JP4428683B2 - Gas purification system and gas purification method - Google Patents

Gas purification system and gas purification method Download PDF

Info

Publication number
JP4428683B2
JP4428683B2 JP2001360618A JP2001360618A JP4428683B2 JP 4428683 B2 JP4428683 B2 JP 4428683B2 JP 2001360618 A JP2001360618 A JP 2001360618A JP 2001360618 A JP2001360618 A JP 2001360618A JP 4428683 B2 JP4428683 B2 JP 4428683B2
Authority
JP
Japan
Prior art keywords
gas
product
gas purification
heated
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360618A
Other languages
Japanese (ja)
Other versions
JP2003159508A (en
Inventor
亮宏 齋賀
清光 井川
静夫 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2001360618A priority Critical patent/JP4428683B2/en
Publication of JP2003159508A publication Critical patent/JP2003159508A/en
Application granted granted Critical
Publication of JP4428683B2 publication Critical patent/JP4428683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Industrial Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は乾ガス精製装置を備えたガス精製システム並びにガス精製方法に関し、詳しくは、熱効率の高い乾式ガス精製方式による乾ガス精製装置を備えたガス精製システム並びにガス精製方法に関する。
【0002】
【従来の技術】
固形燃料や有機系廃棄物を加熱して熱分解し、ガス化して生成されたガスの有する熱エネルギーを発電に利用したり、燃料に変換したりする場合に、生成ガス中に含まれる有害な酸性成分を無害化処理することが必要になる。その方法としては、一般に湿式ガス精製方法が採用されている。
【0003】
湿式ガス精製方法は、MEA(モノエタノールアミン)法などの化学吸収法、セレクゾール法などの物理吸収法、その他に直接酸化法などがあり、夫々一長一短があるが、化学工業ではMEA法などの化学吸収法が多く採用されており、発電用としては物理吸収法が主に採用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、湿式ガス精製方法は生成したガスを水処理するため、冷却されて100℃以下程度にまでなり、生成ガスの有する高温の熱エネルギーを利用することができず、熱効率が極めて悪いという問題がある。つまり、ガス化して生成された熱エネルギーは温度が高いほど高効率でガスタービン等に利用することができ、発電効率も高くなるので、できるだけ高い温度のまま有害な酸性成分を除外することが望ましいが、従来の湿式ガス精製方法では、高い熱効率で利用することはできなかった。しかも、湿式ガス精製方法の場合、排水処理を行う必要があり、そのためにも多大なスペースを必要としたり、複雑な設備を必要としている。
【0005】
そこで、本発明の目的は、廃棄物などを加熱して生成したガスの有する熱エネルギーを可能な限り保存しつつ高い熱効率で利用できる乾ガス精製装置を備えたガス精製システム並びにガス精製方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的は各請求項記載の発明により達成される。すなわち、本発明に係る乾ガス精製装置の特徴構成は、ガス化装置により生成されるガスに、加熱されて多孔質になるアルカリ性薬剤を供給して混合する混合器と、この混合器により混合され中和された前記生成ガス中の反応生成物を処理する集塵手段とを備えることにある。
【0007】
この構成によれば、ガス化装置により生成された生成ガス中に含まれる酸性成分は効果的に中和除去されて精製されるので、湿式ガス精製方法のように水中を通す必要がなく、生成ガスの有する熱エネルギーを損なうことなく保存して利用でき、利用に際して高い熱効率を達成することができる。しかも、常圧で生成ガスを精製でき、高圧ガス操業に伴う付帯設備を要することがなく、装置の製造コストを低減できる。
【0008】
その結果、固形燃料、各種産業廃棄物、生ゴミ等の一般廃棄物などを加熱して生成したガスの有する熱エネルギーを可能な限り保存しつつ高い熱効率で利用できる乾ガス精製装置を提供することができた。
【0009】
前記アルカリ性薬剤が炭酸水素ナトリウムであり、この炭酸水素ナトリウムを微粉砕する粉砕機を備えていて、この粉砕機によって微粉砕された炭酸水素ナトリウムが不活性ガスと共に前記混合器に送給されることが好ましい。
【0010】
この構成によれば、粉砕機により微粉砕され活性度を高められた炭酸水素ナトリウムが、混合器中において生成ガス中の酸性成分と効率よく中和反応し、生成ガス中の酸性成分を一層効果的に除去できる。
【0011】
又、本発明に係るガス精製システムの特徴構成は、ガス化装置の下流側に配置されてこのガス化装置により生成されるガスを除塵するセラミックフィルターと、このセラミックフィルターにより除塵された前記生成ガスから熱回収する熱回収装置と、この熱回収装置を通過した前記生成ガスを精製する請求項1又は2の乾ガス精製装置とを備えることにある。
【0012】
この構成によれば、ガス化装置により生成された生成ガスは、含有する煤塵をセラミックフィルターで除去され、高い熱エネルギーを有したままボイラー設備などに熱利用でき、更に、酸性成分も乾ガス精製装置により効果的に中和除去されて精製されるので、湿式ガス精製方法のように生成ガスを水中に通す必要がなく、従って、生成ガスの有する熱エネルギーを損なうことなく保存して利用でき、高い熱効率を達成することができる。しかも、高圧を必要とする煤塵除去設備を設けていないので、常圧で生成ガスを精製でき、高圧ガス操業に伴う付帯設備を要することがなく、システム全体を低コストに構成できる。
【0013】
その結果、生成したガスの有する熱エネルギーを可能な限り保存しつつ高い熱効率で利用でき、しかも常圧で操業可能なガス精製システムを提供することができた。
【0014】
更に又、本発明に係るガス精製方法の特徴構成は、廃棄物を加熱・分解して生成したガスをセラミックフィルターにより除塵し、除塵された前記生成ガスから熱回収すると共に熱回収された前記生成ガスに、加熱されて多孔質になるアルカリ性薬剤を供給して混合し、この混合され中和された前記生成ガス中の反応生成物を集塵処理して精製することにある。
【0015】
この構成によれば、廃棄物などを加熱して生成したガスの有する熱エネルギーを可能な限り保存しつつ高い熱効率で利用できるガス精製方法を提供することができた。
【0016】
前記アルカリ性薬剤が炭酸水素ナトリウムであり、これを微粉砕して、不活性ガスと共に送給して前記生成ガスと混合することが好ましい。
【0017】
この構成によれば、活性度を高められた炭酸水素ナトリウムが、生成ガス中の酸性成分と効率よく中和反応し、生成ガス中の酸性成分を一層効果的に除去できて都合がよい。
【0018】
【発明の実施の形態】
本発明の実施の形態を、図面を参照して詳細に説明する。図1は、本実施形態に係るガス精製システムの概略全体構成を示す。ガス化装置の1種であるガス化炉1に各種固形燃料や有機系廃棄物などの原料を投入して加熱・分解し、ガス化した後、この生成したガスを冷却することなく、セラミックフィルター2内を透過させ、生成ガスの持つ高温エネルギーを回収すべく熱回収する際に有害となるガス中の塵芥を除去する。ガス化炉1により生成されたガスは、廃棄物の性状にもよるが、通常、900℃前後に加熱されている。そこで、セラミックフィルター2としては、窒化珪素、アルミナ、窒化炭素製など耐熱性を有するものを使用する。セラミックフィルターの孔径としては、排ガス中の飛灰を除去できればよく、通常、数十μm程度のものを使用できる。
【0019】
除塵されたガスは、適量の給水を受けて熱交換機能を有する熱回収器3により熱回収され、その熱エネルギーはボイラー設備4などに送られて有効に利用される。この場合の給水として、具体的には、ボイラー設備4の規模にもよるが、例えば、120℃程度に加熱された水蒸気を用いて、熱回収器3から排出されるときには200℃程度に加熱されてボイラー設備4に送給される。
【0020】
本ガス精製システムは、従来の湿式ガス精製方式のように生成ガスを低温に冷却する必要がなく、生成ガスの高い熱エネルギーをそのまま利用できるので、利用効率は極めて高いものとなる。しかも、生成ガスには煤塵が除去されているので、生成ガスの熱伝達率は向上し、生成ガスの有する高温エネルギーを有効に利用でき、高い熱効率を達成できるようになる。のみならず、生成ガスから煤塵が除かれていることにより、熱回収器3を構成する水管に磨耗や腐食が生じるのを著しく低減でき、水管の寿命延長と蒸気の高温化が可能になる。
【0021】
熱回収されたガスは、更に、乾ガス精製装置に送られて生成ガス中の酸性成分が除去させる。まず、生成ガスはエジェクターのような混合器5に送給されて、ここで炭酸水素ナトリウム粉末を吹き付けられて混合され、生成ガス中の酸性成分は中和処理される。この炭酸水素ナトリウムは、当初数十μm〜数mm程度の粉粒体であり、これをスクリュー付きのテーブルフィーダーのような切出装置6により粉砕機7に供給し、この粉砕機7により数μm程度のサイズの微粉末状に粉砕される。粉粒体の炭酸水素ナトリウムは、一般に粉砕機7に送られる配管中などに詰まったりし易いが、切出装置6を設けることにより確実に粉砕機7に送給される。
【0022】
微粉末状の炭酸水素ナトリウムは不活性ガスと共に混合器5中に吹き込まれて、生成ガスと十分に混合される。尚、不活性ガスとしては、生成ガスを燃焼させないガスであれば、水蒸気、空気などを用いることもでき、もとよりヘリウム、アルゴン等の他、窒素などを含むものであり、これらは生成ガスの性状などにより選択可能であるが、窒素を用いると安価であり、生成ガスを燃焼させることもないので好ましい。
【0023】
炭酸水素ナトリウムを混合された生成ガスは、生成ガスの有する残留熱により多孔質が促進された炭酸水素ナトリウムと効果的に反応し、生成ガス中の酸性成分は中和処理されて、生成ガス中の酸性成分は除去される。すなわち、炭酸水素ナトリウムは、140〜300℃程度の温度域に加熱されることにより、次式のように分解されてガス成分が揮発し、多孔質になって、活性化されたNa2 CO3 となる。
【0024】
2NaHCO3 → Na2 CO3 +CO2 +H2
このようにして生成された多孔質の活性化Na2 CO3 は、生成ガス中の酸性成分と効果的に反応し、湿式処理した場合と同等またはそれ以上の顕著な脱硫、脱塩効果を発揮し、ガスの中和反応が促進されることになる。この場合、炭酸水素ナトリウムは、ガス中の酸性成分の量に対応する量だけ投入されることが好ましい。そのために、ガス中の酸性成分量を混合器5の上流側でモニターしておき、その結果に基づいて炭酸水素ナトリウムの投入量を自動的あるいは手動的に制御するようにすればよい。ガス中の酸性成分量の測定方法は特に限定されるものではなく、各種ガスセンサーを設けると共に、その測定結果をフィードバックして炭酸水素ナトリウムの投入量を制御する方式の採用などが考えられる。ガス中の酸性成分の測定に、半導体レーザ吸光分光方式のレーザ式ガス分析計を採用してもよく、これを用いる場合は検出速度が早いので、制御がタイミングよくできて特に好ましい。
【0025】
中和処理された生成ガスは、集塵手段であるバグフィルターやセラミックフィルター(生成ガスが高温の場合に特に好ましい)等の集塵器8により反応生成物を除去され、精製され無害化される。この段階で生成ガスは、例えば200〜300℃程度になっており、更にガスタービン等に送給されて有効に発電に寄与させることができる。もとより、生成ガスは清浄化されているので、大気中に排出されてもよい。
【0026】
以上のように、本実施形態に係るガス精製システムの場合、高圧にすることなく常圧で操業できるので、ガス化装置なども殊更複雑かつ大掛かりなものにする必要がなく、システム全体の製造コストや操業コストあるいは保守に要するコストを、従来の乾式精製システムに比べて顕著に低減できることになる。
【0027】
〔別実施の形態〕
(1) 本発明に実施可能なガス化装置は、特に限定されるものではなく、ストーカ炉、キルン式や流動床式やシャフト炉式などの各種ガス化溶融炉、その他の各種焼却炉など、有機廃棄物を含む廃棄物などを加熱・分解してガス化する装置であればよい。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るガス精製システムの概略全体構成ブロック図
【符号の説明】
1 ガス化装置
2 セラミックフィルター
3 熱回収器
5 混合器
7 粉砕機
8 集塵手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas purification system and a gas purification method provided with a dry gas purification device, and more particularly to a gas purification system and a gas purification method provided with a dry gas purification device using a dry gas purification method with high thermal efficiency.
[0002]
[Prior art]
When the thermal energy of the gas generated by heating and solidifying solid fuel or organic waste and then gasifying it is used for power generation or converted to fuel, harmful gases contained in the generated gas It is necessary to detoxify acidic components. In general, a wet gas purification method is employed as the method.
[0003]
Wet gas purification methods include chemical absorption methods such as the MEA (monoethanolamine) method, physical absorption methods such as the seleczole method, and direct oxidation methods. Absorption methods are often used, and the physical absorption method is mainly used for power generation.
[0004]
[Problems to be solved by the invention]
However, since the wet gas purification method treats the generated gas with water, it is cooled to about 100 ° C. or less, cannot use the high-temperature thermal energy of the generated gas, and has a problem that the thermal efficiency is extremely poor. is there. In other words, the heat energy generated by gasification can be used for gas turbines and the like with higher efficiency as the temperature is higher, and the power generation efficiency is also higher. Therefore, it is desirable to exclude harmful acidic components while keeping the temperature as high as possible. However, conventional wet gas purification methods cannot be used with high thermal efficiency. In addition, in the case of the wet gas purification method, it is necessary to perform wastewater treatment, which requires a large amount of space and complicated equipment.
[0005]
Accordingly, an object of the present invention is to provide a gas purification system and a gas purification method including a dry gas purification device that can be used with high thermal efficiency while preserving the thermal energy of a gas generated by heating waste or the like as much as possible. There is to do.
[0006]
[Means for Solving the Problems]
The above object can be achieved by the inventions described in the claims. That is, the characteristic configuration of the dry gas purifying apparatus according to the present invention includes a mixer that supplies and mixes a gas generated by a gasifier with an alkaline chemical that is heated and becomes porous, and is mixed by the mixer. And a dust collecting means for treating the reaction product in the product gas that has been neutralized.
[0007]
According to this configuration, since the acidic component contained in the product gas generated by the gasifier is effectively neutralized and purified, there is no need to pass water as in the wet gas purification method. The thermal energy of the gas can be stored and used without impairing, and high thermal efficiency can be achieved during use. In addition, the product gas can be purified at normal pressure, and there is no need for incidental facilities associated with high-pressure gas operation, and the manufacturing cost of the apparatus can be reduced.
[0008]
As a result, to provide a dry gas purification device that can be used with high thermal efficiency while preserving the thermal energy of gas generated by heating solid fuel, various industrial wastes, general wastes such as garbage, etc. I was able to.
[0009]
The alkaline chemical is sodium hydrogen carbonate, and a pulverizer for finely pulverizing the sodium hydrogen carbonate is provided, and the sodium hydrogen carbonate pulverized by the pulverizer is supplied to the mixer together with an inert gas. Is preferred.
[0010]
According to this configuration, sodium hydrogen carbonate that has been finely pulverized by a pulverizer and has increased activity efficiently neutralizes and reacts with acidic components in the product gas in the mixer, thereby further improving the acidic components in the product gas. Can be removed.
[0011]
Further, the gas purification system according to the present invention is characterized by a ceramic filter disposed downstream of the gasifier and removing the gas produced by the gasifier, and the produced gas removed by the ceramic filter. A heat recovery apparatus that recovers heat from the heat recovery apparatus and a dry gas purification apparatus according to claim 1 or 2 that purifies the product gas that has passed through the heat recovery apparatus.
[0012]
According to this configuration, the generated gas generated by the gasifier is removed from the contained dust by the ceramic filter, and can be used in boiler equipment etc. with high thermal energy. Since it is effectively neutralized and removed by the apparatus and purified, it is not necessary to pass the product gas through water as in the wet gas purification method. Therefore, it can be stored and used without impairing the thermal energy of the product gas, High thermal efficiency can be achieved. In addition, since no dust removal equipment that requires high pressure is provided, the generated gas can be purified at normal pressure, and no additional equipment for high-pressure gas operation is required, and the entire system can be configured at low cost.
[0013]
As a result, it was possible to provide a gas purification system that can be used with high thermal efficiency while preserving the thermal energy of the generated gas as much as possible and that can be operated at normal pressure.
[0014]
Furthermore, the gas purification method according to the present invention is characterized in that the gas generated by heating / decomposing waste is removed by a ceramic filter, and heat is recovered from the generated gas that has been removed from the dust, and the generated heat is recovered. The object is to supply and mix an alkaline chemical which is heated and becomes porous to the gas, and collect and purify the reaction product in the mixed and neutralized product gas.
[0015]
According to this configuration, it was possible to provide a gas purification method that can be used with high thermal efficiency while preserving the thermal energy of the gas generated by heating waste or the like as much as possible.
[0016]
It is preferable that the alkaline chemical is sodium hydrogen carbonate, which is finely pulverized, fed with an inert gas, and mixed with the product gas.
[0017]
According to this structure, the sodium hydrogen carbonate whose activity has been increased can be efficiently neutralized with the acidic component in the product gas, and the acidic component in the product gas can be removed more effectively.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic overall configuration of a gas purification system according to the present embodiment. A raw material such as various solid fuels and organic wastes is put into a gasification furnace 1 which is a kind of gasifier, heated, decomposed, gasified, and the produced gas is cooled without being cooled. The dust inside the gas that is harmful when the heat is recovered so as to recover the high-temperature energy of the generated gas is removed. The gas generated by the gasification furnace 1 is usually heated to around 900 ° C., depending on the properties of the waste. Therefore, a ceramic filter 2 having heat resistance such as silicon nitride, alumina, or carbon nitride is used. As the pore diameter of the ceramic filter, it is sufficient if fly ash in the exhaust gas can be removed, and usually a pore size of about several tens of μm can be used.
[0019]
The dust-removed gas receives an appropriate amount of water and is recovered by the heat recovery unit 3 having a heat exchange function, and the heat energy is sent to the boiler facility 4 and used effectively. Specifically, the water supply in this case depends on the scale of the boiler facility 4, but is heated to about 200 ° C. when discharged from the heat recovery unit 3 using, for example, steam heated to about 120 ° C. To the boiler equipment 4.
[0020]
This gas purification system does not need to cool the produced gas to a low temperature unlike the conventional wet gas purification system, and can use the high thermal energy of the produced gas as it is, so that the utilization efficiency is extremely high. In addition, since the dust is removed from the product gas, the heat transfer coefficient of the product gas is improved, the high-temperature energy of the product gas can be used effectively, and high thermal efficiency can be achieved. In addition, since dust is removed from the generated gas, it is possible to remarkably reduce the occurrence of wear and corrosion in the water pipe constituting the heat recovery device 3, and it is possible to extend the life of the water pipe and increase the temperature of the steam.
[0021]
The heat-recovered gas is further sent to a dry gas refining device to remove acidic components in the product gas. First, the product gas is fed to a mixer 5 such as an ejector, where sodium bicarbonate powder is sprayed and mixed, and the acidic components in the product gas are neutralized. This sodium hydrogen carbonate is a granular material of about several tens of μm to several mm at the beginning, and this is supplied to a pulverizer 7 by a cutting device 6 such as a table feeder with a screw. It is pulverized to a fine powder size. The powdered sodium hydrogen carbonate is generally easily clogged in a pipe or the like sent to the pulverizer 7, but is provided to the pulverizer 7 by providing the cutting device 6.
[0022]
Fine powder sodium hydrogen carbonate is blown into the mixer 5 together with an inert gas, and is sufficiently mixed with the product gas. As the inert gas, water vapor, air or the like can be used as long as it does not combust the product gas, and it includes nitrogen, etc. in addition to helium, argon, etc. These are the properties of the product gas. However, it is preferable to use nitrogen because it is inexpensive and does not burn the generated gas.
[0023]
The product gas mixed with sodium hydrogen carbonate effectively reacts with sodium hydrogen carbonate whose porosity has been promoted by the residual heat of the product gas, and the acidic components in the product gas are neutralized, and the product gas The acidic component of is removed. That is, sodium bicarbonate is heated to a temperature range of about 140 to 300 ° C., so that it is decomposed as shown in the following formula, gas components are volatilized, become porous, and activated Na 2 CO 3. It becomes.
[0024]
2NaHCO 3 → Na 2 CO 3 + CO 2 + H 2 O
The porous activated Na 2 CO 3 produced in this way reacts effectively with the acidic components in the product gas and exhibits a remarkable desulfurization and desalination effect equivalent to or better than that of wet processing. As a result, the neutralization reaction of the gas is promoted. In this case, it is preferable that sodium bicarbonate is added in an amount corresponding to the amount of acidic components in the gas. For this purpose, the amount of acidic components in the gas may be monitored upstream of the mixer 5 and the amount of sodium hydrogen carbonate charged may be controlled automatically or manually based on the result. The method for measuring the amount of acidic components in the gas is not particularly limited, and various gas sensors may be provided, and a method of controlling the input amount of sodium bicarbonate by feeding back the measurement results may be considered. For measurement of acidic components in the gas, a semiconductor gas absorption spectroscopic laser type gas analyzer may be employed, and when this is used, the detection speed is fast, so that the control can be performed with good timing.
[0025]
The reaction gas is removed from the neutralized product gas by a dust collector 8 such as a bag filter or a ceramic filter (particularly preferable when the product gas is high temperature), which is a dust collecting means, and is purified and rendered harmless. . At this stage, the generated gas is, for example, about 200 to 300 ° C., and can be further fed to a gas turbine or the like to effectively contribute to power generation. Naturally, the product gas is purified and may be discharged into the atmosphere.
[0026]
As described above, in the case of the gas purification system according to the present embodiment, since it can be operated at normal pressure without increasing the pressure, it is not necessary to make the gasifier etc. particularly complicated and large, and the manufacturing cost of the entire system In addition, the operating cost or the cost required for maintenance can be significantly reduced as compared with the conventional dry purification system.
[0027]
[Another embodiment]
(1) The gasification apparatus that can be implemented in the present invention is not particularly limited, and includes a stoker furnace, various gasification melting furnaces such as a kiln type, a fluidized bed type, and a shaft furnace type, and other various incinerators, Any device that heats and decomposes gas including waste containing organic waste may be used.
[Brief description of the drawings]
FIG. 1 is a schematic overall block diagram of a gas purification system according to an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Gasifier 2 Ceramic filter 3 Heat recovery device 5 Mixer 7 Crusher 8 Dust collection means

Claims (2)

固形燃料および/または廃棄物を投入して加熱・分解し、900℃またはその900℃前後の近傍の温度に加熱されたガスを生成するガス化装置と、A gasifier that inputs solid fuel and / or waste, heats and decomposes, and generates a gas heated to 900 ° C. or a temperature around 900 ° C.,
このガス化装置の下流側に配置されてこのガス化装置により生成されるガスを除塵するセラミックフィルターと、A ceramic filter disposed on the downstream side of the gasifier and removing dust generated by the gasifier;
このセラミックフィルターにより除塵された前記生成ガスから熱回収する熱回収装置と、A heat recovery device for recovering heat from the produced gas removed by the ceramic filter;
この熱回収装置を通過した前記生成ガスを精製するための乾ガス精製装置とを備えるガス精製システムであって、A gas purification system comprising a dry gas purification device for purifying the product gas that has passed through the heat recovery device,
前記乾ガス精製装置は、The dry gas purifier is
加熱されて多孔質になる炭酸水素ナトリウムを微粉砕する粉砕機と、A pulverizer for finely pulverizing sodium bicarbonate that is heated to become porous;
前記熱回収装置から送られたガスに、前記粉砕機によって微粉砕された炭酸水素ナトリウムを不活性ガスと共に供給して混合する混合器と、A mixer for supplying and mixing sodium bicarbonate finely pulverized by the pulverizer together with an inert gas into the gas sent from the heat recovery device;
この混合器により混合され中和された前記生成ガス中の反応生成物を処理する集塵手段と、を備え、A dust collecting means for treating the reaction product in the product gas mixed and neutralized by the mixer,
前記集塵手段で処理された後のガス温度が200〜300℃に構成され、当該ガスが発電手段に提供可能に構成されることを特徴とするガス精製システム。A gas purification system characterized in that the gas temperature after being treated by the dust collecting means is configured to 200 to 300 ° C., and the gas can be provided to the power generation means.
固形燃料および/または廃棄物を加熱・分解し、900℃またはその900℃前後の近傍の温度に加熱されたガスを生成し、
この生成されたガスをセラミックフィルターにより除塵し、
除塵された前記生成ガスから熱回収すると共に熱回収された前記生成ガスに、加熱されて多孔質になる炭酸水素ナトリウムを微粉砕して、不活性ガスと共に供給して混合し、
この混合され中和された前記生成ガス中の反応生成物を集塵処理して精製し、温度が200〜300℃の生成ガスとし、
温度が200〜300℃に構成されたガスを発電手段に提供可能に構成することを特徴とするガス精製方法
Solid fuel and / or waste is heated and decomposed to produce gas heated to 900 ° C or a temperature around 900 ° C,
The generated gas is removed by a ceramic filter,
Heat recovery from the dust-generated product gas and heat-recovered product gas is pulverized sodium hydrogen carbonate that is heated and porous, mixed with an inert gas, and mixed,
The reaction product in the mixed and neutralized product gas is purified by collecting dust to obtain a product gas having a temperature of 200 to 300 ° C.,
A gas purification method characterized in that a gas having a temperature of 200 to 300 ° C. can be provided to a power generation means .
JP2001360618A 2001-11-27 2001-11-27 Gas purification system and gas purification method Expired - Fee Related JP4428683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360618A JP4428683B2 (en) 2001-11-27 2001-11-27 Gas purification system and gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360618A JP4428683B2 (en) 2001-11-27 2001-11-27 Gas purification system and gas purification method

Publications (2)

Publication Number Publication Date
JP2003159508A JP2003159508A (en) 2003-06-03
JP4428683B2 true JP4428683B2 (en) 2010-03-10

Family

ID=19171400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360618A Expired - Fee Related JP4428683B2 (en) 2001-11-27 2001-11-27 Gas purification system and gas purification method

Country Status (1)

Country Link
JP (1) JP4428683B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114180B2 (en) * 2009-07-20 2012-02-14 E. I. Du Pont De Nemours And Company Bag filter comprising scrimless filter felt of meta-and-para-aramid staple fiber

Also Published As

Publication number Publication date
JP2003159508A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP2006159036A (en) Exhaust gas treatment method and system
CN113234490A (en) Gasification-based sludge comprehensive utilization system and treatment method
JP4428683B2 (en) Gas purification system and gas purification method
JP4167799B2 (en) Waste treatment system
JP3776692B2 (en) Waste gasification treatment facility and gasification power generation facility using the same
JP4014136B2 (en) Gasification power generation system and gasification power generation method
JP4077772B2 (en) Waste gas processing method for waste treatment furnace
JP2009240888A (en) System for gasifying waste
JP2003049178A (en) Plasma melting furnace
JP5279062B2 (en) Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus
JP2001311510A (en) Refuse gasification power system
JP2009067985A (en) Method and apparatus for waste processing
JP2005247930A (en) Gasification system, power generation system, gasification method and power generation method
JP4089080B2 (en) Waste treatment method and waste treatment system
JP3054595B2 (en) Pyrolysis melting gasification of waste
JP4434531B2 (en) Pyrolysis gasification reforming system
JP4702869B2 (en) Waste treatment method and treatment equipment
JP4014848B2 (en) Waste treatment system
JP2001141215A (en) Refuse treatment system
JPH1133346A (en) Processing and device for treatment of combustion exhaust gas for waste solid fuel combustion boiler
JP2009241038A (en) Method of disposing refuse
JPH1019237A (en) Exhaust gas treatment device in waste treatment device
JP2986901B2 (en) Working fluid supply method and combustion equipment
JP4519338B2 (en) Method for treating ammonia-containing gas and coal gasification combined power plant
JP3932262B2 (en) Combustion equipment and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees