JP4430883B2 - チューリップの抗菌性物質を利用した、作物の病原性微生物防除法および生長促進法 - Google Patents

チューリップの抗菌性物質を利用した、作物の病原性微生物防除法および生長促進法 Download PDF

Info

Publication number
JP4430883B2
JP4430883B2 JP2003092895A JP2003092895A JP4430883B2 JP 4430883 B2 JP4430883 B2 JP 4430883B2 JP 2003092895 A JP2003092895 A JP 2003092895A JP 2003092895 A JP2003092895 A JP 2003092895A JP 4430883 B2 JP4430883 B2 JP 4430883B2
Authority
JP
Japan
Prior art keywords
tulip
disease
formula
stress
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003092895A
Other languages
English (en)
Other versions
JP2004300038A (ja
Inventor
和明 荘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2003092895A priority Critical patent/JP4430883B2/ja
Publication of JP2004300038A publication Critical patent/JP2004300038A/ja
Application granted granted Critical
Publication of JP4430883B2 publication Critical patent/JP4430883B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、植物の病害防除および生長促進の分野に関する。より詳細には、本発明は、病原体に対する抵抗性を植物に付与する組成物および病原体に対する抵抗性を植物に付与する方法に関する。また本発明は、植物の生長を促進させる組成物および植物の生長を促進させる方法に関する。
【0002】
【従来の技術】
作物の栽培において、病害防除は最も重要な課題の一つである。しかし依然として、十分な病害防除手段は得られていないのが現状である。病害の発生は、作物の生産量を著しく低下させ、また多くの場合、作物に病徴のキズをつけるため、作物の商品価値も著しく低下させる。特に近年では、大規模集約的に作物栽培するために栽培品種を均一化する傾向が強く、病害大発生の危険も高まっている。
【0003】
現在最も一般的に行われている病害防除手段は、病害防除作用を有する化学合成農薬の散布である。しかし残留農薬の人体に対する影響および農薬の使用による環境汚染が近年問題となっており、有害な農薬の使用を減らすことが強く所望されている。
【0004】
従来より、農薬に対する耐性菌の出現も問題となっている。一旦、ある農薬に対する耐性菌が出現すると、その農薬の病害防除効果はほとんどなくなり、病害大発生へとつながる。次いで、その農薬耐性菌に対して有効な新たな農薬が開発されたとしても、その新たな農薬に対して耐性を有する菌が出現するという連鎖的な問題がある。また、農薬の不適切な使用は、作物の生育自体にも悪影響を及ぼす。
【0005】
他の病害防除手段として、病害に対して抵抗性を示す品種を掛け合わせて耐病性品種を育種する品種改良が行われてきた。しかし従来の育種学的手法では、交雑は比較的近縁の種間に限られ、また所望の抵抗性改良品種を得るには、多大な年月と労力を必要とするという問題があった。この問題を解決すべく開発された手法が、近年のバイオテクノロジー技術である。このバイオテクノロジー技術により、従来の育種学的手法では交雑することが不可能と考えられた遠縁の種の耐病性遺伝子や耐病性能を人為的に強化した遺伝子などを生物に導入することが可能となり、全く新しい耐病性品種を得ることが可能となった。しかし、こうした遺伝子組換え作物が、人体または環境に及ぼす影響は完全には解明されておらず、多くの遺伝子組換え作物がまだ試験段階にある。このような遺伝子組換え作物に対する消費者の懸念も強く、商業的に実用化されて成功した遺伝子組換え作物は、現在ほとんど存在しない。
【0006】
より人体に安全でありかつ環境に対する影響も少ない病害防除手段として考案されたのが生物源農薬である。この生物源農薬は、代表的に以下の2つに分類される:(1)天敵(捕食性/寄生性)生物の利用;および(2)天然生理活性物質の利用。このような生物源農薬は、自然界にもともと存在する生物または物質を利用するため、一般的に、環境への負荷が少なく、また人体や家畜などに安全であるという長所を有する。しかし一方では、生物源農薬は、病害防除効果が化学合成農薬よりも一般に低く、また大規模な利用または大量生産が難しいなどの欠点がある。
【0007】
このように、環境に対する悪影響が少なく、作物自体の生育に対して悪影響を及ぼさず、耐性菌出現の可能性が低いという利点を有し、かつ強力な病害防除効果を作物に付与する、大量生産/大規模使用が可能な病害防除手段は、これまで知られていなかった。
【0008】
チューリップ(Tulipa spp.)は、ユリ科チューリップ属に属する多年性植物である。これまでに、チューリップは、その茎葉中に、1−チューリッポサイドA(1−Tuliposide A)および1−チューリッポサイドB(1−Tuliposide B)と呼ばれる抗菌物質を含むことが知られている(非特許文献1)。1−チューリッポサイドAは、フハイカビ(Pythium dedaryanum)に対して強力な抗真菌作用を示すが、枯草菌(Bacillus subtilis)に対してはほどんど抗細菌作用を示さない。他方、1−チューリッポサイドBは、フハイカビ(Pythium dedaryanum)という植物病害(スイカの立枯病)の原因となる真菌に対してやや強い抗真菌作用を示すが、枯草菌(Bacillus subtilis)に対しては、やや弱い抗細菌作用を示すのみであることが知られている。
【0009】
これまで、1−チューリッポサイドBについては、単離精製研究が行われただけで、これらを利用しようとする試みは全くなされてこなかった。この理由としては、以下が挙げられる。
【0010】
第一の理由としては、1−チューリッポサイドBは、スイカの立枯病をもたらすフハイカビに対する抗病原体活性は有するが、枯草菌などのような細菌に対しては、弱い抗病原体活性を有するのみであることから、1−チューリッポサイドBは、スイカの立枯病をもたらすフハイカビ以外の植物病原体(例えば、細菌)に対する抵抗性を植物に付与するための薬剤の製造には適さないと考えられていたからである。
【0011】
第二の理由としては、ある物質が、インビトロ実験において抗菌性を有することが示されたとしても、そこから直ちに、その物質がインビボで植物に病原体に対する抵抗性を付与し得るとは、一般には予測されないからである。植物病原体(例えば、真菌または細菌)は、一般に、宿主植物と接触すると、植物細胞内に侵入し、宿主植物との栄養授受関係を築いて感染を成立させる。従って、病原体に対する抵抗性を植物に付与するためには、このように感染を成立させる生体内においてその作用を有することが必要となる。単にインビトロにおいて抗菌性を示す物質が、このように細胞内の複雑な環境下の病原体に対しても、インビトロの場合と同様に同じ抗菌性を示し得るか否かは、予測され得ない。
【0012】
第三の理由としては、これらの物質が茎葉または花弁中にのみ存在するものとして報告され、そしてその含有量が非常に少ないため、産業的利用には不向きであると考えられたからである。また、これらの物質はその構造中に糖構造を含み、これらの物質を化学合成により調製することも困難であったからである。しかし今回、チューリップの葯に、茎、葉、または花弁のおよそ20倍量の抗菌物質が蓄積されているという発見に基づき、その葯に含まれる多量の抗菌物質の産業的利用が可能となった。
【0013】
チューリップの球根生産農家は、球根育成のためにチューリップの開花と同時に花を摘み取り、養分が花へ行かないようにしている。そのため、摘花した花は廃棄されている。チューリップの球根生産県である富山県では、平成12年度を例に取ると5千万球の出荷があったため、およそ5千万個の花が利用されずに捨てられている。その廃棄される花が、本願発明において有利に使用され得る。
【0014】
第四の理由としては、以前の研究において、1−チューリッポサイドAおよび1−チューリッポサイドBが、枯草菌というわずかに1種類の細菌に対して有用な抗菌作用を示したということから、単純には、これらの物質が、非常に広範なスペクトルの菌に対して強い抗菌作用を示す薬剤として使用可能であるということは予測不可能であったからである。実際には、この物質を植物病害防除用の農薬として利用しようとする場合には、広範なスペクトルの病害菌に対して強い抗菌活性を有するという特性が必要である。なぜなら植物は、その生育中に多種多様な病害菌にさらされるため、わずかに1種類程度の菌に対して抗菌性を示したとしても、病害防除には有用ではないことが多いからである。さらに、単子葉植物の場合には、複数種の細菌が一般的な病原体として知られているので、単子葉植物に対する農薬は、複数種の細菌に対する抗菌性を示すことが求められる。
【0015】
第五の理由としては、チューリッポサイドAおよびその派生物であるチューリッパリンAが、人体の皮膚に対する接触アレルゲン物質として知られており、チューリップの茎や葉、花弁を使っての産業的利用を困難なものとしていたことが挙げられる。しかし、本明細書中で開示される葯の水抽出液中に見出される抗菌物質は、チューリッポサイドBのみであり、有害なアレルゲンであるチューリッポサイドAは検出されない。チューリッポサイドBには、人体に対するアレルゲン活性は見出されていない。従って、本発明により、人体に対して安全な病害防除手段が提供され得る。
【0016】
6−チューリッポサイドB(6−Tuliposide B)は、チューリップの野生種(Tulipa sylvestris L.)に存在していることが報告されている。しかし、6−チューリッポサイドBが、チューリップの栽培種にも存在することは知られていない。そしてこれまで、6−チューリッポサイドBの抗病原体活性は報告されていない(非特許文献2)。
【0017】
またこれまでは、チューリップの葯組織中に、植物の生長を促進させる成分が含まれていることは教示も示唆もされていなかった。従って、当然ながら、1−チューリッポサイドA、1−チューリッポサイドBまたは6−チューリッポサイドBが、植物の生長を促進させる作用を有することも知られていない。
【0018】
【非特許文献1】
Rudolf Tschescheら、Chem.Ber.102、2057−2071(1969)(第2066頁、表3)
【0019】
【非特許文献2】
Lars P.Christensen Phytochemistry 51、969−974(1999)(第970頁)
【0020】
【発明が解決しようとする課題】
本発明は、従来の上記問題点の解決を意図して創出されたものであり、細菌などの病原体に対する抵抗性を植物に付与する組成物および細菌などの病原体に対する抵抗性を植物に付与する方法を提供すること、ならびに、植物の生長を促進させる組成物および植物の生長を促進させる方法を提供することを目的とする。
【0021】
【課題を解決するための手段】
従って本発明は、以下を提供する:
(1)病原体に対する抵抗性を植物に付与する組成物であって、該組成物が以下の式Iの化合物またはその塩を含む、組成物:
式I
【0022】
【化15】
ここで、Rは、H、OHおよびD−ヘキソースからなる群より選択される、組成物。
【0023】
(2)項目1に記載の組成物であって、前記化合物が、以下の式IIの化合物もしくは式IIIの化合物、またはそれらの塩あるいはそれらの混合物である、組成物:
式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
【0024】
【化16】
式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
【0025】
【化17】
(3)前記病原体が細菌である、項目1に記載の組成物。
【0026】
(4)前記細菌が、もみ枯病細菌、褐条病細菌、および苗立枯病細菌からなる群より選択される細菌である、項目3に記載の組成物。
【0027】
(5)前記病原体が、
a)カスガマイシンに対して耐性を有する病原体、
b)オキソリン酸に対して耐性を有する病原体;ならびに、
c)カスガマイシンおよびオキソリン酸に対して耐性を有する病原体
からなる群より選択される病原体である、項目1に記載の組成物。
【0028】
(6)前記植物が単子葉植物である、項目1に記載の組成物。
【0029】
(7)前記単子葉植物がイネである、項目6に記載の組成物。
【0030】
(8)病原体に対する抵抗性を植物に付与する組成物であって、チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分を含む、組成物。
【0031】
(9)前記成分が水溶性成分である、項目8に記載の組成物。
【0032】
(10)前記成分が、エタノール溶媒、メタノール溶媒、水およびN,N−ジメチルホルムアミド溶媒からなる群より選択される溶媒により抽出される成分である、項目8に記載の組成物。
【0033】
(11)前記成分が分子量200〜350を有する、項目8に記載の組成物。
【0034】
(12)前記成分が、以下:
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;および
該水抽出物を濃縮して濃縮物を得る工程
を包含する方法によって得られる成分である、項目8に記載の組成物。
【0035】
(13)前記成分が、以下の工程(I):
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;
該水抽出物から分子量200〜350の画分を得る工程;および
該画分から親水性の画分を得る工程、
を包含する方法によって精製される成分であるか、
または、以下の工程(II):
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;
該水抽出物から親水性の画分を得る工程;および
該画分から分子量200〜350の画分を得る工程、
を包含する方法によって精製される成分である、項目8に記載の組成物。
【0036】
(14)項目13に記載の組成物であって、前記分子量200〜350の画分を得る工程がゲルろ過クロマトグラフィーを使用して行われ、そして前記親水性の画分を得る工程が逆相クロマトグラフィーを使用して行われる、組成物。
【0037】
(15)前記病原体が細菌である、項目8に記載の組成物。
【0038】
(16)前記細菌が、もみ枯病細菌、褐条病細菌、および苗立枯病細菌からなる群より選択される細菌である、項目15に記載の組成物。
【0039】
(17)前記病原体が、
a)カスガマイシンに対して耐性を有する病原体、
b)オキソリン酸に対して耐性を有する病原体;ならびに、
c)カスガマイシンおよびオキソリン酸に対して耐性を有する病原体
からなる群より選択される病原体である、項目8に記載の組成物。
【0040】
(18)前記植物が単子葉植物である、項目8に記載の組成物。
【0041】
(19)前記単子葉植物がイネである、項目18に記載の組成物。
【0042】
(20)以下の式Iの化合物またはその塩を使用して、病原体に対する抵抗性を植物に付与する方法:
式I
【0043】
【化18】
ここで、Rは、H、OHおよびD−ヘキソースからなる群より選択される、方法。
【0044】
(21)項目20に記載の方法であって、前記化合物が、以下の式IIの化合物もしくは式IIIの化合物、またはそれらの塩あるいはそれらの混合物である、方法:
式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
【0045】
【化19】
式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
【0046】
【化20】
(22)前記病原体が細菌である、項目20に記載の方法。
【0047】
(23)前記細菌が、もみ枯病細菌、褐条病細菌、および苗立枯病細菌からなる群より選択される細菌である、項目22に記載の方法。
【0048】
(24)前記病原体が、
a)カスガマイシンに対して耐性を有する病原体、
b)オキソリン酸に対して耐性を有する病原体;ならびに、
c)カスガマイシンおよびオキソリン酸に対して耐性を有する病原体
からなる群より選択される病原体である、項目20に記載の方法。
【0049】
(25)前記植物が単子葉植物である、項目20に記載の方法。
【0050】
(26)前記単子葉植物がイネである、項目25に記載の方法。
【0051】
(27)チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分を使用して、病原体に対する抵抗性を植物に付与する方法。
【0052】
(28)前記成分が水溶性成分である、項目27に記載の方法。
【0053】
(29)前記成分が、エタノール溶媒、メタノール溶媒、水およびN,N−ジメチルホルムアミド溶媒からなる群より選択される溶媒により抽出される成分である、項目27に記載の方法。
【0054】
(30)前記成分が分子量200〜350を有する、項目27に記載の方法。
【0055】
(31)前記成分が、以下:
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;および
該水抽出物を濃縮して濃縮物を得る工程
を包含する方法によって得られる成分である、項目27に記載の方法。
【0056】
(32)前記成分が、以下の工程(I):
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;
該水抽出物から分子量200〜350の画分を得る工程;および
該画分から親水性の画分を得る工程、
を包含する方法によって精製される成分であるか、
または、以下の工程(II):
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;
該水抽出物から親水性の画分を得る工程;および
該画分から分子量200〜350の画分を得る工程、
を包含する方法によって精製される成分である、項目27に記載の方法。
【0057】
(33)項目32に記載の方法であって、前記分子量200〜350の画分を得る工程がゲルろ過クロマトグラフィーを使用して行われ、そして前記親水性の画分を得る工程が逆相クロマトグラフィーを使用して行われる、方法。
【0058】
(34)前記病原体が細菌である、項目27に記載の方法。
【0059】
(35)前記細菌が、もみ枯病細菌、褐条病細菌、および苗立枯病細菌からなる群より選択される細菌である、項目34に記載の方法。
【0060】
(36)前記病原体が、
a)カスガマイシンに対して耐性を有する病原体、
b)オキソリン酸に対して耐性を有する病原体;ならびに、
c)カスガマイシンおよびオキソリン酸に対して耐性を有する病原体
からなる群より選択される病原体である、項目27に記載の方法。
【0061】
(37)前記植物が単子葉植物である、項目27に記載の方法。
【0062】
(38)前記単子葉植物がイネである、項目37に記載の方法。
【0063】
(39)植物の生長を促進させる組成物であって、該組成物が以下の式Iの化合物またはその塩を含む、組成物:
式I
【0064】
【化21】
ここで、Rは、H、OHおよびD−ヘキソースからなる群より選択される、組成物。
【0065】
(40)項目39に記載の組成物であって、前記化合物が、以下の式IIの化合物もしくは式IIIの化合物、またはそれらの塩あるいはそれらの混合物である、組成物:
式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
【0066】
【化22】
式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
【0067】
【化23】
(41)前記植物が単子葉植物である、項目39に記載の組成物。
【0068】
(42)前記植物が、病原体により引き起こされる病害ストレス、物理的な傷害ストレス、乾燥ストレス、温度ストレス、養分欠乏ストレス、塩ストレス、および照度ストレスからなる群より選択されるストレスを受けた植物である、項目39に記載の組成物。
【0069】
(43)植物の生長を促進させる組成物であって、チューリップ(Tulipa spp.)の葯組織由来の植物生長促進活性成分を含む、組成物。
【0070】
(44)前記成分が水溶性成分である、項目43に記載の組成物。
【0071】
(45)前記成分が、エタノール溶媒、メタノール溶媒、水およびN,N−ジメチルホルムアミド溶媒からなる群より選択される溶媒により抽出される成分である、項目43に記載の組成物。
【0072】
(46)前記成分が分子量200〜350を有する、項目43に記載の組成物。
【0073】
(47)前記成分が、以下:
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;および
該水抽出物を濃縮して濃縮物を得る工程
を包含する方法によって得られる成分である、項目43に記載の組成物。
【0074】
(48)前記成分が、以下の工程(I):
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;
該水抽出物から分子量200〜350の画分を得る工程;および
該画分から親水性の画分を得る工程、
を包含する方法によって精製される成分であるか、
または、以下の工程(II):
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;
該水抽出物から親水性の画分を得る工程;および
該画分から分子量200〜350の画分を得る工程、
を包含する方法によって精製される成分である、項目43に記載の組成物。
【0075】
(49)項目48に記載の組成物であって、前記分子量200〜350の画分を得る工程がゲルろ過クロマトグラフィーを使用して行われ、そして前記親水性の画分を得る工程が逆相クロマトグラフィーを使用して行われる、組成物。
【0076】
(50)前記植物が単子葉植物である、項目43に記載の組成物。
【0077】
(51)前記植物が、病原体により引き起こされる病害ストレス、物理的な傷害ストレス、乾燥ストレス、温度ストレス、養分欠乏ストレス、塩ストレス、および照度ストレスからなる群より選択されるストレスを受けた植物である、項目43に記載の組成物。
【0078】
(52)以下の式Iの化合物またはその塩を使用して、植物の生長を促進させる方法:
式I
【0079】
【化24】
ここで、Rは、H、OHおよびD−ヘキソースからなる群より選択される、方法。
【0080】
(53)項目52に記載の方法であって、前記化合物が、以下の式IIの化合物もしくは式IIIの化合物、またはそれらの塩あるいはそれらの混合物である、方法:
式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
【0081】
【化25】
式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
【0082】
【化26】
(54)前記植物が単子葉植物である、項目52に記載の方法。
【0083】
(55)前記植物が、病原体により引き起こされる病害ストレス、物理的な傷害ストレス、乾燥ストレス、温度ストレス、養分欠乏ストレス、塩ストレス、および照度ストレスからなる群より選択されるストレスを受けた植物である、項目52に記載の方法。
【0084】
(56)チューリップ(Tulipa spp.)の葯組織由来の植物生長促進活性成分を使用して、植物の生長を促進させる方法。
【0085】
(57)前記成分が水溶性成分である、項目56に記載の方法。
【0086】
(58)前記成分が、エタノール溶媒、メタノール溶媒、水およびN,N−ジメチルホルムアミド溶媒からなる群より選択される溶媒により抽出される成分である、項目56に記載の方法。
【0087】
(59)前記成分が分子量200〜350を有する、項目56に記載の方法。
【0088】
(60)前記成分が、以下:
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;および
該水抽出物を濃縮して濃縮物を得る工程
を包含する方法によって得られる成分である、項目56に記載の方法。
【0089】
(61)前記成分が、以下の工程(I):
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;
該水抽出物から分子量200〜350の画分を得る工程;および
該画分から親水性の画分を得る工程、
を包含する方法によって精製される成分であるか、
または、以下の工程(II):
チューリップ(Tulipa spp.)の葯組織を水に浸漬して水抽出物を得る工程;
該水抽出物から親水性の画分を得る工程;および
該画分から分子量200〜350の画分を得る工程、
を包含する方法によって精製される成分である、項目56に記載の方法。
【0090】
(62)項目61に記載の方法であって、前記分子量200〜350の画分を得る工程がゲルろ過クロマトグラフィーを使用して行われ、そして前記親水性の画分を得る工程が逆相クロマトグラフィーを使用して行われる、方法。
【0091】
(63)前記植物が単子葉植物である、項目56に記載の方法。
【0092】
(64)前記植物が、病原体により引き起こされる病害ストレス、物理的な傷害ストレス、乾燥ストレス、温度ストレス、養分欠乏ストレス、塩ストレス、および照度ストレスからなる群より選択されるストレスを受けた植物である、項目56に記載の方法。
【0093】
(65)カスガマイシンに対して耐性を有する病原体の増殖を阻止するための、以下の式IIIの化合物を含む抗菌性組成物:
式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
【0094】
【化27】
(66)オキソリン酸に対して耐性を有する病原体の増殖を阻止するための、以下の式IIIの化合物を含む抗菌性組成物:
式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
【0095】
【化28】
(67)前記カスガマイシンに対して耐性を有する病原体が、褐条病菌(Pseudomonas avenae)T9020株である、抗菌性組成物。
【0096】
(68)前記オキソリン酸に対して耐性を有する病原体が、褐条病菌(Pseudomonas avenae)T9020株、もみ枯細菌(Pseudomonas glumae)T12119株、および褐条病菌(Pseudomonas avenae)T9014株からなる群より選択される病原体である、抗菌性組成物。
【0097】
【発明の実施の形態】
以下、本発明を詳細に説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。
【0098】
本発明は、一つの局面において、病原体に対する抵抗性を植物に付与する組成物および病原体に対する抵抗性を植物に付与する方法に関する。
【0099】
本発明は、他の局面において、植物の生長を促進させる組成物および植物の生長を促進させる方法に関する。
【0100】
本明細書中で用いられる用語「植物」とは、他に特に示さない限り、完全な植物体のみではなく、その植物体を構成する植物細胞、組織、および器官をも含み得る。本明細書中に出てくる植物の構成要素を示す用語(例えば、根、茎、葉、花、花弁、雄しべ、葯、葯壁、花粉、花糸、雌しべ、柱頭、花柱、種子、種子胚、種子籾、球根、塊茎、球根りん片、切花、プロトプラスト、およびカルスなど)は、当業者が通常理解し得る通りの構成物を表す。
【0101】
本発明により抵抗性を付与されるおよび/または生長を促進される「植物」は、任意の植物種であり得る。好ましくは、本発明により抵抗性を付与されるおよび/または生長を促進される「植物」は単子葉植物または双子葉植物である。本発明により抵抗性を付与されるおよび/または生長を促進される植物の例としては、イネ、トウモロコシ、コムギ、オオムギ、ライムギなどのイネ科植物、チューリップ、ユリ、ネギ、ニンニクなどのユリ科植物、タバコ、ナス、ジャガイモ、トマトなどのナス科植物、ダイズ、ソラマメ、インゲンマメ、エンドウ、ラッカセイなどのマメ科植物、花卉植物(例えば、アサガオ、ペチュニア、カーネーション、キク、ラン、ダリア、ツツジ、ヒマワリなどが挙げられるが、これらに限定されない)などが挙げられるが、これらに限定されない。
【0102】
チューリップ(Tulipa spp.)は、ユリ科チューリップ属に属する多年性植物である。チューリップの栽培種は、Tulipa gesneriana L.とされ、これまでに約2000種類知られている。チューリップの野生種は、Tulipa bakeri A.D.Hallや、Tulipa linifolia Regalなどを含む約150種類が、これまでに知られている。野生種とは、人為的影響を受けていない種をいい、対照的に、栽培種とは、人がその必要を満たすため進化の過程に影響を与えた種をいう。本明細書において、チューリップとは、天然に存在するチューリップ(野生種および栽培種を含む)のみならず、チューリップと他の植物とを掛け合わせて育成されたハイブリッド植物をも含む。また、遺伝子工学的技術により遺伝子組換えされ形質転換されたチューリップも含む。
【0103】
本明細書中で用いられる用語「病原体」とは、植物を病的状態にする原因となる任意の生物性病原をいう。ここで病的状態とは、言い換えれば、健康ではないあらゆる状態をさし、例えば、葉または茎などに斑点または輪紋などが現れたり、落葉したり、植物全体または植物の一部(葉または茎など)が萎れたり、植物全体または植物の一部(葉または茎など)が枯れたり、茎の生長が抑制または停止したり、花が咲かなかったり、実がならなかったり等の異常な状態をいう。本明細書中において生物性病原とは、ウイルス、ウイロイド、細菌、真菌(糸状菌を含む)、寄生生物、昆虫、線虫、ダニ、ネズミなどをいうが、これらに限定されない。代表的には、病原体は細菌または真菌であり、これらは特に、病原性細菌または病原性真菌とも呼ばれる。また一般に、病原性細菌および病原性真菌を合わせて、病原菌とも呼ばれる。好ましくは、病原体は病原性細菌である。
【0104】
病原性細菌としては、イネもみ枯細菌病細菌、イネ褐条病細菌、イネ苗立枯細菌病細菌、イネ白葉枯病細菌、イネゴマ葉枯病細菌、タバコ空洞病細菌、タバコ野火病細菌、各種野菜類の軟腐病細菌(例えば、ネギ軟腐病細菌)、斑点細菌病細菌、青枯病細菌、インゲンマメかさ枯病細菌、核果類かいよう病細菌、クワ縮葉細菌病細菌、アブラナ科植物黒腐病細菌、カンキツかいよう病細菌、トマトかいよう病細菌、ジャガイモ輪腐病細菌、ジャガイモそうか病細菌が挙げられるが、これらに限定されない。
【0105】
病原性真菌としては、イネいもち病菌、イネ紋枯病菌、イネ苗腐病菌、イネ苗立枯病菌、イネばか苗病菌、イネ黄化萎縮病菌、イネごま葉枯病菌、ムギ類さび病類菌、ムギ類うどんこ病菌、ジャガイモ疫病菌、タバコ疫病菌、タバコ灰色かび病菌、タバコ舞病菌、シバ類さび病類菌、立枯病類菌、雪腐病類菌、野菜類の疫病菌、べと病菌、うどんこ病菌、灰色かび病菌、炭そ病菌、苗立枯病菌、根こぶ病菌、カーネーション萎ちょう病菌、キク白さび病菌、ウリ類べと病菌、オオムギ黒穂病菌、ナシ赤星病菌、カンキツにせ黄斑病菌などが挙げられるが、これらに限定されない。
【0106】
また病原体は、農薬に対して耐性を有する病原体であり得る。ここで病原体が細菌または真菌である場合、この病原体は農薬耐性細菌または農薬耐性真菌とも呼ばれる。また一般に、農薬耐性細菌および農薬耐性真菌を合わせて、農薬耐性菌とも呼ばれる。農薬は、農作物、樹木または農林産物に対して障害を与える生物(すなわち、病原体)の防除に用いられる薬剤、または農作物などの生理機能の増進もしくは抑制に用いられる生長調節剤(例えば、生長促進剤または発芽抑制剤など)などいう。農薬耐性菌の文脈においては一般に、病原体の防除に用いられる任意の薬剤をいう。病原体の防除に用いられる農薬としては、例えば、カスガマイシンを含む農薬およびオキソリン酸(オキソリニック酸ともいう)を含む農薬が挙げられるが、これらに限定されない。カスガマイシンを含む農薬としては、例えば、カスミンが挙げられるがこれに限定されない。オキソリン酸を含む農薬としては、例えば、スターナ剤が挙げられるがこれに限定されない。本明細書中において、病原体が「農薬に対して耐性を有する」とは、病原体が、特定の農薬の防除作用に対抗して生存する能力を獲得したことを意味する。反対に、本明細書中において、「病原体が農薬に対して感受性である」とは、病原体が、特定の農薬の防除作用に対抗して生存する能力を有さないことを意味する。
【0107】
本発明の重要な特徴の一つは、本願発明の組成物および方法が、農薬耐性菌に対する顕著に優れた抵抗性を、植物に付与し得ることにある。農薬耐性菌に関して、特定の一つの農薬に対して耐性を獲得した菌が、他の農薬に対しても耐性を示すようになることが珍しくない(薬剤の交差耐性)。従って、農薬耐性菌に対して強い抗菌作用を示し得る物質を選択/取得することは、一般に当業者に過度の試行錯誤を要する。本願発明者は、下記の実施例において、本願発明の組成物および方法が、農薬耐性菌に対しても強い抗菌性を示し得ることを明らかにした。このような本願発明の組成物および方法は、農薬耐性菌にも使えるので、植物病害防除において極めて有用である。
【0108】
さらに本願発明の重要な特徴の一つは、本願発明の組成物および方法を連続的に使用しても、本願発明の組成物自体に対する耐性菌の出現を引き起こさないことにある。下記の実施例に示されるように、例えば、抗生物質アンピシリンと本願発明の組成物とを比較したところ、アンピシリンを用いた場合には早々に約24時間目に耐性大腸菌が出現したのに対して、本願発明の組成物を用いた場合には、118時間もの長期間にわたって耐性大腸菌は出現しなかった。耐性菌の出現がなく長期間にわたって連続使用され得る農薬は、作物栽培農家が、使用する農薬を取捨選択する手間を省き、簡便に使用され得るので有利である。
【0109】
本明細書中で用いられる用語「抵抗性」とは、植物が生理的要因または病理的要因による障害を、部分的または完全に打ち消して生存する性質をいう。従って、本願発明の組成物または方法が「病原体に対する抵抗性を植物に付与する」とは、本願発明の組成物または方法によって、植物が、病原体により与えられる障害を、部分的または完全に打ち消して生存することを意味する。
【0110】
本明細書中で用いられる句「植物の生長を促進させる」または用語「植物生長促進活性」とは、細胞分裂による細胞数の増加、細胞の原形質量の増加、細胞膜/細胞壁などの伸展、細胞分化および細胞内酵素活性の変化などを通じて、植物の生長(すなわち、植物の体積の増加、あるいは植物の生体量の増加)を促進させる効果または活性をいう。本発明の組成物は、
a)外因的に、病原体による感染をブロックすることにより、病原体感染で引き起こされる植物生長への悪影響を回避することによって;および/または、
b)内因的に、植物の細胞数の増加、原形質量の増加、細胞膜/細胞壁の伸展、細胞分化および細胞内酵素活性の変化などを引き起こすことによって、
植物の生長を促進させる。「植物の生長を促進させる活性」は、例えば、生長した植物の大きさおよび/または重量の増加によって確認できる。
【0111】
特定の実施形態では、本発明の組成物は、ストレスを受けて健全な生育状態にない(すなわち、正常な生育と比較して生長抑制された状態にある)植物の生長を促進させる。一つの実施形態では、本発明の組成物は、ストレスを受けて健全な生育状態にない植物を、完全にまたは部分的に正常な生育状態に戻す。ストレスとは、本明細書中で使用される場合、植物の健全な生育を妨げる任意の要因をいう。ストレスとしては、例えば、病原体により引き起こされる病害ストレス、物理的な傷害ストレス、乾燥ストレス、温度ストレス(高温ストレスまたは低温ストレス)、養分欠乏ストレス、塩ストレス、または照度ストレス(過剰照度ストレスまたは過少照度ストレス)などが挙げられるが、これらに限定されない。代表的には、ストレスは病害ストレスまたは傷害ストレスである。例えば、切花は、完全な植物体から切り離されたという意味で、傷害ストレスを受けた植物の一例である。本発明の組成物は、このような傷害ストレスを受けた切花などに付与された場合に、その切花の生長を促進させる効果を有する。この場合、本発明の組成物を付与された切花は、本発明の組成物を付与されていない生長抑制された切花と比較した場合に、より長い期間にわたって健全な生育を示す。このような本願発明の組成物は、植物の生長活力剤として使用され得る。
【0112】
好ましい実施形態では、病原体に対する抵抗性を植物に付与する本発明の組成物または植物の生長を促進させる本発明の組成物は、以下の式Iの化合物またはその塩を含む:
【0113】
【化29】
ここで、Rは、H、OHおよび任意の糖類からなる群より選択される。好ましい実施形態では、上記の式Iの化合物におけるRは、H、OH、D−ヘキソースおよびL−ヘキソースからなる群より選択される。より好ましい実施形態では、上記の式Iの化合物におけるRは、H、OHおよびD−ヘキソースからなる群より選択される。より好ましい実施形態では、上記式Iの化合物におけるRは、H、OH、D−グルコース、L−グルコース、D−タロース、L−タロース、D−マンノース、L−マンノース、D−フルクトース、L−フルクトース、D−ガラクトースおよびL−ガラクトースからなる群より選択される。より好ましい実施形態では、上記式Iの化合物におけるRは、H、OH、D−グルコース、D−タロース、D−マンノース、D−フルクトース、およびD−ガラクトースからなる群より選択される。さらに好ましい実施形態では、上記式Iの化合物におけるRは、D−グルコース、D−タロース、D−マンノース、D−フルクトース、およびD−ガラクトースからなる群より選択される。最も好ましい実施形態では、上記式Iにおける化合物Rは、D−グルコースである。ここでヘキソースとは、1分子中に6個の炭素原子を含む任意の単糖類をいう。本明細書中における「D−」または「L−」という表記は、当業者が通常理解し得るとおり、DL表示法でD配置またはL配置をもつ化合物であることを指す。
【0114】
本明細書において「塩」とは、酸に含まれている1つ以上の解離し得る水素イオンをカチオン(例えば、金属イオン)で置換して得られる反応生成物をいう。
【0115】
特に好ましい実施形態では、本発明の組成物は、以下の式IIの構造を有する化合物(1−チューリッポサイドB)もしくは式IIIの構造を有する化合物(6−チューリッポサイドB)、またはそれらの塩あるいはそれらの混合物を含む:
式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
【0116】
【化30】
式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
【0117】
【化31】
以下の実施例の節において示されるように、上記の式IIの構造を有する1−チューリッポサイドBと式IIIの構造を有する6−チューリッポサイドBは、等価な活性を有する。実施例14において詳述されるHPLCのデータ(図10)は、チューリップ葯組織中に存在する1−チューリッポサイドBが、時間を経るにつれて徐々に、6−チューリッポサイドBへと転位することを明確に示している。このHPLC研究と同時並行して、チューリップ葯組織の抗菌活性の強度を調べた。すると、チューリップ葯組織が示す抗菌活性は、実験開始から18時間目までほぼ一定であり、チューリップ葯組織中における1−チューリッポサイドBの6−チューリッポサイドBへの変化による影響(すなわち、1−チューリッポサイドBと6−チューリッポサイドBとの混合比による影響)を受けないことが明らかとなった。従って、1−チューリッポサイドBおよび6−チューリッポサイドBが等価な活性を有することは明らかである。そして以上のことから、本願発明の効果を奏するのに重要な構造は、1−チューリッポサイドBおよび6−チューリッポサイドBに共通した、式IにおけるR位以外の構造部分であること、そしてR位の構造は、必要に応じて置換され得ることが示唆された。
【0118】
特定の実施形態では、本発明の組成物は、上記化合物または混合物を、農薬としての使用に受容可能なキャリアと共に含む。農薬としての使用に受容可能なキャリアとは、人体や家畜、環境への影響がほとんどまたは全くなく、植物の生育にも悪影響をほとんどまたは全く及ぼさない任意のキャリアをいう。本発明の組成物は、農薬としての使用に適した任意の形態であり得る。例えば、本発明の組成物は、液剤、粉剤、粒剤、乳剤、または水和剤などの形態であり得る。乳剤とは、ある液体が他の不溶性液体に分散して安定した薬剤をいう。水和剤とは、農薬製剤の一形態であり、微粉化した固体原体に増量剤、界面活性剤および/または分散剤を加え、混合粉砕して製造される。水和剤は乳剤に比べて高濃度の製剤が可能であり、経済性にも取扱いの簡便さにも優れた形態である。
【0119】
特定の実施形態では、本発明の組成物は、上記化合物または混合物を、病原体に対する抵抗性を植物に付与するに有効な量または植物の生長を促進させるに有効な量で含む。有効な量は、組成物の形態、対象となる病原体もしくは植物の種、植物の大きさ、所望される抵抗性/生長促進活性の程度、または使用する環境などによって変動する。このような要因を考慮して、当業者は、「病原体に対する抵抗性を植物に付与するに有効な量」または「植物の生長を促進させるに有効な量」を容易に決定し得る。例えば、本発明の組成物中における上記化合物または混合物の好ましい量は、液剤の場合、0.3重量%(w/v)、粉剤では0.5重量%(w/v)、粒剤では1.0重量%(w/v)、乳剤では、0.5重量%(w/v)、そして水和剤では1.0重量%(w/v)であるが、これらの量は必要に応じて適宜変更され得る。粒剤および粉剤の場合には、使用に際して、必要に応じた任意の希釈率で、水などの液体により希釈され得る。粒剤および粉剤は、好ましくは、水で希釈して、製品重量の10〜1000倍希釈で使用され得、好ましくは100〜200倍希釈で使用され得る。代表的には、処理1回につき、植物生重量(g)あたり約1mg、好ましくは、2mg、より好ましくは、5mgの上記化合物または混合物を付与することにより、十分な病害防除効果/生長促進効果が得られる。
【0120】
好ましい他の実施形態では、病原体に対する抵抗性を植物に付与する本発明の組成物は、チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分を含む。
【0121】
他の実施形態では、植物の生長を促進させる本発明の組成物は、チューリップ(Tulipa spp.)の葯組織由来の植物生長促進活性成分を含む。
【0122】
チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分および植物生長促進活性成分は、好ましくは、親水性成分である。親水性とは、水との親和性が油との親和性よりも高い性質をいう。また、チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分および植物生長促進活性成分は、水溶性成分である。水溶性とは、水に溶ける性質をいう。さらに、チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分および植物生長促進活性成分は、極性の大きな溶媒により葯組織から抽出される成分である。好ましくは、この有効成分は、エタノール溶媒またはエタノールよりも大きな極性を有する溶媒を用いて葯組織から抽出される成分であり、より好ましくは、この有効成分は、メタノール溶媒またはメタノールよりも大きな極性を有する溶媒を用いて葯組織から抽出される成分であり、さらにより好ましくは、水溶媒または水よりも大きな極性を有する溶媒を用いて葯組織から抽出される成分であり、最も好ましくは、DMF(N,N−ジメチルホルムアミド)溶媒またはDMFよりも大きな極性を有する溶媒を用いて葯組織から抽出される成分である。また、この有効成分は、ブタノール溶媒またはブタノールよりも極性の小さな溶媒で葯組織を抽出した際に残渣として残る成分である。より好ましくは、イソアミルアルコール溶媒またはイソアミルアルコールよりも極性の小さな溶媒で葯組織を抽出した際に残渣として残る成分である。さらにより好ましくは、アセトン溶媒またはアセトンよりも極性の小さな溶媒で葯組織を抽出した際に残渣として残る成分である。なおさらにより好ましくは、酢酸エチル溶媒または酢酸エチルよりも極性の小さな溶媒で葯組織を抽出した際に残渣として残る成分である。なおさらにより好ましくは、エーテル溶媒またはエーテルよりも極性の小さな溶媒で葯組織を抽出した際に残渣として残る成分である。最も好ましくは、クロロホルム溶媒またはクロロホルムよりも極性の小さな溶媒で葯組織を抽出した際に残渣として残る成分である。
【0123】
双極子モーメント値とは、一つの分子中の結合モーメントのベクトル和であり、分子の極性の尺度の一つである。双極子モーメント値は一般に、溶媒の極性が大きくなるにつれて、値も大きくなる。例えば、エタノールの双極子モーメント値は、約1.44(20℃において)であることが公知である。チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分および植物生長促進活性成分は、約1.4以上の双極子モーメント値を有する溶媒を用いて葯組織から抽出され得る成分である。また、この有効成分は、約1.4未満の双極子モーメント値を有する溶媒で葯組織を抽出した際に残渣として残り得る成分である。
【0124】
好ましくは、チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分および植物生長促進活性成分は約200〜350ダルトンの分子量を有する。より好ましくは、この有効成分は、約250〜300ダルトンの分子量を有する。さらにより好ましくは、この有効成分は、約280〜290ダルトンの分子量を有する。最も好ましくは、この有効成分は、約294.258ダルトンの分子量を有する。
【0125】
一つの実施形態では、チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分および植物生長促進活性成分は、チューリップ葯組織から液体クロマトグラフィーにより精製される。好ましい実施形態では、この有効成分は、チューリップ葯組織からゲルろ過クロマトグラフィーにより精製される。他の好ましい実施形態では、この有効成分は、チューリップ葯組織から逆相クロマトグラフィーにより精製される。最も好ましい実施形態では、この有効成分は、チューリップ葯組織から、ゲルろ過クロマトグラフィーおよび逆相クロマトグラフィーによって精製される。ゲルろ過クロマトグラフィーおよび逆相クロマトグラフィーの両方を行う場合、順番はいずれであってもよく、ゲルろ過クロマトグラフィー後に逆相クロマトグラフィーを行っても、逆相クロマトグラフィー後にゲルろ過クロマトグラフィーを行っても良い。
【0126】
ゲルろ過クロマトグラフィーは、種々の試料分子を、固定相の網目に入り込む程度の違い(すなわち、分子の大きさの違い)によって分離する。様々なゲルろ過カラムが市販されており、必要に応じて適宜使用され得る。本発明のように低分子量の分子を分離するために適切なゲルろ過カラムとしては、Superdex Peptide HR 10/30ゲルろ過カラム(アマシャム社製)、またはSuperose 6 HR 10/30(アマシャム社製)などが挙げられる。例えば、Superdex Peptide HR 10/30ゲルろ過カラム(アマシャム社製;ベッド体積24ml)を用いる場合、約0.3ml/分(約0〜2分間)および約0.9ml/分(約2〜120分間)の流量でチューリップ葯組織由来の0.2mlの試料を添加すると、試料を添加してから約18〜25分後に約200〜350の分子量を有する抗菌活性/植物生長促進活性を示す画分が得られ、約19〜23分後に約250〜300の分子量を有する抗菌活性/植物生長促進活性を示す画分が得られ、約19〜22分後に約280〜290の分子量を有する抗菌活性/植物生長促進活性を示す画分が得られ、約19〜22分後に約294.258の分子量を有する抗菌活性/植物生長促進活性を示す画分が得られる。ゲルろ過クロマトグラフィーにおいて、流速およびカラム容量に従って、回収する画分を選択することは当業者が適宜なし得る。
【0127】
逆相クロマトグラフィーは、高密度の疎水性官能基を結合させた担体を使用して、疎水性程度の違いによって分離する。本発明において目的とする親水性の分子を分離するために適切なカラムとしては、PepRPC 逆相カラム(アマシャム社製)、またはμRPC C2/C18 PC3.2/3(アマシャム社製)などが挙げられる。例えば、Superdex Peptide HR 10/30ゲルろ過カラム(アマシャム社製)を用いる場合、チューリップ葯組織由来の試料0.25mlを、0.7ml/分の流量で添加すると、添加してから約1〜2分後に本発明で目的とする親水性の抗菌画分/植物生長促進活性が溶出される。
【0128】
特定の実施形態では、本発明の組成物は、チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分または植物生長促進活性成分を、農薬としての使用に受容可能なキャリアと共に含む。農薬としての使用に受容可能なキャリアとは、人体や家畜、環境への影響がほとんどまたは全くなく、植物の生育にも悪影響をほとんどまたは全く及ぼさない任意のキャリアをいう。本発明の組成物は、農薬としての使用に適した任意の形態であり得る。例えば、本発明の組成物は、液剤、粉剤、粒剤、乳剤、または水和剤などの形態であり得る。乳剤とは、ある液体が他の不溶性液体に分散して安定した薬剤をいう。水和剤とは、農薬製剤の一形態であり、微粉化した固体原体に増量剤、界面活性剤および/または分散剤を加え、混合粉砕して製造される。水和剤は乳剤に比べて高濃度の製剤が可能であり、経済性にも取扱いの簡便さにも優れた形態である。
【0129】
特定の実施形態では、本発明の組成物は、チューリップ(Tulipa spp.)の葯組織由来の抗病原体成分または植物生長促進活性成分を、病原体に対する抵抗性を植物に付与するに有効な量または植物の生長を促進させるに有効な量で含む。有効な量は、組成物の形態、対象となる病原体もしくは植物の種、植物の大きさ、所望される抵抗性/生長促進活性の程度、または使用する環境などによって変動する。このような要因を考慮して、当業者は、「病原体に対する抵抗性を植物に付与するに有効な量」または「植物の生長を促進させるに有効な量」を容易に決定し得る。例えば、本発明の組成物中における上記有効成分の好ましい量は、液剤の場合、0.3重量%(w/v)、粉剤では0.5重量%(w/v)、粒剤では1.0重量%(w/v)、乳剤では、0.5重量%(w/v)、そして水和剤では1.0重量%(w/v)であるが、これらの量は必要に応じて適宜変更され得る。粒剤および粉剤の場合には、使用に際して、必要に応じた任意の希釈率で、水などの液体により希釈され得る。粒剤および粉剤は、好ましくは、水で希釈して、製品重量の10〜1000倍希釈で使用され得、好ましくは100〜200倍希釈で使用され得る。代表的には、処理1回につき、植物生重量(g)あたり約1mg、好ましくは2mg、より好ましくは5mgの上記成分を付与することにより、十分な病害防除効果/植物生長促進効果が得られる。
【0130】
上記の式Iの化合物、上記式IIの化合物、上記式IIIの化合物もしくはその塩またはそれらの混合物、あるいはチューリップの葯組織由来の抗菌性成分もしくは生長促進活性成分、あるいはそれらのいずれかを含む組成物は、任意の方法により植物に付与され得る。これらの抗菌物質を植物に付与する方法は、組成物等の形態、対象となる病原体もしくは植物の種、植物の大きさ、所望される抵抗性/生長促進活性の程度、または使用する環境などによって変動する。このような要因を考慮して、当業者は、これらの本願発明の物質を植物に付与する方法を容易に決定し得る。例えば、これらの本願発明の物質を含む溶液中に、種子または球根などを浸漬することによって、これらの本願発明の物質が植物に付与され得る。または、これらの本願発明の物質を、生育中または収穫前後に植物に散布することによって、これらの本願発明の物質が植物に付与され得る。
【0131】
このようにして付与された組成物は、極めて強力な病害防除効果を植物に付与する。さらに、この組成物は、植物の生長を促進させる効果を有する。また、本の抗菌物質は、もともと天然に存在する物質であるため、環境に対する悪影響もない。そして以下の実施例によって実証されるように、このチューリップ葯組織由来の抗菌物質は、作物自体の生育自体に対しても悪影響を有さず、耐性菌出現の可能性も低いという利点を有する。チューリップは、大規模生産に適した植物であり、また大きな葯組織を有するので、チューリップの葯組織由来の抗菌性成分もしくは生長促進活性成分は、大量生産に適用可能である。
【0132】
【実施例】
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらに限定されない。
【0133】
(実施例1:チューリップ供試品種)
チューリップの葯組織に含まれる抗菌物質の存在について調べるために、以下の表1に示される116品種のチューリップを抗菌物質検定に供試した。この116品種は、その起源、由来、生態、形態および/または花弁色などにおいて多種多様な品種を含み、そして31品種の野生種を含む。
【0134】
【表1】
表1において、◆は野生種を示す。「品保」とは、富山県農業技術センター野菜花卉試験場において管理されている、チューリップ球根の品種保存番号を示す。品保欄に記載の「農試」とは、富山県農業技術センター農業試験場より提供されたチューリップ品種であることを示す。
【0135】
供試した116品種のチューリップは、各品種ごとに通常の栽培方法により、開花まで栽培した。例えば、11月下旬に耕起し畝幅90cmにした畝の土中10cmに球根を植え、覆土し、翌年4月から5月に開花させた。開花直後のチューリップの花器官からピンセットで葯を摘出し、密封可能なビニール袋に品種ごとに収集した。収集した葯組織は、実験に使用するまで、−20℃で保存した。
【0136】
(実施例2:チューリップ葯組織を用いた抗菌性検定)
チューリップ葯組織が抗菌物質を有するか否かを検定するために、品種別の葯を用いて抗菌性検定を実施した。
【0137】
検定培地としてH検定培地を次のように調製した。bacto tryptone 10g、NaCl 8g、およびbacto agar 12gをビーカーに入れ、1000mlの蒸留水に溶解した。この溶解液をビーカーからフラスコに移し、フラスコにフタをし、121℃で20分間オートクレーブ滅菌した。
【0138】
オートクレーブ滅菌後、冷めないうちにフラスコ内の培地を攪拌した。60℃程度まで冷めた時点で、9cmのプラスチックシャーレにこの培地を約20ml分注し、固化するまで水平な場所で放置しH培地とした。さらに、bacto agarを8gに減らしたH上層培地を同様に作成し、滅菌後60℃に冷めた時に予めOD660=0.7まで培養しておいた大腸菌(E.coli)JM109株を70μl取り、試験管内でH上層培地3mlと素早く混合した後、シャーレのH培地の上に重層して検定培地を作製した。
【0139】
実施例1に記載のようにして得られたチューリップの葯組織を、上記のようにして調製された検定培地上にのせた。葯組織をのせた後直ちに、このシャーレにフタをし、インキュベーター内に置き、30℃で24時間培養した。
【0140】
この結果を図1に示す。この図において、各シャーレの下に記載した番号は、シャーレ上に配置した葯の品種を示し、この番号は上記の表1において列挙した品種の番号と一致する。シャーレには、上段の左から右に向かって、次いで、下段の左から右に向かって、小さい品種番号から大きな品種番号の順で葯を配置した。シャーレ上の白濁した箇所は、被験菌である大腸菌が増殖した箇所である。葯周辺における白濁していない半透明の箇所は、大腸菌が増殖できなかった箇所を示す。従って、この半透明の箇所の大きさは、葯の示す抗菌性の強さを示す。図1から明らかなように、大半の品種の葯周辺には、大腸菌が増殖しなかった半透明の大きな箇所が見られた。そして、この葯周辺の半透明箇所の大きさは、品種ごとに差が見られた。このことから、チューリップの葯組織には強力な抗菌物質が含まれること、および、チューリップが示すその抗菌性強度は品種毎に差があることが明らかとなった。
【0141】
(実施例3:等量のチューリップ葯組織を用いた抗菌性検定)
実施例2で示されたチューリップ品種毎の抗菌性強度の差異が、各品種の葯組織の大きさの差異によるか否かを調べるため、各品種の葯組織量を等量にして、実施例2と同様の抗菌性検定を行った。
【0142】
実施例2と同様にして、検定培地としてH検定培地を調製した。
【0143】
各チューリップ品種の葯組織量を統一するため、以下の処理を行った。まず、実施例1に記載のようにして得られた各品種の葯1個の生重量(mg)を測定した。次いで、この生重量を測定した1個の葯を500μlの水に溶解し、次いで、この溶解液を凍結乾燥させた。使用直前に、この凍結乾燥物を、生重量値分の水(μl)に溶解した。この操作により、水中の葯抽出濃度を1mg/μlに統一した。例えば、紫水晶の品種では、葯1個の生重量は26mgであり、この葯組織を500μlの水に溶解して凍結乾燥させた後、26μlの水中に溶解することで1mg/μl濃度の葯組織抽出液を得た。
【0144】
上記のようにして得られた1mg/μl濃度の葯組織抽出液10μlを、無菌下で、直径8mmの滅菌ペーパーディスクに添加した。添加後、このペーパーディスクを、大腸菌を含むH検定培地上にのせた。直ちに、このシャーレにフタをし、インキュベーター内に置き、30℃で24時間培養した後、大腸菌増殖阻止円の直径を測定した。
【0145】
この実験から明らかとなった、チューリップ葯組織の品種別の抗菌活性の強さをまとめたものが、以下の表2である。
【0146】
【表2】
表2において、◆は野生種を示す。ここでは、チューリップ葯組織の示す抗菌活性の強度の指標として、大腸菌増殖阻止円の直径を使用した。
【0147】
表2から明らかなように、チューリップが示す抗菌性は品種毎に差があり、この差異が各品種の葯組織の大きさの差異によるものではないことが明らかとなった。
【0148】
(実施例4:チューリップの組織別抗菌性検定)
チューリップの葯組織以外の組織が、葯組織と同じように抗菌物質を有するか否かを検定するために、チューリップの種々の組織を用いて抗菌性検定を実施した。
【0149】
実施例2と同様にして、検定培地としてH検定培地を調製した。
【0150】
チューリップ品種ミレラを、通常の栽培方法により、開花まで栽培した。開花直後の植物体から、葉組織、茎組織、花弁組織、雌しべ組織、葯組織および球根りん片組織を各1g採取した。
【0151】
採取した各組織を、5mlの水の中でホモジナイズし、次いで、これを15000rpmで10分間遠心分離した。次いで、この上清を取り出して凍結乾燥し、得られた凍結乾燥物を1mlの水に再溶解した。この溶解液のうちの10μlを、無菌下で、直径8mmの滅菌ペーパーディスクに添加した。添加後、このペーパーディスクを、大腸菌を含むH検定培地上にのせた。直ちに、このシャーレにフタをし、インキュベーター内に置き、30℃で24時間培養した後、大腸菌増殖阻止円の直径を測定した。
【0152】
この結果を図2に示す。この図において、上段の左から右に向かって、葯組織、茎組織、花弁組織の抽出液を添加したペーパーディスクであり、次いで、下段の左から右に向かって、雌しべ組織、葯組織、球根りん片組織の抽出液を添加したペーパーディスクである。シャーレ上の白濁した箇所は、被験菌である大腸菌が増殖した箇所である。図2から明らかなように、葉組織または球根りん片組織の抽出液を添加したペーパーディスク周辺には、大腸菌が増殖し得ない半透明の箇所は見られなかった。一方、茎組織、花弁組織、雌しべ組織または葯組織の抽出液を添加したペーパーディスク周辺には、大腸菌が増殖し得ない半透明の箇所が観察された。葯組織抽出液を添加したペーパーディスク周辺には、他組織と比較して顕著に大きな大腸菌増殖阻止円が見られた。
【0153】
この実験から明らかとなった、チューリップ各組織の抗菌性強度をまとめたものが、以下の表3である。
【0154】
【表3】
表3において見られるように、チューリップ植物体のなかでも葯組織は、他組織と比較して顕著に多量の抗菌物質を含むことが明らかとなった。
【0155】
(実施例5:チューリップ以外の植物を用いた抗菌性検定)
本実施例では、チューリップ以外の植物が、チューリップ葯組織と同様の抗菌性を示すか否かについて調べた。
【0156】
実施例2と同様にして、検定培地としてH検定培地を調製した。
【0157】
まず初めに、チューリップと同じユリ科に属するユリの葯組織が示す抗菌性について調べた。詳細には、ユリ品種「乙女ユリ」を、通常の栽培方法で、開花まで栽培した。開花直前および開花直後のユリの花器官からピンセットで葯組織を摘出し、それぞれ、密封可能な小ビンに収集した。収集した葯組織は、実験に使用するまで、−20℃で保存した。
【0158】
このようにして得られたユリ葯組織を、H検定培地上にのせた後直ちに、このシャーレにフタをし、シャーレをインキュベーター内に置き、30℃で24時間培養した。
【0159】
この結果を図3aに示す。この図において、向かって左側が開花直前の葯組織であり、そして右側が開花直後の葯組織である。シャーレ上の白濁した箇所は、被験菌である大腸菌が増殖した箇所である。図3aから明らかなように、ユリ葯組織の周辺には、大腸菌が増殖し得ない半透明の箇所は見られなかった。従って、同じユリ科の植物でも、ユリの葯組織は、チューリップ葯組織のような抗菌性を全く示さないことが明らかとなった。
【0160】
次いで、ユリ科以外の植物の葯を用いて、同様の抗菌性検定を行った。詳細には、ペチュニア(ナス科、ペチュニア属)、バラ(バラ科、バラ属)、カラー(サトイモ科、オランダカイウ属)を、それぞれ通常の栽培方法により、開花まで栽培した。開花直後の各植物の花器官からピンセットで葯組織を摘出し、それぞれ、密封可能な小ビンに収集した。収集した葯組織は、実験に使用するまで、−20℃で保存した。
【0161】
このようにして得られた各植物の葯組織を、H検定培地上にのせた後直ちに、このシャーレにフタをし、シャーレをインキュベーター内に置き、30℃で24時間培養した。
【0162】
この結果を図3bに示す。この図において、向かって左側がペチュニアの葯組織であり、真ん中がバラの葯組織であり、そして右側がカラーの葯組織である。シャーレ上の白濁した箇所は、被験菌である大腸菌が増殖した箇所である。図3bから明らかなように、ペチュニアの葯組織周辺にも、バラの葯組織周辺にも、カラーの葯組織周辺にも、大腸菌が増殖し得ない半透明の箇所は見られなかった。従って、これらの植物の葯組織は、チューリップ葯組織のような抗菌性を全く示さないことが明らかとなった。
【0163】
最後に、抗菌性を有することが公知のニンニク(ユリ科、ネギ属)を用いて、同様の抗菌性検定を行った。詳細には、ニンニクを、通常の栽培条件下で栽培してその球根を、密封可能な小ビンに収集し、実験に使用するまで、−20℃で保存した。
【0164】
このようにして得られたニンニク球根を、厚さ1mm、生重量150mgとなるように薄く切り出した。また、このニンニク球根を、チューリップの葯1個分とほぼ同じ生重量(25mg)となるように薄く切り出した。上記のように切り出したニンニクのスライスを、H検定培地上にのせた。直ちに、このシャーレにフタをし、インキュベーター内に置き、30℃で24時間培養した。
【0165】
この結果を図3cに示す。この図において、向かって左側が、チューリップの葯1個分とほぼ同じ生重量を有するニンニクスライスを用いた場合であり、そして右側が、厚さ1mm、生重量150mgとなるように薄く切り出したニンニクスライスを用いた場合である。シャーレ上の白濁した箇所は、被験菌である大腸菌が増殖した箇所である。白濁していない半透明の箇所は、大腸菌が増殖できなかった箇所を示し、この大きさが抗菌性の強さを示す。図3cから明らかなように、ニンニクスライス周辺には、大腸菌が増殖しなかった半透明の箇所が見られた。しかし、抗菌性を示す半透明の箇所の大きさは、大半のチューリップ葯組織を用いた場合よりも有意に小さく、チューリップ葯1個分と同じ生重量を有するニンニクを用いた場合の阻止円の直径は、10mmであった。従って、驚くべきことに、チューリップの葯組織が、強力な抗菌性を示すことが公知のニンニクよりもさらに強い抗菌性を有することが明らかとなった。
【0166】
(実施例6:チューリップ葯組織の抗菌性スペクトル検定)
上記の実施例から明らかとなったチューリップ葯組織の示す抗菌性のスペクトルを調べるために、種々の細菌および真菌を被験菌として用いて抗菌性スペクトル検定を行った。
【0167】
検定培地としてH検定培地の代わりにSCD検定培地を調製した。SCD検定培地は市販のダイゴ製培地(日本製薬株式会社製)(カゼインペプトン17g、ソイビーンペプトン3g、リン酸水素二カリウム2.5g、グルコース5g、塩化ナトリウム5g、蒸留水1L)を使用し、実施例2に記載の方法と同様にして、被検菌と混ぜて検定培地とした。
【0168】
チューリップ供試品種として紫水晶を使用し、実施例2に記載のようにして得られた1mg/μl濃度の葯組織抽出液5μlを、無菌下で、直径8mmの滅菌ペーパーディスクに添加した。添加後、このペーパーディスクを被検菌を含むSCD検定培地上にのせた。ここで、被験菌としては、大腸菌(Escherichia coli、IFO3972株;グラム陰性細菌;図4(a))、サルモネラ菌(Salmonella enteritidis、IFO3313株;グラム陰性細菌;図4(b))、緑膿菌(Pseudomonas aeruginosa、IFO13275株;グラム陰性細菌;図4(c))、黄色ブドウ球菌(Staphylococcus aureus、IFO13276株;グラム陽性細菌;図4(d))、カンディダ菌(Candida albicans、IFO1594株;真菌;図4(e))および枯草菌(Bacillus subtilis、IFO3007株;グラム陽性細菌;図4(f))を使用した。ペーパーディスクをのせた後直ちにシャーレにフタをし、インキュベーター内に置き、30℃で24時間培養した後、各細菌または真菌の増殖阻止円の直径を測定した。
【0169】
この結果を図4(a)〜(f)に示す。シャーレ上の白濁した箇所は、被験菌が増殖した箇所である。図4(a)〜(d)および(f)から明らかなように、種々の細菌を被験菌として用いた場合、チューリップ葯組織抽出液を添加したペーパーディスク周辺には大きな阻止円が見られた。詳細には、大腸菌を用いた場合の阻止円の直径は、15mmであり、サルモネラ菌を用いた場合の阻止円の直径は、14mmであり、緑膿菌を用いた場合の阻止円の直径は、12mmであり、黄色ブドウ球菌を用いた場合の阻止円の直径は、13mmであり、そして枯草菌を用いた場合の阻止円の直径は、11mmであった。一方、真菌であるカンディダ菌を被験菌として用いた場合には、チューリップ葯組織抽出液を添加したペーパーディスク周辺には阻止円が全く見られなかった。以上の結果から、チューリップ葯組織中に含まれる抗菌物質は、グラム陽性細菌およびグラム陰性細菌を含む種々の細菌に対しては抗菌性を示すが、カンディダ菌に対しては抗菌性を示さないことが明らかとなった。
【0170】
(実施例7:イネ病害細菌に対する抗菌性検定)
本実施例では、チューリップ葯組織が有する抗菌物質が、イネの病害細菌に対して抗菌効果を有するか否かを調べた。
【0171】
検定培地としてPPGA培地(ジャガイモ200g、リン酸二ナトリウム(12水塩)3g、リン酸カリウム0.5g、ペプトン5g、塩化ナトリウム3g、ブドウ糖5g、寒天15g、蒸留水1L)を調製した。
【0172】
チューリップ供試品種として紫水晶を使用し、実施例2に記載のようにして得られた1mg/μl濃度の葯組織抽出液10μlを、無菌下で、直径8mmの滅菌ペーパーディスクに添加した。添加後直ちにPPGA検定培地上にのせた。被験菌としては、もみ枯細菌(Pseudomonas glumae、T12141株;カスガマイシン感受性、オキソリン酸感受性、病原性強;図5(a))、褐条病菌(Pseudomonas avenae、T9020株;カスガマイシン耐性、オキソリン酸耐性、病原性やや強;図5(b))、苗立枯細菌(Pseudomonas plantarii、T12151株;カスガマイシン感受性、オキソリン酸感受性、病原性強;図5(c))、もみ枯細菌(Pseudomonas glumae、T12119株;カスガマイシン感受性、オキソリン酸耐性、病原性やや強;図5(d))、褐条病菌(Pseudomonas avenae、T9014株;カスガマイシン感受性、オキソリン酸耐性、病原性やや強;図5(e))、および苗立枯細菌(Pseudomonas plantarii、T1101株;カスガマイシン感受性、オキソリン酸感受性、病原性強;図5(f))を使用した。また、コントロールとして、大腸菌(Escherichia coli、JM109株;図5(g))を使用した。このシャーレにフタをし、シールして密封した。この密封したシャーレをインキュベーター内に置き、30℃で48時間培養した後、各イネ病害細菌の増殖阻止円の直径を測定した。
【0173】
この結果を図5(a)〜(g)に示す。シャーレ上の白濁した箇所は、被験菌が増殖した箇所である。図5(a)〜(g)から明らかなように、いずれのイネ病害細菌を用いた場合も、チューリップ葯組織抽出液を添加したペーパーディスク周辺には大きな阻止円が見られた。詳細には、もみ枯細菌(T12141株)を用いた場合の阻止円の直径は、20mmであり、褐条病菌(T9020株)を用いた場合の阻止円の直径は、24mmであり、苗立枯細菌(T12151株)を用いた場合の阻止円の直径は、15mmであり、もみ枯細菌(T12119株)を用いた場合の阻止円の直径は、22mmであり、褐条病菌(T9014株)を用いた場合の阻止円の直径は、24mmであり、そして苗立枯細菌(T1101株)を用いた場合の阻止円の直径は、15mmであった。コントロールとして大腸菌を用いた場合の阻止円の直径は、24mmであった。以上の結果から、チューリップ葯組織中に含まれる抗菌物質は、種々のイネ病害細菌に対して抗菌性を示すことが明らかとなった。また驚くべきことに、チューリップ葯組織が有する抗菌物質は、種々の農薬に耐性を示すイネ病害細菌に対しても強い抗菌性を示すことが明らかとなった。
【0174】
(実施例8:チューリップ葯組織の抗菌活性と、花粉数または花粉稔性との間の関係)
本実施例では、上記の実施例から明らかとなったチューリップ葯組織の示す抗菌活性と、花粉数または花粉稔性との間の関係について調べた。
【0175】
供試品種として、下記の表4の左欄に示す7品種を使用した。
【0176】
【表4】
本実施例で使用した7品種の花粉の顕微鏡写真を図6に示す。図6a、b、c、d、e、f、およびgは、それぞれ、ミレラ、グレイシャー、ベラドンナ、カリオラム、スマイリングプリンセス、タルダ、およびクイーンオブナイトホワイトの花粉の顕微鏡写真を示す。この顕微鏡写真において、円形でも楕円形でもなく潰れた形状となった花粉は、不稔性の花粉を示す。図6から明らかなように、使用した7品種の花粉の大きさや形状、そして不稔性花粉の存在比率は様々であった。
【0177】
各品種の花粉の抗菌活性と、葯1個あたりの花粉数と、花粉稔性率(%)との間の関係をまとめたものが表4である。表4から明らかなように、各品種の示す抗菌活性と花粉数との間には、全く相関関係が見られなかった。また、各品種の示す抗菌活性と花粉稔性との間にも、全く相関関係は見られなかった。従って、本明細書で示されたチューリップ葯組織の抗菌性は、葯組織の中でも花粉ではなく葯壁に存在し、葯壁中におけるその抗菌物質の生産量が各チューリップ品種毎に異なることが示唆された。
【0178】
(実施例9:溶媒溶解性検定)
本実施例では、チューリップ葯組織に含まれる抗菌物質の溶媒溶解性について検定した。
【0179】
検定培地としてH検定培地を調製した。
【0180】
チューリップ供試品種として紫水晶を使用した。検定溶媒としては、クロロホルム(レーン(1))、エーテル(レーン(2))、酢酸エチル(レーン(3))、アセトン(レーン(4))、イソアミルアルコール(レーン(5))、ブタノール(レーン(6))、エタノール(レーン(7))、メタノール(レーン(8))、水(レーン(9))、およびDMF(N,N−ジメチルホルムアミド;レーン(10))を使用した。
【0181】
図7aに示す上段のペーパーディスク(A)は、上記の各溶媒500μlに葯組織を浸漬して溶媒抽出したものである。詳細には、このペーパーディスク(A)は、溶媒抽出後に、溶媒から葯組織を取り除いて溶媒を減圧乾燥させ、この乾燥物を50μlの同じ溶媒中に再溶解し、その中の10μlを直径8mmのペーパーディスクに添加して風乾させて得られたものである。図7aの下段に示すペーパーディスク(B)は、上記のペーパーディスク(A)を得るための溶媒抽出処理で生じた残渣を使用したものである。詳細には、ペーパーディスク(B)は、各溶媒抽出後の残渣(すなわち、溶媒から取り出した葯組織)を減圧乾燥し、この乾燥物を500μlの水に溶解し、再度減圧乾燥し、これを50μlの水に再溶解して、その中の10μlを直径8mmのペーパーディスクに添加して風乾させて得られたものである。
【0182】
上記のようにして得られた各溶媒についてのペーパーディスク(A)(B)を、無菌下でH検定培地上にのせた。直ちに、このシャーレにフタをし、インキュベーター内に置き、30℃で24時間培養した後、阻止円の直径を測定した。
【0183】
この結果を図7aに示す。シャーレ上の白濁した箇所は、被験菌が増殖した箇所である。白濁していない半透明の箇所は、被験菌が増殖できなかった箇所を示す。従って、ペーパーディスクが周辺に半透明の箇所を有するということは、そのペーパーディスクが抗菌物質を有するということを示す。図7aから明らかなように、チューリップ葯組織の抗菌物質は、極性の小さな溶媒(例えば、クロロホルム、エーテル、酢酸エチル、アセトン、イソアミルアルコール、ブタノール)には溶解せず、極性の大きな溶媒(例えば、DMF、水、メタノール、エタノール)に溶解する。エタノール溶媒を使用した場合、残渣ペーパーディスク(B)の周辺に大きな半透明の箇所が見られたが、溶媒抽出物ペーパーディスク(A)の周辺にもわずかな半透明の箇所が見られた。一方、メタノール溶媒を使用した場合、溶媒抽出物ペーパーディスク(A)の周辺に大きな半透明の箇所が見られたが、残渣ペーパーディスク(B)の周辺にもわずかな半透明の箇所が見られた。従って、本抗菌物質は、少なくともエタノールよりも極性が大きな溶媒に溶解することが明らかとなった。
【0184】
(実施例10:抗菌作用を発揮するために必要な濃度の検定)
本実施例では、チューリップ葯組織の抗菌物質が十分な抗菌作用を発揮するために必要な濃度を検定した。具体的には、十分な抗菌作用を得るために、チューリップ葯1個分を溶解するのに必要とされる水の容量について検定した。
【0185】
検定培地としてH検定培地を調製した。
【0186】
チューリップ供試品種として紫水晶を使用した。このチューリップの葯1個を0.5mlの水に入れて5分間浸漬し、次いで、葯を取り除いた水溶液を凍結乾燥させて、0.05ml、0.1ml、0.2ml、0.3ml、0.4ml、0.5ml、0.6ml、0.7ml、0.8ml、0.9ml、または1.0mlの容量の水に再溶解した。この再溶解水溶液の中から10μlを、直径8mmのペーパーディスクに添加した。添加後、このペーパーディスクを直ちにH検定培地上にのせた。直ちにフタをしたシャーレをインキュベーター内に置き、30℃で24時間培養した後、阻止円の直径を測定した。
【0187】
この結果を図7bに示す。シャーレ上の白濁した箇所は、被験菌が増殖した箇所である。白濁していない半透明の箇所は、被験菌が増殖できなかった箇所を示す。従って、ペーパーディスクが周辺に半透明の箇所を有するということは、そのペーパーディスクが抗菌物質を有するということを示す。図7bのシャーレに配置したペーパーディスクは、それぞれ、図7bの右側に示す値(ml)の水に溶解したものを添加したペーパーディスクを示す。図7bから明らかなように、葯1個を、0.05ml、0.1mlまたは0.2ml中に溶解した場合には大きな阻止円が見られた。また、0.3ml、または0.4ml中に溶解した場合でも、ペーパーディスク周辺には半透明の阻止円が見られた。しかし、0.5mlよりも多い水に溶解した場合には阻止円は見られなかった。以上の結果から、紫水晶品種の葯1個を、0.4ml以下(好ましくは、0.2ml以下)の水に溶解すれば、十分な抗菌作用が見られることが明らかとなった。従って、チューリップの花1個に含まれる葯6個を用いる場合には、約1mlの水に溶解すれば必要十分な濃度の殺菌液を得ることが可能である。
【0188】
(実施例11:イネ育苗における苗立枯細菌病に対する病害防除効果)
本実施例では、イネの育苗において、チューリップ葯組織の抗菌物質が、イネに苗立枯細菌病に対する抵抗性を付与するか否かを検定した。
【0189】
チューリップ葯組織の抽出液を調製するために、供試品種として紫水晶を使用した。通常の栽培方法によって得られたチューリップ紫水晶品種の葯6個を5mlの水に入れて5分間浸漬し、次いで、葯を取り除いた水溶液を凍結乾燥させて、1.0ml量の水に再溶解し、葯抽出液を得た。
【0190】
イネの検定供試品種としては、ハナエチゼンを使用した。このハナエチゼン種子籾は、苗立枯細菌に汚染された水田より収穫されたものである。苗立枯細菌は、育苗床から種子籾の中に入り込んで感染することが公知である。この苗立枯細菌感染籾を、葯抽出液に5日間浸漬するか、水道水(コントロール)に3日間浸漬するか、または市販の水稲用種子消毒剤モミガードC水和剤(北興化学工業社製)の200倍希釈液に3日間浸漬した。各々の処理を行った種子籾を、育苗条件下(6月中旬、温度昼30℃、夜17℃、湿度98%のグロースキャビネット内)において、播種から12日間育苗した。
【0191】
播種後12日目の各処理イネの様子を示す写真を、図8に示す。図8から明らかなように、コントロールの水道水で処理した苗立枯細菌感染籾からの生育(B)は極めて貧弱であり、苗立枯細菌病に典型的な症状(黄化した葉色、低い草丈など)を示した。一方、チューリップ葯水抽出液で処理した苗立枯細菌感染籾からの生育(A)は、苗立枯細菌病に典型的な症状を示さなかった。さらに、このチューリップ葯水抽出液で処理した苗立枯細菌感染籾からの生育(A)は、苗立枯細菌病に対して強力な防除効果を有することが知られている市販の農薬モミガードC水和剤で処理した感染籾からの生育(C)よりも健全な生育(濃緑色の葉色)を示した。
【0192】
この実験により実証された、チューリップ葯水抽出液のイネ苗立枯細菌病に対する病害防除効果をまとめたものが、以下の表5である。
【0193】
【表5】
この表は、播種後12日目に調査した結果をまとめたものである。各数値は、チューリップ葯抽出物処理の場合には2つの試験区の平均値を表し、モミガードCまたは水道水(コントロール)処理の場合には3つの試験区の平均値を表す。表の中の発病程度を示すアルファベット記号は、以下の意味を表す:A、発病なし;B、葉鞘基部白化;C、第3葉白化;D、葉鞘基部腐敗および萎ちょう;E、腐敗枯死。発病苗率(%)とは、(発病程度B〜Eの苗数)/全調査苗数に100を乗算した値を示す。発病度とは、A=0、B=1、C=2、D=3、E=4の係数をそれぞれの苗数に乗じ、それを足したものを全本数に4を乗じた値で割った数字に100を乗じた値を示す。防除価とは、水道水(コントロール)に対して防除した割合を示す(例えば、モミガードCの場合、以下の計算式により得られる:(1−(2.4(モミガードCの発病度)/59.4(水道水の発病度))×100。
【0194】
表5から明らかなように、チューリップ葯水抽出液で処理した苗立枯細菌感染籾から発芽した苗は全く発病徴候を示さず、防除価は100であった。このチューリップ葯水抽出液の示した防除価は、苗立枯細菌病に対して強力な防除効果を有することが知られている市販の農薬モミガードCで処理した場合の防除価95.8よりも高く、チューリップ葯水抽出液が優れた病害防除効果を種子籾に付与することが明らかとなった。
【0195】
(実施例12:イネの生育に対するチューリップ葯抽出物の影響)
本実施例では、イネの苗立枯細菌感染籾に対するチューリップ葯水抽出液処理が、イネの生育に如何なる影響を及ぼすかを検定した。
【0196】
実施例11に記載のように、チューリップ葯水抽出液か、農薬モミガードCか、または水道水(コントロール)で処理した、ハナエチゼンの苗立枯細菌感染籾のそれぞれの草丈(cm)、葉鞘高(cm)、葉令(枚)、および生重量(g)を、播種後12日目に測定した。この結果を、下記の表6に示す。
【0197】
【表6】
表6における各数値は、各処理における代表的な5本のサンプルの平均値を示す。表6から明らかなように、チューリップ葯水抽出液で処理した場合の草丈、葉鞘高、葉令および生重量は、イネの生育に影響をほとんど与えないとされている適切な用量の農薬モミガードCで処理した場合の草丈、葉鞘高、葉令および生重量よりも良好であった。一方、コントロールである水道水で処理した苗立枯細菌感染籾から生育した苗は、草丈が有意に低く、また生重量も有意に小さかった。
【0198】
苗立枯細菌は、育苗床から種子籾の中に入り込み、種子籾の段階で感染が成立する。従って、葯抽出物を付与した場合に観察された上記のような良好な生育は、葯抽出物が、外因的に細菌感染をブロックしたことのみに起因するとは考え難い。また、葯抽出物で処理したチューリップの草丈、葉鞘高、葉令および生重量が、イネの生育に影響をほとんど与えないとされている適切な用量の農薬モミガードCで処理した場合の草丈、葉鞘高、葉令および生重量よりも良好であったから、感染の成否によらずに内因的に、植物の生長を促進させる効果を有することを示す。この葯抽出物が示す内因的な植物生長促進作用は、例えば、病害ストレスまたは傷害ストレスなどのストレスを受けて生長を抑制された植物の生長を、少なくとも正常な生育状態に戻すまで、促進させる効果を有すると考えられる。
【0199】
以上の結果から、チューリップ葯水抽出液は、イネの生育に全く悪影響を及ぼさないだけでなく、イネの生育を促進させる効果を有することが明らかとなった。
【0200】
(実施例13:液体クロマトグラフィーによる抗菌物質の精製)
チューリップ葯組織中に含まれる抗菌物質を精製するため、液体クロマトグラフィー(ゲルろ過クロマトグラフィーおよび逆相クロマトグラフィー)を行った。
【0201】
まず、ゲルろ過クロマトグラフィーに供する試料を以下のようにして調製した。
品種紫水晶の葯20個を10mlの水に5分間浸け、その水溶液を15ml用の遠沈管に取り、5000rpm、10分間の遠心分離を行った。さらに、その上清を0.22μmの滅菌フィルターでろ過した。こうして得られた水溶液を凍結乾燥した後、蒸留水2mlに再溶解してクロマトグラフィーに供試した。
【0202】
上記のようにして調製されたチューリップ葯組織由来の試料0.2mlを、0.3ml/分(0〜2分間)および0.9ml/分(2〜120分間)の流量で、Superdex Peptide HR 10/30ゲルろ過カラム(アマシャム社製)に添加した。このゲルろ過クロマトグラフィーにより現れたピークにおいて、目的の抗菌活性を示す画分は、試料を添加してから19〜22分後に溶出される画分であることが明らかとなった(図9a)。この画分は、約294.258の分子量を有する。次いで、ゲルろ過クロマトグラフィーにより活性画分であることが明らかとなった溶出画分0.25mlを、0.7ml/分の流量で、PepRPC HR 5/5逆相カラム(アマシャム社製)に添加した。この逆相クロマトグラフィーにおいて、目的の抗菌活性を示す画分は、試料を添加してから1〜2分後に溶出される画分であることが明らかとなった(図9b)。
【0203】
上記のようにして、ゲルろ過クロマトグラフィーおよび逆相クロマトグラフィーにより精製された抗菌物質を含む画分を、NMR(核磁気共鳴)に供して、チューリップ葯組織に含まれる抗菌物質の分子構造を解析した。その結果、この抗菌物質は、以下の化学構造式を有する既知の物質(式II:1−チューリポサイドB(1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース);および式III:6−チューリッポサイドB(6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース))であることが示された。なお、チューリップ葯組織に含まれる抗菌物質は、この1−チューリポサイドBおよび6−チューリッポサイドBと分子量が一致している。
【0204】
式II:1−チューリポサイドB(1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)
【0205】
【化32】
式III:6−チューリッポサイドB(6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)
【0206】
【化33】
(実施例14:1−チューリポサイドBから6−チューリッポサイドBへの転位および抗菌活性に対するその影響)
本実施例では、1−チューリッポサイドBと6−チューリッポサイドBとの間の関係、およびチューリップの葯組織中に含まれる抗菌活性が、1−チューリッポサイドBと6−チューリッポサイドBのどちらによってもたらされるのかを調べた。
【0207】
まず、チューリップ葯組織中における、時間経過に伴うチューリッポサイドBの変化を調べた。具体的には、0、1、4、8、12および18時間目に、チューリップ葯組織中に含まれる成分をHPLCで調べた。この結果を、図10に示す。図10から明らかなように、実験開始時(0時間目)には、1−チューリッポサイドB(1)の量が有意に多く、6−チューリッポサイドB(2)はごく微量であったが、これらの量は徐々に逆転していった。実験終了時(18時間目)には、1−チューリッポサイドB(1)はほとんど存在せず、6−チューリッポサイドB(2)が大勢を占めた。以上の結果から、1−チューリッポサイドBは、時間経過に伴って6−チューリッポサイドBへと転位することが明らかとなった。なお、6−チューリッポサイドBから1−チューリッポサイドBへの転位は確認されなかった。
【0208】
次いで、1−チューリッポサイドBと6−チューリッポサイドBのどちらが、チューリップの葯組織中に含まれる抗菌活性を担うのかについて調べた。具体的には、上記のHPLC研究と同時並行して、チューリップ葯組織の抗菌活性強度を調べた。この結果を、以下の表7に示す。
【0209】
【表7】
表7から明らかなように、チューリップ葯組織が示す抗菌活性は、実験開始時(0時間目)から実験終了時(18時間目)までほぼ一定であった。この結果から、チューリップ葯組織が示す抗菌活性は、1−チューリッポサイドBから6−チューリッポサイドBへの変化による影響を受けないことが明らかとなった。
【0210】
以上のように、チューリップ葯組織中では1−チューリッポサイドBから6−チューリッポサイドBへの変化が生じているにもかかわらず、その抗菌活性強度には影響がなくほぼ一定であったことから、1−チューリッポサイドBおよび6−チューリッポサイドBは、質的に等しい活性を有し、そして単位量あたりに対する抗菌活性の強さも等しいことが明らかとなった。1−チューリッポサイドBと6−チューリッポサイドBとは、式IにおけるR基以外の部分を共通して有する。従って、本願発明の効果を奏するのに重要な構造はこの式IにおけるR位以外の構造部分であることが示され、R位の構造は、必要に応じて置換され得ることが示された。
【0211】
(実施例15:チューリップ葯水抽出液と抗生物質との抗菌性の比較)
チューリップ葯水抽出液が大腸菌生育に及ぼす抗菌性の経時的変化と、既知の抗生物質が大腸菌生育に及ぼす抗菌性の経時的変化との比較を行った。
【0212】
検定培地として2TY培地を調製した(バクトトリプトン 16g、イーストエキストラクト 10g、塩化ナトリウム5g、蒸留水1Lを加えた後、121℃、20分間オートクレーブ滅菌した)を使用した。この2TY培地50mlを200mlの三角フラスコに取り、30℃、125rpmの振とう速度で大腸菌JM109株を一晩前培養した。次に長さ20cm、直径18mmの試験管に2TY培地5mlを入れ、前培養した大腸菌液をOD660=0.1になるように加え、37℃、125rpmで振とう培養した。OD660=0.5となった時点で、各チューブに、それぞれ50μg/ml濃度となるようにチューリップ葯水抽出液(Tulip)、アンピシリン(Amp)、クロラムフェニコール(Cm)、カナマイシン(Km)を接種した。コントロールのチューブには、いかなる抗菌剤も添加しなかった。
【0213】
この結果を、図11に示す。図11から明らかなように、いかなる抗菌剤も接種していないコントロールでは、培養開始後約7時間目(hr)にOD660が約1.55で飽和に達するまで、大腸菌は増殖し続けた。アンピシリンを接種したチューブでは、培養を開始してから約5〜7時間後に著しい増殖抑制が見られたが、その後急激に大腸菌は増殖を再開し、29〜48時間後にはコントロールとほぼ同じ増殖レベルに達した。このような、アンピシリンを用いた場合に培養開始から約7時間後以降に見られた急激な増殖再開は、培養中にアンピシリン耐性菌が出現したことを示す。クロラムフェニコールを用いた場合でも、培養を開始して48時間後から118時間後にかけて急激な増加が見られた。この結果も、クロラムフェニコール耐性菌の出現を示す。一方、チューリップ葯水抽出液を接種したチューブでは、接種後に大腸菌増殖は徐々に低下し、耐性菌の出現は見られなかった。また、チューリップ葯水抽出液は、他の抗生物質(アンピシリン、クロラムフェニコール、カナマイシン)を用いた場合よりも、強く大腸菌増殖を抑制した。以上の結果から、チューリップ葯に含まれる抗菌物質は、抗菌作用を示すことが一般に知られている抗生物質よりも強く菌増殖を抑制するという強い抗菌性を示し、しかも耐性菌の出現が見られないという、実用的な病害防除剤として極めて優れた抗菌物質であることが明らかとなった。
【0214】
以上のように、本発明の好ましい実施形態を用いて本発明を例示したが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
【0215】
【発明の効果】
本発明によって、環境に対する悪影響が少なく、また作物自体の生育に対して悪影響を及ぼさず、耐性菌出現の可能性が低いという利点を有し、強力な病害防除効果を作物に付与する、大量生産/大規模使用が可能な植物病害防除剤および植物病害防除法が得られた。さらに本発明によって、植物の生長を促進させる組成物および植物の生長を促進させる方法が得られる。
【図面の簡単な説明】
【図1】図1は、チューリップの品種別の葯を用いた抗菌性検定の図である。
【図2】図2は、チューリップの種々の組織を用いた抗菌性検定の図である。
【図3】図3は、チューリップ以外の植物を用いた抗菌性検定の図である。aは、ユリの開花前後の葯組織を用いた抗菌性検定の図である。bは、ペチュニア、バラおよびカラーの葯組織を用いた抗菌性検定の図である。cは、ニンニクの球根を用いた抗菌性検定の図である。
【図4】図4は、チューリップ葯組織の抗菌性スペクトル検定の図である。
【図5】図5は、イネ病害細菌に対する抗菌性検定の図である。
【図6】図6は、7品種のチューリップの花粉の顕微鏡写真である。
【図7】図7aは、溶媒溶解性検定の図である。図7bは、抗菌作用を発揮するために必要な濃度の検定の図である。
【図8】図8は、イネ育苗における苗立枯細菌病に対する病害防除効果を示す写真である。
【図9】図9aは、ゲルろ過クロマトグラフィーのピークを示すグラフである。図9bは、逆相クロマトグラフィーのピークを示すグラフである。
【図10】図10は、1−チューリポサイドBから6−チューリッポサイドBへの転位を示すHPLCデータである。
【図11】図11は、チューリップ葯水抽出液と抗生物質との間での抗菌性の比較を示すグラフである。

Claims (16)

  1. 病害細菌に対する抵抗性をイネに付与する組成物であって、該組成物が以下の式Iの化合物またはその塩を含む、組成物:
    式I
    ここで、Rは、H、OHおよびD−ヘキソースからなる群より選択される、組成物。
  2. 請求項1に記載の組成物であって、前記化合物が、以下の式IIの化合物もしくは式IIIの化合物、またはそれらの塩あるいはそれらの混合物である、組成物:
    式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
    式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
  3. 前記病害細菌が、もみ枯病細菌、褐条病細菌、および苗立枯病細菌からなる群より選択される細菌である、請求項1に記載の組成物。
  4. 前記病害細菌が、
    a)カスガマイシンに対して耐性を有する病害細菌、
    b)オキソリン酸に対して耐性を有する病害細菌;ならびに、
    c)カスガマイシンおよびオキソリン酸に対して耐性を有する病害細菌
    からなる群より選択される病害細菌である、請求項1に記載の組成物。
  5. 以下の式Iの化合物またはその塩を使用して、病害細菌に対する抵抗性をイネに付与する方法:
    式I
    ここで、Rは、H、OHおよびD−ヘキソースからなる群より選択される、方法。
  6. 請求項5に記載の方法であって、前記化合物が、以下の式IIの化合物もしくは式IIIの化合物、またはそれらの塩あるいはそれらの混合物である、方法:
    式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
    式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
  7. 前記病害細菌が、もみ枯病細菌、褐条病細菌、および苗立枯病細菌からなる群より選択される細菌である、請求項5に記載の方法。
  8. 前記病害細菌が、
    a)カスガマイシンに対して耐性を有する病害細菌、
    b)オキソリン酸に対して耐性を有する病害細菌;ならびに、
    c)カスガマイシンおよびオキソリン酸に対して耐性を有する病害細菌
    からなる群より選択される病害細菌である、請求項5に記載の方法。
  9. イネの生長を促進させる組成物であって、該組成物が以下の式Iの化合物またはその塩を含む、組成物:
    式I
    ここで、Rは、H、OHおよびD−ヘキソースからなる群より選択される、組成物。
  10. 請求項9に記載の組成物であって、前記化合物が、以下の式IIの化合物もしくは式IIIの化合物、またはそれらの塩あるいはそれらの混合物である、組成物:
    式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
    式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
  11. 前記イネが、病害細菌により引き起こされる病害ストレス、物理的な傷害ストレス、乾燥ストレス、温度ストレス、養分欠乏ストレス、塩ストレス、および照度ストレスからなる群より選択されるストレスを受けたイネである、請求項9に記載の組成物。
  12. 以下の式Iの化合物またはその塩を使用して、イネの生長を促進させる方法:
    式I
    ここで、Rは、H、OHおよびD−ヘキソースからなる群より選択される、方法。
  13. 請求項12に記載の方法であって、前記化合物が、以下の式IIの化合物もしくは式IIIの化合物、またはそれらの塩あるいはそれらの混合物である、方法:
    式II (1−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)、
    式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
  14. 前記イネが、病害細菌により引き起こされる病害ストレス、物理的な傷害ストレス、乾燥ストレス、温度ストレス、養分欠乏ストレス、塩ストレス、および照度ストレスからなる群より選択されるストレスを受けたイネである、請求項12に記載の方法。
  15. イネにおいてカスガマイシンに対して耐性を有する病害細菌の増殖を阻止するための、以下の式IIIの化合物を含む抗菌性組成物:
    式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
  16. イネにおいてオキソリン酸に対して耐性を有する病害細菌の増殖を阻止するための、以下の式IIIの化合物を含む抗菌性組成物:
    式III (6−((S)−3,4−ジヒドロキシ−2−メチレンブタノエート)−D−グルコピラノース)。
JP2003092895A 2003-03-28 2003-03-28 チューリップの抗菌性物質を利用した、作物の病原性微生物防除法および生長促進法 Expired - Fee Related JP4430883B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092895A JP4430883B2 (ja) 2003-03-28 2003-03-28 チューリップの抗菌性物質を利用した、作物の病原性微生物防除法および生長促進法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092895A JP4430883B2 (ja) 2003-03-28 2003-03-28 チューリップの抗菌性物質を利用した、作物の病原性微生物防除法および生長促進法

Publications (2)

Publication Number Publication Date
JP2004300038A JP2004300038A (ja) 2004-10-28
JP4430883B2 true JP4430883B2 (ja) 2010-03-10

Family

ID=33405812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092895A Expired - Fee Related JP4430883B2 (ja) 2003-03-28 2003-03-28 チューリップの抗菌性物質を利用した、作物の病原性微生物防除法および生長促進法

Country Status (1)

Country Link
JP (1) JP4430883B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685714B2 (ja) * 2010-09-28 2015-03-18 学校法人東京農業大学 イネ科植物の細菌性病害の防除剤および防除方法並びに該防除剤をコートした種子

Also Published As

Publication number Publication date
JP2004300038A (ja) 2004-10-28

Similar Documents

Publication Publication Date Title
Nabti et al. Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca
US10273445B2 (en) Isolated strain of Clonostachys rosea for use as a biological control agent
CN111432631A (zh) 内生植物组合物和用于改进植株性状的方法
JP4982384B2 (ja) テヌアゾン酸、イソ−テヌアゾン酸、及び塩類による雑草防除の方法
EA012336B1 (ru) Белок, выделенный из растений рода lupinus или полученный в рекомбинантной форме, кодирующая его последовательность нуклеотидов и его применение в питании животных, в качестве стимулятора роста растений и при борьбе с патогенными грибами
KR101837622B1 (ko) 빌레나무 추출물을 유효성분으로 함유하는 식물병 방제용 조성물 및 이를 이용한 식물병 방제방법
Bakshi et al. Marigold biopesticide as an alternative to conventional chemical pesticides
Louise et al. Management of Callosobruchus maculatus F.(Coleoptera: Bruchidae) using methanol extracts of Carica papaya, Carissa edulis, Securidaca longepedonculata and Vinca rosea and impact of insect pollinators on cowpea types in the Far-North region of Cameroon
Chaves-Gómez et al. Physiological response of cape gooseberry seedlings to two organic additives and their mixture under inoculation with Fusarium oxysporum f. sp. physali
US20160286822A1 (en) Molluscicidal Agents and Uses Thereof
JP4430883B2 (ja) チューリップの抗菌性物質を利用した、作物の病原性微生物防除法および生長促進法
RU2692655C2 (ru) Штамм Bacillus thuringiensis var. darmstadiensis 56 в качестве полифункционального средства для растениеводства
US20240049707A1 (en) Pesticide compositions of licochalcone c
CN110799036B (zh) 火箭植物的一部分的提取物在激发植物和树木的防御中的用途及相关组合物与方法
US20240057592A1 (en) Pesticide compositions of phenol and resorcinol dienes and trienes
Khadidja Isolation, Characterization of Phytopathogenic Fungi Alternaria sp., and Physico-Chemical Study
Ajayi et al. Observations on in vitro behaviour of the zygotic axes of fluted pumpkin
JP2023514524A (ja) 1-フェニル-テトラリン誘導体の農薬組成物
Ashraf et al. DETERMINATION OF ANTIBACTERIAL POTENCY OF DIFFERENT CHEMICALS TOWARDS BACTERIAL CANKER OF TOMATO CAUSED BY CLAVIBACTER MICHIGANENSIS SUBSP. MICHIGANENSIS.
Raafat Atia Ph. D. Substitution of Wheat Flour by Local Cereals and Pulses Flour An Approach to Overcome Wheat Gap in Egypt
Radwa Ph. D. Phytoremediation of Polluted Soil Using Some Ornamental Trees
Henao Ramírez et al. Regeneration of cocoa (Theobroma cacao L.) via somatic embryogenesis: Key aspects in the in vitro conversion stage and in the ex vitro adaptation of plantlets. Revis Bionatura 2023; 8 (1) 10
Falade Comparative efficacy of copper (I) oxide matalaxyl fungicide and plant extracts in the management of mango anthracnose caused by colletotrichum gloeosporioides (Penz) in Nigeria
KR20050092820A (ko) 결명차 추출물 또는 결명차 유래 화합물을 포함하는식물병원균 방제용 조성물
Parac Induction of Resistance in Abaca (Musa textilis Nee) Against Fusarium Wilt (Fusarium oxysporum f sp. cubense) using Elicitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151225

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees