JP4427952B2 - Electric motor control method - Google Patents

Electric motor control method Download PDF

Info

Publication number
JP4427952B2
JP4427952B2 JP2003029882A JP2003029882A JP4427952B2 JP 4427952 B2 JP4427952 B2 JP 4427952B2 JP 2003029882 A JP2003029882 A JP 2003029882A JP 2003029882 A JP2003029882 A JP 2003029882A JP 4427952 B2 JP4427952 B2 JP 4427952B2
Authority
JP
Japan
Prior art keywords
motor
value
time
electric motor
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003029882A
Other languages
Japanese (ja)
Other versions
JP2004242440A (en
Inventor
幸博 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003029882A priority Critical patent/JP4427952B2/en
Publication of JP2004242440A publication Critical patent/JP2004242440A/en
Application granted granted Critical
Publication of JP4427952B2 publication Critical patent/JP4427952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、外部から指令される電動機の回転速度指令値N# に対して、該電動機の負荷へのショックを緩和するために、予め定めた加速度および加加速度に基づく変換を行いつつ、最終的には前記回転速度指令値N# に一致させる回転速度設定値N* を導出し、この回転速度設定値N* に基づいて前記電動機を可変速制御する電動機の制御方法に関する。
【0002】
【従来の技術】
電動機を昇降装置や搬送装置の動力源として用いるときには、該電動機の始動加速時や減速停止時に、前記昇降装置や搬送装置へのショックを緩和する電動機の制御方法が知られている(例えば、特許文献1参照。)。
【0003】
図5は上記の特許文献1の制御方法を含む従来の電動機の制御方法を示す電動機制御装置の回路構成図であり、この図では電動機を可変速制御する電動機制御装置としてはインバータ装置を例にしている。
【0004】
図5において、1は商用電源などの交流電源、2,2aは電動機制御装置、3は電動機制御装置2,2aから駆動電力が供給される誘導電動機などの電動機、4は電動機3を動力源とする負荷、5は電動機3を所望の回転速度で運転するために、電動機制御装置2,2aを介して電動機3に回転速度指令値N# を与える速度指令器である。
【0005】
この電動機制御装置2には交流電源1の電圧を整流,平滑し、この整流電圧を所望の交流電圧に変換して出力するためにダイオード整流回路21a,平滑コンデンサ21b,トランジスタとダイオードの逆並列回路のブリッジ接続回路21c,電流検出器21dなどからなるインバータ主回路21と、インバータ主回路21が出力する交流電圧を所望の周波数,振幅に制御するためのインバータ制御回路22と、インバータ制御回路22の内部演算値である電動機3の発生トルク値,電流検出器21dで検出される電動機電流の検出値などから電動機3の動作状態を監視し、この動作状態が予め定めた許容範囲を越えたときには論理信号を出力すると共に、該動作状態を前記許容範囲内にできる電動機3の回転速度制限値N* Lを導出する電動機監視回路23と、電動機監視回路23から前記論理信号が出力されたときに後述の設定値演算器25から出力される電動機2の回転速度設定値N* から前記回転速度制限値N* Lに切り替えてインバータ制御回路22へ出力する切替スイッチ24とを備えている。
【0006】
なお、電動機制御装置2aには上述のインバータ主回路21,インバータ制御回路22,電動機監視回路23,切替スイッチ24の他に、後述の設定値演算器25aを備えている。また、インバータ制御回路22,電動機監視回路23などは周知の技術で形成されている。
【0007】
図6は設定値演算器25,25aの基本的な演算動作を説明する時間−設定値の特性図であり、いわゆる、S字加速と呼ばれるものである。
【0008】
図6において、先ず、速度指令器5が所定の値の回転速度指令値N# が指令されている状態で、電動機制御装置2,2aおよび電動機3が動作を開始する時刻t0 よりt1 の区間は、電動機3の加速動作開始時の負荷4へショックを緩和するために、時間の経過に連動して、電動機3の加速度を零から予め設定される加速度設定値α* まで増大させる期間(以下、S字始動側とも称する)であり、時刻t1 での電動機3の回転速度は、ほぼn1 になっている。また、時刻t1 よりt5 の区間は一定の加速度、すなわち、前記加速度設定値α* で加速する期間(以下、直線加速部とも称する)であり、時刻t5 での電動機3の回転速度は、ほぼn2 になっている。また、時刻t5 からt10までの区間は、電動機3の加速度を零にする際の負荷4へのショックを緩和するために、時間の経過に連動して、電動機3の加速度を前記加速度設定値α* から零まで減少させる期間(以下、S字到達側とも称する)であり、また、時刻t10以降は電動機3の回転速度が、ほぼ回転速度指令値N# で回転している期間である。
【0009】
なお、時刻t10以降に回転速度指令値N# が零に変更されると、時間的に上述の動作とは逆の経過、すなわち、加速度設定値を−α* として、時刻t10→t5 →t1 →t0 のように辿ることにより、電動機3の減速停止時の負荷4へショックが緩和される。
【0010】
図7は、時刻t0 より電動機制御装置2および電動機3が前記S字始動側の動作を終え、前記直線加速部の動作を開始した後の時刻t2 で、電動機監視回路23が監視している電動機3の動作状態を示す、例えば電動機発生トルク値が予め定めた許容範囲を越えたとき以降の設定値演算器25の演算動作を説明する時間−設定値の特性図である。
【0011】
すなわち図7において、時刻t2 に、何らかの要因で、例えば、電動機の動作状態を示す、電動機3の発生トルク値が予め定めた上限トルク値を越えると、電動機監視回路23がこれを検知して論理信号を出力すると共に、前記電動機の発生トルクを制限する制限動作を行う。具体的には、電動機3の発生トルク値を前記上限トルク値に抑え込むために、時刻t2 直前での電動機3の回転速度設定値N* から急速に減速させる電動機3の回転速度制限値N* Lを出力し、前記論理信号が出力されたことにより切替スイッチ24が回転速度制限値N* L側に切り替わり、電動機3は回転速度制限値N* Lにほぼ対応した回転速度で減速する。また、時刻t2 〜後述のt3 の区間では、設定値演算器25の出力である回転速度設定値N* も回転速度制限値N* Lに対応した値に抑え込まれる。
【0012】
次に、時刻t3 で、電動機3の発生トルク値が前記上限トルク値未満の動作状態になると、電動機監視回路23がこれを検知し、切替スイッチ24が回転速度設定値N* 側に切り替えると共に、設定値演算器25では時刻t3 直前の上述の抑え込まれた回転速度設定値N* から、再び前記S字始動側の動作を始めることとなり、時刻t6 からは前記直線加速部の動作になり、時刻t11からは前記S字到達側の動作になり、その結果、時刻t15以降は電動機3の回転速度が、ほぼ回転速度指令値N# で回転することになる。
【0013】
図8は、時刻t0 より電動機制御装置2aおよび電動機3が前記S字始動側の動作を終え、前記直線加速部の動作を開始した後の時刻t2 で、電動機監視回路23が監視している電動機3の動作状態が予め定めた許容範囲を越えたとき以降の設定値演算器25aの演算動作を説明する時間−設定値の特性図である。
【0014】
すなわち図8において、時刻t2 に、何らかの要因で、例えば、電動機3の動作状態を示す発生トルク値が予め定めた上限トルク値を越えると、電動機監視回路23がこれを検知して論理信号を出力すると共に、前記電動機の発生トルクを制限する制限動作を行う。具体的には、電動機3の発生トルク値を前記上限トルク値に抑え込むために、時刻t2 直前での電動機3の回転速度設定値N* から急速に減速させる電動機3の回転速度制限値N* Lを出力し、前記論理信号が出力されたことにより切替スイッチ24が回転速度制限値N* L側に切り替わり、電動機3は回転速度制限値N* Lに、ほぼ対応した回転速度で減速する。また、時刻t2 〜後述のt3 の区間では、設定値演算器25aの出力である回転速度設定値N* も回転速度制限値N* Lに対応した値に抑え込まれる。
【0015】
次に、時刻t3 で、電動機3の発生トルク値が前記上限トルク値未満の動作状態になると、電動機監視回路23がこれを検知し、切替スイッチ24が回転速度設定値N* 側に切り替わり、設定値演算器25aでは時刻t3 直前の上述の抑え込まれた回転速度設定値N* から、電動機3はその加速度を先述の加速度設定値α* にした直線加速動作に入り、時刻t12で設定値演算器25aが出力する回転速度設定値N* が前記回転速度指令値N# に到達することにより、前記直線加速動作を終え、時刻t15以降は電動機3の回転速度が、ほぼ回転速度指令値N# で回転することになる。
【0016】
なお、上述の図6から図8に基づく従来の技術の動作説明において、時刻tの添字の数字が同じ場合には、ほぼ同じ時刻を示し、また、添字の数字が大きい程、時刻t0 からの経過時間がより長いことを示している。
【0017】
【特許文献1】
特開平11−191999号公報(第2−3頁、第6図)
【0018】
【発明が解決しようとする課題】
図7に基づいて説明した従来の電動機の制御方法では、電動機3が加速運転中での電動機監視回路23の動作が解除された後に、回転速度指令値N# までの残された範囲で、S字加速を加速度=0から再開するため、電動機3の回転速度が回転速度指令値N# に到達するのに時間を要するという難点があった。
【0019】
また、図8に基づいて説明した従来の電動機の制御方法では、電動機3が加速運転中での電動機監視回路23の動作が解除された後に、S字加速をキャンセルして直線加速に切り換えるため、電動機3の回転速度が回転速度指令値N# に到達するのは短時間であるが、再加速開始時および回転速度指令値N# に対応する回転速度に到達時の負荷4へのショックが大きいという難点があった。
【0020】
この発明の目的は、上記問題点を解消する電動機の制御方法を提供することにある。
【0021】
【課題を解決するための手段】
この発明は、外部から指令される電動機の回転速度指令値N# に対して、該電動機の負荷へのショックを緩和するために、予め定めた加速度および加加速度に基づく変換を行いつつ、最終的には前記回転速度指令値N# に一致させる時間−設定値特性を有する回転速度設定値N* を導出し、この回転速度設定値N* に基づいて前記電動機を可変速制御する電動機の制御方法において、
前記回転速度設定値N* に基づいて加速運転中の前記電動機の動作状態を示す電動機の発生トルク値または電動機電流値が予め定めた許容範囲を越えた時には、前記発生トルク値または電動機電流値を前記許容範囲内にできる回転速度制限値N* Lを導出すると共に、前記電動機を該回転速度制限値N* Lに基づいて運転
前記許容範囲を越えた動作状態が解除されたときに、前記回転速度制限値N* Lに対応する前記時間−設定値特性上の回転速度設定値N* から前記電動機の加速運転を再開することを特徴とする。
【0022】
この発明によれば、電動機が加速運転中に該電動機の動作状態を示す電動機発生トルク値または電動機電流値が予め定めた許容範囲を越え、その後、前記許容範囲を越えた動作状態が解除されてから、前記電動機が前記回転速度指令値N# に到達する時間を比較的短時間にでき、また、このときの前記電動機の負荷へのショックも緩和することができる。
【0023】
【発明の実施の形態】
図1は、この発明の電動機の制御方法の実施例を示す電動機制御装置の回路構成図であり、図5に示した従来例構成と同様に、電動機を可変速制御する電動機制御装置としてはインバータ装置を例にしている。また、図5に示した従来例構成と同一機能を有するものには同一符号を付して、その説明を省略する。
【0024】
すなわち、図1に示した電動機制御装置6にはインバータ主回路21,インバータ制御回路22,電動機監視回路23,切替スイッチ24の他に、設定値演算器61を備え、この設定値演算器61は、先述の設定値演算器25,25aと同様に、図6に示した時間−設定値の特性図に基づく基本的な演算動作を行うことができる。
【0025】
図2は、時刻t0 より電動機制御装置6および電動機3が前記S字始動側の動作を終え、前記直線加速部の動作を開始した後の時刻t2 で、電動機監視回路23が監視している電動機3の動作状態が予め定めた許容範囲を越えたとき以降の設定値演算器61の演算動作を説明する時間−設定値の特性図である。
【0026】
すなわち図2において、時刻t2 に、何らかの要因で、例えば、電動機3の動作状態を示す電動機3の発生トルク値が予め定めた上限トルク値を越えると、電動機監視回路23がこれを検知して論理信号を出力すると共に、前記電動機の発生トルクを制限する制限動作を行う。具体的には、電動機3の発生トルク値を前記上限トルク値に抑え込むために、時刻t2 直前での電動機3の回転速度設定値N* から急速に減速させる電動機3の回転速度制限値N* Lを出力し、前記論理信号が出力されたことにより切替スイッチ24が回転速度制限値N* L側に切り替わり、電動機3は回転速度制限値N* Lに、ほぼ対応した回転速度で減速する。また、時刻t2 〜後述のt3 の区間では、設定値演算器61の出力である回転速度設定値N* も回転速度制限値N* Lに対応した値に抑え込まれる。
【0027】
次に、時刻t3 で、電動機3の発生トルク値が前記上限トルク値未満の動作状態になると、電動機監視回路23がこれを検知して、切替スイッチ24が回転速度設定値N* 側に切り替わった時刻t3 以降の設定値演算器61の演算動作について、図3に示した時間−設定値の特性図を参照しつつ、以下に説明する。
【0028】
すなわち図3は、先述の図6に示したS字始動側の時間−設定値の特性の拡大図であり、この図において、時刻t3 の時の上述の抑え込まれた回転速度設定値N* をnL1とすると、前記S字始動側の動作終了時の電動機3の回転速度n1 に対して、n1 >nL1の関係になっており、また、電動機3が加速開始時から前記nL1に到達する時間をTL1とし、前記n1 に到達する時間をT0 とし、電動機3の加加速度をmとすると、以下に記す式(1)〜(8)の関係にある。
【0029】
先ず、前記S字始動側における回転速度設定値N* としての回転速度nと時間Tとの間には、下記式(1)で表される関係がある。
【0030】
n=m・T2 …(1)
また、上記式(1)から、下記式(2)〜(5)が導出される。
【0031】
1=m・T0 2 …(2)
m=n1/T0 2 …(3)
L1=m・TL 2 …(4)
L=(nL1/n11/2・T0 …(5)
さらに、上記式(1)を微分することにより得られる電動機3の加速度αは、下記式(6)で表される。
【0032】
α=2・m・T …(6)
従って、電動機3の回転速度が前記nL1の時の加速度αL は、下記式(7)で表される。
【0033】
αL=2・m・TL …(7)
前記式(3),(5)を上記式(7)に代入すると、下記式(8)が導出される。
【0034】
αL=2・{(n11/2/T0
×(nL11/2 …(8)
前記n1 とT0 は一定値(定数)であり、上記式(8)から明らかなように、加速度αL は前記nL1の平方根に比例した値として導出できる。
【0035】
すなわち図2において、時刻t3 以降は設定値演算器61により、前記式(8)で得られる加速度αL を初期値として、演算される回転速度設定値N* に従って、電動機3は前記S字始動側の動作を始点(=加速度が零のとき)からではなく、前記nL1の時点から加速運転を再開し、時刻t4 で回転速度設定値N* が前記n1 に到達するので、時刻t4 からは前記直線加速部の動作になり、時刻t7 で回転速度設定値N* が前記n2 に到達するので、時刻t7 からは前記S字到達側の動作になり、その結果、時刻t13以降は電動機3の回転速度が、ほぼ回転速度指令値N# で回転することになる。
【0036】
なお、上述の図2に基づくこの発明の動作説明において、先述の図7,図8に基づく従来の技術の動作説明と同様に、時刻tの添字の数字が同じ場合には、ほぼ同じ時刻を示し、また、添字の数字が大きい程、時刻t0 からの経過時間がより長いことを示している。
【0037】
従って、図2に示す如く電動機3の回転速度がほぼ回転速度指令値N# に到達する時刻t13は、図7に示した同様時点の時刻t15より早い時刻であり、また、図8に示した同様時点の時刻t12より遅い時刻である。さらに、時刻t3 からの再加速開始時のみに生ずる負荷4へのショックが比較的大きい値となるが、この値も図8に示す時刻t3 の時に比して小さく、一般的に、電動機3から負荷4への動力伝達経路に遅れ要素が存在するために、何れの場合にも、前記ショックはより軽減される。
【0038】
図4は、図2に示したタイミングでのこの発明の電動機の制御方法としての設定値演算器61の動作説明とは異なって、時刻t0 より電動機制御装置6および電動機3が前記S字始動側の動作と前記直線加速部の動作とを終え、前記S字到達側の動作を開始した後の時刻t8 で、電動機監視回路23が監視している電動機3の動作状態が予め定めた許容範囲を越えたとき以降の設定値演算器61の演算動作を説明する時間−設定値の特性図である。
【0039】
すなわち図4において、時刻t8 に、何らかの要因で、例えば、電動機3の発生トルク値が予め定めた上限トルク値を越えると、電動機監視回路23がこれを検知して論理信号を出力すると共に、この発生トルク値を前記上限トルク値に抑え込むために、時刻t8 直前での電動機3の回転速度設定値N* から急速に減速させる電動機3の回転速度制限値N* Lを出力し、前記論理信号が出力されたことにより切替スイッチ24が回転速度制限値N* L側に切り替わり、電動機3は回転速度制限値N* Lに、ほぼ対応した回転速度で減速する。また、時刻t8 〜後述のt9 の区間では、設定値演算器61の出力である回転速度設定値N* も回転速度制限値N* Lに対応した値に抑え込まれる。
【0040】
次に、時刻t9 で、電動機3の発生トルク値が前記上限トルク値未満の動作状態になると、電動機監視回路23がこれを検知して、切替スイッチ24が回転速度設定値N* 側に切り替わる。
【0041】
この時刻t9 以降の設定値演算器61の演算動作は、上述の抑え込まれた回転速度設定値N* をnL2とすると、前記S字到達側の動作開始時の電動機3の回転速度n2 に対して、n2 <nL2の関係になっていることから、前記式(1)〜(8)と同様の演算で得られる電動機3の加速度を初期値として、電動機3は前記S字到達側の動作を前記nL2の時点から再開し、演算される回転速度設定値N* に従い、時刻t14には電動機3の回転速度が、ほぼ回転速度指令値N# で回転することになる。
【0042】
なお、上述の図4に基づくこの発明の動作説明において、先述の図2,図7,図8に基づく動作説明と同様に、時刻tの添字の数字が同じ場合には、ほぼ同じ時刻を示し、また、添字の数字が大きい程、時刻t0 からの経過時間がより長いことを示している。
【0043】
【発明の効果】
この発明によれば、電動機が加速運転中に該電動機の動作状態を示す電動機発生トルク値または電動機電流値が予め定めた許容範囲を越え、その後、前記許容範囲を越えた動作状態が解除されてから、前記電動機が前記回転速度指令値N# に到達する時間を比較的短時間にできることから、この電動機を動力源とする昇降装置や搬送装置の稼働率を改善できる。
【0044】
特に、電動機の発生トルクを制限する制限動作が一瞬の場合には、前記動力伝達経路に存在する遅れ要素による伝達遅れも手伝い、殆どショックレスに該電動機を再加速でき、通常動作時のS字加速と比べてもほぼ同等なS字加速パターンで該電動機を前記回転速度指令値まで到達させることができる。
【図面の簡単な説明】
【図1】 この発明の実施例を示す電動機制御装置の回路構成図
【図2】 図1の動作を説明する時間−設定値の特性図
【図3】 図1の動作を説明する時間−設定値の特性図
【図4】 図1の動作を説明する時間−設定値の特性図
【図5】 従来例を示す電動機制御装置の回路構成図
【図6】 図5の動作を説明する時間−設定値の特性図
【図7】 図5の動作を説明する時間−設定値の特性図
【図8】 図5の動作を説明する時間−設定値の特性図
【符号の説明】
1…交流電源、2,2a…電動機制御装置、3…電動機、4…負荷、5…速度指令器、6…電動機制御装置、21…インバータ主回路、22…インバータ制御回路、23…電動機監視回路、24…切替スイッチ、25,25a,61…設定値演算器。
[0001]
BACKGROUND OF THE INVENTION
According to the present invention, the motor rotational speed command value N # commanded from the outside is finally converted while performing conversion based on a predetermined acceleration and jerk to alleviate the shock to the load of the motor. The present invention relates to a motor control method for deriving a rotational speed set value N * to be matched with the rotational speed command value N # and performing variable speed control of the motor based on the rotational speed set value N * .
[0002]
[Prior art]
When an electric motor is used as a power source for an elevating device or a conveying device, a method for controlling the electric motor is known to alleviate a shock to the elevating device or the conveying device at the time of starting acceleration or deceleration stop of the electric motor (for example, a patent Reference 1).
[0003]
FIG. 5 is a circuit configuration diagram of an electric motor control device showing a conventional electric motor control method including the control method of Patent Document 1 described above. In this figure, an inverter device is taken as an example of the electric motor control device for variable speed control of the electric motor. ing.
[0004]
In FIG. 5, 1 is an AC power source such as a commercial power source, 2 and 2a are motor control devices, 3 is an electric motor such as an induction motor to which drive power is supplied from the motor control devices 2 and 2a, and 4 is an electric motor 3 as a power source. A load 5 is a speed command device that gives a rotation speed command value N # to the motor 3 via the motor control devices 2 and 2a in order to operate the motor 3 at a desired rotation speed.
[0005]
The electric motor control device 2 rectifies and smoothes the voltage of the AC power source 1, converts the rectified voltage into a desired AC voltage and outputs it, and outputs a diode rectifier circuit 21 a, a smoothing capacitor 21 b, an anti-parallel circuit of transistors and diodes. An inverter main circuit 21 composed of a bridge connection circuit 21c, a current detector 21d, etc., an inverter control circuit 22 for controlling the AC voltage output from the inverter main circuit 21 to a desired frequency and amplitude, and an inverter control circuit 22 The operating state of the motor 3 is monitored from the generated torque value of the motor 3, which is an internal calculation value, the detected value of the motor current detected by the current detector 21d , and the like when the operating state exceeds a predetermined allowable range. An electric motor that outputs a signal and derives a rotational speed limit value N * L of the electric motor 3 that can bring the operation state into the allowable range. When the logic signal is output from the motor monitoring circuit 23 and the motor monitoring circuit 23, the rotational speed set value N * of the motor 2 output from the set value calculator 25 described later is changed to the rotational speed limit value N * L. And a selector switch 24 for switching and outputting to the inverter control circuit 22.
[0006]
In addition to the inverter main circuit 21, inverter control circuit 22, motor monitoring circuit 23, and changeover switch 24, the motor control device 2a includes a set value calculator 25a described later. The inverter control circuit 22, the motor monitoring circuit 23, etc. are formed by a known technique.
[0007]
FIG. 6 is a time-set value characteristic diagram for explaining the basic calculation operation of the set value calculators 25 and 25a, which is called so-called S-shaped acceleration.
[0008]
6, first, in a state where the speed command device 5 the rotational speed command value N # a predetermined value is being commanded, the motor control device 2,2a and the motor 3 is from time t 0 for starting the operation of t 1 In the section, in order to alleviate the shock to the load 4 at the start of the acceleration operation of the electric motor 3, a period in which the acceleration of the electric motor 3 is increased from zero to a preset acceleration setting value α * in conjunction with the passage of time ( Hereinafter, the rotation speed of the electric motor 3 at time t 1 is substantially n 1 . Further, a section from time t 1 to t 5 is a constant acceleration, that is, a period of acceleration with the acceleration set value α * (hereinafter also referred to as a linear acceleration unit), and the rotation speed of the electric motor 3 at time t 5 is , Almost n 2 . Further, in the section from time t 5 to t 10, the acceleration of the motor 3 is set to the acceleration setting in conjunction with the passage of time in order to reduce the shock to the load 4 when the acceleration of the motor 3 is made zero. period (or less, S is also referred to as character reaches side) to reduce the value alpha * to zero is also the time t 10 after a period in which the rotational speed of the motor 3 is rotating at a substantially rotational speed command value N # is there.
[0009]
Incidentally, when the rotation speed command value N # at time t 10 and subsequent steps are changed to zero, temporal course opposite to the above operation, i.e., the acceleration setting value as-.alpha. *, time t 10 → t 5 By following the order of t 1 → t 0 , the shock to the load 4 when the motor 3 is decelerated and stopped is alleviated.
[0010]
7, after the operation of from time t 0 is the motor control device 2 and the electric motor 3 the S-start side, wherein a linear acceleration unit time t 2 after the start of operation of the electric motor monitoring circuit 23 monitors FIG. 6 is a time-set value characteristic diagram illustrating an operation state of the set value calculator 25 after the motor generated torque value exceeds a predetermined allowable range , for example, illustrating an operation state of the motor 3 that is present.
[0011]
That is, in FIG. 7, when the generated torque value of the motor 3 , which indicates the operation state of the motor , for example, exceeds the predetermined upper limit torque value at some time t 2 , the motor monitoring circuit 23 detects this. A logic signal is output and a limiting operation is performed to limit the torque generated by the electric motor. Specifically, in order to suppress the generated torque value of the electric motor 3 to the upper limit torque value, the rotational speed limit value N * of the electric motor 3 that is rapidly decelerated from the rotational speed setting value N * of the electric motor 3 immediately before time t 2 . When L is output and the logic signal is output, the changeover switch 24 is switched to the rotation speed limit value N * L side, and the electric motor 3 decelerates at a rotation speed substantially corresponding to the rotation speed limit value N * L. Further, in the section from time t 2 to t 3 described later, the rotational speed set value N *, which is the output of the set value calculator 25, is also suppressed to a value corresponding to the rotational speed limit value N * L.
[0012]
Next, when the generated torque value of the electric motor 3 becomes less than the upper limit torque value at time t 3 , the electric motor monitoring circuit 23 detects this, and the changeover switch 24 switches to the rotation speed set value N * side. Then, the set value calculator 25 starts the operation on the S-curve start side again from the suppressed rotational speed set value N * immediately before time t 3 , and the operation of the linear acceleration unit from time t 6. From time t 11, the operation reaches the S-letter side, and as a result, the rotation speed of the electric motor 3 rotates at substantially the rotation speed command value N # after time t 15 .
[0013]
8, after the operation of the motor controller 2a and an electric motor 3 from time t 0 the S-start side, wherein a linear acceleration unit time t 2 after the start of operation of the electric motor monitoring circuit 23 monitors FIG. 10 is a time-set value characteristic diagram for explaining the calculation operation of the set value calculator 25a after the operation state of the motor 3 exceeds the predetermined allowable range.
[0014]
That is, in FIG. 8, when the generated torque value indicating the operation state of the electric motor 3 exceeds a predetermined upper limit torque value for some reason at time t 2 , the electric motor monitoring circuit 23 detects this and outputs a logic signal. In addition to outputting, a limiting operation for limiting the generated torque of the electric motor is performed. Specifically, in order to suppress the generated torque value of the electric motor 3 to the upper limit torque value, the rotational speed limit value N * of the electric motor 3 that is rapidly decelerated from the rotational speed setting value N * of the electric motor 3 immediately before time t 2 . When L is output and the logic signal is output, the changeover switch 24 switches to the rotation speed limit value N * L side, and the electric motor 3 decelerates at a rotation speed substantially corresponding to the rotation speed limit value N * L. Further, in the section from time t 2 to t 3 described later, the rotational speed set value N *, which is the output of the set value calculator 25a, is also suppressed to a value corresponding to the rotational speed limit value N * L.
[0015]
Next, when the generated torque value of the electric motor 3 becomes less than the upper limit torque value at time t 3 , the electric motor monitoring circuit 23 detects this, and the changeover switch 24 switches to the rotational speed set value N * side. from the set value calculator 25a at time t 3 the rotational speed set point was Osaekoma the above immediately preceding N *, the motor 3 enters the linear acceleration operation by the acceleration aforementioned acceleration set value alpha *, at time t 12 by rotation speed setting value set value calculator 25a outputs N * reaches the rotation speed command value N #, after the linear acceleration operation, the time t 15 after the rotational speed of the motor 3, substantially rotation speed It will rotate at the command value N # .
[0016]
In the description of the operation of the prior art based on FIG. 6 to FIG. 8 described above, when the subscript numbers at the time t are the same, almost the same time is indicated, and as the subscript number increases, the time t 0 increases. Indicates that the elapsed time is longer.
[0017]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-191999 (page 2-3, FIG. 6)
[0018]
[Problems to be solved by the invention]
In the conventional motor control method described with reference to FIG. 7, after the operation of the motor monitoring circuit 23 during the acceleration operation of the motor 3 is released, the remaining range up to the rotational speed command value N # Since character acceleration is restarted from acceleration = 0, there is a problem that it takes time for the rotational speed of the electric motor 3 to reach the rotational speed command value N # .
[0019]
Further, in the conventional motor control method described with reference to FIG. 8, after the operation of the motor monitoring circuit 23 during the acceleration operation of the motor 3 is canceled, the S-shaped acceleration is canceled and switched to the linear acceleration. The rotation speed of the electric motor 3 reaches the rotation speed command value N # for a short time, but the shock to the load 4 at the time of starting reacceleration and reaching the rotation speed corresponding to the rotation speed command value N # is large. There was a difficulty.
[0020]
An object of the present invention is to provide a method for controlling an electric motor that solves the above problems.
[0021]
[Means for Solving the Problems]
According to the present invention, the motor rotational speed command value N # commanded from the outside is finally converted while performing conversion based on a predetermined acceleration and jerk to alleviate the shock to the load of the motor. A control method for a motor in which a rotational speed set value N * having a time-set value characteristic that matches the rotational speed command value N # is derived, and the motor is controlled at a variable speed based on the rotational speed set value N *. In
When the generated torque value or the motor current value of the motor indicating the operating state of the motor during the acceleration operation based on the rotation speed setting value N * exceeds a predetermined allowable range, the generated torque value or the motor current value is determined . wherein while deriving the rotation speed limit value N * L that can be within the allowable range, the electric motor driving based on the rotation speed limit value N * L,
When the operation state exceeding the allowable range is released, the acceleration operation of the motor is restarted from the rotation speed set value N * on the time-set value characteristic corresponding to the rotation speed limit value N * L. It is characterized by.
[0022]
According to the present invention, during the acceleration operation of the motor, the motor generated torque value or the motor current value indicating the operation state of the motor exceeds a predetermined allowable range, and thereafter, the operation state exceeding the allowable range is released. Thus, the time for the electric motor to reach the rotational speed command value N # can be made relatively short, and the shock to the load of the electric motor at this time can be alleviated.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit configuration diagram of an electric motor control apparatus showing an embodiment of an electric motor control method according to the present invention. Like the conventional configuration shown in FIG. 5, an electric motor control apparatus for variable speed control of an electric motor is an inverter. The device is taken as an example. Also, components having the same functions as those in the configuration of the conventional example shown in FIG.
[0024]
That is, the motor control device 6 shown in FIG. 1 includes a set value calculator 61 in addition to the inverter main circuit 21, inverter control circuit 22, motor monitoring circuit 23, and changeover switch 24. Similar to the above-described set value calculators 25 and 25a, a basic calculation operation based on the time-set value characteristic diagram shown in FIG. 6 can be performed.
[0025]
Figure 2 is a time t 0 after the from the motor control device 6 and the electric motor 3 is operating in the S-start side, wherein a linear acceleration unit time t 2 after the start of operation of the electric motor monitoring circuit 23 monitors FIG. 6 is a time-set value characteristic diagram for explaining the calculation operation of the set value calculator 61 after the operation state of the motor 3 is over a predetermined allowable range.
[0026]
That is, in FIG. 2, when the generated torque value of the electric motor 3 indicating the operation state of the electric motor 3 exceeds a predetermined upper limit torque value at some time t 2 for some reason, the electric motor monitoring circuit 23 detects this. A logic signal is output and a limiting operation is performed to limit the torque generated by the electric motor. Specifically, in order to suppress the generated torque value of the electric motor 3 to the upper limit torque value, the rotational speed limit value N * of the electric motor 3 that is rapidly decelerated from the rotational speed setting value N * of the electric motor 3 immediately before time t 2 . When L is output and the logic signal is output, the changeover switch 24 switches to the rotation speed limit value N * L side, and the electric motor 3 decelerates at a rotation speed substantially corresponding to the rotation speed limit value N * L. Also, during the period from time t 2 to t 3 described later, the rotational speed set value N *, which is the output of the set value calculator 61, is also suppressed to a value corresponding to the rotational speed limit value N * L.
[0027]
Next, when the generated torque value of the electric motor 3 becomes less than the upper limit torque value at time t 3 , the electric motor monitoring circuit 23 detects this and the changeover switch 24 is switched to the rotation speed set value N * side. The calculation operation of the set value calculator 61 after time t 3 will be described below with reference to the time-set value characteristic diagram shown in FIG.
[0028]
That is, FIG. 3 is an enlarged view of the time-set value characteristic on the S-curve start side shown in FIG. 6, in which the above-described suppressed rotational speed set value N at time t 3 is shown. When * is n L1 , the relation of n 1 > n L1 is established with respect to the rotational speed n 1 of the motor 3 at the end of the operation on the S-shaped start side. When the time to reach n L1 is T L1 , the time to reach n 1 is T 0, and the jerk of the motor 3 is m, the following equations (1) to (8) are satisfied.
[0029]
First, there is a relationship represented by the following formula (1) between the rotational speed n as the rotational speed setting value N * on the S-shaped start side and the time T.
[0030]
n = m · T 2 (1)
Further, the following formulas (2) to (5) are derived from the above formula (1).
[0031]
n 1 = m · T 0 2 (2)
m = n 1 / T 0 2 (3)
n L1 = m · T L 2 (4)
T L = (n L1 / n 1 ) 1/2 · T 0 (5)
Furthermore, the acceleration α of the electric motor 3 obtained by differentiating the above formula (1) is represented by the following formula (6).
[0032]
α = 2 · m · T (6)
Therefore, the acceleration α L when the rotation speed of the electric motor 3 is n L1 is expressed by the following equation (7).
[0033]
α L = 2 · m · T L (7)
Substituting Equations (3) and (5) into Equation (7) yields Equation (8) below.
[0034]
α L = 2 · {(n 1 ) 1/2 / T 0 }
× (n L1 ) 1/2 (8)
The n 1 and T 0 are constant values (constants), and as is clear from the above equation (8), the acceleration α L can be derived as a value proportional to the square root of the n L1 .
[0035]
That is, in FIG. 2, after time t 3 , the motor 3 is set to the S-shape according to the rotational speed set value N * calculated by the set value calculator 61 using the acceleration α L obtained by the equation (8) as an initial value. Acceleration operation is resumed from the time point n L1 , not from the start point (= acceleration is zero), and the rotational speed set value N * reaches n 1 at time t 4. From t 4, the operation of the linear acceleration unit is started, and at time t 7 , the rotational speed set value N * reaches n 2, and from time t 7 , the operation becomes the S-shaped arrival side. the time t 13 after the rotational speed of the electric motor 3 becomes to rotate at a substantially rotational speed command value N #.
[0036]
In the description of the operation of the present invention based on FIG. 2 described above, in the same way as the description of the operation of the prior art based on FIGS. In addition, the larger the subscript number, the longer the elapsed time from the time t 0 .
[0037]
Therefore, the time t 13 where the rotational speed of the motor 3 as shown in FIG. 2 reaches the approximately rotation speed command value N # is the time earlier than the time t 15 similar time points indicated in Figure 7, also in FIG. 8 It is a time later than the time t 12 at the same time point shown. Further, the shock to the load 4 that occurs only at the start of re-acceleration from time t 3 becomes a relatively large value, but this value is also smaller than that at time t 3 shown in FIG. Since there is a delay element in the power transmission path from 3 to the load 4, in any case, the shock is further reduced.
[0038]
FIG. 4 is different from the description of the operation of the set value calculator 61 as the motor control method of the present invention at the timing shown in FIG. 2, and the motor control device 6 and the motor 3 start the S-shape from time t 0. The operation state of the motor 3 monitored by the motor monitoring circuit 23 is determined in advance at time t 8 after the operation on the side and the operation of the linear acceleration unit are finished and the operation on the S-shaped arrival side is started. FIG. 10 is a time-set value characteristic diagram illustrating a calculation operation of the set value calculator 61 after the range is exceeded.
[0039]
That is, in FIG. 4, when the generated torque value of the electric motor 3 exceeds a predetermined upper limit torque value at time t 8 for some reason, for example, the electric motor monitoring circuit 23 detects this and outputs a logic signal. In order to suppress this generated torque value to the upper limit torque value, the rotational speed limit value N * L of the electric motor 3 that is rapidly decelerated from the rotational speed setting value N * of the electric motor 3 immediately before time t 8 is output, and the logic When the signal is output, the changeover switch 24 is switched to the rotation speed limit value N * L side, and the electric motor 3 decelerates at a rotation speed substantially corresponding to the rotation speed limit value N * L. Also, during the period from time t 8 to t 9 described later, the rotational speed set value N *, which is the output of the set value calculator 61, is also suppressed to a value corresponding to the rotational speed limit value N * L.
[0040]
Next, when the generated torque value of the electric motor 3 becomes less than the upper limit torque value at time t 9 , the electric motor monitoring circuit 23 detects this, and the changeover switch 24 is switched to the rotational speed set value N * side. .
[0041]
Arithmetic operation of the time t 9 after the setting value calculator 61, when the were Osaekoma the above rotational speed setting value N * and n L2, the rotational speed n of the S-arrival side of the operation start of the motor 3 2 has a relationship of n 2 <n L2 , so that the motor 3 has the S-shape with the acceleration of the motor 3 obtained by the same calculation as the equations (1) to (8) as an initial value. The operation on the arrival side is restarted from the time point n L2 , and the rotational speed of the motor 3 is rotated at the rotational speed command value N # at time t 14 according to the calculated rotational speed setting value N *. .
[0042]
In the description of the operation of the present invention based on FIG. 4 described above, as in the description of the operations based on FIG. 2, FIG. 7, and FIG. In addition, the larger the subscript number, the longer the elapsed time from the time t 0 .
[0043]
【The invention's effect】
According to the present invention, during the acceleration operation of the motor, the motor generated torque value or the motor current value indicating the operation state of the motor exceeds a predetermined allowable range, and thereafter, the operation state exceeding the allowable range is released. Thus, the time for the electric motor to reach the rotational speed command value N # can be made relatively short, so that the operating rate of the lifting device and the conveying device using the electric motor as a power source can be improved.
[0044]
In particular, when the limiting operation for limiting the torque generated by the electric motor is instantaneous, the transmission delay due to the delay element existing in the power transmission path is also helped, and the electric motor can be re-accelerated almost shocklessly. The electric motor can be made to reach the rotational speed command value with a substantially identical S-shaped acceleration pattern as compared with acceleration.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of an electric motor control device showing an embodiment of the present invention. FIG. 2 is a time-setting characteristic diagram for explaining the operation of FIG. 1. FIG. 3 is a time-setting for explaining the operation of FIG. Characteristic diagram of values [FIG. 4] Time explaining operation of FIG. 1 -Characteristic diagram of set values [FIG. 5] FIG. 6 is a circuit configuration diagram of a motor control device showing a conventional example [FIG. 6] Time explaining operation of FIG. Characteristic diagram of set value [FIG. 7] Characteristic diagram of time-set value explaining operation of FIG. 5 [FIG. 8] Characteristic diagram of time-set value explaining operation of FIG.
DESCRIPTION OF SYMBOLS 1 ... AC power source, 2, 2a ... Electric motor control apparatus, 3 ... Electric motor, 4 ... Load, 5 ... Speed command device, 6 ... Electric motor control apparatus, 21 ... Inverter main circuit, 22 ... Inverter control circuit, 23 ... Electric motor monitoring circuit , 24 ... changeover switch, 25, 25a, 61 ... set value calculator.

Claims (1)

外部から指令される電動機の回転速度指令値N# に対して、該電動機の負荷へのショックを緩和するために、予め定めた加速度および加加速度に基づく変換を行いつつ、最終的には前記回転速度指令値N# に一致させる時間−設定値特性を有する回転速度設定値N* を導出し、この回転速度設定値N* に基づいて前記電動機を可変速制御する電動機の制御方法において、
前記回転速度設定値N* に基づいて加速運転中の前記電動機の動作状態を示す電動機の発生トルク値または電動機電流値が予め定めた許容範囲を越えた時には、前記発生トルク値または電動機電流値を前記許容範囲内にできる回転速度制限値N* Lを導出すると共に、前記電動機を該回転速度制限値N* Lに基づいて運転
前記許容範囲を越えた動作状態が解除されたときに、前記回転速度制限値N* Lに対応する前記時間−設定値特性上の回転速度設定値N* から前記電動機の加速運転を再開することを特徴とする電動機の制御方法。
The motor rotational speed command value N # commanded from the outside is converted based on a predetermined acceleration and jerk to reduce the shock to the load of the motor, and finally the rotation In a motor control method for deriving a rotational speed set value N * having a time-set value characteristic that matches a speed command value N #, and performing variable speed control of the motor based on the rotational speed set value N * ,
When the generated torque value or the motor current value of the motor indicating the operating state of the motor during the acceleration operation based on the rotation speed setting value N * exceeds a predetermined allowable range, the generated torque value or the motor current value is determined . wherein while deriving the rotation speed limit value N * L that can be within the allowable range, the electric motor driving based on the rotation speed limit value N * L,
When the operation state exceeding the allowable range is released, the acceleration operation of the motor is restarted from the rotation speed set value N * on the time-set value characteristic corresponding to the rotation speed limit value N * L. A method for controlling an electric motor.
JP2003029882A 2003-02-06 2003-02-06 Electric motor control method Expired - Lifetime JP4427952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029882A JP4427952B2 (en) 2003-02-06 2003-02-06 Electric motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029882A JP4427952B2 (en) 2003-02-06 2003-02-06 Electric motor control method

Publications (2)

Publication Number Publication Date
JP2004242440A JP2004242440A (en) 2004-08-26
JP4427952B2 true JP4427952B2 (en) 2010-03-10

Family

ID=32956937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029882A Expired - Lifetime JP4427952B2 (en) 2003-02-06 2003-02-06 Electric motor control method

Country Status (1)

Country Link
JP (1) JP4427952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291889B2 (en) * 2007-04-10 2013-09-18 富士機械製造株式会社 Automatic machine automatic operation control method
JP2021069208A (en) * 2019-10-24 2021-04-30 日本電産株式会社 Motor control device, motor unit, and motor control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748959B2 (en) * 1985-08-22 1995-05-24 三菱電機株式会社 Inverter control method
JP2507549B2 (en) * 1988-08-29 1996-06-12 株式会社東芝 Rewinder control device
JP2628094B2 (en) * 1990-03-14 1997-07-09 三菱電機株式会社 Inverter control circuit
JP2910188B2 (en) * 1990-08-27 1999-06-23 富士電機株式会社 Starting the motor
JPH06311788A (en) * 1993-04-16 1994-11-04 Kasuga Denki Kk Control method for inverter stall prevention
WO1998035903A1 (en) * 1997-02-14 1998-08-20 Hitachi, Ltd. Control device for induction motor and control device for elevator

Also Published As

Publication number Publication date
JP2004242440A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US8519662B2 (en) Method and apparatus for controlling motor torque
JP4427952B2 (en) Electric motor control method
JP5910611B2 (en) Motor control device and motor control method
JP5449069B2 (en) Refrigerator and operation method of brushless DC motor included in the refrigerator
JPH07131904A (en) Motor controller for motor operated vehicle
JP2005253213A (en) Method and device for controlling multi-axis motor
JP3764433B2 (en) Induction motor rotation speed detection apparatus and method
JPH09247990A (en) Inverter device and method for continuing operation at instantaneous break
JP4144446B2 (en) Power converter
JP2003158892A (en) Method for controlling rotational speed of electric motor
JP2001204199A (en) Control unit of permanent magnet type synchronous motor
JP2628094B2 (en) Inverter control circuit
JP2979765B2 (en) Inverter for synchronous motor
JPH11191999A (en) Control device of induction motor
JP2001018063A (en) Engine-driven generator for welding having ac electric source
JPH10257788A (en) Electric motor control method by inverter
JPS60134783A (en) Start controller of reciprocating machine driving motor
JP2005269814A (en) Inverter controller and control method
JP2888169B2 (en) Induction motor control method and device
JPH06284787A (en) Method for preventing overcurrent stall of inverter device and inverter device
JPH07222457A (en) Control method of overloaded inverter
WO2003098792A1 (en) Induction motor control method
JPS63148880A (en) Control device for inverter in service interruption
JP2000278993A (en) V/f automatic control method in starting motor by inverter
JP2007195347A (en) Control method of motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4427952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term