4433154 B2 JP 4433154B2
Authority
JP
Japan
Prior art keywords
epoxy resin
film
adhesive
solvent
laminate film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003414520A
Other languages
Japanese (ja)
Other versions
JP2004203035A (en
Inventor
剛司 小山
伸一 米浜
栄一 本多
貴昭 沓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003414520A priority Critical patent/JP4433154B2/en
Publication of JP2004203035A publication Critical patent/JP2004203035A/en
Application granted granted Critical
Publication of JP4433154B2 publication Critical patent/JP4433154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明はラミネートフィルムの製造法に関する。詳しくは各種ガスの遮蔽に優れた接着剤を用いた内容物の保存を目的とした食品や医薬品などの包装材料に使用されるラミネートフィルムの製造方法に関する。   The present invention relates to a method for producing a laminate film. More specifically, the present invention relates to a method for producing a laminate film used for packaging materials such as foods and pharmaceuticals for the purpose of preserving contents using an adhesive excellent in shielding various gases.

近年、包装材料としてその強度、商品保護性、作業適性、印刷等による宣伝効果等の理由から、異種のポリマー材料を組み合わせた複合フレキシブルフィルムが主流になってきている。このような複合フィルムは一般には、商品保護の役割を有する外層となる熱可塑性プラスチックフィルム層などとシーラント層となる熱可塑性プラスチックフィルム層などからなり、これらの貼り合わせには、ラミネートフィルム層に接着剤を塗布してシーラント層を接着させるドライラミネート法や、必要に応じてラミネートフィルム層にアンカーコート剤を塗布し溶融したシーラント層となるプラスチックフィルムを圧着してフィルム状にラミネートさせる押出しラミネート法が行なわれている。   In recent years, composite flexible films combining different kinds of polymer materials have become mainstream as packaging materials for reasons such as strength, product protection, workability, and advertising effects due to printing. Such a composite film is generally composed of a thermoplastic film layer as an outer layer having a role of protecting a product and a thermoplastic film layer as a sealant layer, and these are bonded to the laminate film layer. A dry laminating method in which a sealant layer is adhered by applying a coating agent, and an extrusion laminating method in which an anchor coating agent is applied to a laminating film layer and a plastic film that becomes a melted sealant layer is pressure-bonded and laminated into a film as necessary. It is done.

また、これらの方法で使用する接着剤は、接着性能が高い点から、一般には水酸基等の活性水素基を有する主剤とイソシアネート基を有する硬化剤からなる二液型ポリウレタン系接着剤が主流となっている(特許文献1〜2参照。)。   The adhesives used in these methods are generally two-component polyurethane adhesives composed of a main agent having an active hydrogen group such as a hydroxyl group and a curing agent having an isocyanate group, because of its high adhesive performance. (See Patent Documents 1 and 2).

しかしながらこれらの二液型ポリウレタン系接着剤は、一般にその硬化反応がそれほど速いものではないことから、十分な接着性を確保するために張り合わせ後に1日〜5日間の長時間におよぶエージングによる硬化促進を行う必要があった。また、イソシアネート基を有する硬化剤を使用することから、硬化後に未反応のイソシアネート基が残存した場合、この残存イソシアネート基は大気中の水分と反応して二酸化炭素を発生することからラミネートフィルム内に気泡が発生する等の問題があった。
一方、これらの問題を解決する方法として、ポリウレタン系接着剤、およびエポキシ系ラミネート用接着剤が提案されている(特許文献3〜4参照。)。
However, since these two-component polyurethane adhesives generally do not have a fast curing reaction, they are accelerated by aging over a long period of 1 to 5 days after bonding to ensure sufficient adhesion. Had to do. In addition, since a curing agent having an isocyanate group is used, when an unreacted isocyanate group remains after curing, the residual isocyanate group reacts with moisture in the atmosphere to generate carbon dioxide. There were problems such as the generation of bubbles.
On the other hand, as a method for solving these problems, polyurethane adhesives and epoxy laminate adhesives have been proposed (see Patent Documents 3 to 4).

しかし、上述の各ポリウレタン系接着剤やエポキシ系ラミネート用接着剤のガスバリア性は高いものではないことから、包装材料にガスバリア性が要求される場合にはPVDCコート層やポリビニルアルコール(PVA)コート層、エチレン‐ビニルアルコール共重合体(EVOH)フィルム層、メタキシリレンアジパミドフィルム層、アルミナやシリカなどを蒸着した無機蒸着フィルム層などの各種ガスバリア層とシーラント層となる可撓性ポリマーフィルム層との間に、接着剤層やアンカーコート層などの接着の役割を担う層を別途ラミネートさせる必要があり(特許文献5参照。)、ラミネートフィルムの製造コストやラミネートにおける作業工程で不利を被るものであった。   However, the gas barrier properties of each of the above-mentioned polyurethane-based adhesives and epoxy-based laminate adhesives are not high, so when packaging materials require gas barrier properties, PVDC coating layers and polyvinyl alcohol (PVA) coating layers Flexible polymer film layer to be used as various gas barrier layers and sealant layers, such as ethylene-vinyl alcohol copolymer (EVOH) film layer, metaxylylene adipamide film layer, inorganic vapor deposited film layer deposited with alumina, silica, etc. It is necessary to laminate separately the layer which plays the role of adhesion | attachment, such as an adhesive bond layer and an anchor coat layer (refer patent document 5), and it suffers from the manufacturing cost of a laminate film, and the work process in lamination. Met.

特開平5-51574号公報Japanese Patent Laid-Open No. 5-51574 特開平9-316422号公報JP-A-9-316422 特開2000-154365号公報JP 2000-154365 A 国際公開第99/60068号パンフレットWO99 / 60068 pamphlet 特開平10-71664号公報JP 10-71664 A

本発明の課題は、上記問題点を解決し、経済性及び製造工程での作業性が有利な、ガスバリア性を有し、接着力が良好なラミネートフィルムの製造方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a laminate film having gas barrier properties and good adhesive strength, which is advantageous in economic efficiency and workability in the production process.

本発明者らは上記課題を解決するため鋭意検討した結果、少なくとも基材、接着剤、シーラント層を用いるラミネートフィルムの製造方法において、その接着剤をガスバリア性接着剤とする製造方法が、ガスバリア性を有し、接着性に優れたラミネートフィルムを経済的、かつ作業性が有利な製造方法であることを見出し、本発明に至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a method for producing a laminate film using at least a substrate, an adhesive, and a sealant layer has a gas barrier property. Thus, the present inventors have found that a laminate film having excellent adhesiveness is economical and has an advantageous workability, and has led to the present invention.

すなわち、本発明は、少なくとも基材、接着剤、およびシーラント層を用いるラミネートフィルムの製造方法において、接着剤はエポキシ樹脂およびエポキシ樹脂硬化剤からなるエポキシ樹脂組成物を主成分とし、エポキシ樹脂組成物が硬化して得られるエポキシ樹脂硬化物中に(1)式に示される骨格構造が40重量%以上含有されることを特徴とするラミネートフィルムの製造方法に関するものである。   That is, the present invention provides a laminate film manufacturing method using at least a base material, an adhesive, and a sealant layer, wherein the adhesive is mainly composed of an epoxy resin composition comprising an epoxy resin and an epoxy resin curing agent, and the epoxy resin composition The present invention relates to a method for producing a laminate film, wherein the cured epoxy resin obtained by curing contains a skeleton structure represented by the formula (1) in an amount of 40% by weight or more.

本発明におけるガスバリア性ラミネートフィルムは、各層をラミネートする際に接着剤層やアンカーコート層を別途設けなくてもよいので、経済性や製造工程での作業性などの面で有利となる。
また、該ラミネートフィルムはガスバリア性に加え、接着性に優れており、非ハロゲン系ガスバリア材料として様々な用途に応用される。
The gas barrier laminate film according to the present invention is advantageous in terms of economy and workability in the manufacturing process because it is not necessary to separately provide an adhesive layer or an anchor coat layer when laminating each layer.
Further, the laminate film is excellent in adhesiveness in addition to gas barrier properties and is applied to various uses as a non-halogen gas barrier material.

本発明のラミネートフィルム製造方法において、接着剤はエポキシ樹脂およびエポキシ樹脂硬化剤からなるエポキシ樹脂組成物を主成分とし、エポキシ樹脂組成物が硬化して得られるエポキシ樹脂硬化物中に上記(1)の骨格構造が40重量%以上、好ましくは45重量%以上、より好ましくは50重量%以上含有されることを特徴としている。エポキシ樹脂硬化物中に上記(1)式の骨格構造が高いレベルで含有されることにより、高いガスバリア性が発現する。以下に、エポキシ樹脂組成物を形成するエポキシ樹脂およびエポキシ樹脂硬化剤について説明する。   In the method for producing a laminate film of the present invention, the adhesive is mainly composed of an epoxy resin composition comprising an epoxy resin and an epoxy resin curing agent, and the above (1) is contained in the cured epoxy resin obtained by curing the epoxy resin composition. The skeleton is characterized by containing 40% by weight or more, preferably 45% by weight or more, more preferably 50% by weight or more. When the skeleton structure of the formula (1) is contained at a high level in the cured epoxy resin, a high gas barrier property is exhibited. Below, the epoxy resin and epoxy resin hardening | curing agent which form an epoxy resin composition are demonstrated.

本発明におけるエポキシ樹脂は、脂肪族化合物、脂環式化合物、芳香族化合物または複素環式化合物のいずれであってもよいが、高いガスバリア性の発現を考慮した場合には芳香族部位を分子内に含むエポキシ樹脂が好ましく、上記(1)式の骨格構造を分子内に含むエポキシ樹脂がより好ましい。具体的にはメタキシリレンジアミンから誘導されたグリシジルアミン部位を有するエポキシ樹脂、1,3-ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミン部位を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミン部位を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミン部位および/またはグリシジルエーテル部位を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルエーテル部位を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルエーテル部位を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルエーテル部位を有するエポキシ樹脂、レゾルシノールから誘導されたグリシジルエーテル部位を有するエポキシ樹脂などが使用できるが、中でもメタキシリレンジアミンから誘導されたグリシジルアミン部位を有するエポキシ樹脂、1,3-ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミン部位を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルエーテル部位を有するエポキシ樹脂およびレゾルシノールから誘導されたグリシジルエーテル部位を有するエポキシ樹脂が好ましい。   The epoxy resin in the present invention may be any of an aliphatic compound, an alicyclic compound, an aromatic compound, or a heterocyclic compound. However, in consideration of the expression of high gas barrier properties, the aromatic moiety is located in the molecule. Is preferable, and an epoxy resin including the skeleton structure of the above formula (1) in the molecule is more preferable. Specifically, an epoxy resin having a glycidylamine moiety derived from metaxylylenediamine, an epoxy resin having a glycidylamine moiety derived from 1,3-bis (aminomethyl) cyclohexane, and a glycidylamine derived from diaminodiphenylmethane An epoxy resin having a glycidylamine moiety and / or a glycidyl ether moiety derived from paraaminophenol, an epoxy resin having a glycidyl ether moiety derived from bisphenol A, and a glycidyl ether moiety derived from bisphenol F Epoxy resin having glycidyl ether moiety derived from phenol novolac, epoxy resin having glycidyl ether moiety derived from resorcinol Fats can be used, but among them, epoxy resin having glycidylamine moiety derived from metaxylylenediamine, epoxy resin having glycidylamine moiety derived from 1,3-bis (aminomethyl) cyclohexane, derived from bisphenol F Preferred are epoxy resins having a glycidyl ether moiety and epoxy resins having a glycidyl ether moiety derived from resorcinol.

更に、ビスフェノールFから誘導されたグリシジルエーテル部位を有するエポキシ樹脂やメタキシリレンジアミンから誘導されたグリシジルアミン部位を有するエポキシ樹脂を主成分として使用することがより好ましく、メタキシリレンジアミンから誘導されたグリシジルアミン部位を有するエポキシ樹脂を主成分として使用することが特に好ましい。   Further, it is more preferable to use an epoxy resin having a glycidyl ether moiety derived from bisphenol F or an epoxy resin having a glycidyl amine moiety derived from metaxylylenediamine as a main component, and derived from metaxylylenediamine. It is particularly preferable to use an epoxy resin having a glycidylamine moiety as a main component.

また、柔軟性や耐衝撃性、耐湿熱性などの諸性能を向上させるために、上記の種々のエポキシ樹脂を適切な割合で混合して使用することもできる。   Moreover, in order to improve various performances such as flexibility, impact resistance, and moist heat resistance, the above-mentioned various epoxy resins can be mixed and used at an appropriate ratio.

本発明におけるエポキシ樹脂は、各種アルコール類、フェノール類およびアミン類とエピハロヒドリンの反応により得られる。例えば、メタキシリレンジアミンから誘導されたグリシジルアミン部位を有するエポキシ樹脂は、メタキシリレンジアミンにエピクロルヒドリンを付加させることで得られる。
ここで、前記グリシジルアミン部位は、キシリレンジアミン中のジアミンの4つの水素原子と置換できる、モノ−、ジ−、トリ−および/またはテトラ−グリシジルアミン部位を含む。モノ−、ジ−、トリ−および/またはテトラ−グリシジルアミン部位の各比率はメタキシリレンジアミンとエピクロルヒドリンとの反応比率を変えることで変更することができる。例えば、メタキシリレンジアミンに約4倍モルのエピクロルヒドリンを付加反応させることにより、主としてテトラグリシジルアミン部位を有するエポキシ樹脂が得られる。
The epoxy resin in the present invention can be obtained by reaction of various alcohols, phenols and amines with epihalohydrin. For example, an epoxy resin having a glycidylamine moiety derived from metaxylylenediamine can be obtained by adding epichlorohydrin to metaxylylenediamine.
Here, the glycidylamine moiety comprises a mono-, di-, tri- and / or tetra-glycidylamine moiety that can replace the four hydrogen atoms of the diamine in xylylenediamine. The ratio of mono-, di-, tri- and / or tetra-glycidylamine moieties can be varied by changing the reaction ratio of metaxylylenediamine to epichlorohydrin. For example, an epoxy resin mainly having a tetraglycidylamine moiety can be obtained by addition reaction of about 4 times mole of epichlorohydrin to metaxylylenediamine.

前記エポキシ樹脂は、各種アルコール類、フェノール類およびアミン類に対し過剰のエピハロヒドリンを水酸化ナトリウム等のアルカリ存在下、20〜140℃、好ましくはアルコール類、フェノール類の場合は50〜120℃、アミン類の場合は20〜70℃の温度条件で反応させ、生成するアルカリハロゲン化物を分離することにより合成される。
生成したエポキシ樹脂の数平均分子量は各種アルコール類、フェノール類およびアミン類に対するエピハロヒドリンのモル比により異なるが、約80〜4000であり、約200〜1000であることが好ましく、約200〜500であることがより好ましい。
The epoxy resin is an excess of epihalohydrin with respect to various alcohols, phenols and amines in the presence of an alkali such as sodium hydroxide, 20 to 140 ° C., preferably 50 to 120 ° C. in the case of alcohols and phenols, amine In the case of a kind, it is synthesized by reacting at a temperature of 20 to 70 ° C. and separating the produced alkali halide.
The number average molecular weight of the produced epoxy resin varies depending on the molar ratio of epihalohydrin to various alcohols, phenols and amines, but is about 80 to 4000, preferably about 200 to 1000, preferably about 200 to 500. It is more preferable.

本発明におけるエポキシ樹脂硬化剤は、脂肪族化合物、脂環式化合物、芳香族化合物、または複素環式化合物のいずれであってもよく、ポリアミン類、フェノール類、酸無水物、またはカルボン酸類などの一般に使用され得るエポキシ樹脂硬化剤を使用することができる。これらのエポキシ樹脂硬化剤は、ラミネートフィルムの使用用途およびその用途における要求性能に応じて選択することが可能である。
具体的には、ポリアミン類としてはエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミンなどの脂肪族アミン、メタキシリレンジアミン、パラキシリレンジアミンなどの芳香環を有する脂肪族アミン、1,3-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ノルボルナンジアミンなどの脂環式アミン、ジアミノジフェニルメタン、メタフェニレンジアミンなどの芳香族アミンが挙げられる。
また、これらのポリアミン類を原料とするエポキシ樹脂またはモノグリシジル化合物との反応生成物、炭素数2〜4のアルキレンオキシドとの反応生成物、エピクロロヒドリンとの反応生成物、これらのポリアミン類との反応によりアミド基部位を形成しオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物との反応生成物、これらのポリアミン類とのとの反応によりアミド基部位を形成しオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物と、一価のカルボン酸および/またはその誘導体との反応生成物などが使用できる。
The epoxy resin curing agent in the present invention may be any of an aliphatic compound, an alicyclic compound, an aromatic compound, or a heterocyclic compound, such as polyamines, phenols, acid anhydrides, or carboxylic acids. Any commonly used epoxy resin curing agent can be used. These epoxy resin curing agents can be selected according to the use application of the laminate film and the required performance in the application.
Specifically, polyamines include aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine and tetraethylenepentamine, aliphatic amines having an aromatic ring such as metaxylylenediamine and paraxylylenediamine, 1,3- Examples include alicyclic amines such as bis (aminomethyl) cyclohexane, isophoronediamine, norbornanediamine, and aromatic amines such as diaminodiphenylmethane and metaphenylenediamine.
Also, reaction products with epoxy resins or monoglycidyl compounds made from these polyamines, reaction products with alkylene oxides having 2 to 4 carbon atoms, reaction products with epichlorohydrin, these polyamines A reaction product with a polyfunctional compound having at least one acyl group capable of forming an amide group site by reaction with, an oligomer with an amide group site formed by reaction with these polyamines A reaction product of a polyfunctional compound having at least one acyl group and a monovalent carboxylic acid and / or a derivative thereof can be used.

フェノール類としてはカテコール、レゾルシノール、ヒドロキノンなどの多置換基モノマー、およびレゾール型フェノール樹脂などが挙げられる。
また、酸無水物またはカルボン酸類としてはドデセニル無水コハク酸、ポリアジピン酸無水物などの脂肪族酸無水物、(メチル)テトラヒドロ無水フタル酸、(メチル)ヘキサヒドロ無水フタル酸などの脂環式酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸などの芳香族酸無水物、およびこれらのカルボン酸などが使用できる。
Examples of phenols include multi-substituent monomers such as catechol, resorcinol and hydroquinone, and resole type phenol resins.
Acid anhydrides or carboxylic acids include aliphatic acid anhydrides such as dodecenyl succinic anhydride and polyadipic anhydride, and alicyclic acid anhydrides such as (methyl) tetrahydrophthalic anhydride and (methyl) hexahydrophthalic anhydride. Aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and carboxylic acids thereof can be used.

高いガスバリア性の発現を考慮した場合には、芳香族部位を分子内に含むエポキシ樹脂硬化剤が好ましく、上記(1)式の骨格構造を分子内に含むエポキシ樹脂硬化剤がより好ましい。
具体的にはメタキシリレンジアミンまたはパラキシリレンジアミン、およびこれらを原料とするエポキシ樹脂またはモノグリシジル化合物との反応生成物、炭素数2〜4のアルキレンオキシドとの反応生成物、エピクロロヒドリンとの反応生成物、これらのポリアミン類との反応によりアミド基部位を形成しオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物との反応生成物、これらのポリアミン類とのとの反応によりアミド基部位を形成しオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物と、一価のカルボン酸および/またはその誘導体との反応生成物などを使用することがより好ましい。
In consideration of the expression of high gas barrier properties, an epoxy resin curing agent containing an aromatic moiety in the molecule is preferred, and an epoxy resin curing agent containing the skeleton structure of the above formula (1) in the molecule is more preferred.
Specifically, metaxylylenediamine or paraxylylenediamine, reaction products with epoxy resins or monoglycidyl compounds using these as raw materials, reaction products with alkylene oxides having 2 to 4 carbon atoms, epichlorohydrin Reaction products with these polyamines, reaction products with polyfunctional compounds having at least one acyl group that can form oligomers by reaction with these polyamines, and with these polyamines It is more preferable to use a reaction product of a polyfunctional compound having at least one acyl group and a monovalent carboxylic acid and / or a derivative thereof, which can form an amide group site by the reaction of preferable.

高いガスバリア性および各種フィルム材料との良好な接着性を考慮した場合には、エポキシ樹脂硬化剤として、下記の(A)および(B)の反応生成物、または(A)、(B)、および(C)の反応生成物を用いることが特に好ましい。
(A)メタキシリレンジアミンまたはパラキシリレンジアミン
(B)ポリアミンとの反応によりアミド基部位を形成しオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物
(C)炭素数1〜8の一価カルボン酸および/またはその誘導体
When considering high gas barrier properties and good adhesion to various film materials, the following reaction products (A) and (B), or (A), (B), and It is particularly preferable to use the reaction product (C).
(A) Metaxylylenediamine or paraxylylenediamine
(B) A polyfunctional compound having at least one acyl group capable of forming an amide group site by reaction with a polyamine to form an oligomer
(C) C1-C8 monovalent carboxylic acid and / or derivative thereof

前記(B)ポリアミンとの反応によりアミド基部位を形成しオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、コハク酸、リンゴ酸、酒石酸、アジピン酸、イソフタル酸、テレフタル酸、ピロメリット酸、トリメリット酸などのカルボン酸およびそれらの誘導体、例えばエステル、アミド、酸無水物、酸塩化物などが挙げられ、特にアクリル酸、メタクリル酸およびそれらの誘導体が好ましい。   Examples of the polyfunctional compound having at least one acyl group that can form an amide group site by reaction with the (B) polyamine to form an oligomer include acrylic acid, methacrylic acid, maleic acid, fumaric acid, succinic acid, Carboxylic acids such as malic acid, tartaric acid, adipic acid, isophthalic acid, terephthalic acid, pyromellitic acid, trimellitic acid and their derivatives such as esters, amides, acid anhydrides, acid chlorides, etc., especially acrylic acid Methacrylic acid and derivatives thereof are preferred.

また、蟻酸、酢酸、プロピオン酸、酪酸、乳酸、グリコール酸、安息香酸などの炭素数1〜8の一価のカルボン酸およびそれらの誘導体、例えばエステル、アミド、酸無水物、酸塩化物などを上記多官能性化合物と併用して開始ポリアミンと反応させてもよい。反応により導入されるアミド基部位は高い凝集力を有しており、エポキシ樹脂硬化剤中に高い割合でアミド基部位が存在することにより、より高い酸素バリア性および各種フィルム材料への良好な接着強度が得られる。   In addition, monovalent carboxylic acids having 1 to 8 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, lactic acid, glycolic acid, benzoic acid, and derivatives thereof such as esters, amides, acid anhydrides, acid chlorides, etc. The polyfunctional compound may be used in combination with the starting polyamine. The amide group site introduced by the reaction has a high cohesive force, and the presence of the amide group site in a high proportion in the epoxy resin curing agent results in higher oxygen barrier properties and good adhesion to various film materials. Strength is obtained.

前記 (A)および(B)、または(A)、(B)、および(C)の反応モル比は、(A)に含有されるアミノ基の数に対する(B)に含有される反応性官能基の数の比、または(A)に含有されるアミノ基の数に対する(B)および(C)に含有される反応性官能基の合計数の比として、0.3〜0.97の範囲が好ましい。0.3より少ない比率では、エポキシ樹脂硬化剤中に十分な量のアミド基が生成せず、高いレベルのガスバリア性および各種フィルム材料に対する接着性が発現しない。また、エポキシ樹脂硬化剤中に残存する揮発性分子の割合が高くなり、得られる硬化物からの臭気発生の原因となる。また、エポキシ基とアミノ基の反応により生成する水酸基の硬化反応物中における割合が高くなるため、高湿度環境下での酸素バリア性が著しく低下する要因となる。一方、0.97より高い範囲ではエポキシ樹脂と反応するアミノ基の量が少なくなり優れた耐衝撃性や耐熱性などが発現せず、また各種有機溶剤あるいは水に対する溶解性も低下する。得られる硬化物の高いガスバリア性、高い接着性、臭気発生の抑制および高湿度環境下での高い酸素バリア性を特に考慮する場合には、ポリアミン成分に対する多官能性化合物のモル比が0.6〜0.97の範囲がより好ましい。より高いレベルの各種フィルム材料に対する接着性の発現を考慮した場合には、本発明におけるエポキシ樹脂硬化剤中に、該硬化剤の全重量を基準として、少なくとも6重量%のアミド基が含有されることが好ましい。   The reaction molar ratio of (A) and (B) or (A), (B), and (C) is the reactive functionality contained in (B) with respect to the number of amino groups contained in (A). The ratio of the number of groups, or the ratio of the total number of reactive functional groups contained in (B) and (C) to the number of amino groups contained in (A) is in the range of 0.3 to 0.97 Is preferred. When the ratio is less than 0.3, a sufficient amount of amide groups are not generated in the epoxy resin curing agent, and a high level of gas barrier properties and adhesion to various film materials are not exhibited. Moreover, the ratio of the volatile molecule which remains in the epoxy resin curing agent is increased, which causes odor generation from the obtained cured product. Moreover, since the ratio of the hydroxyl group produced | generated by reaction of an epoxy group and an amino group in the hardening reaction material becomes high, it becomes a factor by which oxygen barrier property in a high humidity environment falls remarkably. On the other hand, in the range higher than 0.97, the amount of amino groups reacting with the epoxy resin is reduced, and excellent impact resistance and heat resistance are not exhibited, and the solubility in various organic solvents or water is lowered. When particularly considering the high gas barrier property, high adhesion, suppression of odor generation, and high oxygen barrier property in a high humidity environment of the obtained cured product, the molar ratio of the polyfunctional compound to the polyamine component is 0.6. A range of ˜0.97 is more preferable. When considering the expression of adhesion to various film materials at a higher level, the epoxy resin curing agent in the present invention contains at least 6% by weight of an amide group based on the total weight of the curing agent. It is preferable.

本発明における接着剤を使用して作製したラミネートフィルムは、ラミネート直後に300mm/minの剥離速度でT型剥離をした場合のフィルム材料間の初期粘着力が30g/15mm以上であることが好ましく、40g/15mm以上であることがより好ましく、50g/15mm以上であることが特に好ましい。この粘着性が十分でない場合、ラミネートフィルムのトンネリングやフィルムを巻き取る際の巻きズレなどの問題が発生する。   The laminate film produced using the adhesive in the present invention preferably has an initial adhesive strength between film materials of 30 g / 15 mm or more when T-type peeling is performed at a peeling speed of 300 mm / min immediately after lamination, It is more preferably 40 g / 15 mm or more, and particularly preferably 50 g / 15 mm or more. When this adhesiveness is not sufficient, problems such as tunneling of the laminate film and winding deviation when winding the film occur.

高い粘着性の発現を考慮した場合には、例えばエポキシ樹脂硬化剤であるメタキシリレンジアミンまたはパラキシリレンジアミンと、該ポリアミンとの反応によりアミド基部位を形成しオリゴマーを形成し得る、少なくとも1つのアシル基を有する多官能性化合物との反応生成物の反応比を、ポリアミン成分に対する多官能性化合物のモル比で0.6〜0.97、好ましくは0.8〜0.97、特に好ましくは0.85〜0.97の範囲とし、反応生成物であるオリゴマーの平均分子量を高くしたエポキシ樹脂硬化剤を使用することが好ましい。
より好ましいエポキシ樹脂硬化剤は、メタキシリレンジアミンと、アクリル酸、メタクリル酸および/またはそれらの誘導体との反応生成物である。ここで、メタキシリレンジアミンに対するアクリル酸、メタクリル酸および/またはそれらの誘導体の反応モル比は0.8〜0.97の範囲が好ましい。
In consideration of the expression of high adhesiveness, for example, at least one that can form an amide group site by forming an amide group site by reacting metaxylylenediamine or paraxylylenediamine, which is an epoxy resin curing agent, with the polyamine. The reaction ratio of the reaction product with the polyfunctional compound having one acyl group is 0.6 to 0.97, preferably 0.8 to 0.97, particularly preferably molar ratio of the polyfunctional compound to the polyamine component. Is preferably in the range of 0.85 to 0.97, and it is preferable to use an epoxy resin curing agent in which the average molecular weight of the oligomer as the reaction product is increased.
A more preferred epoxy resin curing agent is a reaction product of metaxylylenediamine and acrylic acid, methacrylic acid and / or derivatives thereof. Here, the reaction molar ratio of acrylic acid, methacrylic acid and / or derivatives thereof to metaxylylenediamine is preferably in the range of 0.8 to 0.97.

本発明における接着剤の主成分であるエポキシ樹脂とエポキシ樹脂硬化剤の配合割合については、一般にエポキシ樹脂とエポキシ樹脂硬化剤との反応によりエポキシ樹脂硬化物を作製する場合の標準的な配合範囲であってよい。具体的には、エポキシ樹脂中のエポキシ基の数に対するエポキシ樹脂硬化剤中の活性水素数の比が0.5〜5.0の範囲である。0.5より少ない範囲では残存する未反応のエポキシ基が、得られる硬化物のガスバリア性を低下させる原因となり、また5.0より多い範囲では残存する未反応のアミノ基が、得られる硬化物の耐湿熱性を低下させる原因となる。得られる硬化物のガスバリア性および耐湿熱性を特に考慮する場合には、0.8〜3.0の範囲がより好ましく、0.8〜1.4の範囲が特に好ましい。
また、得られる硬化物の高湿度環境下での高い酸素バリア性の発現を考慮した場合には、エポキシ樹脂中のエポキシ基の数に対するエポキシ樹脂硬化剤中の活性水素数の比が0.8〜1.4の範囲が好ましい。
About the compounding ratio of the epoxy resin and the epoxy resin curing agent which are the main components of the adhesive in the present invention, generally in the standard compounding range when producing an epoxy resin cured product by reaction of the epoxy resin and the epoxy resin curing agent. It may be. Specifically, the ratio of the number of active hydrogens in the epoxy resin curing agent to the number of epoxy groups in the epoxy resin is in the range of 0.5 to 5.0. If the range is less than 0.5, the remaining unreacted epoxy group causes the gas barrier property of the resulting cured product to decrease, and if it is greater than 5.0, the remaining unreacted amino group results in the resulting cured product. It becomes a cause of lowering the heat and heat resistance. When the gas barrier property and heat-and-moisture resistance of the obtained cured product are particularly considered, the range of 0.8 to 3.0 is more preferable, and the range of 0.8 to 1.4 is particularly preferable.
In addition, when considering the expression of a high oxygen barrier property in a high humidity environment of the resulting cured product, the ratio of the number of active hydrogens in the epoxy resin curing agent to the number of epoxy groups in the epoxy resin is 0.8. A range of ~ 1.4 is preferred.

本発明における接着剤には、必要に応じて、本発明の効果を損なわない範囲で、ポリウレタン系樹脂組成物、ポリアクリル系樹脂組成物、ポリウレア系樹脂組成物等の熱硬化性樹脂組成物を混合してもよい。   In the adhesive according to the present invention, if necessary, a thermosetting resin composition such as a polyurethane resin composition, a polyacrylic resin composition, or a polyurea resin composition may be used as long as the effects of the present invention are not impaired. You may mix.

また、本発明における接着剤には各種フィルム材料に塗布時の表面の湿潤を助けるために、必要に応じてシリコンあるいはアクリル系化合物といった湿潤剤を添加しても良い。適切な湿潤剤としては、ビック・ケミー社から入手しうるBYK331、BYK333、BYK348、BYK381などがある。これらを添加する場合には、接着剤の全重量を基準として0.01重量%〜2.0重量%の範囲が好ましい。   Moreover, in order to assist the wetness of the surface at the time of application | coating to various film materials, you may add wetting agents, such as a silicon | silicone or an acryl-type compound, to the adhesive agent in this invention. Suitable wetting agents include BYK331, BYK333, BYK348, BYK381 available from Big Chemie. When adding these, the range of 0.01 weight%-2.0 weight% is preferable on the basis of the total weight of an adhesive agent.

本発明における接着剤には各種フィルム材料に塗布直後の各種フィルム材料に対する粘着性を向上させるために、必要に応じてキシレン樹脂、テルペン樹脂、フェノール樹脂、ロジン樹脂などの粘着付与剤を添加しても良い。これらを添加する場合には、接着剤の全重量を基準として0.01重量%〜5.0重量%の範囲が好ましい。   In order to improve the adhesiveness to various film materials immediately after application to various film materials, an adhesive agent such as xylene resin, terpene resin, phenol resin, rosin resin is added to the adhesive in the present invention as necessary. Also good. When adding these, the range of 0.01 weight%-5.0 weight% is preferable on the basis of the total weight of an adhesive agent.

また、本発明における接着剤により形成される接着剤層のガスバリア性、耐衝撃性、耐熱性などの諸性能を向上させるために、接着剤の中にシリカ、アルミナ、マイカ、タルク、アルミニウムフレーク、ガラスフレークなどの無機充填剤を添加しても良い。
フィルムの透明性を考慮した場合には、このような無機フィラーが平板状であることが好ましい。これらを添加する場合には、接着剤の全重量を基準として0.01重量%〜10.0重量%の範囲が好ましい。
Moreover, in order to improve various performances such as gas barrier properties, impact resistance, and heat resistance of the adhesive layer formed by the adhesive in the present invention, silica, alumina, mica, talc, aluminum flakes, Inorganic fillers such as glass flakes may be added.
In consideration of the transparency of the film, it is preferable that such an inorganic filler has a flat plate shape. When adding these, the range of 0.01 weight%-10.0 weight% is preferable on the basis of the total weight of an adhesive agent.

また、本発明における接着剤には、必要に応じて、酸素捕捉機能を有する化合物等を添加してもよい。酸素捕捉機能を有する化合物としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。   Moreover, you may add the compound etc. which have an oxygen capture | acquisition function to the adhesive agent in this invention as needed. Examples of the compound having an oxygen scavenging function include low molecular organic compounds that react with oxygen such as hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, pyrogallol, cobalt, manganese, nickel, iron, Examples include transition metal compounds such as copper.

さらに、本発明における接着剤により形成される接着剤層のプラスチックフィルム、金属箔、紙などの各種フィルム材料に対する接着性を向上させるために、接着剤の中にシランカップリング剤、チタンカップリング剤などのカップリング剤を添加しても良い。これらを添加する場合には、接着剤の全重量を基準として0.01重量%〜5.0重量%の範囲が好ましい。   Furthermore, in order to improve the adhesiveness of the adhesive layer formed by the adhesive in the present invention to various film materials such as plastic film, metal foil, paper, etc., a silane coupling agent and a titanium coupling agent are included in the adhesive. A coupling agent such as may be added. When adding these, the range of 0.01 weight%-5.0 weight% is preferable on the basis of the total weight of an adhesive agent.

本発明におけるラミネートフィルムは少なくとも、基材、接着剤、シーラント層を用い、基材は袋外面、シーラント層は袋内面に用いられる材料を示す。本発明におけるフィルム材料(基材)としては、例えば低密度ポリエチレン、高密度ポリエチレン、直線状低密度ポリエチレン、ポリプロピレンなどのポリオレフィン系フィルム、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系フィルム、ナイロン6、ナイロン6,6、メタキシレンアジパミド(N-MXD6)などのポリアミド系フィルム、ポリアクリロニトリル系フィルム、ポリ(メタ)アクリル系フィルム、ポリスチレン系フィルム、ポリカーボネート系フィルム、エチレン−ビニルアルコール共重合体(EVOH)系フィルム、ポリビニルアルコール系フィルム、カートンなどの紙類、アルミや銅などの金属箔、およびこれらの材料にポリ塩化ビニリデン(PVDC)樹脂やポリビニルアルコール樹脂、エチレン−酢酸ビニル共重合体けん化物系樹脂、アクリル系樹脂などの各種ポリマーによるコーティングを施したフィルム、シリカ、アルミナ、アルミなどの各種無機化合物あるいは金属を蒸着させたフィルム、無機フィラーなどを分散させたフィルム、酸素捕捉機能を付与したフィルムなどが使用できる。また、コーティングする各種ポリマーについても無機フィラーを分散させることができる。無機フィラーとしては、シリカ、アルミナ、マイカ、タルク、アルミニウムフレーク、ガラスフレークなどが挙げられるが、モンモリロナイトなどの層状珪酸塩が好ましく、またその分散方法としては例えば押出混錬法や樹脂溶液への混合分散法など従来公知の方法が使用できる。酸素捕捉機能を付与させる方法としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等を含む組成物を少なくとも一部に使用する方法等が挙げられる。
これらのフィルム材料の厚さとしては10〜300μm程度、好ましくは10〜100μm程度が実用的であり、プラスチックフィルムの場合は一軸ないし二軸方向に延伸されているものでもよい。
The laminate film in the present invention uses at least a base material, an adhesive, and a sealant layer, the base material indicates a bag outer surface, and the sealant layer indicates a material used for the bag inner surface. Examples of the film material (base material) in the present invention include polyolefin films such as low density polyethylene, high density polyethylene, linear low density polyethylene, and polypropylene, polyester films such as polyethylene terephthalate and polybutylene terephthalate, nylon 6, nylon 6,6, Polyamide film such as meta-xylene adipamide (N-MXD6), polyacrylonitrile film, poly (meth) acrylic film, polystyrene film, polycarbonate film, ethylene-vinyl alcohol copolymer (EVOH ) Film, polyvinyl alcohol film, paper such as carton, metal foil such as aluminum and copper, and polyvinylidene chloride (PVDC) resin, polyvinyl alcohol resin, ethylene-vinyl acetate Films coated with various polymers such as copolymer saponified resins and acrylic resins, films deposited with various inorganic compounds or metals such as silica, alumina, and aluminum, films with dispersed inorganic fillers, oxygen A film provided with a capturing function can be used. Moreover, an inorganic filler can be disperse | distributed also about the various polymers to coat. Examples of inorganic fillers include silica, alumina, mica, talc, aluminum flakes, and glass flakes. Layered silicates such as montmorillonite are preferred, and dispersion methods thereof include, for example, extrusion kneading and mixing into resin solutions. A conventionally known method such as a dispersion method can be used. Examples of methods for imparting oxygen scavenging functions include hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, gallic acid, pyrogallol and other low molecular organic compounds that react with oxygen, cobalt, manganese, nickel, iron And a method of using a composition containing a transition metal compound such as copper at least in part.
The thickness of these film materials is about 10 to 300 μm, preferably about 10 to 100 μm, and in the case of a plastic film, it may be stretched in a uniaxial or biaxial direction.

これらのフィルム材料(基材)の表面には、膜切れやはじきなどの欠陥のない接着剤層が形成されるように必要に応じて火炎処理やコロナ放電処理などの各種表面処理が実施されることが望ましい。このような処理は各種フィルム材料(基材)に対する接着剤層の良好な接着を促進する。また、フィルム材料(基材)の表面に適切な表面処理がなされた後で、必要に応じて印刷層を設けることもできる。印刷層を設ける際には、グラビア印刷機、フレキソ印刷機、オフセット印刷機等の従来のポリマーフィルムへの印刷に用いられてきた一般的な印刷設備が同様に適用され得る。また、印刷層を形成するインキについても、アゾ系、フタロシアニン系などの顔料、ロジン、ポリアミド樹脂、ポリウレタンなどの樹脂、メタノール、酢酸エチル、メチルエチルケトンなどの溶剤等から形成される従来のポリマーフィルムへの印刷層に用いられてきたインキが同様に適用され得る。   Various surface treatments such as flame treatment and corona discharge treatment are performed on the surface of these film materials (base materials) as necessary so that an adhesive layer free from defects such as film breakage and repellency is formed. It is desirable. Such treatment promotes good adhesion of the adhesive layer to various film materials (base materials). Moreover, after an appropriate surface treatment is performed on the surface of the film material (base material), a printing layer can be provided as necessary. In providing the printing layer, general printing equipment that has been used for printing on a conventional polymer film such as a gravure printing machine, a flexographic printing machine, and an offset printing machine can be similarly applied. In addition, the ink for forming the printing layer is also applied to conventional polymer films formed from pigments such as azo and phthalocyanine, resins such as rosin, polyamide resin and polyurethane, solvents such as methanol, ethyl acetate and methyl ethyl ketone. The inks that have been used for the printing layer can be applied as well.

本発明におけるシーラント層としては可撓性ポリマーフィルム層が好ましく、良好なヒートシール性の発現を考慮し、ポリエチレンフィルムやポリプロピレンフィルム、エチレン−酢酸ビニル共重合体などのポリオレフィン系フィルムを選択することが好ましい。これらのフィルムの厚さは、10〜300μm程度、好ましくは10〜100μm程度が実用的であり、フィルムの表面には火炎処理やコロナ放電処理などの各種表面処理が実施されていてもよい。   As the sealant layer in the present invention, a flexible polymer film layer is preferable, and a polyolefin film such as a polyethylene film, a polypropylene film, or an ethylene-vinyl acetate copolymer may be selected in consideration of expression of good heat sealability. preferable. The thickness of these films is practically about 10 to 300 μm, preferably about 10 to 100 μm, and various surface treatments such as flame treatment and corona discharge treatment may be performed on the surface of the film.

本発明における接着剤を各種フィルム材料等に塗布、乾燥、貼り合わせ、熱処理した後の接着剤層の厚さは0.1〜100μm、好ましくは0.5〜10μmが実用的である。0.1μm未満では十分なガスバリア性および接着性が発揮し難く、一方100μmを超えると均一な厚みの接着剤層を形成することが困難になる。   The thickness of the adhesive layer after applying, drying, bonding and heat-treating the adhesive in the present invention to various film materials is 0.1 to 100 μm, preferably 0.5 to 10 μm. If the thickness is less than 0.1 μm, sufficient gas barrier properties and adhesiveness are hardly exhibited. On the other hand, if the thickness exceeds 100 μm, it is difficult to form an adhesive layer having a uniform thickness.

本発明における接着剤は各種フィルム材料に対する好適な接着性能に加え、高いガスバリア性を有する事を特徴としており、低湿度条件から高湿度条件に至る広い範囲において高いガスバリア性を示す。このことから、本発明における接着剤を使用したラミネートフィルムは、PVDCコート層やポリビニルアルコール(PVA)コート層、エチレン‐ビニルアルコール共重合体(EVOH)フィルム層、メタキシリレンアジパミドフィルム層、アルミナやシリカなどを蒸着した無機蒸着フィルム層などの一般に使用されているガスバリア性材料を使用することなく非常に高いレベルのガスバリア性が発現する。さらに、これら従来のガスバリア性材料とシーラント材料とを貼り合せる接着剤として併用することにより、得られるフィルムのガスバリア性を著しく向上させることもできる。   The adhesive in the present invention is characterized by having high gas barrier properties in addition to suitable adhesion performance to various film materials, and exhibits high gas barrier properties in a wide range from low humidity conditions to high humidity conditions. From this, the laminate film using the adhesive in the present invention is a PVDC coat layer, a polyvinyl alcohol (PVA) coat layer, an ethylene-vinyl alcohol copolymer (EVOH) film layer, a metaxylylene adipamide film layer, A very high level of gas barrier properties is exhibited without using a commonly used gas barrier material such as an inorganic vapor deposition film layer on which alumina or silica is vapor-deposited. Furthermore, the gas barrier properties of the resulting film can be significantly improved by using these conventional gas barrier materials and sealant materials together as an adhesive.

また、エチレン−ビニルアルコール共重合体(EVOH)系フィルム、ポリビニルアルコール系フィルム、ポリビニルアルコールコートフィルム、無機フィラーを分散させたポリビニルアルコールコートフィルム、メタキシレンアジパミド(N-MXD6)フィルムなどのガスバリア性フィルムは、高湿度条件下では、そのガスバリア性が低下するという欠点があるが、本発明における接着剤を使用して、これらのガスバリア性フィルムを含むラミネートフィルムを作製すると、この欠点を解消することができる。   Gas barriers such as ethylene-vinyl alcohol copolymer (EVOH) film, polyvinyl alcohol film, polyvinyl alcohol coated film, polyvinyl alcohol coated film in which inorganic filler is dispersed, metaxylene adipamide (N-MXD6) film, etc. The gas barrier film has a drawback that its gas barrier property is lowered under high humidity conditions. However, when the adhesive film of the present invention is used to produce a laminate film containing these gas barrier films, this disadvantage is solved. be able to.

さらに、本発明におけるエポキシ樹脂硬化物は、靭性、耐湿熱性に優れることから、耐衝撃性、耐煮沸処理性、耐レトルト処理性などに優れたガスバリア性ラミネートフィルムが得られる。   Furthermore, since the cured epoxy resin in the present invention is excellent in toughness and heat-and-moisture resistance, a gas barrier laminate film excellent in impact resistance, boiling resistance, retort resistance and the like can be obtained.

本発明における接着剤を使用して製造したラミネートフィルムは食品や医薬品などの保護を目的とする多層包装材料として使用することができる。多層包装材料として使用する場合には、内容物や使用環境、使用形態に応じてその層構成は変化し得る。すなわち、本発明におけるラミネートフィルムをそのまま多層包装材料として使用することもできるし、必要に応じて酸素吸収層や熱可塑性樹脂フィルム層、紙層、金属箔層などを本発明におけるラミネートフィルムにさらにラミネートさせることもできる。この際、本発明における接着剤を用いてラミネートさせても良いし、他の接着剤やアンカーコート剤を用いてラミネートさせても良い。   The laminate film produced using the adhesive in the present invention can be used as a multilayer packaging material for the purpose of protecting foods and pharmaceuticals. When used as a multi-layer packaging material, the layer structure can be changed according to the contents, use environment, and use form. That is, the laminate film in the present invention can be used as a multilayer packaging material as it is, and if necessary, an oxygen absorbing layer, a thermoplastic resin film layer, a paper layer, a metal foil layer and the like are further laminated on the laminate film in the present invention. It can also be made. Under the present circumstances, you may laminate using the adhesive agent in this invention, and you may laminate using another adhesive agent and an anchor coat agent.

前記多層包装材料を使用して製造する軟包装用袋等からなる包装用袋について説明する。かかる軟包装用袋等からなる包装用袋は、前記多層包装材料を使用し、そのヒートシール性樹脂層の面を対向して重ね合わせ、しかる後、その周辺端部をヒートシールしてシール部を形成して製造することができる。その製袋方法としては、例えば、前記多層包装材料を折り曲げるかあるいは重ね合わせて、その内層の面を対向させ、更にその周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型、ガゼット型、その他等のヒートシール形態によりヒートシールする方法が挙げられる。包装用袋は内容物や使用環境、使用形態に応じて種々の形態をとり得る。その他、例えば、自立性包装用袋(スタンディングパウチ)等も可能である。ヒートシールの方法としては、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。   A packaging bag made of a soft packaging bag manufactured using the multilayer packaging material will be described. A packaging bag made of such a soft packaging bag uses the multilayer packaging material, and the surfaces of the heat-sealable resin layer are overlapped to face each other, and then the peripheral end is heat-sealed to form a seal part. Can be produced. As the bag making method, for example, the multilayer packaging material is folded or overlapped so that the inner layer faces each other, and the peripheral edge thereof is, for example, a side seal type, a two-side seal type, or a three-side seal type. , Four-side seal type, envelope sticker seal type, jointed sticker seal type (pillow seal type), pleated seal type, flat bottom seal type, square bottom seal type, gusset type, etc. It is done. The packaging bag can take various forms depending on the contents, use environment, and use form. In addition, for example, a self-supporting packaging bag (standing pouch) is also possible. As a heat sealing method, for example, a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, or an ultrasonic seal can be used.

前記包装用袋にその開口部から内容物を充填し、しかる後、その開口部をヒートシールすることで、本発明の包装用袋を使用した包装製品を製造することができる。充填できる内容物としては、米菓、豆菓子、ナッツ類、ビスケット・クッキー、ウェハース菓子、マシュマロ、パイ、半生ケーキ、キャンディ、スナック菓子などの菓子類、パン、スナックめん、即席めん、乾めん、パスタ、無菌包装米飯、ぞうすい、おかゆ、包装もち、シリアルフーズなどのステープル類、漬物、煮豆、納豆、味噌、凍豆腐、豆腐、なめ茸、こんにゃく、山菜加工品、ジャム類、ピーナッツクリーム、サラダ類、冷凍野菜、ポテト加工品などの農産加工品、ハム類、ベーコン、ソーセージ類、チキン加工品、コンビーフ類などの畜産加工品、魚肉ハム・ソーセージ、水産練製品、かまぼこ、のり、佃煮、かつおぶし、塩辛、スモークサーモン、辛子明太子などの水産加工品、桃、みかん、パイナップル、りんご、洋ナシ、さくらんぼなどの果肉類、コーン、アスパラガス、マッシュルーム、玉ねぎ、人参、大根、じゃがいもなどの野菜類、ハンバーグ、ミートボール、水産フライ、ギョーザ、コロッケなどを代表とする冷凍惣菜、チルド惣菜などの調理済食品、バター、マーガリン、チーズ、クリーム、インスタントクリーミーパウダー、育児用調整粉乳などの乳製品、液体調味料、レトルトカレー、ペットフードなどの食品類が挙げられる。また、タバコ、使い捨てカイロ、医薬品、化粧品などの包装材料としても使用され得る。   A packaging product using the packaging bag of the present invention can be manufactured by filling the packaging bag with the contents from the opening and then heat-sealing the opening. The contents that can be filled include rice confectionery, bean confectionery, nuts, biscuits and cookies, wafer confectionery, marshmallows, pies, half-baked cakes, candy, snack confectionery and other confectionery, bread, snack noodles, instant noodles, dried noodles, pasta, Aseptic packaged rice, elephant rice, rice porridge, packaging rice cake, cereal foods and other staples, pickles, boiled beans, natto, miso, frozen tofu, tofu, licked rice, konjac, wild vegetable products, jams, peanut cream, salads, frozen vegetables Agricultural processed products such as potato processed products, hams, bacon, sausages, chicken processed products, livestock processed products such as corned beef, fish ham and sausages, fishery paste products, kamaboko, paste, boiled bonito, salted, smoked Seafood products such as salmon, mentaiko, peaches, tangerines, pineapples, apples, pears, Cooking of fruit such as cherries, vegetables such as corn, asparagus, mushrooms, onions, carrots, radishes, potatoes, hamburger, meatballs, marine fries, gyoza, croquettes, etc. Examples include dairy products such as finished food, butter, margarine, cheese, cream, instant creamy powder, and infant formula, liquid seasonings, retort curry, and pet food. It can also be used as a packaging material for tobacco, disposable body warmers, pharmaceuticals, cosmetics and the like.

本発明における接着剤を使用して、各種フィルム材料をラミネートする場合には、ドライラミネート、ノンソルベントラミネート、押出しラミネート等公知のラミネート法を用いることが可能である。   When laminating various film materials using the adhesive in the present invention, a known laminating method such as dry lamination, non-solvent lamination, extrusion lamination can be used.

本発明における接着剤をフィルム材料に塗布し、ラミネートする場合には、接着剤層となるエポキシ樹脂硬化物を得るのに十分なエポキシ樹脂組成物の濃度および温度で実施されるが、これは開始材料およびラミネート方法の選択により変化し得る。すなわち、エポキシ樹脂組成物の濃度は選択した材料の種類およびモル比、ラミネート方法などにより、溶剤を用いない場合から、ある種の適切な有機溶剤および/または水を用いて約5重量%程度の組成物濃度に希釈する場合までの様々な状態をとり得る。使用される有機溶剤としては、接着剤との溶解性を有するあらゆる溶剤が使用し得る。例えばトルエン、キシレン、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトンなどの非水溶性系溶剤、2-メトキシエタノール、2-エトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-プロポキシ-2-プロパノールなどのグリコールエーテル類、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールなどのアルコール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドンなどの非プロトン性極性溶剤などが挙げられる。   When the adhesive in the present invention is applied to a film material and laminated, it is carried out at a concentration and temperature of an epoxy resin composition sufficient to obtain an epoxy resin cured product that becomes an adhesive layer, which is started. It can vary depending on the choice of materials and lamination methods. That is, the concentration of the epoxy resin composition is about 5% by weight using a certain type of appropriate organic solvent and / or water from the case where no solvent is used, depending on the type and molar ratio of the selected material and the laminating method. Various states can be taken up to dilution to the composition concentration. As the organic solvent to be used, any solvent having solubility with an adhesive can be used. For example, water-insoluble solvents such as toluene, xylene, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, 2-butoxyethanol, 1-methoxy-2-propanol, Glycol ethers such as 1-ethoxy-2-propanol and 1-propoxy-2-propanol, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol, N, N-dimethyl Examples include aprotic polar solvents such as formamide, N, N-dimethylacetamide, dimethyl sulfoxide, and N-methylpyrrolidone.

溶剤で希釈した接着剤は、そのザーンカップ(No.3)粘度が5〜30秒(25℃)の範囲となるような濃度で希釈され得る。ザーンカップ(No.3)粘度が5秒以下では接着剤が被塗物に十分塗布されず、ロールの汚染などの原因となる。またザーンカップ(No.3)粘度が30秒以上では、接着剤がロールに十分移行せず、均一な接着剤層を形成するのは困難となる。たとえばドライラミネートではザーンカップ(No.3)粘度はその使用中に10〜20秒(25℃)であることが好ましい。   The adhesive diluted with the solvent can be diluted at a concentration such that the Zahn cup (No. 3) viscosity is in the range of 5 to 30 seconds (25 ° C.). When the Zahn cup (No. 3) viscosity is 5 seconds or less, the adhesive is not sufficiently applied to the object to be coated, which causes contamination of the roll. If the Zahn cup (No. 3) viscosity is 30 seconds or more, the adhesive does not sufficiently transfer to the roll, and it becomes difficult to form a uniform adhesive layer. For example, in dry lamination, the Zahn cup (No. 3) viscosity is preferably 10 to 20 seconds (25 ° C.) during use.

本発明における接着剤中のエポキシ樹脂、エポキシ樹脂硬化剤、および希釈溶剤を混合する場合においては、混合液の泡立ちを抑えるために、本発明の塗布液の中に、シリコンあるいはアクリル系化合物といった消泡剤を添加しても良い。適切な消泡剤としては、ビック・ケミー社から入手しうるBYK052、BYK067N、BYK070、BYK080、などがある。これらを添加する場合には、エポキシ樹脂硬化物(ガスバリア層)の全重量を基準として0.01重量%〜2.0重量%の範囲が好ましい。   When mixing the epoxy resin, epoxy resin curing agent, and diluting solvent in the adhesive of the present invention, in order to suppress foaming of the mixed liquid, the coating liquid of the present invention contains silicon or an acrylic compound. A foaming agent may be added. Suitable antifoaming agents include BYK052, BYK067N, BYK070, BYK080, etc., available from Big Chemie. When adding these, the range of 0.01 weight%-2.0 weight% is preferable on the basis of the total weight of a cured epoxy resin (gas barrier layer).

また、溶剤を使用した場合には、接着剤を塗布後の溶剤乾燥温度は20℃から140℃までの様々なものであってよいが、溶剤の沸点に近く、被塗物への影響が及ばない温度が望ましい。乾燥温度が20℃以下ではラミネートフィルム中に溶剤が残存し、接着不良や臭気の原因となる。また乾燥温度が140℃以上では、ポリマーフィルムの軟化などにより、良好な外観のラミネートフィルムを得るのが困難となる。例えば接着剤を延伸ポリプロピレンフィルムに塗布する際は、40℃〜120℃が望ましい。   When a solvent is used, the solvent drying temperature after application of the adhesive may vary from 20 ° C. to 140 ° C., but it is close to the boiling point of the solvent and affects the object to be coated. No temperature is desirable. When the drying temperature is 20 ° C. or lower, the solvent remains in the laminate film, which causes poor adhesion and odor. If the drying temperature is 140 ° C. or higher, it becomes difficult to obtain a laminate film having a good appearance due to softening of the polymer film. For example, when apply | coating an adhesive agent to a stretched polypropylene film, 40 to 120 degreeC is desirable.

接着剤をポリマーフィルムに塗布する際の塗装形式としては、ロール塗布やスプレー塗布、エアナイフ塗布、浸漬、はけ塗りなどの一般的に使用される塗装形式のいずれも使用され得る。ロール塗布またはスプレー塗布が好ましい。例えば、ポリウレタン系接着剤成分をポリマーフィルムに塗布し、ラミネートする場合と同様のロールコートあるいはスプレー技術および設備が適用され得る。   Any of the commonly used coating formats such as roll coating, spray coating, air knife coating, dipping, and brush coating can be used as the coating format for applying the adhesive to the polymer film. Roll coating or spray coating is preferred. For example, the same roll coat or spray technique and equipment as when a polyurethane adhesive component is applied to a polymer film and laminated can be applied.

続いて、各ラミネート方法での具体的な操作について説明する。ドライラミネート法の場合には、基材となるフィルム材料に本発明における接着剤の有機溶剤および/または水による希釈溶液をグラビアロールなどのロールにより塗布後、溶剤を乾燥させ直ちにその表面に新たなフィルム材料をニップロールにより貼り合わせることによりラミネートフィルムを得ることができる。接着剤を調製する際の溶剤としては、溶解性が良く、比較的沸点が低い、炭素数3以下のアルコールを含む溶剤であることが好ましく、メタノール、エタノール、イソプロパノール、およびn−プロパノールからなる群から選ばれる1種以上を主成分とする溶剤が例示される。さらに、エポキシ樹脂とポリアミンとの反応を遅延し接着剤の増粘を抑え作業時間を長くする効果があるエステル基、ケトン基、アルデヒド基のいずれかの官能基を有する溶剤を混合した混合液であることが好ましい。エステル基、ケトン基、アルデヒド基のいずれかの官能基を有する溶剤を混合した混合液としては、比較的沸点が低い、酢酸エチル、アセトン、メチルエチルケトン、アセトアルデヒド、プロピオンアルデヒドからなる群から選ばれる1種以上を混合した混合液が例示される。得られるラミネートフィルムに残留する溶剤量が少ないフィルムを得るために、エステル基、ケトン基、アルデヒド基のいずれかの官能基を有する溶剤の含有量は、全溶剤中の20重量%以下が好ましい。ここで、ラミネートフィルムに残留する溶剤が多い場合、悪臭の原因となるため、残留する溶剤量は7mg/m以下が実用的であり、7mg/mより多い場合は、フィルムから異臭が感じられる原因となる。フィルムの臭気を厳密に管理する場合には5mg/m以下が好ましく、3mg/m以下が特に好ましい。 Next, specific operations in each laminating method will be described. In the case of the dry laminating method, a diluted solution of the adhesive in the present invention with an organic solvent and / or water is applied to a film material as a base material with a roll such as a gravure roll, and then the solvent is dried and a new surface is immediately applied. A laminate film can be obtained by laminating film materials with a nip roll. The solvent for preparing the adhesive is preferably a solvent having good solubility and a relatively low boiling point and containing an alcohol having 3 or less carbon atoms. The group consisting of methanol, ethanol, isopropanol, and n-propanol The solvent which has as a main component 1 or more types chosen from is illustrated. In addition, it is a mixed solution in which a solvent having an ester group, ketone group, or aldehyde group functional group that has the effect of delaying the reaction between the epoxy resin and the polyamine and suppressing the increase in the viscosity of the adhesive to prolong the working time. Preferably there is. As a mixed liquid in which a solvent having any functional group of an ester group, a ketone group, and an aldehyde group is mixed, one kind selected from the group consisting of ethyl acetate, acetone, methyl ethyl ketone, acetaldehyde, and propionaldehyde having a relatively low boiling point The liquid mixture which mixed the above is illustrated. In order to obtain a film with a small amount of solvent remaining in the obtained laminate film, the content of the solvent having any functional group of ester group, ketone group, and aldehyde group is preferably 20% by weight or less in the total solvent. Here, if there is a large amount of solvent remaining in the laminate film, it may cause a bad odor. Therefore, the amount of the remaining solvent is practically 7 mg / m 2 or less, and if it is more than 7 mg / m 2 , a strange odor is felt from the film. Cause. Preferably 5 mg / m 2 or less in the case of strictly control the odor of the film, 3 mg / m 2 or less is particularly preferred.

ドライラミネート法において、接着剤は、基材だけではなく、シーラント層に塗布することが可能であり、ポリエチレンフィルムやポリプロピレンフィルム、エチレン−酢酸ビニル共重合体などのポリオレフィン系フィルムに塗布、乾燥後、延伸ポリプロピレン、ポリアミド系フィルム、ポリエチレンテレフタレートフィルムなどの基材を貼りあわせる事により、ラミネートフィルムを製造することができる。特に基材としてポリアミド系フィルムを用いる場合、アルコールの乾燥性が悪く、ラミネートフィルム中に溶剤が残存し、接着不良や臭気の原因となる。接着剤をシーラント層に塗布し、加熱乾燥後、基材であるポリアミド系フィルムと貼りあわせる事により、良好な乾燥性を得ることができる。   In the dry laminating method, the adhesive can be applied not only to the base material but also to the sealant layer. After being applied to a polyolefin film such as a polyethylene film, a polypropylene film or an ethylene-vinyl acetate copolymer, and dried, A laminate film can be produced by laminating substrates such as stretched polypropylene, polyamide film, and polyethylene terephthalate film. In particular, when a polyamide-based film is used as the base material, the drying property of alcohol is poor, and the solvent remains in the laminate film, which causes poor adhesion and odor. A good drying property can be obtained by applying an adhesive to the sealant layer, heating and drying, and then laminating with a polyamide film as a base material.

ニップロールにより貼り合せる場合、ニップロールは20℃〜120℃に加熱して貼り合せることができるが、40〜100℃が望ましい。   In the case of bonding by nip roll, the nip roll can be heated and bonded to 20 ° C. to 120 ° C., but 40 to 100 ° C. is desirable.

この場合、ラミネート後に必要に応じて20℃〜60℃で一定時間のエージングを行ない、硬化反応を完了することが望ましい。一定時間のエージングを行なうことにより、十分な反応率でエポキシ樹脂硬化物が形成され、高いガスバリア性が発現する。エージングが20℃以下もしくはエージングなしでは、エポキシ樹脂組成物の反応率が低く、十分なガスバリア性及び接着力が得られない。また60℃以上のエージングはポリマーフィルムのブロッキングや添加剤の溶出などの問題が起こり得る。   In this case, it is desirable to complete the curing reaction by performing aging at 20 ° C. to 60 ° C. for a certain time as necessary after lamination. By performing aging for a certain period of time, a cured epoxy resin is formed with a sufficient reaction rate, and high gas barrier properties are exhibited. When the aging is 20 ° C. or less or without aging, the reaction rate of the epoxy resin composition is low, and sufficient gas barrier properties and adhesive strength cannot be obtained. Also, aging at 60 ° C. or higher can cause problems such as polymer film blocking and additive elution.

また、ノンソルベントラミネート法の場合には、基材となるフィルム材料に予め40℃〜100℃程度に加熱しておいた本発明における接着剤を40℃〜120℃に加熱したグラビアロールなどのロールにより塗布後、直ちにその表面に新たなフィルム材料を貼り合わせることによりラミネートフィルムを得ることができる。この場合もドライラミネート法の場合と同様にラミネート後に必要に応じて一定時間のエージングを行うことが望ましい。   Further, in the case of the non-solvent laminating method, a roll such as a gravure roll in which the adhesive in the present invention, which has been heated to about 40 ° C. to 100 ° C. in advance on the film material serving as the substrate, is heated to 40 ° C. to 120 ° C. After the coating, a laminate film can be obtained by pasting a new film material on the surface immediately after coating. In this case as well, as in the case of the dry laminating method, it is desirable to perform aging for a predetermined time after the lamination as necessary.

押出しラミネート法の場合には、基材となるフィルム材料に接着補助剤(アンカーコート剤)として本発明における接着剤の主成分であるエポキシ樹脂およびエポキシ樹脂硬化剤の有機溶剤および/または水による希釈溶液をグラビアロールなどのロールにより塗布し、20℃〜140℃で溶剤の乾燥、硬化反応を行なった後に、押出し機により溶融させたポリマー材料をラミネートすることによりラミネートフィルムを得ることができる。溶融させるポリマー材料としては低密度ポリエチレン樹脂や直線状低密度ポリエチレン樹脂、エチレン−酢酸ビニル共重合体樹脂などのポリオレフィン系樹脂が好ましい。
これらのラミネート法およびその他の一般的に使用されうるラミネート法は必要に応じて組み合わせることも可能であり、用途や形態に応じてラミネートフィルムの層構成は変化し得る。
In the case of the extrusion laminating method, the epoxy resin and the epoxy resin curing agent, which are the main components of the adhesive in the present invention, are diluted with an organic solvent and / or water as an adhesion auxiliary agent (anchor coating agent) for the film material serving as a base material. The solution is applied by a roll such as a gravure roll, and after drying and curing the solvent at 20 ° C. to 140 ° C., a laminate film can be obtained by laminating the polymer material melted by an extruder. The polymer material to be melted is preferably a polyolefin resin such as a low density polyethylene resin, a linear low density polyethylene resin, or an ethylene-vinyl acetate copolymer resin.
These laminating methods and other laminating methods that can be generally used can be combined as necessary, and the layer structure of the laminating film can be changed depending on the application and form.

以下に本発明の実施例を紹介するが、本発明はこれらの実施例により何ら制限されるものではない。   Examples of the present invention are introduced below, but the present invention is not limited to these examples.

<エポキシ樹脂硬化剤a>
反応容器に1モルのメタキシリレンジアミンを仕込んだ。窒素気流下60℃に昇温し、0.93モルのアクリル酸メチルを1時間かけて滴下した。滴下終了後120℃で1時間攪拌し、さらに、生成するメタノールを留去しながら3時間で160℃まで昇温した。100℃まで冷却し、固形分濃度が70重量%になるように所定量のメタノールを加え、エポキシ樹脂硬化剤aを得た。エポキシ樹脂硬化剤a中のアミド基の含有率は21重量%であった。
<Epoxy resin curing agent a>
A reaction vessel was charged with 1 mole of metaxylylenediamine. The temperature was raised to 60 ° C. under a nitrogen stream, and 0.93 mol of methyl acrylate was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was stirred at 120 ° C. for 1 hour, and further heated to 160 ° C. in 3 hours while distilling off generated methanol. The mixture was cooled to 100 ° C., and a predetermined amount of methanol was added so that the solid content concentration became 70% by weight to obtain an epoxy resin curing agent a. The content of amide groups in the epoxy resin curing agent a was 21% by weight.

また、酸素透過率、ラミネート強度等の評価方法は以下の通りである。
〈酸素透過率 (ml/m・day・MPa)〉
酸素透過率測定装置(モダンコントロール社製、OX-TRAN10/50A)を使用して、ラミネートフィルムの酸素透過率を23℃、相対湿度60%の条件下で測定した。
〈水蒸気透過率 (g/m2・day)〉
JISZ-0208に指定されている方法を用い、ラミネートフィルムの水蒸気透過率を40℃、相対湿度90%の条件下で測定した。
〈外観〉
ラミネート体の外観を目視で判定した。○:良好、△:やや不良、×:不良
〈ラミネート強度 (g/15mm)〉
JISK-6854に指定されている方法を用い、ラミネートフィルムのラミネート強度をT型剥離試験により300mm/minの剥離速度で測定した。
〈残留溶剤量 (mg/m2)〉
ラミネートフィルムを25cm×1cm長方形200枚を三角フラスコに入れ、80℃30分加熱後でのフラスコ内空気のGC分析により溶剤濃度を測定した。
In addition, evaluation methods such as oxygen permeability and laminate strength are as follows.
<Oxygen permeability (ml / m 2 · day · MPa)>
The oxygen permeability of the laminate film was measured under the conditions of 23 ° C. and 60% relative humidity using an oxygen permeability measuring device (Modern Control, OX-TRAN10 / 50A).
<Water vapor transmission rate (g / m 2 · day)>
Using the method specified in JISZ-0208, the water vapor permeability of the laminate film was measured under the conditions of 40 ° C. and relative humidity of 90%.
<appearance>
The appearance of the laminate was judged visually. ○: Good, △: Somewhat bad, ×: Bad <laminate strength (g / 15mm)>
Using the method specified in JISK-6854, the laminate strength of the laminate film was measured by a T-type peel test at a peel rate of 300 mm / min.
<Residual solvent amount (mg / m 2 )>
200 sheets of 25 cm × 1 cm rectangles were laminated into a conical flask, and the solvent concentration was measured by GC analysis of the air in the flask after heating at 80 ° C. for 30 minutes.

<実施例1>
メタキシリレンジアミンから誘導されたグリシジルアミン部位を有するエポキシ樹脂(三菱ガス化学(株)製;TETRAD-X)を50重量部およびエポキシ樹脂硬化剤aを146重量部含むメタノール/酢酸エチル=8/2溶液(固形分濃度;35重量%)を作製し、そこにアクリル系湿潤剤(ビック・ケミー社製;BYK381)を0.4重量部加え、よく攪拌し、ザーンカップ(No.3)粘度14秒(25℃)の接着剤を得た。
この接着剤を厚み20μmの延伸ポリプロピレンフィルムに100線/cm深さ100μmグラビアロールを使用して塗布し、60℃(入り口付近)〜90℃(出口付近)の乾燥オーブンで乾燥させた後、厚み40μmの無延伸ポリプロピレンフィルムを70℃に加熱したニップロールにより貼り合わせ、巻取り速度83m/minで巻取り、ロールを40℃で4日間エージングすることによりラミネートフィルムAを得た。得られたラミネートフィルムについてそのガスバリア性、ラミネート強度を評価した。結果を表1に示す。接着剤層(エポキシ樹脂硬化物)中の(1)式の骨格構造の含有率は62.0重量%であった。
<Example 1>
Methanol / ethyl acetate containing 50 parts by weight of an epoxy resin having a glycidylamine moiety derived from metaxylylenediamine (Mitsubishi Gas Chemical Co., Ltd .; TETRAD-X) and 146 parts by weight of an epoxy resin curing agent a = 8 / 2 solution (solid content concentration: 35% by weight) is prepared, and 0.4 parts by weight of acrylic wetting agent (by Kick Chemie; BYK381) is added thereto and stirred well, and the Zahn cup (No. 3) viscosity is added. An adhesive of 14 seconds (25 ° C.) was obtained.
This adhesive is applied to a stretched polypropylene film having a thickness of 20 μm using a 100 line / cm depth 100 μm gravure roll, dried in a drying oven at 60 ° C. (near the entrance) to 90 ° C. (near the exit), and then thickened. A 40 μm unstretched polypropylene film was bonded by a nip roll heated to 70 ° C., wound at a winding speed of 83 m / min, and the roll was aged at 40 ° C. for 4 days to obtain a laminate film A. The resulting laminated film was evaluated for gas barrier properties and laminate strength. The results are shown in Table 1. The content of the skeleton structure of the formula (1) in the adhesive layer (cured epoxy resin) was 62.0% by weight.

<実施例2>
厚み20μmの延伸ポリプロピレンフィルムの代わりに厚み12μmのポリエチレンテレフタレートフィルムを用いた以外は実施例1と同様の方法で作製した。結果を表1に示す。
<Example 2>
It was produced by the same method as in Example 1 except that a polyethylene terephthalate film having a thickness of 12 μm was used instead of the stretched polypropylene film having a thickness of 20 μm. The results are shown in Table 1.

<実施例3>
厚み20μmの延伸ポリプロピレンフィルムの代わりに厚み15μmの延伸6-ナイロンフィルムを用いた以外は実施例1と同様の方法で作製した。結果を表1に示す。
<Example 3>
It was produced in the same manner as in Example 1 except that a stretched 6-nylon film having a thickness of 15 μm was used instead of the stretched polypropylene film having a thickness of 20 μm. The results are shown in Table 1.

<実施例4>
接着剤を厚み40μmの無延伸ポリプロピレンフィルムに100線/cm深さ100μmグラビアロールを使用して塗布し、乾燥オーブンで乾燥させた後、厚み15μmの延伸ナイロンフィルムを40℃に加熱したニップロールにより貼り合わせた以外は実施例1と同様の方法で作製した。結果を表1に示す。
<Example 4>
The adhesive was applied to an unstretched polypropylene film having a thickness of 40 μm using a 100 line / cm depth 100 μm gravure roll, dried in a drying oven, and then a stretched nylon film having a thickness of 15 μm was pasted by a nip roll heated to 40 ° C. It was produced in the same manner as in Example 1 except that they were combined. The results are shown in Table 1.

Claims (9)

少なくとも基材、接着剤、およびシーラント層を用いるドライラミネート法によるラミネートフィルムの製造方法において、接着剤はメタキシリレンジアミンから誘導されたグリシジルアミン部位を有するエポキシ樹脂および下記の(A)と(B)の反応生成物、または(A)、(B)および(C)の反応生成物であるエポキシ樹脂硬化剤からなるエポキシ樹脂組成物を主成分とし、該エポキシ樹脂組成物を炭素数3以下のアルコールを含む溶剤で希釈したものを基材またはシーラント層となるフィルム材料に塗布し、該溶剤を40〜120℃で乾燥させその表面に新たなフィルム材料を40℃〜100℃に加熱したニップロールにより貼り合わせた後、20℃〜60℃でエージングし、該エポキシ樹脂組成物が硬化して得られるエポキシ樹脂硬化物中に(1)式に示される骨格構造が40重量%以上含有されることを特徴とするラミネートフィルムの製造方法。
(A)メタキシリレンジアミンまたはパラキシリレンジアミン
(B)アクリル酸、メタクリル酸および/またはそれらの誘導体
(C)炭素数1〜8の一価カルボン酸および/またはその誘導体
At least a base material, an adhesive, and a method of manufacturing a laminated film by dry lamination method using a sealant layer, the adhesive is an epoxy resin and below having glycidylamine moieties derived from m-xylylenediamine and (A) ( The epoxy resin composition comprising an epoxy resin curing agent which is the reaction product of B) or the reaction products of (A), (B) and (C) is the main component, and the epoxy resin composition has 3 or less carbon atoms. A nip roll obtained by applying a solution diluted with a solvent containing alcohol to a base material or a film material to be a sealant layer, drying the solvent at 40 to 120 ° C., and heating a new film material on the surface to 40 to 100 ° C. after bonding, the aging at 20 ° C. to 60 ° C., epoxy the epoxy resin composition obtained by curing Method for producing a laminate film, wherein a skeletal structure represented in fat cured product (1) is contained more than 40 wt%.
(A) metaxylylenediamine or paraxylylenediamine
(B) Acrylic acid, methacrylic acid and / or derivatives thereof
(C) C1-C8 monovalent carboxylic acid and / or derivative thereof
前記接着剤のザーンカップ(No.3)粘度が5秒〜30秒(25℃)である請求項1記載のラミネートフィルムの製造方法。 The method for producing a laminated film according to claim 1, wherein the adhesive has a Zahn cup (No. 3) viscosity of 5 seconds to 30 seconds (25 ° C). 前記エポキシ樹脂硬化物が酸素透過係数1.0ml・mm/m・day・MPa(23℃60%RH)以下の酸素バリア性を有する請求項1記載のラミネートフィルムの製造方法。 The method for producing a laminate film according to claim 1, wherein the cured epoxy resin has an oxygen barrier property of an oxygen permeability coefficient of 1.0 ml · mm / m 2 · day · MPa (23 ° C., 60% RH) or less. 前記溶剤が、炭素数3以下のアルコールにエステル基、ケトン基、アルデヒド基のいずれかの官能基を有する溶剤を混合した混合液である請求項記載のラミネートフィルムの製造方法。 It said solvent is the number 3 or less alcohol to an ester group carbon, ketone groups, method for producing a laminated film according to claim 1, wherein the liquid mixture of solvent having any one functional group of an aldehyde group. 前記溶剤が、炭素数3以下のアルコールに酢酸エチル、アセトン、メチルエチルケトン、アセトアルデヒド、およびプロピオンアルデヒドからなる群から選ばれる1種以上を混合した混合液である請求項記載のラミネートフィルムの製造方法。 It said solvent is ethyl acetate number 3 ppm alcohol carbon, acetone, methyl ethyl ketone, acetaldehyde, and a manufacturing method of the laminate film according to claim 1, wherein propionaldehyde is a mixed solution obtained by mixing at least one member selected from the group consisting of aldehydes. 前記溶剤中の、エステル基、ケトン基、アルデヒド基のいずれかの官能基を有する溶剤の含有量が20重量%以下である請求項に記載のラミネートフィルムの製造方法。 The method for producing a laminate film according to claim 4 , wherein the content of the solvent having any functional group of an ester group, a ketone group, and an aldehyde group in the solvent is 20 % by weight or less. 前記基材が、ポリアミド系フィルムである請求項記載のラミネートフィルムの製造方法。 Wherein the substrate, the manufacturing method of the laminate film of claim 1 wherein the polyamide-based film. 前記エポキシ樹脂硬化剤における(A)と(B)の反応比が、(A)に対する(B)のモル比として0.6〜0.97である請求項1記載のラミネートフィルムの製造方法。The method for producing a laminate film according to claim 1, wherein a reaction ratio of (A) and (B) in the epoxy resin curing agent is 0.6 to 0.97 as a molar ratio of (B) to (A). 前記エポキシ樹脂と前記エポキシ樹脂硬化剤の配合割合が、エポキシ樹脂中のエポキシ基の数に対するエポキシ樹脂硬化剤中の活性水素数の比として0.5〜5.0の範囲である請求項1記載のラミネートフィルムの製造方法。The blending ratio of the epoxy resin and the epoxy resin curing agent is in a range of 0.5 to 5.0 as a ratio of the number of active hydrogens in the epoxy resin curing agent to the number of epoxy groups in the epoxy resin. Manufacturing method of laminate film.
JP2003414520A 2002-12-12 2003-12-12 Manufacturing method of laminate film Expired - Lifetime JP4433154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414520A JP4433154B2 (en) 2002-12-12 2003-12-12 Manufacturing method of laminate film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002360607 2002-12-12
JP2003414520A JP4433154B2 (en) 2002-12-12 2003-12-12 Manufacturing method of laminate film

Publications (2)

Publication Number Publication Date
JP2004203035A JP2004203035A (en) 2004-07-22
JP4433154B2 true JP4433154B2 (en) 2010-03-17

Family

ID=32828602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414520A Expired - Lifetime JP4433154B2 (en) 2002-12-12 2003-12-12 Manufacturing method of laminate film

Country Status (1)

Country Link
JP (1) JP4433154B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760002B2 (en) * 2004-12-10 2011-08-31 三菱瓦斯化学株式会社 Manufacturing method of laminate film
JP4711065B2 (en) * 2005-10-03 2011-06-29 三菱瓦斯化学株式会社 Laminates and multilayer containers
JP4857721B2 (en) * 2005-11-15 2012-01-18 三菱瓦斯化学株式会社 Laminate film
JP4736868B2 (en) * 2006-03-08 2011-07-27 三菱瓦斯化学株式会社 Automotive interior materials
JP4836623B2 (en) * 2006-03-23 2011-12-14 株式会社興人 Gas barrier film and gas barrier laminate
JP2008222761A (en) * 2007-03-09 2008-09-25 Mitsubishi Gas Chem Co Inc Method for preventing permeation of amine-based volatile material
JP2011068835A (en) * 2009-09-28 2011-04-07 Mitsubishi Gas Chemical Co Inc Gas barrier coated film

Also Published As

Publication number Publication date
JP2004203035A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP5776685B2 (en) Epoxy resin curing agent, epoxy resin composition and laminating adhesive
KR100923609B1 (en) Adhesive for gas barrier laminates and laminated films
JP5641043B2 (en) Epoxy resin curing agent, epoxy resin composition and laminating adhesive
JP5109877B2 (en) Flexible laminate film
KR20100016565A (en) Amine epoxy resin curing agent, gas barrier epoxy resin composition comprising the curing agent, coating agent, and adhesive agent for laminate
JP5966511B2 (en) Laminate film
JP4857721B2 (en) Laminate film
JP4876399B2 (en) Laminate film
JP5780241B2 (en) Laminate film
JP4366563B2 (en) Gas barrier laminating adhesive and laminating film
JP2007050686A (en) Laminate film
JP4433154B2 (en) Manufacturing method of laminate film
JP2016097596A (en) Gas barrier coat film
JP4946025B2 (en) Laminate film
JP4760002B2 (en) Manufacturing method of laminate film
JP2004195971A (en) Food preserving method
JP5412761B2 (en) Gas barrier laminating adhesive and laminating film
JP2010269515A (en) Laminate film
JP5640770B2 (en) Method for producing epoxy resin curing agent
JP2007038523A (en) Oxygen absorbency laminate film
JP4453802B2 (en) Manufacturing method of laminate film
JP2006282638A (en) Method for preserving limonene-containing article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

R151 Written notification of patent or utility model registration

Ref document number: 4433154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

EXPY Cancellation because of completion of term