JP4432175B2 - Method for decomposing polyimide and method for producing polyimide using decomposition and recovery product as raw material - Google Patents

Method for decomposing polyimide and method for producing polyimide using decomposition and recovery product as raw material Download PDF

Info

Publication number
JP4432175B2
JP4432175B2 JP34994299A JP34994299A JP4432175B2 JP 4432175 B2 JP4432175 B2 JP 4432175B2 JP 34994299 A JP34994299 A JP 34994299A JP 34994299 A JP34994299 A JP 34994299A JP 4432175 B2 JP4432175 B2 JP 4432175B2
Authority
JP
Japan
Prior art keywords
polyimide
molecular weight
low molecular
decomposition
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34994299A
Other languages
Japanese (ja)
Other versions
JP2001163973A (en
Inventor
賢治 鵜原
英樹 森山
弘司 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP34994299A priority Critical patent/JP4432175B2/en
Publication of JP2001163973A publication Critical patent/JP2001163973A/en
Application granted granted Critical
Publication of JP4432175B2 publication Critical patent/JP4432175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリイミドを分解する方法、およびその回収した低分子量物質をリサイクルして、それを原料の一部として用いたポリイミドの製造方法に関する。
【0002】
【従来の技術】
ポリイミドは、耐熱性かつ難燃性であるため、使用済みまたは使用されない場合は分解せず埋め立てるか焼却されていた。しかし近年の地球環境問題への関心の高まりから、原料への回収を目的に、酸またはアルカリ水溶液で加水分解することが試みられている。
【0003】
しかしながら、上記の従来方法では、埋め立て用地の確保、焼却炉が必要であり付近の住民への配慮が必要である。また酸およびアルカリでの加水分解では中和工程が必要であり、薬品を使用するためその原料に対して不純物となり原料へ使用できることが困難であった。
【0004】
【発明が解決しようとする課題】
本発明は、上述した従来技術における問題点の解決を課題として検討した結果達成されたものであり、ポリイミドを分解する方法、特にその分解物を回収し、リサイクル原料として用いる方法及びそれを原料として用いることを目的とするものである。
【0005】
【課題を解決するための手段】
上記の目的を達成するための本発明は、下記式(I)で表される反復単位のポリイミドまたはその前駆体であるポリアミド酸を水と共存させて250℃以上350℃以下、10MPa以上100MPa以下の条件で反応させ、低分子量物質に分解させるポリイミドの分解方法であり、
【0006】
【化4】

Figure 0004432175
[式(I)中、Ar1は下記式(II)で示される4価の芳香族基であり、
【0007】
【化5】
Figure 0004432175
(式(II)中Xは−CO−、−O−、−SO2−、−CH2−、−C(CH32−、−C(CF32−、−COOZOCO−から選ばれる2価の有機基であり、Zはカルボン酸エステル結合能のあるジオールを置換することができる2価の有機基である。)
Ar2は下記式(III)で示される2価の芳香族基である。
【0008】
【化6】
Figure 0004432175
(式(III)中Yは直結、−CO−、−O−、−SO2−、−CH2−、−C(CH32−、−C(CF32−、−COOZOCO−から選ばれる2価の有機基であり、Zはカルボン酸エステル結合能のあるジオールを置換することができる2価の有機基である。)]
また、このようにして得た低分子量物質を回収し、その回収低分子量原料を原料の一部として用いて合成したポリイミドである。
【0009】
ポリイミドを構成する酸成分としてはピロメリット酸またはビフェニルテトラカルボン酸が、ジアミンとしてはオキシジアニリンまたはパラフェニレンジアミンが好ましい。また、ポリイミドがその前駆体であるポリアミド酸と共存した状態でも、有機溶剤を含んでいても良い。
【0010】
有機溶剤を含んだ場合は予め有機溶剤を抽出し除く前処理を行って分解を行うこともできる。
【0011】
ポリイミドを分解する際に共存させる「水」とは液体、気体または高温高圧条件下に存在する超臨界水のいずれをも含むものである。
【0013】
この好ましい条件で得られた分解生成物を回収し原料の一部として用いることもできる。この場合、全原料の内1〜10重量%を回収された原料を用いることが好ましい。
【0014】
【発明の実施の形態】
以下、本発明の構成について詳述する。
【0015】
本発明に用いられるポリイミドは、下記式(I)で表される反復単位のポリイミドである。
【0016】
【化7】
Figure 0004432175
[式(I)中、Ar1は下記式(II)で示される4価の芳香族基であり、
【0017】
【化8】
Figure 0004432175
(式(II)中Xは−CO−、−O−、−SO2−、−CH2−、−C(CH32−、−C(CF32−、−COOZOCO−から選ばれる2価の有機基であり、Zはカルボン酸エステル結合能のあるジオールを置換することができる2価の有機基である。)
Ar2は下記式(III)で示される2価の芳香族基である。
【0018】
【化9】
Figure 0004432175
(式(III)中Yは直結、−CO−、−O−、−SO2−、−CH2−、−C(CH32−、−C(CF32−、−COOZOCO−から選ばれる2価の有機基であり、Zはカルボン酸エステル結合能のあるジオールを置換することができる2価の有機基である。)]
しかし、このポリイミドはポリイミドカルボン酸エステル、ポリイミドアミドエステルなどが含まれても良い。またそれらのブレンド、2成分重合体でも多成分共重合体でも良い。共重合の場合、ブロックポリマーか又はランダムポリマーかのいずれかでも良い。
【0019】
本発明に用いられるポリアミド酸はポリイミドの重合前(前駆体)のポリマーでも、重合後一部を加水分解した物でも良い。
【0020】
ポリイミドまたはポリアミド酸に用いられる原料は、イミド環を生成するものであれば良い。好ましい原料として、酸無水物としてピロメリット酸二無水物、ビフェニルテトラカルボン酸酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、およびトリメリット酸無水物などがある。アミンとして、オキシジアニリン、フェニレンジアミン、メチレンジアニリンなどがある。
【0021】
分解回収される低分子量物質としては、上記原料およびさらに分解が進んだテレフタル酸、アニリン、さらには二酸化炭素、窒素などがあるが、リサイクルの面から上記ポリイミドの原料が好ましい。従って、分解条件もこれらの原料でとどまる条件が好ましい。
【0022】
ポリイミドまたはポリアミド酸の分解は、分解を促進させる媒体と共に高温高圧雰囲気下で行われる。分解を促進させる媒体としては、水またはアルコールである。アルコールとしてはメタノール、エタノールが好ましい。水の形態としては液体、気体または超臨界水である。超臨界水とは温度が374℃以上、または圧力が22MPa以上の状態の水を言う。超臨界水は酸素を溶残させる能力が強いので、亜臨界領域が好ましい。
【0023】
原料を回収する場合は、媒体内の溶存酸素は少なくすることが好ましい。更に酸化を防止するため水素を溶存させることも好ましい。また酸原料の回収率を高めるため二酸化炭素も併用できる。
【0024】
媒体に対するポリイミドまたはポリアミド酸の比率は50重量%以下が好ましい。好ましくは10重量%以下である。下限は反応の効率から1重量%以上である。
【0025】
ポリイミドまたはポリアミド酸は粉砕してスラリー状で媒体と混合され連続的に配管を通して反応容器内へ送り込むこともできる。
【0026】
分解反応の条件としては、250℃〜350℃10MPa100MPaである。
【0027】
またこの方法で酸とジアミンを回収した場合、その原料を一部原料として使用することも好ましい。
【0028】
反応器の材質としては、ニッケル合金、クロム合金、チタンコートが使用される。
【0029】
分解の手順としては、ポリイミド、水、窒素をオートクレーブに充填し、電気炉で加熱する。設定温度で所定時間(例えば約1時間)保持し、その後室温まで冷却する。次にオートクレーブを解放し、水溶液を取り出し、濾紙で固形分とを分離する。
【0030】
【実施例】
以下、実施例により、本発明を具体的に説明するが、本発明は、これら実施例に限定されるものではない。なお各フィルム特性値は、下記の方法で測定したものである。
【0031】
また、下記の実施例中で、略号DMACはジメチルアセトアミドを、PMDAはピロメリット酸二無水物を、PDAはp−フェニレンジアミンを、また、ODAはオキシジアニリンを、BPDAはビフェニルテトラカルボン二酸無水物を表す略記である。
(1)分解率
(分解後の固形分の重さ/分解前の試料量)×100
(2)原料回収率
水溶液をガスクロで分析し、予め判っている原料の検量線より、原料回収率を求めた。
[実施例1]
PMDAとODAの原料を用いポリイミドフィルムAを作成した。
【0032】
材質チタン合金のオートクレーブ(容積500cc)中にポリイミドフィルムAと純水を入れた。窒素で約1時間バブリング後、所定圧力まで窒素ガスで昇圧した。その後オートクレーブを電気炉で300℃に昇温した。圧力は30MPaであった。この状態で30分保持後、1時間かけて冷却を行った。その後圧力弁を解放し大気圧にした。
【0033】
内容物を濾過し内容物を取り出しDMACに溶解させた。固形分を取り除くため濾過し濾液を凍結乾燥した。固形分1重量%をクロロホルム/メタノール混合溶媒に溶かしガスクロ(GC)でPMDAおよびODAの量を定量した。安息香酸、テレフタル酸、アニリンなどはGC−MS、NMR、IRで帰属し定量化した。結果を表1、2に示す。
[実施例1〜、比較例1〜10
実施例1に準じて行った。結果を表1、2に示す。
【0034】
【表1】
Figure 0004432175
【0035】
【表2】
Figure 0004432175
【0036】
【発明の効果】
本発明の方法によれば、ポリイミドが容易に分解し、その分解した低分子量物質を回収し、また、ポリイミドを合成することが可能であり、リサイクル事業として利用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for decomposing polyimide and a method for producing polyimide by recycling the recovered low molecular weight substance and using it as a part of the raw material.
[0002]
[Prior art]
Since polyimide is heat resistant and flame retardant, it has been landfilled or incinerated without being decomposed when used or not used. However, due to the recent increase in interest in global environmental problems, attempts have been made to hydrolyze with an acid or alkaline aqueous solution for the purpose of recovery to raw materials.
[0003]
However, the above-described conventional methods require landfill sites and incinerators, which require consideration for nearby residents. Further, the hydrolysis with acid and alkali requires a neutralization step, and since chemicals are used, it becomes difficult for the raw materials to become impurities and to be used for the raw materials.
[0004]
[Problems to be solved by the invention]
The present invention has been achieved as a result of studying the solution of the above-described problems in the prior art as a problem, and is a method for decomposing polyimide, particularly a method for recovering the decomposition product and using it as a recycle material, and using it as a material. It is intended to be used.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a repeating unit polyimide represented by the following formula (I) or a polyamic acid that is a precursor thereof in coexistence with water at 250 ° C. or higher and 350 ° C. or lower and 10 MPa or higher and 100 MPa or lower. It is a decomposition method of polyimide that is reacted under the conditions of
[0006]
[Formula 4]
Figure 0004432175
[In the formula (I), Ar1 is a tetravalent aromatic group represented by the following formula (II):
[0007]
[Chemical formula 5]
Figure 0004432175
(In the formula (II), X is selected from —CO—, —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —COOZOCO—. (It is a divalent organic group, and Z is a divalent organic group capable of substituting a diol having a carboxylate bond ability.)
Ar2 is a divalent aromatic group represented by the following formula (III).
[0008]
[Chemical 6]
Figure 0004432175
(In Formula (III), Y is a direct bond, —CO—, —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —COOZOCO— A divalent organic group selected, and Z is a divalent organic group capable of substituting a diol having a carboxylate bond ability.)]
Moreover, it is the polyimide which collect | recovered the low molecular weight substance obtained in this way, and synthesize | combined using the recovered low molecular weight raw material as a part of raw material.
[0009]
Pyromellitic acid or biphenyltetracarboxylic acid is preferred as the acid component constituting the polyimide, and oxydianiline or paraphenylenediamine is preferred as the diamine. Moreover, even if the polyimide coexists with its precursor polyamic acid, it may contain an organic solvent.
[0010]
When an organic solvent is included, the decomposition can be performed by pre-treating and removing the organic solvent in advance.
[0011]
The “water” that coexists when the polyimide is decomposed includes any liquid, gas, or supercritical water existing under high temperature and high pressure conditions.
[0013]
The decomposition product obtained under these preferable conditions can be recovered and used as a part of the raw material. In this case, it is preferable to use a raw material in which 1 to 10% by weight of the total raw material is recovered.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail.
[0015]
The polyimide used in the present invention is a polyimide having a repeating unit represented by the following formula (I).
[0016]
[Chemical 7]
Figure 0004432175
[In the formula (I), Ar1 is a tetravalent aromatic group represented by the following formula (II):
[0017]
[Chemical 8]
Figure 0004432175
(In the formula (II), X is selected from —CO—, —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —COOZOCO—. (It is a divalent organic group, and Z is a divalent organic group capable of substituting a diol having a carboxylate bond ability.)
Ar2 is a divalent aromatic group represented by the following formula (III).
[0018]
[Chemical 9]
Figure 0004432175
(In Formula (III), Y is a direct bond, —CO—, —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —COOZOCO— A divalent organic group selected, and Z is a divalent organic group capable of substituting a diol having a carboxylate bond ability.)]
However, this polyimide may contain polyimide carboxylic acid ester, polyimide amide ester, and the like. Further, a blend thereof, a two-component polymer or a multi-component copolymer may be used. In the case of copolymerization, it may be either a block polymer or a random polymer.
[0019]
The polyamic acid used in the present invention may be a polymer before polymerization (precursor) of polyimide, or a product obtained by partially hydrolyzing after polymerization.
[0020]
The raw material used for polyimide or polyamic acid may be any material that generates an imide ring. Preferred raw materials include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, and trimellitic anhydride as acid anhydrides. Examples of amines include oxydianiline, phenylenediamine, and methylenedianiline.
[0021]
Examples of the low molecular weight substance to be decomposed and recovered include the above raw materials and terephthalic acid, aniline, carbon dioxide, nitrogen, etc., which are further decomposed, but the above polyimide raw materials are preferable from the viewpoint of recycling. Accordingly, it is preferable that the decomposition conditions remain with these raw materials.
[0022]
The decomposition of the polyimide or polyamic acid is performed in a high-temperature and high-pressure atmosphere together with a medium that promotes the decomposition. The medium for promoting the decomposition is water or alcohol. As the alcohol, methanol and ethanol are preferable. The form of water is liquid, gas or supercritical water. Supercritical water refers to water having a temperature of 374 ° C. or higher or a pressure of 22 MPa or higher. Since supercritical water has a strong ability to dissolve oxygen, the subcritical region is preferable.
[0023]
When recovering the raw material, it is preferable to reduce the dissolved oxygen in the medium. It is also preferable to dissolve hydrogen in order to prevent oxidation. Carbon dioxide can also be used in combination to increase the recovery rate of the acid raw material.
[0024]
The ratio of polyimide or polyamic acid to the medium is preferably 50% by weight or less. Preferably it is 10 weight% or less. The lower limit is 1% by weight or more from the efficiency of the reaction.
[0025]
Polyimide or polyamic acid can be pulverized and mixed with a medium in a slurry state and continuously fed into a reaction vessel through a pipe.
[0026]
The conditions for the decomposition reaction are 250 ° C. to 350 ° C. and 10 MPa to 100 MPa.
[0027]
Moreover, when an acid and diamine are collect | recovered by this method, it is also preferable to use the raw material partially as a raw material.
[0028]
As a material for the reactor, a nickel alloy, a chromium alloy, or a titanium coat is used.
[0029]
As a decomposition procedure, polyimide, water, and nitrogen are filled in an autoclave and heated in an electric furnace. Hold at the set temperature for a predetermined time (for example, about 1 hour), and then cool to room temperature. Next, the autoclave is released, the aqueous solution is taken out, and the solid content is separated with a filter paper.
[0030]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. Each film characteristic value is measured by the following method.
[0031]
In the following examples, the abbreviation DMAC is dimethylacetamide, PMDA is pyromellitic dianhydride, PDA is p-phenylenediamine, ODA is oxydianiline, and BPDA is biphenyltetracarboxylic diacid. Abbreviation for anhydride.
(1) Decomposition rate (weight of solid after decomposition / sample amount before decomposition) × 100
(2) Raw material recovery rate The aqueous solution was analyzed by gas chromatography, and the raw material recovery rate was determined from a known calibration curve of the raw material.
[Example 1]
A polyimide film A was prepared using PMDA and ODA raw materials.
[0032]
A polyimide film A and pure water were placed in a titanium alloy autoclave (volume: 500 cc). After bubbling with nitrogen for about 1 hour, the pressure was increased with nitrogen gas to a predetermined pressure. Thereafter, the autoclave was heated to 300 ° C. in an electric furnace. The pressure was 30 MPa. After maintaining in this state for 30 minutes, cooling was performed over 1 hour. The pressure valve was then released to atmospheric pressure.
[0033]
The contents were filtered and the contents were taken out and dissolved in DMAC. Filtered to remove solids and the filtrate was lyophilized. A solid content of 1% by weight was dissolved in a chloroform / methanol mixed solvent, and the amount of PMDA and ODA was determined by gas chromatography (GC). Benzoic acid, terephthalic acid, aniline, and the like were assigned and quantified by GC-MS, NMR, and IR. The results are shown in Tables 1 and 2.
[Examples 1 to 3 and Comparative Examples 1 to 10 ]
It carried out according to Example 1. The results are shown in Tables 1 and 2.
[0034]
[Table 1]
Figure 0004432175
[0035]
[Table 2]
Figure 0004432175
[0036]
【The invention's effect】
According to the method of the present invention, polyimide can be easily decomposed, the decomposed low molecular weight substance can be recovered, and polyimide can be synthesized, which can be used as a recycling business.

Claims (5)

下記式(I)で表される反復単位のポリイミドまたはその前駆体であるポリアミド酸を水またはアルコールと共存させて250℃以上350℃以下、10MPa以上100MPa以下の条件で反応させ、低分子量物質に分解させることを特徴とするポリイミドの分解方法。
Figure 0004432175
[式(I)中、Ar1は下記式(II)で示される4価の芳香族基であり、
Figure 0004432175
(式(II)中Xは−CO−、−O−、−SO−、−CH−、−C(CH−、−C(CF−、−COOZOCO−から選ばれる2価の有機基であり、Zはカルボン酸エステル結合能のあるジオールを置換することができる2価の有機基である。)
Ar2は下記式(III)で示される2価の芳香族基である。
Figure 0004432175
(式(III)中Yは直結、−CO−、−O−、−SO−、−CH−、−C(CH−、−C(CF−、−COOZOCO−から選ばれる2価の有機基であり、Zはカルボン酸エステル結合能のあるジオールを置換することができる2価の有機基である。)]
The polyimide of the repeating unit represented by the following formula (I) or the polyamic acid which is a precursor thereof is coexisted with water or alcohol and reacted under conditions of 250 ° C. or higher and 350 ° C. or lower, 10 MPa or higher and 100 MPa or lower to form a low molecular weight substance. A method for decomposing polyimide, comprising decomposing.
Figure 0004432175
[In the formula (I), Ar1 is a tetravalent aromatic group represented by the following formula (II):
Figure 0004432175
(In the formula (II), X is selected from —CO—, —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —COOZOCO—. (It is a divalent organic group, and Z is a divalent organic group capable of substituting a diol having a carboxylate bond ability.)
Ar2 is a divalent aromatic group represented by the following formula (III).
Figure 0004432175
(In Formula (III), Y is a direct bond, —CO—, —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —COOZOCO— A divalent organic group selected, and Z is a divalent organic group capable of substituting a diol having a carboxylate bond ability.)]
水が液体、気体または超臨界水であることを特徴とする請求項1に記載の分解方法。  The decomposition method according to claim 1, wherein the water is liquid, gas, or supercritical water. 低分子量物質がカルボン酸およびアミンを含むことを特徴とする請求項1に記載の分解方法。  The decomposition method according to claim 1, wherein the low molecular weight substance contains a carboxylic acid and an amine. 低分子量物質がテトラカルボン酸およびジアミンを含むことを特徴とする請求項1に記載の分解方法。  The decomposition method according to claim 1, wherein the low molecular weight substance contains tetracarboxylic acid and diamine. 請求項1〜4いずれかに記載の低分子量物質を回収し、その回収低分子量物質を原料の一部として用いて合成することを特徴とするポリイミドの製造方法A method for producing a polyimide , comprising recovering the low molecular weight substance according to any one of claims 1 to 4 and synthesizing the recovered low molecular weight substance as a part of a raw material.
JP34994299A 1999-12-09 1999-12-09 Method for decomposing polyimide and method for producing polyimide using decomposition and recovery product as raw material Expired - Fee Related JP4432175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34994299A JP4432175B2 (en) 1999-12-09 1999-12-09 Method for decomposing polyimide and method for producing polyimide using decomposition and recovery product as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34994299A JP4432175B2 (en) 1999-12-09 1999-12-09 Method for decomposing polyimide and method for producing polyimide using decomposition and recovery product as raw material

Publications (2)

Publication Number Publication Date
JP2001163973A JP2001163973A (en) 2001-06-19
JP4432175B2 true JP4432175B2 (en) 2010-03-17

Family

ID=18407153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34994299A Expired - Fee Related JP4432175B2 (en) 1999-12-09 1999-12-09 Method for decomposing polyimide and method for producing polyimide using decomposition and recovery product as raw material

Country Status (1)

Country Link
JP (1) JP4432175B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674451A1 (en) 2012-06-12 2013-12-18 Nakata Coating Co., Ltd. Compound containing imido group, solution of compound containing imido group and method for producing of compound containing imido group
WO2015079717A1 (en) 2013-11-27 2015-06-04 株式会社仲田コーティング Imide group-containing compound solution and production method for polyimide film derived from imide group-containing compound solution
CN109624360A (en) * 2018-11-28 2019-04-16 四川塑金科技有限公司 The regeneration method of discarded Kapton

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720463B2 (en) * 2005-11-30 2011-07-13 パナソニック株式会社 Decomposition treatment method for cured resin
JP4985085B2 (en) * 2007-05-10 2012-07-25 東洋紡績株式会社 Decomposition and recovery method of polyimide
JP4952441B2 (en) * 2007-08-28 2012-06-13 東洋紡績株式会社 Decomposition and recovery method of polyimide
JP5029222B2 (en) * 2007-08-28 2012-09-19 東洋紡績株式会社 Decomposition and recovery method of polyimide
JP5695675B2 (en) * 2011-01-14 2015-04-08 田中 正美 Polyimide powder, polyimide solution and method for producing polyimide powder
AU2014256431A1 (en) 2013-11-05 2015-05-21 Evonik Fibres Gmbh Process for preparing polymer powder
CN103553906B (en) * 2013-11-05 2015-09-23 上海固创化工新材料有限公司 A kind of ammoniacal liquor hydrolysis polyimide waste film reclaims the method for polyimide raw material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674451A1 (en) 2012-06-12 2013-12-18 Nakata Coating Co., Ltd. Compound containing imido group, solution of compound containing imido group and method for producing of compound containing imido group
US8993645B2 (en) 2012-06-12 2015-03-31 Nakata Coating Co., Ltd. Compound containing imido group, solution of compound containing imido group and method for producing of compound containing imido group
WO2015079717A1 (en) 2013-11-27 2015-06-04 株式会社仲田コーティング Imide group-containing compound solution and production method for polyimide film derived from imide group-containing compound solution
KR20150100489A (en) 2013-11-27 2015-09-02 가부시키가이샤 나카타 코팅 Solution of compound containing imido group and method for producing of polyimide film derived from solution of compound containing imido group
CN109624360A (en) * 2018-11-28 2019-04-16 四川塑金科技有限公司 The regeneration method of discarded Kapton

Also Published As

Publication number Publication date
JP2001163973A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP4432175B2 (en) Method for decomposing polyimide and method for producing polyimide using decomposition and recovery product as raw material
JP2005015629A (en) Method for producing solvent-soluble polyimide
CA3002391A1 (en) Highly branched non-crosslinked aerogel, methods of making, and uses thereof
JP2002146021A (en) Soluble and transparent polyimide and method for producing the same
JP4985085B2 (en) Decomposition and recovery method of polyimide
JP4952441B2 (en) Decomposition and recovery method of polyimide
JP2004042037A (en) Manufacturing method for polyester, poly(esteramide) and poly(esterimide), and use of materials obtained therefrom
JP5047896B2 (en) Novel bistrimellitic anhydride esters and polyesterimide precursors obtained from it and diamines
JP2009082850A (en) New gas separation membrane, its manufacturing method, and gas treating method using it
JP5029222B2 (en) Decomposition and recovery method of polyimide
JP3485936B2 (en) Solid polyimide precursor
US7935779B2 (en) Synthesis of polyimides (PI) from poly-carbodiimides and dianhydrides by sequential self-repetitive reaction (SSRR)
JPH07300524A (en) Production of particulate polyimide, and particulate polyimide
JPH06122764A (en) Polyimide from substituted benzidine
CN108383711A (en) A kind of method that the heteropoly acid catalysis oxidation of Anderson types prepares trimellitic acid
JP2007016182A (en) Method for producing polyimide
JP2850455B2 (en) Method for producing ester-bonded polyimide precursor
JP2003041004A (en) Polyimide and laminated material
KR102630371B1 (en) Diamine compound, polyimide-based polymer compound prepared therefrom, and asymmetric hollow fiber membrane for gas separation comprising the same
JP2006182845A (en) Method for producing polyamic acid particulate and polyimide particulate
JPH01284321A (en) Gas separating membrane
JP2007308452A (en) Aromatic diamine and its production method
JP6969772B2 (en) Method for manufacturing soluble polyimide solution
JP2000143799A (en) Thermosetting type amic acid microparticle, thermosetting type imide micropartile and cross-linked imide microparticle and production thereof
JPH09136958A (en) Production of polyimide resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees