JP4425654B2 - Water-soluble transition metal-diamine complex, method for producing the same, and use thereof - Google Patents

Water-soluble transition metal-diamine complex, method for producing the same, and use thereof Download PDF

Info

Publication number
JP4425654B2
JP4425654B2 JP2004027321A JP2004027321A JP4425654B2 JP 4425654 B2 JP4425654 B2 JP 4425654B2 JP 2004027321 A JP2004027321 A JP 2004027321A JP 2004027321 A JP2004027321 A JP 2004027321A JP 4425654 B2 JP4425654 B2 JP 4425654B2
Authority
JP
Japan
Prior art keywords
group
water
general formula
soluble
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004027321A
Other languages
Japanese (ja)
Other versions
JP2005220041A (en
Inventor
章 天野
大輔 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp filed Critical Takasago International Corp
Priority to JP2004027321A priority Critical patent/JP4425654B2/en
Priority to PCT/JP2005/001992 priority patent/WO2005075073A1/en
Publication of JP2005220041A publication Critical patent/JP2005220041A/en
Application granted granted Critical
Publication of JP4425654B2 publication Critical patent/JP4425654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/45Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/46Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton having the sulfo groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • C07F15/004Iridium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、各種有機合成反応、特に水素移動型不斉水素化反応等の触媒として有用な水溶性の光学活性遷移金属−ジアミン錯体とこれを用いた光学活性2級アルコール類の製造方法に関する。   The present invention relates to a water-soluble optically active transition metal-diamine complex useful as a catalyst for various organic synthesis reactions, particularly a hydrogen transfer asymmetric hydrogenation reaction, and a method for producing optically active secondary alcohols using the same.

従来より、多くの遷移金属錯体が有機金属反応の触媒として使用されており、特に、貴金属錯体は、高価であるが、活性が高く安定で取り扱いが容易であるため、これを触媒として使用する多くの合成反応が開発され、とりわけ不斉錯体触媒を用いる不斉合成反応の進展は目覚ましく、これまでの手段では効率の悪い有機合成反応の高効率化を実現した報告が数多くなされている。
その中でも、とりわけ、光学活性なホスフィン配位子を持つ不斉錯体を触媒とする不斉反応は非常に多く開発され,工業化されているものもある。また、例えば、ルテニウム、ロジウム、イリジウム等の遷移金属に光学活性な窒素化合物を配位させた錯体には、不斉合成反応の触媒として優れた性能を有するものが多く、この触媒の性能を高めるためにこれまでに特殊な構造の光学活性な窒素化合物が数多く開発されてきた(非特許文献1等)。
例えば、非特許文献2及び非特許文献3に記載されている光学活性なN−p−トルエンスルホニル−1,2−ジフェニルエチレンジアミンをルテニウムに配位子として配位させた錯体が報告されている。しかしながら、この配位子を用いた反応は有機溶媒中で行なわれており、水中で行なわれた例はない。また、これらに記載の方法で医薬品中間体等を製造しようとすると、該中間体の多くは固体であるため、得られた中間体と触媒とを蒸留操作等で分離することは困難である。
Conventionally, many transition metal complexes have been used as catalysts for organometallic reactions. In particular, noble metal complexes are expensive, but are highly active, stable and easy to handle. In particular, the progress of asymmetric synthesis reactions using asymmetric complex catalysts has been remarkable, and there have been many reports that have achieved high efficiency in organic synthesis reactions that are inefficient.
Among them, in particular, many asymmetric reactions catalyzed by asymmetric complexes having optically active phosphine ligands have been developed and industrialized. In addition, for example, many complexes in which an optically active nitrogen compound is coordinated to a transition metal such as ruthenium, rhodium, and iridium have excellent performance as a catalyst for an asymmetric synthesis reaction, and the performance of this catalyst is improved. Therefore, many optically active nitrogen compounds having a special structure have been developed so far (Non-patent Document 1, etc.).
For example, a complex in which optically active Np-toluenesulfonyl-1,2-diphenylethylenediamine described in Non-Patent Document 2 and Non-Patent Document 3 is coordinated to ruthenium as a ligand has been reported. However, the reaction using this ligand is carried out in an organic solvent, and there is no example carried out in water. In addition, when trying to produce pharmaceutical intermediates and the like by the methods described in these, since many of the intermediates are solids, it is difficult to separate the obtained intermediate and the catalyst by a distillation operation or the like.

このように、触媒と生成物との分離は避けて通れない問題の一つであるが、特に、均一系触媒反応では、使用する触媒は容易に有機相に溶けるので、触媒と生成物の分離には蒸留や、再結晶等の煩雑な手法が必要である。そのような問題点の解決方法の一つとして、水溶性の触媒を用い、水を含む溶媒系で反応を行えば、生成物は有機相に溶け、触媒は水相に溶けるので抽出操作だけで触媒の分離が容易にできることが考えられる。このような状況下において、水溶性ホスフィン配位子の開発は数多く報告されている。
例えば、特許文献1にはスルホン化−BINAPを用いた不斉水素化反応が開示されている。しかしながら、一度水素化を行なった後、水に溶解した触媒の再使用についての記述はない。
非特許文献4には、ベンゼンスルホニル−1,2−ジアミノシクロヘキサンのフェニル基のパラ位をスルホン化した配位子を用いた水素移動型還元反応の報告がある。しかしながら、この反応は、溶媒としてイソプロパノール−水中で反応を行っているため、生成物の分離は蒸留により行わねばならない。
非特許文献5には、片方のアミノ基にトシル基を導入し、また、フェニル基のオルト位をスルホン化したジフェニルエチレンジアミン誘導体が記載され、該ジフェニルエチレンジアミン誘導体を不斉水素化触媒として用い、水−ジクロロメタン混合溶媒で不斉水素化反応を行うことが報告されている。しかしながら、非特許文献5中には、錯体の合成方法についての記載はなく、また、不斉水素化反応に際しては、相間移動触媒を用いる必要があるため、コストがかかり、更には廃液処理等の問題点を有していた。
Thus, separation of the catalyst and the product is one of the problems that cannot be avoided, but in particular, in homogeneous catalysis, the catalyst used is easily dissolved in the organic phase, so the separation of the catalyst and the product is difficult. Requires complicated methods such as distillation and recrystallization. One solution to this problem is to use a water-soluble catalyst and perform the reaction in a solvent system containing water, so that the product dissolves in the organic phase and the catalyst dissolves in the aqueous phase. It is conceivable that the catalyst can be easily separated. Under such circumstances, many developments of water-soluble phosphine ligands have been reported.
For example, Patent Document 1 discloses an asymmetric hydrogenation reaction using sulfonated-BINAP. However, there is no description about the reuse of the catalyst dissolved in water after hydrogenation once.
Non-Patent Document 4 reports a hydrogen transfer reduction reaction using a ligand obtained by sulfonating the para-position of the phenyl group of benzenesulfonyl-1,2-diaminocyclohexane. However, since this reaction is performed in isopropanol-water as a solvent, the product must be separated by distillation.
Non-Patent Document 5 describes a diphenylethylenediamine derivative in which a tosyl group is introduced into one amino group and the ortho position of the phenyl group is sulfonated, and the diphenylethylenediamine derivative is used as an asymmetric hydrogenation catalyst. -It has been reported that an asymmetric hydrogenation reaction is carried out in a mixed solvent of dichloromethane. However, in Non-Patent Document 5, there is no description about a method for synthesizing a complex, and it is necessary to use a phase transfer catalyst for the asymmetric hydrogenation reaction. Had problems.

特開平5−170780号公報JP-A-5-170780 Chem Rev., 92, 1051-1069(1992)Chem Rev., 92, 1051-1069 (1992) J. Am. Chem. Soc., vol.117, 7562-7563(1995)J. Am. Chem. Soc., Vol.117, 7562-7563 (1995) J. Am. Chem. Soc., vol.118, 4916-4917(1996)J. Am. Chem. Soc., Vol.118, 4916-4917 (1996) Tetrahedron Lett., vol.42, 4041-4043(2001)Tetrahedron Lett., Vol.42, 4041-4043 (2001) Organic Letters, Vol.5, No.12, 2103 (2003)Organic Letters, Vol.5, No.12, 2103 (2003) Angewandt Chemie, Int. Ed. Engl., 36, No.3, 288 (1997)Angewandt Chemie, Int. Ed. Engl., 36, No. 3, 288 (1997) Angewandt Chemie, Int. Ed. Engl., 36, No.3, 286 (1997)Angewandt Chemie, Int. Ed. Engl., 36, No. 3, 286 (1997)

本発明は、上記した如き現状に鑑みなされたもので、例えば、これを触媒として用いて反応を行うことにより、ケトンから光学活性アルコールが収率及び光学純度良く得られる新規な金属錯体触媒であって、水系溶媒中で使用することが出来、且つ、反応後は分液等により容易に反応生成物と分離することが出来る、リサイクルが可能な水溶性の遷移金属錯体を提供することを目的とする。   The present invention has been made in view of the current situation as described above. For example, the present invention is a novel metal complex catalyst capable of obtaining an optically active alcohol from a ketone with high yield and optical purity by performing a reaction using the catalyst as a catalyst. An object of the present invention is to provide a recyclable water-soluble transition metal complex that can be used in an aqueous solvent and can be easily separated from a reaction product by liquid separation after the reaction. To do.

本発明は、下記一般式(1)

Figure 0004425654
[式中、R及びRは夫々独立して、水素原子、置換基を有していてもよい炭化水素基又は−SO13(但し、R13は置換基を有していてもよい炭化水素基、カンフォリル基又は置換アミノ基を示す。)を示し、R〜R12は夫々独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアラルキルオキシ基又は−SO14(但し、R14は水素原子又は金属原子を示す。)を示し、Mは遷移金属を示し、Xはハロゲン原子を示し、Lは配位子を示す。但し、R〜R12のうちの少なくとも1つは−SO14である。]で表される水溶性遷移金属−ジアミン錯体に関する。 The present invention relates to the following general formula (1)
Figure 0004425654
[Wherein, R 1 and R 2 are each independently a hydrogen atom, a hydrocarbon group optionally having substituent (s) or —SO 2 R 13 (provided that R 13 may have substituent (s); A hydrocarbon group, a camphoryl group or a substituted amino group.), R 3 to R 12 each independently have a hydrogen atom, a hydrocarbon group which may have a substituent, or a substituent. An optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group or —SO 3 R 14 (wherein R 14 represents a hydrogen atom or a metal atom), M represents a transition metal, X represents a halogen atom, and L represents a ligand. However, at least one of R 3 to R 12 is —SO 3 R 14 . ] It is related with the water-soluble transition metal-diamine complex represented by this.

また、本発明は、上記水溶性遷移金属−ジアミン錯体の光学活性体に関する。   Moreover, this invention relates to the optically active substance of the said water-soluble transition metal-diamine complex.

更に、本発明は、一般式(2)

Figure 0004425654
[式中、R及びRは夫々独立して、水素原子、置換基を有していてもよい炭化水素基又は−SO13(但し、R13は置換基を有していてもよい炭化水素基、カンフォリル基又は置換アミノ基を示す。)を示し、R〜R12は夫々独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアラルキルオキシ基又は−SO14(但し、R14は水素原子又は金属原子を示す。)を示す。但し、R〜R12のうちの少なくとも1つは−SO14である。]で表される水溶性ジアミン化合物と、一般式(3)
[MX (3)
(式中、Mは遷移金属を示し、Xはハロゲン原子を示し、Lは配位子を示し、mは2又は3を示し、nは0又は1を示し、pは1又は2を示す。)で表される遷移金属化合物とを反応させることを特徴とする、上記水溶性遷移金属−ジアミン錯体の製造方法に関する。 Furthermore, the present invention relates to a general formula (2)
Figure 0004425654
[Wherein, R 1 and R 2 are each independently a hydrogen atom, a hydrocarbon group optionally having substituent (s) or —SO 2 R 13 (provided that R 13 may have substituent (s); A hydrocarbon group, a camphoryl group or a substituted amino group.), R 3 to R 12 each independently have a hydrogen atom, a hydrocarbon group which may have a substituent, or a substituent. An optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group or —SO 3 R 14 (wherein R 14 represents a hydrogen atom or a metal atom). However, at least one of R 3 to R 12 is —SO 3 R 14 . And a water-soluble diamine compound represented by the general formula (3)
[MX m L n ] p (3)
(In the formula, M represents a transition metal, X represents a halogen atom, L represents a ligand, m represents 2 or 3, n represents 0 or 1, and p represents 1 or 2. It is related with the manufacturing method of the said water-soluble transition metal-diamine complex characterized by reacting with the transition metal compound represented by this.

更にまた、本発明は、上記一般式(2)で表される水溶性ジアミン化合物が、光学活性水溶性ジアミン化合物であり、得られる水溶性遷移金属−ジアミン錯体が、光学活性水溶性遷移金属−ジアミン錯体である、上記水溶性遷移金属−ジアミン錯体の製造方法に関する。   Furthermore, in the present invention, the water-soluble diamine compound represented by the general formula (2) is an optically active water-soluble diamine compound, and the resulting water-soluble transition metal-diamine complex is an optically active water-soluble transition metal- It is related with the manufacturing method of the said water-soluble transition metal-diamine complex which is a diamine complex.

また、本発明は、一般式(2b)

Figure 0004425654
[式中、R及びRは夫々独立して、水素原子、置換基を有していてもよい炭化水素基又は−SO13(但し、R13は置換基を有していてもよい炭化水素基、カンフォリル基又は置換アミノ基を示す。)を示し、R、R〜R及びR10〜R12は夫々独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアラルキルオキシ基又は−SO14(但し、R14は水素原子又は金属原子を示す。)を示す。]]で表される水溶性ジアミン化合物に関する。 Further, the present invention provides a compound represented by the general formula (2b)
Figure 0004425654
[Wherein, R 1 and R 2 are each independently a hydrogen atom, a hydrocarbon group optionally having substituent (s) or —SO 2 R 13 (provided that R 13 may have substituent (s); R 3 , R 5 to R 8 and R 10 to R 12 may each independently have a hydrogen atom or a substituent, which represents a good hydrocarbon group, camphoryl group or substituted amino group. A hydrocarbon group, a heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, or a substituent A good aralkyloxy group or —SO 3 R 14 (wherein R 14 represents a hydrogen atom or a metal atom). ] It is related with the water-soluble diamine compound represented by this.

更に、本発明は、上記水溶性ジアミン化合物の光学活性体に関する。   Furthermore, this invention relates to the optically active substance of the said water-soluble diamine compound.

更にまた、本発明は、上記光学活性水溶性遷移金属−ジアミン錯体を含んでなる不斉合成触媒に関する。   Furthermore, the present invention relates to an asymmetric synthesis catalyst comprising the optically active water-soluble transition metal-diamine complex.

また、本発明は、上記光学活性水溶性ジアミン化合物と、一般式(3)
[MX (3)
(式中、Mは遷移金属を示し、Xはハロゲン原子を示し、Lは配位子を示し、mは2又は3を示し、nは0又は1を示し、pは1又は2を示す。)で表される遷移金属化合物とを含んでなる不斉合成触媒に関する。
The present invention also provides the optically active water-soluble diamine compound and the general formula (3).
[MX m L n ] p (3)
(In the formula, M represents a transition metal, X represents a halogen atom, L represents a ligand, m represents 2 or 3, n represents 0 or 1, and p represents 1 or 2. And an asymmetric synthesis catalyst comprising a transition metal compound represented by:

更に、本発明は、一般式(4)

Figure 0004425654
[式中、R21及びR22は夫々独立して、置換基を有していてもよい炭化水素基、置換基を有していてもよい複素環基又はフェロセニル基を示す(但し、R21及びR22は同一とはならない。)。また、R21とR22とが互いに結合して、カルボニル基の炭素原子と一緒になって環を形成していてもよい。]で表されるケトン類を、上記何れかの不斉合成触媒の存在下、水溶媒中で不斉水素化反応させることを特徴とする、一般式(5)
Figure 0004425654
(式中、*は不斉炭素を示し、R21及びR22は前記と同じ。)で表される光学活性2級アルコール類の製造方法に関する。 Furthermore, the present invention relates to a general formula (4)
Figure 0004425654
[Wherein, R 21 and R 22 each independently represent a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, or a ferrocenyl group (provided that R 21 And R 22 are not the same). R 21 and R 22 may be bonded to each other to form a ring together with the carbon atom of the carbonyl group. Wherein the ketone represented by the general formula (5) is subjected to an asymmetric hydrogenation reaction in an aqueous solvent in the presence of any of the above-mentioned asymmetric synthesis catalysts.
Figure 0004425654
(Wherein, * represents an asymmetric carbon, and R 21 and R 22 are the same as described above).

更にまた、本発明は、使用後の不斉合成触媒をリサイクルする上記光学活性2級アルコール類の製造方法に関する。   Furthermore, this invention relates to the manufacturing method of the said optically active secondary alcohol which recycles the asymmetric synthesis catalyst after use.

本発明の光学活性水溶性遷移金属−ジアミン錯体を触媒として用いた不斉水素化反応においては、触媒のリサイクルが可能であり、コストの削減につながる。また、本発明の光学活性水溶性遷移金属−ジアミン錯体を触媒として用いた不斉水素化反応は、水溶媒中で行えるので、環境面に配慮した不斉水素化反応と言うことも出来る。   In the asymmetric hydrogenation reaction using the optically active water-soluble transition metal-diamine complex of the present invention as a catalyst, the catalyst can be recycled, leading to cost reduction. Moreover, since the asymmetric hydrogenation reaction using the optically active water-soluble transition metal-diamine complex of the present invention as a catalyst can be carried out in an aqueous solvent, it can also be said to be an asymmetric hydrogenation reaction considering the environment.

上記一般式(1)、(2)及び(2b)において、R、Rで示される置換基を有していてもよい炭化水素基としては、炭化水素基及び置換炭化水素基が挙げられる。
炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられる。
In the general formulas (1), (2) and (2b), examples of the hydrocarbon group which may have a substituent represented by R 1 or R 2 include a hydrocarbon group and a substituted hydrocarbon group. .
Examples of the hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, and the like.

アルキル基としては、直鎖状でも、分岐状でも或いは環状でもよい、例えば炭素数1〜15、好ましくは炭素数1〜10のアルキル基が挙げられ、具体例としては、例えば、メチル基、エチル基、n−プロピル基、2−プロピル基、n−ブチル基、2−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、2−ペンチル基、tert−ペンチル基、2−メチルブチル基、3−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、tert−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、2−メチルペンタン−3−イル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
アルケニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2〜15、好ましくは炭素数2〜10、より好ましくは炭素数2〜6のアルケニル基が挙げられ、具体例としては、例えば、エテニル基、プロペニル基、1−ブテニル基、ペンテニル基、ヘキセニル基等が挙げられる。
アルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2〜15、好ましくは炭素数2〜10、より好ましくは炭素数2〜6のアルキニル基が挙げられ、具体例としては、例えば、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、3−ブチニル基、ペンチニル基、ヘキシニル基等が挙げられる。
The alkyl group may be linear, branched or cyclic, and examples thereof include an alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms. Specific examples include, for example, methyl group, ethyl Group, n-propyl group, 2-propyl group, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 2-pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, tert-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group 2-methylpentan-3-yl group, heptyl group, octyl group, nonyl group, decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group Group, and the like.
The alkenyl group may be linear or branched, for example, an alkenyl group having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms. Specific examples include, for example, Ethenyl group, propenyl group, 1-butenyl group, pentenyl group, hexenyl group and the like.
The alkynyl group may be linear or branched, and examples thereof include alkynyl groups having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms. Specific examples include, for example, Ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-butynyl group, pentynyl group, hexynyl group and the like.

アリール基としては、例えば炭素数6〜14のアリール基が挙げられ、具体例としては、フェニル基、トリル基、キシリル基、1−ナフチル基、2−ナフチル基、アントリル基等が挙げられる。
アラルキル基としては、前記アルキル基の少なくとも1個の水素原子が前記アリール基で置換された基が挙げられ、例えば炭素数7〜15のアラルキル基が好ましく、具体例としては、例えば、ベンジル基、2−フェネチル基、1−フェニルプロピル基、3−ナフチルプロピル基等が挙げられる。
及びRにおける好ましい炭化水素基としては、アルキル基、アリール基、アラルキル基が挙げられる。
Examples of the aryl group include an aryl group having 6 to 14 carbon atoms, and specific examples include a phenyl group, a tolyl group, a xylyl group, a 1-naphthyl group, a 2-naphthyl group, and an anthryl group.
Examples of the aralkyl group include groups in which at least one hydrogen atom of the alkyl group is substituted with the aryl group. For example, an aralkyl group having 7 to 15 carbon atoms is preferable, and specific examples include, for example, a benzyl group, 2-phenethyl group, 1-phenylpropyl group, 3-naphthylpropyl group and the like can be mentioned.
Preferred hydrocarbon groups for R 1 and R 2 include an alkyl group, an aryl group, and an aralkyl group.

置換炭化水素基(置換基を有する炭化水素基)としては、上記炭化水素基の少なくとも1個の水素原子が置換基で置換された炭化水素基が挙げられる。例えば、置換アルキル基、置換アリール基、置換アルケニル基、置換アルキニル基、置換アラルキル基等が挙げられる。
置換基としては、炭化水素基、ハロゲン原子、ハロゲン化炭化水素基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、置換アミノ基等が挙げられる。
Examples of the substituted hydrocarbon group (hydrocarbon group having a substituent) include hydrocarbon groups in which at least one hydrogen atom of the hydrocarbon group is substituted with a substituent. Examples thereof include a substituted alkyl group, a substituted aryl group, a substituted alkenyl group, a substituted alkynyl group, and a substituted aralkyl group.
Examples of the substituent include a hydrocarbon group, a halogen atom, a halogenated hydrocarbon group, an alkoxy group, an aryloxy group, an aralkyloxy group, and a substituted amino group.

置換基としての炭化水素基は、上記炭化水素基と全く同じである。
置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
置換基としてのハロゲン化炭化水素基は、上記炭化水素基の少なくとも1個の水素原子がハロゲン置換(例えばフッ素置換、塩素置換、臭素置換、ヨウ素置換等)された基が挙げられる。ハロゲン化炭化水素基の好ましいものとしては、例えば、ハロゲン化アルキル基等が挙げられる。ハロゲン化アルキル基としては、例えば、炭素数1〜10のハロゲン化アルキル基が好ましいものとして挙げられ、その具体例としては、例えば、クロロメチル基、ブロモメチル基、2−クロロエチル基、3−ブロモプロピル基、フルオロメチル基、フルオロエチル基、フルオロプロピル基、フルオロブチル基、フルオロペンチル基、フルオロヘキシル基、フルオロヘプチル基、フルオロオクチル基、フルオロノニル基、フルオロデシル基、ジフルオロメチル基、ジフルオロエチル基、フルオロシクロヘキシル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、3,3,3−トリフルオロプロピル基、ペンタフルオロエチル基、3,3,4,4,4−ペンタフルオロブチル基、ペルフルオロ−n−プロピル基、ペルフルオロイソプロピル基、ペルフルオロ−n−ブチル基、ペルフルオロイソブチル基、ペルフルオロ−tert−ブチル基、ペルフルオロ−sec−ブチル基、ペルフルオロペンチル基、ペルフルオロイソペンチル基、ペルフルオロ−tert−ペンチル基、ペルフルオロ−n−ヘキシル基、ペルフルオロイソヘキシル基、ペルフルオロヘプチル基、ペルフルオロオクチル基、ペルフルオロノニル基、ペルフルオロデシル基、2−ペルフルオロオクチルエチル基、ペルフルオロシクロプロピル基、ペルフルオロシクロペンチル基、ペルフルオロシクロヘキシル基等が挙げられる。
The hydrocarbon group as a substituent is exactly the same as the above hydrocarbon group.
Examples of the halogen atom as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the halogenated hydrocarbon group as a substituent include groups in which at least one hydrogen atom of the above hydrocarbon group is halogen-substituted (for example, fluorine substitution, chlorine substitution, bromine substitution, iodine substitution, etc.). Preferable examples of the halogenated hydrocarbon group include a halogenated alkyl group. As the halogenated alkyl group, for example, a halogenated alkyl group having 1 to 10 carbon atoms is preferable, and specific examples thereof include, for example, chloromethyl group, bromomethyl group, 2-chloroethyl group, 3-bromopropyl group. Group, fluoromethyl group, fluoroethyl group, fluoropropyl group, fluorobutyl group, fluoropentyl group, fluorohexyl group, fluoroheptyl group, fluorooctyl group, fluorononyl group, fluorodecyl group, difluoromethyl group, difluoroethyl group, Fluorocyclohexyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group, pentafluoroethyl group, 3,3,4,4,4-pentafluorobutyl group Perfluoro-n-propyl group, perfluoroi Propyl group, perfluoro-n-butyl group, perfluoroisobutyl group, perfluoro-tert-butyl group, perfluoro-sec-butyl group, perfluoropentyl group, perfluoroisopentyl group, perfluoro-tert-pentyl group, perfluoro-n-hexyl group Perfluoroisohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, 2-perfluorooctylethyl group, perfluorocyclopropyl group, perfluorocyclopentyl group, perfluorocyclohexyl group and the like.

置換基としてのアルコキシ基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば炭素数1〜6のアルコキシ基が挙げられ、その具体例としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、2−プロポキシ基、n−ブトキシ基、2−ブトキシ基、イソブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、2−メチルブトキシ基、3−メチルブトキシ基、2,2−ジメチルプロピルオキシ基、n−ヘキシルオキシ基、2−メチルペンチルオキシ基、3−メチルペンチルオキシ基、4−メチルペンチルオキシ基、5−メチルペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
置換基としてのアリールオキシ基としては、例えば炭素数6〜14のアリールオキシ基が挙げられ、その具体例としては、例えば、フェノキシ基、ナフチルオキシ基、アントリルオキシ基等が挙げられる。
置換基としてのアラルキルオキシ基としては、例えば炭素数7〜12のアラルキルオキシ基が挙げられ、その具体例としては、例えば、ベンジルオキシ基、2−フェネチルオキシ基、1−フェニルプロポキシ基、2−フェニルプロポキシ基、3−フェニルプロポキシ基、1−フェニルブトキシ基、2−フェニルブトキシ基、3−フェニルブトキシ基、4−フェニルブトキシ基、1−フェニルペンチルオキシ基、2−フェニルペンチルオキシ基、3−フェニルペンチルオキシ基、4−フェニルペンチルオキシ基、5−フェニルペンチルオキシ基、1−フェニルヘキシルオキシ基、2−フェニルヘキシルオキシ基、3−フェニルヘキシルオキシ基、4−フェニルヘキシルオキシ基、5−フェニルヘキシルオキシ基、6−フェニルヘキシルオキシ基等が挙げられる。
Examples of the alkoxy group as the substituent include linear, branched or cyclic, for example, an alkoxy group having 1 to 6 carbon atoms, and specific examples thereof include, for example, a methoxy group, an ethoxy group, and n- Propoxy group, 2-propoxy group, n-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, 2-methylbutoxy group, 3-methylbutoxy group, 2,2-dimethylpropyl Examples include an oxy group, an n-hexyloxy group, a 2-methylpentyloxy group, a 3-methylpentyloxy group, a 4-methylpentyloxy group, a 5-methylpentyloxy group, and a cyclohexyloxy group.
Examples of the aryloxy group as a substituent include an aryloxy group having 6 to 14 carbon atoms, and specific examples thereof include a phenoxy group, a naphthyloxy group, and an anthryloxy group.
Examples of the aralkyloxy group as a substituent include an aralkyloxy group having 7 to 12 carbon atoms, and specific examples thereof include, for example, benzyloxy group, 2-phenethyloxy group, 1-phenylpropoxy group, 2- Phenylpropoxy group, 3-phenylpropoxy group, 1-phenylbutoxy group, 2-phenylbutoxy group, 3-phenylbutoxy group, 4-phenylbutoxy group, 1-phenylpentyloxy group, 2-phenylpentyloxy group, 3- Phenylpentyloxy group, 4-phenylpentyloxy group, 5-phenylpentyloxy group, 1-phenylhexyloxy group, 2-phenylhexyloxy group, 3-phenylhexyloxy group, 4-phenylhexyloxy group, 5-phenyl Hexyloxy group, 6-phenylhexyloxy group And the like.

置換基としての置換アミノ基としては、アミノ基の1個又は2個の水素原子がアミノ保護基等の置換基で置換されたアミノ基が挙げられる。置換アミノ基の置換基としてのアミノ保護基は、通常、アミノ保護基として用いられているものであれば何れも使用可能であり、例えば「PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDITION(JOHN WILEY & SONS、INC.(1999)」にアミノ保護基として記載されているもの等が挙げられる。アミノ保護基の具体例としては、例えば、アルキル基、アリール基、アラルキル基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、置換スルホニル基等が挙げられる。
上記アミノ保護基におけるアルキル基、アリール基及びアラルキル基は上記炭化水素基のところで説明した各基と同じである。
アシル基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば、脂肪族カルボン酸、芳香族カルボン酸等のカルボン酸由来の炭素数1〜20のアシル基が挙げられ、具体例としては、例えば、ホルミル基、アセチル基、プロピオニル基、ブチリル基、ピバロイル基、ペンタノイル基、ヘキサノイル基、ラウロイル基、ステアロイル基、ベンゾイル基等が挙げられる。
Examples of the substituted amino group as a substituent include an amino group in which one or two hydrogen atoms of the amino group are substituted with a substituent such as an amino protecting group. Any amino protecting group as a substituent of the substituted amino group can be used as long as it is usually used as an amino protecting group.For example, `` PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDITION (JOHN WILEY & SONS, INC (1999) "as specific examples of the amino protecting group include, for example, alkyl group, aryl group, aralkyl group, acyl group, alkoxycarbonyl group, aryloxycarbonyl. Group, aralkyloxycarbonyl group, substituted sulfonyl group and the like.
The alkyl group, aryl group and aralkyl group in the amino protecting group are the same as those described for the hydrocarbon group.
The acyl group may be linear, branched or cyclic, and examples thereof include C1-C20 acyl groups derived from carboxylic acids such as aliphatic carboxylic acids and aromatic carboxylic acids. Examples include formyl group, acetyl group, propionyl group, butyryl group, pivaloyl group, pentanoyl group, hexanoyl group, lauroyl group, stearoyl group, benzoyl group and the like.

アルコキシカルボニル基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば炭素数2〜20のアルコキシカルボニル基が挙げられ、その具体例としてメトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、2−プロポキシカルボニル基、n−ブトキシカルボニル基、tert−ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、2−エチルヘキシルオキシカルボニル基、ラウリルオキシカルボニル基、ステアリルオキシカルボニル基、シクロヘキシルオキシカルボニル基等が挙げられる。
アリールオキシカルボニル基としては、例えば炭素数7〜20のアリールオキシカルボニル基が挙げられ、その具体例としてフェノキシカルボニル基、ナフチルオキシカルボニル基等が挙げられる。
アラルキルオキシカルボニル基としては、例えば炭素数8〜20のアラルキルオキシカルボニル基が挙げられ、その具体例としてベンジルオキシカルボニル基、フェネチルオキシカルボニル基、9−フルオレニルメチルオキシカルボニル基等が挙げられる。
The alkoxycarbonyl group may be linear, branched or cyclic, and examples thereof include an alkoxycarbonyl group having 2 to 20 carbon atoms. Specific examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, 2-propoxycarbonyl group, n-butoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, lauryloxycarbonyl group, stearyloxycarbonyl group, cyclohexyloxycarbonyl group, etc. Is mentioned.
Examples of the aryloxycarbonyl group include an aryloxycarbonyl group having 7 to 20 carbon atoms, and specific examples thereof include a phenoxycarbonyl group and a naphthyloxycarbonyl group.
Examples of the aralkyloxycarbonyl group include an aralkyloxycarbonyl group having 8 to 20 carbon atoms, and specific examples thereof include a benzyloxycarbonyl group, a phenethyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, and the like.

置換スルホニル基としては、例えばR−SO−(Rは炭化水素基、置換炭化水素基又は置換アミノ基を示す。)で表される置換スルホニル基が挙げられる。Rで示される炭化水素基、置換炭化水素基及び置換アミノ基については上記したそれぞれの基と同じである。置換スルホニル基の具体例としては、例えば、メタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンスルホニル基、p−トルエンスルホニル基、−SON(CH基等が挙げられる。 Examples of the substituted sulfonyl group include a substituted sulfonyl group represented by R a —SO 2 — (R a represents a hydrocarbon group, a substituted hydrocarbon group or a substituted amino group). The hydrocarbon group, substituted hydrocarbon group and substituted amino group represented by Ra are the same as the above-described groups. Specific examples of the substituted sulfonyl group include a methanesulfonyl group, a trifluoromethanesulfonyl group, a benzenesulfonyl group, a p-toluenesulfonyl group, and a —SO 2 N (CH 3 ) 2 group.

アルキル基で置換されたアミノ基、即ち、アルキル置換アミノ基の具体例としては、例えば、N−メチルアミノ基、N,N−ジメチルアミノ基、N,N−ジエチルアミノ基、N,N−ジイソプロピルアミノ基、N−シクロヘキシルアミノ基等のモノ又はジアルキルアミノ基が挙げられる。アリール基で置換されたアミノ基、即ちアリール置換アミノ基の具体例としては、例えば、N−フェニルアミノ基、N,N−ジフェニルアミノ基、N−ナフチルアミノ基、N−ナフチル−N−フェニルアミノ基等のモノ又はジアリールアミノ基が挙げられる。アラルキル基で置換されたアミノ基、即ちアラルキル置換アミノ基の具体例としては、例えば、N−ベンジルアミノ基、N,N−ジベンジルアミノ基等のモノ又はジアラルキルアミノ基が挙げられる。アシル基で置換されたアミノ基、即ちアシルアミノ基の具体例としては、例えば、ホルミルアミノ基、アセチルアミノ基、プロピオニルアミノ基、ピバロイルアミノ基、ペンタノイルアミノ基、ヘキサノイルアミノ基、ベンゾイルアミノ基等が挙げられる。   Specific examples of the amino group substituted with an alkyl group, that is, the alkyl-substituted amino group include, for example, N-methylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-diisopropylamino. And mono- or dialkylamino groups such as N-cyclohexylamino group. Specific examples of an amino group substituted with an aryl group, that is, an aryl-substituted amino group include, for example, an N-phenylamino group, an N, N-diphenylamino group, an N-naphthylamino group, and an N-naphthyl-N-phenylamino group. And mono- or diarylamino groups such as groups. Specific examples of the amino group substituted with an aralkyl group, that is, an aralkyl-substituted amino group include mono- or diaralkylamino groups such as an N-benzylamino group and an N, N-dibenzylamino group. Specific examples of the amino group substituted with an acyl group, that is, the acylamino group include, for example, formylamino group, acetylamino group, propionylamino group, pivaloylamino group, pentanoylamino group, hexanoylamino group, benzoylamino group, and the like. Can be mentioned.

アルコキシカルボニル基で置換されたアミノ基、即ちアルコキシカルボニルアミノ基の具体例としては、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、n−プロポキシカルボニルアミノ基、n−ブトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、ペンチルオキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基等が挙げられる。
アリールオキシカルボニル基で置換されたアミノ基、即ちアリールオキシカルボニルアミノ基の具体例としては、例えば、アミノ基の1個の水素原子が前記したアリールオキシカルボニル基で置換されたアミノ基が挙げられ、その具体例としてフェノキシカルボニルアミノ基、ナフチルオキシカルボニルアミノ基等が挙げられる。
アラルキルオキシカルボニル基で置換されたアミノ基、即ちアラルキルオキシカルボニルアミノ基の具体例としては、例えば、ベンジルオキシカルボニルアミノ基等が挙げられる。
置換スルホニル基で置換されたアミノ基の具体例としては、−NHSOCH、−NHSO、−NHSOCH、−NHSOCF、−NHSON(CH等が挙げられる。
Specific examples of the amino group substituted with an alkoxycarbonyl group, that is, the alkoxycarbonylamino group include, for example, a methoxycarbonylamino group, an ethoxycarbonylamino group, an n-propoxycarbonylamino group, an n-butoxycarbonylamino group, and a tert-butoxy. Examples thereof include a carbonylamino group, a pentyloxycarbonylamino group, and a hexyloxycarbonylamino group.
Specific examples of the amino group substituted with an aryloxycarbonyl group, that is, the aryloxycarbonylamino group include, for example, an amino group in which one hydrogen atom of the amino group is substituted with the aryloxycarbonyl group described above, Specific examples thereof include a phenoxycarbonylamino group and a naphthyloxycarbonylamino group.
Specific examples of the amino group substituted with an aralkyloxycarbonyl group, that is, an aralkyloxycarbonylamino group include a benzyloxycarbonylamino group.
Specific examples of the amino group substituted with a substituted sulfonyl group include —NHSO 2 CH 3 , —NHSO 2 C 6 H 5 , —NHSO 2 C 6 H 4 CH 3 , —NHSO 2 CF 3 , —NHSO 2 N ( CH 3 ) 2 and the like.

上記一般式(1)、(2)及び(2b)において、R、Rで示される−SO13における、R13で示される置換基を有していてもよい炭化水素基及び置換アミノ基は、上記したものと同じでよい。置換基を有していてもよい炭化水素基が置換炭化水素基の場合における、好ましい置換基は、炭素数1〜5のアルキル基、炭素数2〜5のアルケニル基、炭素数1〜5のアルコキシ基、炭素数1〜5のアルキル置換アミノ基、炭素数2〜3のアシルアミノ基等が挙げられる。 The general formula (1), (2) and in (2b), R 1, R in the -SO 2 R 13 represented by 2, R 13 substituent substituted hydrocarbon group and substituted have shown by The amino group may be the same as described above. In the case where the hydrocarbon group which may have a substituent is a substituted hydrocarbon group, preferred substituents are alkyl groups having 1 to 5 carbon atoms, alkenyl groups having 2 to 5 carbon atoms, and 1 to 5 carbon atoms. Examples thereof include an alkoxy group, an alkyl-substituted amino group having 1 to 5 carbon atoms, and an acylamino group having 2 to 3 carbon atoms.

上記一般式(1)、(2)及び(2b)において、R〜R12で示される置換基を有していてもよい炭化水素基は、上記R、Rのところで説明した置換基を有していてもよい炭化水素基と同じでよい。
置換基を有していてもよい複素環基としては、複素環基及び置換複素環基が挙げられる。複素環基としては、脂肪族複素環基及び芳香族複素環基が挙げられる。
脂肪族複素環基としては、例えば、炭素数2〜14で、異種原子として少なくとも1個、好ましくは1〜3個の例えば窒素原子、酸素原子及び/又は硫黄原子等のヘテロ原子を含んでいる、5〜8員、好ましくは5又は6員の単環の脂肪族複素環基、多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、ピロリジル−2−オン基、ピペリジノ基、ピペラジニル基、モルホリノ基、モルホリニル基、テトラヒドロフリル基、テトラヒドロピラニル基等が挙げられる。
芳香族複素環基としては、例えば、炭素数2〜15で、異種原子として少なくとも1個、好ましくは1〜3個の窒素原子、酸素原子及び/又は硫黄原子等の異種原子を含んでいる、5〜8員、好ましくは5又は6員の単環式ヘテロアリール基、多環式又は縮合環式のヘテロアリール基が挙げられ、その具体例としては、フリル基、チエニル基、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、アクリジル基、アクリジニル基等が挙げられる。
置換複素環基(置換基を有する複素環基)としては、上記複素環基の少なくとも1個の水素原子が置換基で置換された複素環基が挙げられる。置換複素環基(置換基を有する複素環基)としては、置換脂肪族複素環基及び置換芳香族複素環基が挙げられる。置換基としては、上記R、Rのところで説明した置換基を有していてもよい炭化水素基における置換基と同じでよい。
In the general formulas (1), (2) and (2b), the hydrocarbon group which may have a substituent represented by R 3 to R 12 is the substituent described in the above R 1 and R 2. It may be the same as the hydrocarbon group which may have.
Examples of the heterocyclic group which may have a substituent include a heterocyclic group and a substituted heterocyclic group. Examples of the heterocyclic group include an aliphatic heterocyclic group and an aromatic heterocyclic group.
Examples of the aliphatic heterocyclic group include 2 to 14 carbon atoms and at least one hetero atom, preferably 1 to 3 hetero atoms such as a nitrogen atom, an oxygen atom and / or a sulfur atom. , 5 to 8 membered, preferably 5 or 6 membered monocyclic aliphatic heterocyclic group, polycyclic or condensed aliphatic heterocyclic group. Specific examples of the aliphatic heterocyclic group include pyrrolidyl-2-one group, piperidino group, piperazinyl group, morpholino group, morpholinyl group, tetrahydrofuryl group, tetrahydropyranyl group and the like.
As the aromatic heterocyclic group, for example, it has 2 to 15 carbon atoms and contains at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom and / or sulfur atom. Examples thereof include a 5- to 8-membered, preferably 5- or 6-membered monocyclic heteroaryl group, polycyclic or condensed ring heteroaryl group, and specific examples thereof include a furyl group, a thienyl group, a pyridyl group, and a pyrimidyl group. Group, pyrazyl group, pyridazyl group, pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, benzofuryl group, benzothienyl group, quinolyl group, isoquinolyl group, quinoxalyl group, phthalazyl group, quinazolyl group, naphthyridyl group, cinnolyl group, benzimidazolyl group Benzoxazolyl group, benzothiazolyl group, acridyl group, acridinyl group and the like.
Examples of the substituted heterocyclic group (heterocyclic group having a substituent) include heterocyclic groups in which at least one hydrogen atom of the heterocyclic group is substituted with a substituent. Examples of the substituted heterocyclic group (a heterocyclic group having a substituent) include a substituted aliphatic heterocyclic group and a substituted aromatic heterocyclic group. The substituent may be the same as the substituent in the hydrocarbon group which may have the substituent described in the above R 1 and R 2 .

置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基及び置換基を有していてもよいアラルキルオキシ基は、上記R、Rのところで説明した置換基を有していてもよい炭化水素基の置換基である、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基及び置換基を有していてもよいアラルキルオキシ基と同じでよい。 The alkoxy group which may have a substituent, the aryloxy group which may have a substituent, and the aralkyloxy group which may have a substituent are the substituents described above for R 1 and R 2. A hydrocarbon group that may have a group, an alkoxy group that may have a substituent, an aryloxy group that may have a substituent, and a substituent. It can be the same as a good aralkyloxy group.

上記一般式(1)、(2)及び(2b)において、R〜R12で示される−SO14におけるR14及び一般式(2b)における−SO14のR14で示される金属原子としては、アルカリ金属、アルカリ土類金属等が挙げられる。
アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられる。
アルカリ土類金属としては、例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
The general formula (1), represented by R 14 in -SO 3 R 14 in (2) and in (2b), R 3 to R 12 in R 14 and the formula in -SO 3 R 14 represented (2b) Examples of the metal atom include alkali metals and alkaline earth metals.
Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium and the like.
Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like.

上記一般式(1)において、Mで示される遷移金属としては、例えば周期表の第8〜9族の遷移金属が挙げられ、例えば、ルテニウム、ロジウム、イリジウム等が好ましい。
また、一般式(1)において、Xで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、塩素原子、臭素原子、ヨウ素原子等が好ましい。
In the general formula (1), examples of the transition metal represented by M include group 8 to group 9 transition metals in the periodic table. For example, ruthenium, rhodium, iridium, and the like are preferable.
In the general formula (1), examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom, a bromine atom, and an iodine atom are preferable.

一般式(1)において、Lで示される配位子は、中性配位子が好ましい。中性配位子としては、アルキル基で置換されていてもよい芳香族化合物、オレフィン化合物、その他の中性配位子等が挙げられる。
アルキル基で置換されていてもよい芳香族化合物としては、無置換の芳香族化合物及びアルキル置換芳香族化合物が挙げられる。無置換の芳香族化合物としては、ベンゼン等が挙げられる。アルキル置換芳香族化合物としては、例えば、前記芳香族化合物の少なくとも1個の水素原子がメチル基、エチル基、プロピル基、イソプロピル基等の炭素数1〜3のアルキル基で置換された芳香族化合物が挙げられる。アルキル置換芳香族化合物の具体例としては、例えば、トルエン、p−シメン、ヘキサメチルベンゼン、1,3,5−トリメチルベンゼン(メシチレン)等が挙げられる。
オレフィン化合物としては、例えば、エチレン、シクロペンタジエン、1,5−シクロオクタジエン(cod)、ノルボルナジエン(nbd)、ペンタメチルシクロペンタジエン等が挙げられる。
その他の中性配位子としては、N,N−ジメチルホルムアミド(DMF)、アセトニトリル、ベンゾニトリル、アセトン、クロロホルム等が挙げられる。
In the general formula (1), the ligand represented by L is preferably a neutral ligand. Examples of the neutral ligand include aromatic compounds optionally substituted with an alkyl group, olefin compounds, and other neutral ligands.
Examples of the aromatic compound that may be substituted with an alkyl group include unsubstituted aromatic compounds and alkyl-substituted aromatic compounds. Benzene etc. are mentioned as an unsubstituted aromatic compound. Examples of the alkyl-substituted aromatic compound include an aromatic compound in which at least one hydrogen atom of the aromatic compound is substituted with an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group. Is mentioned. Specific examples of the alkyl-substituted aromatic compound include toluene, p-cymene, hexamethylbenzene, 1,3,5-trimethylbenzene (mesitylene) and the like.
Examples of the olefin compound include ethylene, cyclopentadiene, 1,5-cyclooctadiene (cod), norbornadiene (nbd), pentamethylcyclopentadiene, and the like.
Other neutral ligands include N, N-dimethylformamide (DMF), acetonitrile, benzonitrile, acetone, chloroform and the like.

一般式(1)で表される水溶性遷移金属−ジアミン錯体の中には、ラセミ体、光学活性体の両方が含まれるが、下記一般式(1a)

Figure 0004425654
(式中、*は不斉炭素を示し、R〜R12、M、X及びLは前記と同じ。)で表される光学活性水溶性遷移金属−ジアミン錯体がより好ましい。 The water-soluble transition metal-diamine complex represented by the general formula (1) includes both a racemate and an optically active form, and the following general formula (1a)
Figure 0004425654
(Wherein * represents an asymmetric carbon, and R 1 to R 12 , M, X, and L are the same as described above), and an optically active water-soluble transition metal-diamine complex is more preferable.

一般式(1)で表される水溶性遷移金属−ジアミン錯体の好ましい例としては、例えば、下記一般式(1b)

Figure 0004425654
(式中、R〜R、R〜R、R10〜R12、R14、M、X及びLは前記と同じ。)で表される水溶性遷移金属−ジアミン錯体が挙げられる。 As a preferable example of the water-soluble transition metal-diamine complex represented by the general formula (1), for example, the following general formula (1b)
Figure 0004425654
(Wherein, R 1 to R 3 , R 5 to R 8 , R 10 to R 12 , R 14 , M, X, and L are the same as those described above). .

また、一般式(1a)で表される水溶性遷移金属−ジアミン錯体の好ましい例としては、例えば、下記一般式(1c)

Figure 0004425654
(式中、*は不斉炭素を示し、R〜R、R〜R、R10〜R12、R14、M、X及びLは前記と同じ。)で表される光学活性水溶性遷移金属−ジアミン錯体が挙げられる。
一般式(1c)表される光学活性水溶性遷移金属−ジアミン錯体は、また、一般式(1b)で表される水溶性遷移金属−ジアミン錯体の好ましい例でもある。 Moreover, as a preferable example of the water-soluble transition metal-diamine complex represented by the general formula (1a), for example, the following general formula (1c)
Figure 0004425654
(In the formula, * represents an asymmetric carbon, and R 1 to R 3 , R 5 to R 8 , R 10 to R 12 , R 14 , M, X, and L are the same as described above). A water-soluble transition metal-diamine complex is mentioned.
The optically active water-soluble transition metal-diamine complex represented by the general formula (1c) is also a preferred example of the water-soluble transition metal-diamine complex represented by the general formula (1b).

本発明の光学活性水溶性遷移金属−ジアミン錯体としては、(1R,2R)、(1S,2S)、(1R,2S)、(1S,2R)体が挙げられ、好ましくは、(1R,2R)、(1S,2S)体が挙げられる。   Examples of the optically active water-soluble transition metal-diamine complex of the present invention include (1R, 2R), (1S, 2S), (1R, 2S), (1S, 2R) isomers, preferably (1R, 2R). ), (1S, 2S) isomers.

一般式(1c)で表される光学活性水溶性遷移金属−ジアミン錯体の具体例としては、例えば下記の化合物等が挙げられる。

Figure 0004425654
Specific examples of the optically active water-soluble transition metal-diamine complex represented by the general formula (1c) include the following compounds.
Figure 0004425654

一般式(2)で表される水溶性ジアミン化合物の中には、ラセミ体、光学活性体の両方が含まれるが、下記一般式(2a)

Figure 0004425654
(式中、R〜R12及び*は前記と同じ。)で表される光学活性水溶性ジアミン化合物がより好ましい。 The water-soluble diamine compound represented by the general formula (2) includes both a racemate and an optically active isomer, but the following general formula (2a)
Figure 0004425654
(Wherein R 1 to R 12 and * are the same as described above) are more preferable.

一般式(2)で表される水溶性ジアミン化合物の好ましい例としては、例えば、下記一般式(2b)

Figure 0004425654
(式中、R〜R、R〜R、R10〜R12及びR14は前記と同じ。)で表される水溶性ジアミン化合物が挙げられる。 As a preferable example of the water-soluble diamine compound represented by the general formula (2), for example, the following general formula (2b)
Figure 0004425654
(Wherein R 1 to R 3 , R 5 to R 8 , R 10 to R 12 and R 14 are the same as described above).

一般式(2b)で表される水溶性ジアミン化合物の好ましい例としては、例えば、下記一般式(2c)

Figure 0004425654
(式中、R〜R、R〜R、R10〜R12、R14及び*は前記と同じ。)で表される光学活性水溶性ジアミン化合物が挙げられ、更に好ましい例としては、下記一般式(2e)
Figure 0004425654
(式中、R、R、R〜R、R10〜R14及び*は前記と同じ。)で表される光学活性水溶性ジアミン化合物が挙げられる。 Preferable examples of the water-soluble diamine compound represented by the general formula (2b) include, for example, the following general formula (2c)
Figure 0004425654
(Wherein, R 1 to R 3 , R 5 to R 8 , R 10 to R 12 , R 14 and * are the same as described above). Is the following general formula (2e)
Figure 0004425654
(Wherein R 2 , R 3 , R 5 to R 8 , R 10 to R 14, and * are the same as described above), and an optically active water-soluble diamine compound.

本発明の一般式(2c)で表される光学活性水溶性ジアミン化合物としては、(1R,2R)、(1S,2S)、(1R,2S)、(1S,2R)体が挙げられ、好ましくは、(1R,2R)、(1S,2S)体が挙げられる。   Examples of the optically active water-soluble diamine compound represented by the general formula (2c) of the present invention include (1R, 2R), (1S, 2S), (1R, 2S), and (1S, 2R) isomers. Include (1R, 2R) and (1S, 2S) isomers.

上記一般式(2c)で表される光学活性水溶性ジアミン化合物の具体例としては、例えば、(1R,2R)−1,2−ジ(4−ナトリウムオキシスルホニルフェニル)エチレンジアミン、や、(1S,2S)−1,2−ジ(4−ナトリウムオキシスルホニルフェニル)エチレンジアミン等が挙げられる。   Specific examples of the optically active water-soluble diamine compound represented by the general formula (2c) include, for example, (1R, 2R) -1,2-di (4-sodiumoxysulfonylphenyl) ethylenediamine, (1S, 2S) -1,2-di (4-sodiumoxysulfonylphenyl) ethylenediamine and the like.

上記一般式(2e)で表される光学活性水溶性ジアミン化合物の具体例としては、例えば、(1R,2R)−(N−ベンゼンスルホニル)−1,2−ジ(4−ナトリウムオキシスルホニルフェニル)エチレンジアミンや、(1S,2S)−(N−ベンゼンスルホニル)−1,2−ジ(4−ナトリウムオキシスルホニルフェニル)エチレンジアミン等が挙げられる。   Specific examples of the optically active water-soluble diamine compound represented by the general formula (2e) include, for example, (1R, 2R)-(N-benzenesulfonyl) -1,2-di (4-sodiumoxysulfonylphenyl). Examples include ethylenediamine and (1S, 2S)-(N-benzenesulfonyl) -1,2-di (4-sodiumoxysulfonylphenyl) ethylenediamine.

本発明で用いられる一般式(3)で表される遷移金属化合物の具体例としては、例えば、[RuCl(benzene)]、[RuBr(benzene)]、[RuI(benzene)]、[RuCl(p-cymene)]、[RuBr(p-cymene)]、[RuI(p-cymene)]、RuCl(hexamethylbenzene)]、[RuBr(hexamethylbenzene)]、[RuI(hexamethylbenzene)]、[RuCl(mesitylene)]、[RuBr(mesitylene)]、[RuI(mesitylene)]、[RuCl(pentamethylcyclopentadiene)]、[RuBr(pentamethylcyclopentadiene)]、[RuI(pentamethylcyclopentadiene)]、[RuCl(cod)]、[RuBr(cod)]、[RuI(cod)]、[RuCl(nbd)]、[RuBr(nbd)]、[RuI(nbd)]、RuCl水和物、RuBr水和物、RuI水和物、[RhCl(benzene)]、[RhBr(benzene)]、[RhI(benzene)]、[RhCl(p-cymene)]、[RhBr(p-cymene)]、[RhI(p-cymene)]、RhCl(hexamethylbenzene)]、[RhBr(hexamethylbenzene)]、[RhI(hexamethylbenzene)]、[RhCl(mesitylene)]、[RhBr(mesitylene)]、[RhI(mesitylene)]、[RhCl(pentamethylcyclopentadiene)]、[RhBr(pentamethylcyclopentadiene)]、[RhI(pentamethylcyclopentadiene)]、[RhCl(cod)]、[RhBr(cod)]、[RhI(cod)]、[RhCl(nbd)]、[RhBr(nbd)]、[RhI(nbd)]、RhCl水和物、RhBr水和物、RhI水和物、[IrCl(benzene)]、[IrBr(benzene)]、[IrI(benzene)]、[IrCl(p-cymene)]、[IrBr(p-cymene)]、[IrI(p-cymene)]、IrCl(hexamethylbenzene)]、[IrBr(hexamethylbenzene)]、[IrI(hexamethylbenzene)]、[IrCl(mesitylene)]、[IrBr(mesitylene)]、[IrI(mesitylene)]、[IrCl(pentamethylcyclopentadiene)]、[IrBr(pentamethylcyclopentadiene)]、[IrI(pentamethylcyclopentadiene)]、[IrCl(cod)]、[IrBr(cod)]、[IrI(cod)]、[IrCl(nbd)]、[IrBr(nbd)]、[IrI(nbd)]、IrCl水和物、IrBr水和物、IrI水和物等が挙げられる。 Specific examples of the transition metal compound represented by the general formula (3) used in the present invention include, for example, [RuCl 2 (benzene)] 2 , [RuBr 2 (benzene)] 2 , [RuI 2 (benzene)]. 2 , [RuCl 2 (p-cymene)] 2 , [RuBr 2 (p-cymene)] 2 , [RuI 2 (p-cymene)] 2 , RuCl 2 (hexamethylbenzene)] 2 , [RuBr 2 (hexamethylbenzene)] 2 , [RuI 2 (hexamethylbenzene)] 2 , [RuCl 2 (mesitylene)] 2 , [RuBr 2 (mesitylene)] 2 , [RuI 2 (mesitylene)] 2 , [RuCl 2 (pentamethylcyclopentadiene)] 2 , [RuBr 2 (pentamethylcyclopentadiene)] 2, [RuI 2 (pentamethylcyclopentadiene)] 2, [RuCl 2 (cod)] 2, [RuBr 2 (cod)] 2, [RuI 2 (cod)] 2, [ uCl 2 (nbd)] 2, [RuBr 2 (nbd)] 2, [RuI 2 (nbd)] 2, RuCl 3 hydrate, RuBr 3 hydrate, RuI 3 hydrate, [RhCl 2 (benzene) ] 2 , [RhBr 2 (benzene)] 2 , [RhI 2 (benzene)] 2 , [RhCl 2 (p-cymene)] 2 , [RhBr 2 (p-cymene)] 2 , [RhI 2 (p-cymene) )] 2 , RhCl 2 (hexamethylbenzene)] 2 , [RhBr 2 (hexamethylbenzene)] 2 , [RhI 2 (hexamethylbenzene)] 2 , [RhCl 2 (mesitylene)] 2 , [RhBr 2 (mesitylene)] 2 , [RhI 2 (mesitylene)] 2, [ RhCl 2 (pentamethylcyclopentadiene)] 2, [RhBr 2 (pentamethylcyclopentadiene)] 2, [RhI 2 (pentamethylcyclopentadiene)] 2, [RhCl 2 (cod)] 2, RhBr 2 (cod)] 2, [RhI 2 (cod)] 2, [RhCl 2 (nbd)] 2, [RhBr 2 (nbd)] 2, [RhI 2 (nbd)] 2, RhCl 3 hydrate, RhBr 3 hydrate, RhI 3 hydrate, [IrCl 2 (benzene)] 2, [IrBr 2 (benzene)] 2, [IrI 2 (benzene)] 2, [IrCl 2 (p-cymene)] 2, [IrBr 2 (p-cymene)] 2 , [IrI 2 (p-cymene)] 2 , IrCl 2 (hexamethylbenzene)] 2 , [IrBr 2 (hexamethylbenzene)] 2 , [IrI 2 (hexamethylbenzene)] 2 , [IrCl 2 (mesitylene)] 2, [ IrBr 2 (mesitylene)] 2, [IrI 2 (mesitylene)] 2, [IrCl 2 (pentamethylcyclopentadiene)] 2, [IrBr 2 (pentamethylcyclopentadiene)] 2, [IrI (Pentamethylcyclopentadiene)] 2, [IrCl 2 (cod)] 2, [IrBr 2 (cod)] 2, [IrI 2 (cod)] 2, [IrCl 2 (nbd)] 2, [IrBr 2 (nbd)] 2 , [IrI 2 (nbd)] 2, IrCl 3 hydrate, IrBr 3 hydrate, IrI 3 hydrate, and the like.

本発明の上記一般式(1)で表される水溶性遷移金属−ジアミン錯体は、例えば下記のようにして製造することができる。
1)N位への置換スルホニル基の導入
N位への置換スルホニル基の導入は、自体公知の方法で行うことができる。
先ず、N位に置換スルホニル基を導入しようとする化合物、例えばジフェニルエチレンジアミン、好ましくは光学活性ジフェニルエチレンジアミン等のジアミン類とスルホニル化剤とを要すれば塩基の存在下、適当な溶媒中で反応させることにより、N−モノ又はジ(置換スルホニル)−ジフェニルエチレンジアミン、好ましくは光学活性N−モノ(置換スルホニル)−ジフェニルエチレンジアミン[上記一般式(2a)において、R又はRの何れか一方が−SO13(R13は前記と同じ。)である水溶性ジアミン化合物。]又は光学活性N−ジ(置換スルホニル)−ジフェニルエチレンジアミン[上記一般式(2a)において、R及びRが−SO13(R13は前記と同じ。)である水溶性ジアミン化合物。]を得ることができる。 なお、前記ジフェニルエチレンジアミンは、そのフェニル基に置換基を有していてもよい。
The water-soluble transition metal-diamine complex represented by the general formula (1) of the present invention can be produced, for example, as follows.
1) Introduction of a substituted sulfonyl group at the N position Introduction of a substituted sulfonyl group at the N position can be carried out by a method known per se.
First, a compound to be introduced with a substituted sulfonyl group at the N-position, for example, diphenylethylenediamine, preferably a diamine such as optically active diphenylethylenediamine, and a sulfonylating agent, if necessary, are reacted in a suitable solvent in the presence of a base. N-mono or di (substituted sulfonyl) -diphenylethylenediamine, preferably optically active N-mono (substituted sulfonyl) -diphenylethylenediamine [in the above general formula (2a), either R 1 or R 2 is − A water-soluble diamine compound which is SO 2 R 13 (R 13 is the same as above). ] Or an optically active N-di (substituted sulfonyl) -diphenylethylenediamine [in the general formula (2a), R 1 and R 2 are —SO 2 R 13 (R 13 is the same as above)]. ] Can be obtained. The diphenylethylenediamine may have a substituent on the phenyl group.

スルホニル化剤としては、例えば一般式(6)
13−SO−X (6)
(式中、Xはハロゲン原子を示し、R13は前記と同じ。)で表されるスルホニルハライド類等が挙げられる。
一般式(6)において、Xで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
一般式(6)で表されるスルホニルハライド類の具体例としては、例えば、メタンスルホニルクロリド、エタンスルホニルクロリド、ベンゼンスルホニルクロリド、p−トルエンスルホニルクロリド、トリフルオロメタンスルホニルクロリド、2,4,6−メシチルスルホニルクロリド、2,4,6−トリイソプロピルベンゼンスルホニルクロリド、4−メトキシベンゼンスルホニルクロリド、4−クロロベンゼンスルホニルクロリド等が挙げられる。
スルホニル化剤の使用量は、ジフェニルエチレンジアミン1モルに対して、通常0.8〜5モル、好ましくは1〜2モル、より好ましくは1〜1.2モルの範囲から適宜選択される。
As the sulfonylating agent, for example, the general formula (6)
R 13 -SO 2 -X 1 (6 )
(Wherein, X 1 represents a halogen atom, and R 13 is the same as described above), and the like.
In the general formula (6), examples of the halogen atom represented by X 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Specific examples of the sulfonyl halides represented by the general formula (6) include, for example, methanesulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride, p-toluenesulfonyl chloride, trifluoromethanesulfonyl chloride, 2,4,6-mesi. Examples include acetylsulfonyl chloride, 2,4,6-triisopropylbenzenesulfonyl chloride, 4-methoxybenzenesulfonyl chloride, 4-chlorobenzenesulfonyl chloride and the like.
The usage-amount of a sulfonylating agent is suitably selected from the range of 0.8-5 mol normally with respect to 1 mol of diphenylethylenediamine, Preferably it is 1-2 mol, More preferably, it is 1-1.2 mol.

塩基としては、無機塩基、有機塩基等が挙げられる。無機塩基としては、例えば、炭酸カリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸化ナトリウム、炭酸マグネシウム、炭酸カルシウム等のアルカリ・アルカリ土類金属の塩及び水酸化物、水素化ナトリウム、水素化ホウ素ナトリウム、水素化リチウムアルミニウム等の金属水素化物類等が挙げられる。
有機塩基としては、例えば、カリウムメトキシド、ナトリウムメトキシド、リチウムメトキシド、ナトリウムエトキシド、カリウムイソプロポキシド、カリウムtert−ブトキシド、カリウムナフタレニド、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウム、酢酸カルシウム等のアルカリ・アルカリ土類金属の塩、トリエチルアミン、ジイソプロピルエチルアミン、N,N−ジメチルアニリン、ピペリジン、ピリジン、4−ジメチルアミノピリジン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、トリ−n−ブチルアミン、N−メチルモルホリン等の有機アミン類、臭化メチルマグネシウム、臭化エチルマグネシウム、臭化プロピルマグネシウム、メチルリチウム、エチルリチウム、プロピルリチウム、n−ブチルリチウム、tert−ブチルリチウム等の有機金属化合物類、4級アンモニウム塩等が挙げられる。
これら塩基の中でも有機アミン類が特に好ましい。
塩基の使用量は、ジアミン類に対して、通常1.0〜2.0当量、好ましくは1.1〜1.2当量の範囲から適宜選択される。
Examples of the base include inorganic bases and organic bases. Examples of the inorganic base include salts of alkaline and alkaline earth metals such as potassium carbonate, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydroxide, magnesium carbonate, calcium carbonate, and water. Examples thereof include metal hydrides such as oxide, sodium hydride, sodium borohydride and lithium aluminum hydride.
Examples of the organic base include potassium methoxide, sodium methoxide, lithium methoxide, sodium ethoxide, potassium isopropoxide, potassium tert-butoxide, potassium naphthalenide, sodium acetate, potassium acetate, magnesium acetate, calcium acetate and the like. Alkali / alkaline earth metal salts, triethylamine, diisopropylethylamine, N, N-dimethylaniline, piperidine, pyridine, 4-dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] non-5-ene, Organic amines such as 1,8-diazabicyclo [5.4.0] undec-7-ene, tri-n-butylamine, N-methylmorpholine, methylmagnesium bromide, ethylmagnesium bromide, propylmagnesium bromide, methyl lithium Ethyllithium, propyl lithium, n- butyl lithium, organic metal compounds such as tert- butyl lithium, and the like quaternary ammonium salts.
Of these bases, organic amines are particularly preferred.
The usage-amount of a base is normally selected suitably from 1.0-2.0 equivalent with respect to diamine, Preferably it is 1.1-1.2 equivalent.

反応に用いる溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、四塩化炭素、o−ジクロロベンゼン等のハロゲン化炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジメトキシエタン、エチレングリコールジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸n−ブチル、プロピオン酸メチル等のエステル類、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、アセトニトリル等の含シアノ有機化合物類、N−メチルピロリドン、水等が挙げられる。これら溶媒は、夫々単独で用いても2種以上適宜組み合わせて用いてもよい。
溶媒の使用量は、ジアミン類に対して、通常2〜10倍容量、好ましくは5〜10倍容量の範囲から適宜選択される。
Examples of the solvent used in the reaction include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, and cyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, dichloromethane, 1,2-dichloroethane, and chloroform. , Halogenated hydrocarbons such as carbon tetrachloride, o-dichlorobenzene, diethyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, ethylene glycol diethyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane Ethers such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc., esters such as methyl acetate, ethyl acetate, n-butyl acetate, methyl propionate, formamide, N, N-di Amides such as chill formamide, N, N- dimethylacetamide, sulfoxides such as dimethyl sulfoxide, cyano-containing organic compounds such as acetonitrile, N- methylpyrrolidone, water and the like. These solvents may be used alone or in appropriate combination of two or more.
The usage-amount of a solvent is suitably selected from the range of 2-10 times capacity normally with respect to diamine, Preferably it is 5-10 times capacity.

反応温度は、通常0〜50℃、好ましくは0〜10℃の範囲から適宜選択される。
反応時間は、通常3〜20時間、好ましくは5〜10時間の範囲から適宜選択される。
得られたN−モノ又はジ(置換スルホニル)−ジフェニルエチレンジアミン、好ましくは光学活性N−モノ又はジ(置換スルホニル)−ジフェニルエチレンジアミンは、反応後、必要に応じて後処理、精製等を行ってもよい。後処理の具体的な方法としては、溶媒抽出、液性変換、転溶、塩析、晶出、再結晶、各種クロマトグラフィー等、自体公知の分離、精製方法が挙げられる。
The reaction temperature is appropriately selected from the range of usually 0 to 50 ° C, preferably 0 to 10 ° C.
The reaction time is appropriately selected from the range of usually 3 to 20 hours, preferably 5 to 10 hours.
The obtained N-mono or di (substituted sulfonyl) -diphenylethylenediamine, preferably optically active N-mono or di (substituted sulfonyl) -diphenylethylenediamine, may be subjected to post-treatment, purification, or the like as necessary after the reaction. Good. Specific methods of the post-treatment include per se known separation and purification methods such as solvent extraction, liquid conversion, phase transfer, salting out, crystallization, recrystallization, and various chromatography.

2)スルホン化
上記1)で得られたN−モノ又はジ(置換スルホニル)−ジフェニルエチレンジアミン、好ましくは光学活性N−モノ又はジ(置換スルホニル)−ジフェニルエチレンジアミン、又は、ジフェニルエチレンジアミン、好ましくは光学活性ジフェニルエチレンジアミンのスルホン化は、自体公知の方法、例えば濃硫酸や発煙硫酸を用いることにより容易に行うことができる。
本発明においては、先に置換スルホニル基を導入した後に、スルホン化を行うことが好ましい。
即ち、上記1)で得られたN−モノ又はジ(置換スルホニル)−ジフェニルエチレンジアミン、好ましくは光学活性N−モノ又はジ(置換スルホニル)−ジフェニルエチレンジアミン、又は、ジフェニルエチレンジアミン、好ましくは光学活性ジフェニルエチレンジアミンを発煙硫酸(30%SO−HSO)−濃硫酸の混合溶液中でスルホン化を行うことにより、置換スルホニル基を導入したジフェニルエチレンジアミンからは、一般式(2d)

Figure 0004425654
(式中、R、R、R〜R及びR10〜R14は前記と同じ。)で表される水溶性ジアミン化合物、好ましくは上記一般式(2e)で表される光学活性水溶性ジアミン化合物が得られるか、又は、上記一般式(2)においてR及びRが水素原子である一般式(2f)
Figure 0004425654
(式中、R、R〜R、R10〜R12及びR14は前記と同じ。)で表される水溶性ジアミン化合物、好ましくは上記一般式(2a)においてR及びRが水素原子である一般式(2g)
Figure 0004425654
(式中、R、R〜R、R10〜R12、R14及び*は前記と同じ。)で表される光学活性水溶性ジアミン化合物が得られる。また、置換スルホニル基を導入していないジフェニルエチレンジアミンからは、上記一般式(2f)で表される水溶性ジアミン化合物、好ましくは上記一般式(2g)で表される化合物が得られる。
反応終了後、必要に応じてアルカリ水溶液で中和する等は任意である。中和に用いられるアルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液等が挙げられる。
得られた水溶性ジアミン化合物、好ましくは光学活性水溶性ジアミン化合物は、反応後、必要に応じて後処理、精製等を行ってもよい。後処理の具体的な方法等は上記した通りである。 2) Sulfonation N-mono or di (substituted sulfonyl) -diphenylethylenediamine obtained in 1) above, preferably optically active N-mono or di (substituted sulfonyl) -diphenylethylenediamine, or diphenylethylenediamine, preferably optically active Sulfonation of diphenylethylenediamine can be easily performed by a method known per se, for example, using concentrated sulfuric acid or fuming sulfuric acid.
In the present invention, it is preferable to perform sulfonation after introducing a substituted sulfonyl group first.
That is, N-mono or di (substituted sulfonyl) -diphenylethylenediamine obtained in 1) above, preferably optically active N-mono or di (substituted sulfonyl) -diphenylethylenediamine, or diphenylethylenediamine, preferably optically active diphenylethylenediamine. From diphenylethylenediamine introduced with a substituted sulfonyl group by sulfonation in a mixed solution of fuming sulfuric acid (30% SO 3 —H 2 SO 4 ) -concentrated sulfuric acid, from the general formula (2d)
Figure 0004425654
(Wherein R 2 , R 3 , R 5 to R 8 and R 10 to R 14 are the same as above), preferably an optical activity represented by the above general formula (2e) A water-soluble diamine compound is obtained, or in the general formula (2), R 1 and R 2 are hydrogen atoms.
Figure 0004425654
(Wherein R 3 , R 5 to R 8 , R 10 to R 12 and R 14 are the same as described above), preferably R 1 and R 2 in the general formula (2a). Is a hydrogen atom (2g)
Figure 0004425654
(Wherein R 3 , R 5 to R 8 , R 10 to R 12 , R 14 and * are the same as described above). Moreover, from the diphenylethylenediamine which has not introduce | transduced the substituted sulfonyl group, the water-soluble diamine compound represented by the said general formula (2f), Preferably the compound represented by the said general formula (2g) is obtained.
After completion of the reaction, neutralization with an aqueous alkali solution is optional as required. Examples of the alkaline aqueous solution used for neutralization include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
The obtained water-soluble diamine compound, preferably the optically active water-soluble diamine compound, may be subjected to post-treatment, purification, or the like as necessary after the reaction. The specific method of post-processing is as described above.

3)スルファミド化(N位に置換スルホニル基を導入していない水溶性ジアミン化合物の場合)
スルファミド化は、上記1)で説明した方法等、自体公知の方法で行うことができる。
例えば、上記2)で得られた上記一般式(2f)で表される水溶性ジアミン化合物、好ましくは上記一般式(2g)で表される光学活性水溶性ジアミン化合物と上記スルホニル化剤とを、要すれば上記した如き塩基の存在下、適当な溶媒中で反応させることにより、上記一般式(2d)で表される水溶性ジアミン化合物、好ましくは上記一般式(2e)で表される光学活性水溶性ジアミン化合物が得られる。
3) Sulfamidation (in the case of a water-soluble diamine compound in which a substituted sulfonyl group is not introduced at the N position)
The sulfamidation can be performed by a method known per se, such as the method described in 1) above.
For example, the water-soluble diamine compound represented by the general formula (2f) obtained in 2) above, preferably the optically active water-soluble diamine compound represented by the general formula (2g) and the sulfonylating agent, If necessary, by reacting in an appropriate solvent in the presence of the base as described above, the water-soluble diamine compound represented by the general formula (2d), preferably the optical activity represented by the general formula (2e). A water-soluble diamine compound is obtained.

スルホニル化剤の使用量は、水溶性ジアミン化合物1モルに対して、通常0.8〜5モル、好ましくは1〜2モル、より好ましくは1〜1.2モルの範囲から適宜選択される。
塩基の使用量は、水溶性ジアミン化合物に対して、通常2〜5当量、好ましくは2〜2.5当量の範囲から適宜選択される。
溶媒としては、上記(1)で例示した溶媒、好ましくは、例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類等が挙げられる。これらの溶媒は、夫々単独で用いても2種以上適宜組み合わせて用いてもよい。これら溶媒の中では、N,N−ジメチルホルムアミドが、反応基質である上記一般式(2d)で表される水溶性ジアミン化合物、好ましくは上記一般式(2e)で表される光学活性水溶性ジアミン化合物を溶解するため好ましい。
溶媒の使用量は、水溶性ジアミン化合物に対して、通常5〜30倍容量、好ましくは10〜20倍容量の範囲から適宜選択される。
The usage-amount of a sulfonylating agent is suitably selected from the range of 0.8-5 mol normally with respect to 1 mol of water-soluble diamine compounds, Preferably it is 1-2 mol, More preferably, it is 1-1.2 mol.
The usage-amount of a base is suitably selected from the range of 2-5 equivalent normally with respect to a water-soluble diamine compound, Preferably it is 2-2.5 equivalent.
Examples of the solvent include the solvents exemplified in the above (1), preferably amides such as formamide, N, N-dimethylformamide, N, N-dimethylacetamide and the like. These solvents may be used alone or in appropriate combination of two or more. Among these solvents, N, N-dimethylformamide is a water-soluble diamine compound represented by the above general formula (2d) as a reaction substrate, preferably an optically active water-soluble diamine represented by the above general formula (2e). This is preferred because it dissolves the compound.
The usage-amount of a solvent is suitably selected from the range of 5-30 times capacity normally with respect to a water-soluble diamine compound, Preferably it is 10-20 times capacity.

反応温度は、通常0〜40℃、好ましくは0〜10℃の範囲から適宜選択される。
反応時間は、通常2〜10時間、好ましくは3〜5時間の範囲から適宜選択される。
得られた上記一般式(2d)で表される水溶性ジアミン化合物、好ましくは上記一般式(2e)で表される光学活性水溶性ジアミン化合物は、反応後、必要に応じて後処理、精製等を行ってもよい。後処理の具体的な方法等は上記した通りである。
The reaction temperature is appropriately selected from the range of usually 0 to 40 ° C, preferably 0 to 10 ° C.
The reaction time is appropriately selected from the range of usually 2 to 10 hours, preferably 3 to 5 hours.
The obtained water-soluble diamine compound represented by the above general formula (2d), preferably the optically active water-soluble diamine compound represented by the above general formula (2e) is subjected to post-treatment, purification, etc. as necessary after the reaction. May be performed. The specific method of post-processing is as described above.

このようにして得られた上記一般式(2d)で表される水溶性ジアミン化合物は遷移金属錯体を構成する配位子等として有用であり、特に、上記一般式(2e)で表される光学活性水溶性ジアミン化合物は、不斉合成に用いる遷移金属錯体を構成する配位子や、光学分割剤等として有用である。
本発明の上記一般式(1)で表される水溶性遷移金属−ジアミン錯体、好ましくは上記一般式(1a)で表される光学活性水溶性遷移金属−ジアミン錯体は、非特許文献7等に記載の方法で製造することができ、例えば下記のようにして製造することができる。
即ち、上記一般式(2)で表される水溶性ジアミン化合物、好ましくは上記一般式(2a)で表される水溶性ジアミン化合物と例えば上記一般式(3)で表される遷移金属化合物とを常法に従って反応させることにより得ることができる。また、上記一般式(3)において、nが0である遷移金属化合物を用いる場合には、前記水溶性ジアミン化合物、前記遷移金属化合物及び中性配位子とを常法に従って反応させることにより得ることができる。ここで、上記一般式(3)におけるnが0である遷移金属化合物は、水和物でもよい。
The water-soluble diamine compound represented by the general formula (2d) thus obtained is useful as a ligand or the like constituting the transition metal complex, and in particular, the optical compound represented by the general formula (2e). The active water-soluble diamine compound is useful as a ligand constituting the transition metal complex used in the asymmetric synthesis, an optical resolution agent, and the like.
The water-soluble transition metal-diamine complex represented by the general formula (1) of the present invention, preferably the optically active water-soluble transition metal-diamine complex represented by the general formula (1a) is described in Non-Patent Document 7 and the like. For example, it can be produced as follows.
That is, a water-soluble diamine compound represented by the general formula (2), preferably a water-soluble diamine compound represented by the general formula (2a) and a transition metal compound represented by the general formula (3), for example. It can be obtained by reacting according to a conventional method. Moreover, in the said General formula (3), when using the transition metal compound whose n is 0, it obtains by making the said water-soluble diamine compound, the said transition metal compound, and a neutral ligand react according to a conventional method. be able to. Here, the transition metal compound in which n in the general formula (3) is 0 may be a hydrate.

一般式(3)で表される遷移金属化合物の使用量は、前記水溶性ジアミン化合物に対して、通常0.1〜1.0当量、好ましくは0.2〜0.5当量の範囲から適宜選択される。
水溶性遷移金属−ジアミン錯体の製造は、溶媒の存在下で行うことが好ましい。溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、四塩化炭素、o−ジクロロベンゼン等のハロゲン化炭化水素類、メタノール、エタノール、2−プロパノール、n−ブタノール、2−エトキシエタノール、ベンジルアルコール等のアルコール類等が挙げられる。これら溶媒は、夫々単独で用いても2種以上適宜組み合わせて用いてもよい。
溶媒の使用量は、水溶性ジアミン化合物に対して、通常10〜40倍容量、好ましくは10〜20倍容量の範囲から適宜選択される。
The amount of the transition metal compound represented by the general formula (3) is usually 0.1 to 1.0 equivalent, preferably 0.2 to 0.5 equivalent, based on the water-soluble diamine compound. Selected.
The production of the water-soluble transition metal-diamine complex is preferably performed in the presence of a solvent. Examples of the solvent include aromatic hydrocarbons such as benzene, toluene, xylene, halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride, o-dichlorobenzene, methanol, ethanol, 2 Examples include alcohols such as -propanol, n-butanol, 2-ethoxyethanol, and benzyl alcohol. These solvents may be used alone or in appropriate combination of two or more.
The usage-amount of a solvent is suitably selected from the range of 10-40 times capacity normally with respect to a water-soluble diamine compound, Preferably it is 10-20 times capacity.

水溶性遷移金属−ジアミン錯体の製造は、必要に応じて塩基の存在下で行うことができる。塩基としては、有機塩基が好ましく、具体的には、トリエチルアミン、ジイソプロピルエチルアミン、N,N−ジメチルアニリン、ピペリジン、ピリジン、4−ジメチルアミノピリジン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、トリ−n−ブチルアミン、テトラメチルエチレンジアミン、N−メチルモルホリン等の有機アミン類、カリウムメトキシド、ナトリウムメトキシド、リチウムメトキシド、ナトリウムエトキシド、カリウムイソプロポキシド、カリウムtert−ブトキシド、リチウムメトキシド、カリウムナフタレニド等のアルカリ・アルカリ土類金属のアルコキシド等が挙げられる。
塩基の使用量は、水溶性ジアミン化合物に対して、通常0.5〜5当量、好ましくは1〜3当量の範囲から適宜選択される。
The water-soluble transition metal-diamine complex can be produced in the presence of a base as necessary. As the base, an organic base is preferable, and specifically, triethylamine, diisopropylethylamine, N, N-dimethylaniline, piperidine, pyridine, 4-dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] non- Organic amines such as 5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene, tri-n-butylamine, tetramethylethylenediamine, N-methylmorpholine, potassium methoxide, sodium methoxide, Alkali / alkali earth metal alkoxides such as lithium methoxide, sodium ethoxide, potassium isopropoxide, potassium tert-butoxide, lithium methoxide, potassium naphthalenide and the like can be mentioned.
The usage-amount of a base is suitably selected from the range of 0.5-5 equivalent normally with respect to a water-soluble diamine compound, Preferably it is 1-3 equivalent.

反応温度は水溶性ジアミン化合物や、遷移金属化合物等の種類等により異なるため特に限定されないが、通常0〜100℃、好ましくは20〜80℃の範囲から適宜選択される。
反応時間は、反応温度や水溶性ジアミン化合物、遷移金属化合物等の種類等により自ずから異なるため特に限定されないが、通常1〜24時間、好ましくは1〜8時間の範囲から適宜選択される。
The reaction temperature is not particularly limited because it varies depending on the type of water-soluble diamine compound, transition metal compound, and the like, but it is usually appropriately selected from the range of 0 to 100 ° C, preferably 20 to 80 ° C.
The reaction time is not particularly limited because it naturally varies depending on the reaction temperature, the type of the water-soluble diamine compound, the transition metal compound, and the like, but is usually appropriately selected from the range of 1 to 24 hours, preferably 1 to 8 hours.

このようにして得られた本発明の上記一般式(1)で表される水溶性遷移金属−ジアミン錯体は有機合成反応用触媒等として有用であり、特に、上記一般式(1a)で表される光学活性水溶性遷移金属−ジアミン錯体は、例えば不斉合成用触媒等として、就中、不斉水素化触媒等として有用である。   The water-soluble transition metal-diamine complex represented by the above general formula (1) of the present invention thus obtained is useful as a catalyst for organic synthesis reaction and the like, and particularly represented by the above general formula (1a). The optically active water-soluble transition metal-diamine complex is useful, for example, as a catalyst for asymmetric synthesis, especially as an asymmetric hydrogenation catalyst.

本発明の上記一般式(1a)で表される水溶性遷移金属−ジアミン錯体において、例えば、非特許文献6又は7に記載されているように、上記一般式(1a)で表される水溶性遷移金属−ジアミン錯体を、例えば不斉水素化触媒として用いる場合、不斉水素化反応中で該水溶性遷移金属−ジアミン錯体は、下記一般式(1−1)で表される水溶性遷移金属−ジアミン−ヒドリド錯体、好ましくは下記一般式(1a−1)で表される光学活性水溶性遷移金属−ジアミン−ヒドリド錯体となっている。また、不斉水素化反応終了後には、該水溶性遷移金属−ジアミン錯体は、下記一般式(1−2)で表される水溶性遷移金属−アミド錯体、好ましくは下記一般式(1a−2)で表される光学活性水溶性遷移金属−アミド錯体となっている。これら水溶性遷移金属−ジアミン−ヒドリド錯体及び水溶性遷移金属−アミド錯体も、本発明の水溶性遷移金属−ジアミン錯体の範疇に含まれる。

Figure 0004425654
(上記式中、R〜R12、M、X、L及び*は前記と同じ。) In the water-soluble transition metal-diamine complex represented by the above general formula (1a) of the present invention, for example, as described in Non-Patent Document 6 or 7, the water solubility represented by the above general formula (1a). When the transition metal-diamine complex is used as an asymmetric hydrogenation catalyst, for example, the water-soluble transition metal-diamine complex is represented by the following general formula (1-1) in the asymmetric hydrogenation reaction. A diamine-hydride complex, preferably an optically active water-soluble transition metal-diamine-hydride complex represented by the following general formula (1a-1). In addition, after completion of the asymmetric hydrogenation reaction, the water-soluble transition metal-diamine complex is a water-soluble transition metal-amide complex represented by the following general formula (1-2), preferably the following general formula (1a-2). It is an optically active water-soluble transition metal-amide complex represented by: These water-soluble transition metal-diamine-hydride complexes and water-soluble transition metal-amide complexes are also included in the category of the water-soluble transition metal-diamine complex of the present invention.
Figure 0004425654
(In the above formula, R 1 to R 12 , M, X, L and * are the same as above.)

次に、本発明の光学活性アルコールの製造方法について説明する。
一般式(4)及び(5)において、R21及びR22で示される置換基を有してもよい炭化水素基は、炭化水素基及び置換炭化水素基を表し、置換基を有していてもよい複素環基は、複素環基及び置換複素環基を表す。炭化水素基及び複素環基は、上記一般式(1)のところで説明した各基と同じである。
置換炭化水素基(置換基を有する炭化水素基)としては、上記炭化水素基の少なくとも1個の水素原子が置換基で置換された炭化水素基が挙げられる。置換炭化水素基としては、置換アルキル基、置換アリール基、置換アルケニル基、置換アルキニル基、置換アラルキル基等が挙げられる。
置換複素環基(置換基を有する複素環基)としては、上記複素環基の少なくとも1個の水素原子が置換基で置換された複素環基が挙げられる。置換複素環基としては、置換脂肪族複素環基及び置換芳香族複素環基等が挙げられる。
Next, the manufacturing method of the optically active alcohol of this invention is demonstrated.
In the general formulas (4) and (5), the hydrocarbon group which may have a substituent represented by R 21 and R 22 represents a hydrocarbon group and a substituted hydrocarbon group, and has a substituent. The preferable heterocyclic group represents a heterocyclic group and a substituted heterocyclic group. A hydrocarbon group and a heterocyclic group are the same as each group demonstrated in the said General formula (1).
Examples of the substituted hydrocarbon group (hydrocarbon group having a substituent) include hydrocarbon groups in which at least one hydrogen atom of the hydrocarbon group is substituted with a substituent. Examples of the substituted hydrocarbon group include a substituted alkyl group, a substituted aryl group, a substituted alkenyl group, a substituted alkynyl group, and a substituted aralkyl group.
Examples of the substituted heterocyclic group (heterocyclic group having a substituent) include heterocyclic groups in which at least one hydrogen atom of the heterocyclic group is substituted with a substituent. Examples of the substituted heterocyclic group include a substituted aliphatic heterocyclic group and a substituted aromatic heterocyclic group.

置換炭化水素基、置換複素環基の置換基としては、炭化水素基、複素環基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アシル基、アシルオキシ基、アルキルチオ基、アラルキルチオ基、アリールチオ基、ハロゲン原子、ハロゲン化炭化水素基、アルキレンジオキシ基、アミノ基、置換アミノ基、シアノ基、ニトロ基、ヒドロキシ基、カルボキシ基、スルホ基、スルホニル基、置換シリル基等が挙げられる。   Substituents for substituted hydrocarbon groups and substituted heterocyclic groups include hydrocarbon groups, heterocyclic groups, alkoxy groups, aryloxy groups, aralkyloxy groups, alkoxycarbonyl groups, aryloxycarbonyl groups, aralkyloxycarbonyl groups, acyl groups. , Acyloxy group, alkylthio group, aralkylthio group, arylthio group, halogen atom, halogenated hydrocarbon group, alkylenedioxy group, amino group, substituted amino group, cyano group, nitro group, hydroxy group, carboxy group, sulfo group, A sulfonyl group, a substituted silyl group, etc. are mentioned.

置換基としての炭化水素基及び複素環基は、上記一般式(1)のところで説明した各基と同じである。また、ハロゲン原子、ハロゲン化炭化水素基、アルコキシ基、アリールオキシ基、アラルキルオキシ基及び置換アミノ基も、上記一般式(1)のところで、置換基として説明した各基と同じである。アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基及びスルホニル基は、上記一般式(1)のところで置換基としての置換アミノ基におけるアミノ基の置換基として説明した各基と同じである。   The hydrocarbon group and heterocyclic group as a substituent are the same as each group demonstrated in the said General formula (1). The halogen atom, halogenated hydrocarbon group, alkoxy group, aryloxy group, aralkyloxy group and substituted amino group are the same as the groups described as substituents in the above general formula (1). The acyl group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group and sulfonyl group are the same as the groups described as substituents of the amino group in the substituted amino group as the substituent in the general formula (1). is there.

置換基としてのアシルオキシ基としては、脂肪族カルボン酸、芳香族カルボン酸等のカルボン酸由来の例えば炭素数2〜18のアシルオキシ基が挙げられ、具体例としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、ピバロイルオキシ基、ペンタノイルオキシ基、ヘキサノイルオキシ基、ラウロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基等が挙げられる。
アルキルチオ基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば炭素数1〜6のアルキルチオ基が挙げられ、具体例としては、例えば、メチルチオ基、エチルチオ基、n−プロピルチオ基、2−プロピルチオ基、n−ブチルチオ基、2−ブチルチオ基、イソブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基等が挙げられる。
アリールチオ基としては、例えば炭素数6〜14のアリールチオ基が挙げられ、具体例としては、例えば、フェニルチオ基、ナフチルチオ基等が挙げられる。
アラルキルチオ基としては、例えば炭素数7〜15のアラルキルチオ基が挙げられ、具体例としては、例えば、ベンジルチオ基、2−フェネチルチオ基等が挙げられる。
置換基がアルキレンジオキシ基である場合は、例えば上記アリール基やアラルキル基中の芳香環の隣接した2個の水素原子がアルキレンジオキシ基で置換される。アルキレンジオキシ基としては、例えば炭素数1〜3のアルキレンジオキシ基が挙げられ、その具体例としては、メチレンジオキシ基、エチレンジオキシ基、トリメチレンジオキシ基、プロピレンジオキシ基等が挙げられる。
置換シリル基としては、例えば、シリル基の3個の水素原子が上記で説明したアルキル基、アリール基、アラルキル基等の炭化水素基等の置換基で置換されたトリ置換シリル基が挙げられ、具体例としては、例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、tert−ブチルジフェニルシリル基、トリフェニルシリル基等が挙げられる。
なお、これら置換基は、前記置換基で更に置換されていてもよい。
Examples of the acyloxy group as a substituent include an acyloxy group having 2 to 18 carbon atoms derived from a carboxylic acid such as an aliphatic carboxylic acid and an aromatic carboxylic acid. Specific examples include, for example, an acetoxy group and a propionyloxy group. , Butyryloxy group, pivaloyloxy group, pentanoyloxy group, hexanoyloxy group, lauroyloxy group, stearoyloxy group, benzoyloxy group and the like.
The alkylthio group may be linear, branched or cyclic, and examples thereof include an alkylthio group having 1 to 6 carbon atoms. Specific examples include, for example, a methylthio group, an ethylthio group, an n-propylthio group, a 2- Examples thereof include a propylthio group, an n-butylthio group, a 2-butylthio group, an isobutylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, and a cyclohexylthio group.
Examples of the arylthio group include an arylthio group having 6 to 14 carbon atoms, and specific examples include a phenylthio group and a naphthylthio group.
As an aralkylthio group, a C7-C15 aralkylthio group is mentioned, for example, As a specific example, a benzylthio group, 2-phenethylthio group, etc. are mentioned, for example.
When the substituent is an alkylenedioxy group, for example, two adjacent hydrogen atoms of the aromatic ring in the aryl group or aralkyl group are substituted with an alkylenedioxy group. Examples of the alkylenedioxy group include an alkylenedioxy group having 1 to 3 carbon atoms. Specific examples thereof include a methylenedioxy group, an ethylenedioxy group, a trimethylenedioxy group, and a propylenedioxy group. Can be mentioned.
Examples of the substituted silyl group include a tri-substituted silyl group in which three hydrogen atoms of the silyl group are substituted with a substituent such as a hydrocarbon group such as an alkyl group, an aryl group, and an aralkyl group described above. Specific examples include a trimethylsilyl group, a tert-butyldimethylsilyl group, a tert-butyldiphenylsilyl group, and a triphenylsilyl group.
These substituents may be further substituted with the above substituents.

また、一般式(4)において、R21とR22とが互いに結合して、カルボニル基の炭素原子と一緒になって環を形成している場合の環としては、単環、多環、縮合環の何れでもよく、例えば4〜8員環等が挙げられる。また、環を構成する炭素鎖中に、−O−、−NH−等を有していてもよい。R21とR22とが互いに結合して、カルボニル基と一緒になって環を形成する場合の環の具体例としては、シクロペンタノン環、シクロヘキサノン環、例えば5〜7員のラクトン環、例えば5〜7員のラクタム環等が挙げられる。これら形成する環は、一般式(4)におけるカルボニル基の炭素原子が、不斉水素化反応により不斉炭素となり得るような環であればよい。 In the general formula (4), when R 21 and R 22 are bonded to each other to form a ring together with the carbon atom of the carbonyl group, the ring may be monocyclic, polycyclic, condensed Any of a ring may be sufficient, for example, a 4-8 membered ring etc. are mentioned. Moreover, in the carbon chain which comprises a ring, you may have -O-, -NH-, etc. Specific examples of the ring in the case where R 21 and R 22 are bonded to each other to form a ring together with a carbonyl group include a cyclopentanone ring, a cyclohexanone ring, such as a 5- to 7-membered lactone ring, such as 5-7 membered lactam ring etc. are mentioned. The ring to be formed may be any ring as long as the carbon atom of the carbonyl group in the general formula (4) can become an asymmetric carbon by an asymmetric hydrogenation reaction.

一般式(4)で表されるケトン類は、プロキラルなケトン類であればよい。一般式(4)で表されるケトン類の具体例としては、例えば、メチルエチルケトン、アセトフェノン、ベンザルアセトン、1−インダノン、3,4−ジヒドロ−(2H)−ナフタレノンフェロセニルメチルケトン等や、例えば下記に示す化合物等が挙げられる。

Figure 0004425654
Figure 0004425654
The ketone represented by the general formula (4) may be a prochiral ketone. Specific examples of the ketones represented by the general formula (4) include, for example, methyl ethyl ketone, acetophenone, benzalacetone, 1-indanone, 3,4-dihydro- (2H) -naphthalenone ferrocenyl methyl ketone, and the like. Examples thereof include the compounds shown below.
Figure 0004425654
Figure 0004425654

本発明の製造方法により得られる一般式(5)で表される光学活性アルコールの具体例としては、2−ブタノール、フェネチルアルコール等が挙げられる。   Specific examples of the optically active alcohol represented by the general formula (5) obtained by the production method of the present invention include 2-butanol and phenethyl alcohol.

本発明の光学活性2級アルコールの製造方法、即ち、上記一般式(4)で表されるケトン類の不斉水素化反応は、自体公知の方法で行うことができ、本発明に係る不斉合成触媒の存在下で行われる。
本発明に係る不斉合成触媒としては、上記のようにして製造した上記一般式(1a)で表される光学活性水溶性遷移金属−ジアミン錯体を含んでなる不斉合成触媒、又は/及び上記一般式(2c)で表される光学活性水溶性ジアミン化合物と上記一般式(3)で表される遷移金属化合物とを含んでなる不斉合成触媒が挙げられる。
後者の不斉合成触媒を用いた不斉水素化反応は、所謂in situで行う反応である。
The method for producing the optically active secondary alcohol of the present invention, that is, the asymmetric hydrogenation reaction of the ketone represented by the general formula (4) can be carried out by a method known per se, and the asymmetric according to the present invention. It is carried out in the presence of a synthesis catalyst.
As the asymmetric synthesis catalyst according to the present invention, the asymmetric synthesis catalyst comprising the optically active water-soluble transition metal-diamine complex represented by the general formula (1a) produced as described above, and / or the above An asymmetric synthesis catalyst comprising the optically active water-soluble diamine compound represented by the general formula (2c) and the transition metal compound represented by the general formula (3) can be mentioned.
The asymmetric hydrogenation reaction using the latter asymmetric synthesis catalyst is a so-called in situ reaction.

不斉水素化反応は、上記一般式(1a)で表される光学活性水溶性遷移金属−ジアミン錯体を用いて行う場合には、例えば上記非特許文献7に記載の方法で行うことができる。
また、上記一般式(2c)で表される光学活性水溶性ジアミン化合物と上記一般式(3)で表される遷移金属化合物とを含んでなる不斉合成触媒を用いてin situで不斉水素化反応を行う場合には、例えば上記非特許文献3に記載の方法で行うことができる。
不斉水素化反応をin situで行う場合には、予め、1〜数時間加熱攪拌した反応混合物を用いてもよい。
不斉合成触媒の使用量は、ケトン類に対して、通常10−1〜10−4当量、好ましくは10−2〜10−3当量の範囲から適宜選択される。
When the asymmetric hydrogenation reaction is performed using the optically active water-soluble transition metal-diamine complex represented by the above general formula (1a), it can be performed, for example, by the method described in Non-Patent Document 7.
Further, asymmetric hydrogen is generated in situ using an asymmetric synthesis catalyst comprising the optically active water-soluble diamine compound represented by the general formula (2c) and the transition metal compound represented by the general formula (3). For example, the method described in Non-Patent Document 3 can be used.
When the asymmetric hydrogenation reaction is performed in situ, a reaction mixture heated and stirred for 1 to several hours in advance may be used.
The amount of the asymmetric synthesis catalyst used is appropriately selected from the range of usually 10 -1 to 10 -4 equivalents, preferably 10 -2 to 10 -3 equivalents, relative to the ketones.

本発明の光学活性2級アルコールの製造方法、即ち、上記一般式(4)で表されるケトン類の不斉水素化反応は、水素移動反応によって行われる。
水素移動反応による不斉水素化反応は、水素供与性物質を反応系内に存在させるのが好ましい。水素供与性物質は、有機化合物又は/及び無機化合物あって、反応系内で、例えば熱的作用や触媒作用によって、水素を供与できる化合物であれば何れも使用可能である。
水素供与性物質としては、例えば、ギ酸又はその塩類、ギ酸と塩基との組み合わせ、ヒドロキノン、亜リン酸、アルコール類等が挙げられる。これらの中では、ギ酸又はその塩類、ギ酸と塩基との組み合わせからなるもの、アルコール類等が特に好ましい。
The method for producing an optically active secondary alcohol of the present invention, that is, the asymmetric hydrogenation reaction of the ketones represented by the general formula (4) is performed by a hydrogen transfer reaction.
In the asymmetric hydrogenation reaction by hydrogen transfer reaction, it is preferable that a hydrogen donating substance is present in the reaction system. The hydrogen-donating substance is an organic compound and / or an inorganic compound, and any compound can be used as long as it can donate hydrogen in the reaction system by, for example, thermal action or catalytic action.
Examples of the hydrogen donating substance include formic acid or a salt thereof, a combination of formic acid and a base, hydroquinone, phosphorous acid, alcohols and the like. Among these, formic acid or a salt thereof, a combination of formic acid and a base, alcohols and the like are particularly preferable.

ギ酸又はその塩類におけるギ酸の塩類としては、ギ酸のアルカリ金属塩、アルカリ土類金属塩等のギ酸の金属塩、アンモニウム塩、置換アミン塩等が挙げられる。
また、ギ酸と塩基との組み合わせ反応系内でギ酸の塩の形態となるもの或いは実質的にギ酸の塩の形態となるものであればよい。
ギ酸と塩を形成するアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられる。また、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
これらギ酸のアルカリ金属塩、アルカリ土類金属塩等のギ酸の金属塩や、アンモニウム塩、置換アミン塩等を形成する塩基、並びに、ギ酸と塩基との組み合わせにおける塩基としては、アンモニア、無機塩基、有機塩基等が挙げられる。
無機塩基としては、例えば、炭酸カリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸化ナトリウム、炭酸マグネシウム、炭酸カルシウム等のアルカリ又はアルカリ土類金属塩、水素化ナトリウム、水素化ホウ素ナトリウム、水素化リチウムアルミニウム等の金属水素化物類等が挙げられる。
有機塩基としては、例えば、カリウムメトキシド、ナトリウムメトキシド、リチウムメトキシド、ナトリウムエトキシド、カリウムイソプロポキシド、カリウムtert−ブトキシド、カリウムナフタレニド等のアルカリ金属アルコキシド、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウム、酢酸カルシウム等のアルカリ・アルカリ土類金属の塩、トリエチルアミン、ジイソプロピルエチルアミン、N,N−ジメチルアニリン、ピペリジン、ピリジン、4−ジメチルアミノピリジン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、トリ−n−ブチルアミン、N−メチルモルホリン等の有機アミン類、臭化メチルマグネシウム、臭化エチルマグネシウム、臭化プロピルマグネシウム、メチルリチウム、エチルリチウム、プロピルリチウム、n−ブチルリチウム、tert−ブチルリチウム等の有機金属化合物類、4級アンモニウム塩等が挙げられる。
Examples of formic acid salts in formic acid or salts thereof include formic acid metal salts such as alkali metal salts and alkaline earth metal salts of formic acid, ammonium salts, and substituted amine salts.
Any formic acid salt form or substantially formic acid salt form may be used in the combined reaction system of formic acid and base.
Examples of the alkali metal that forms a salt with formic acid include lithium, sodium, potassium, rubidium, and cesium. Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like.
Bases for forming formic acid metal salts such as alkali metal salts and alkaline earth metal salts of these formic acids, ammonium salts, substituted amine salts, etc., and bases in a combination of formic acid and bases include ammonia, inorganic bases, An organic base etc. are mentioned.
Examples of the inorganic base include potassium carbonate, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydroxide, magnesium carbonate, calcium carbonate and other alkali or alkaline earth metal salts, hydrogenated Examples thereof include metal hydrides such as sodium, sodium borohydride, lithium aluminum hydride and the like.
Examples of the organic base include alkali metal alkoxides such as potassium methoxide, sodium methoxide, lithium methoxide, sodium ethoxide, potassium isopropoxide, potassium tert-butoxide, potassium naphthalenide, sodium acetate, potassium acetate, acetic acid. Alkali / alkaline earth metal salts such as magnesium and calcium acetate, triethylamine, diisopropylethylamine, N, N-dimethylaniline, piperidine, pyridine, 4-dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] nona Organic amines such as -5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene, tri-n-butylamine, N-methylmorpholine, methylmagnesium bromide, ethylmagnesium bromide, odor Propyl Magnesium, methyl lithium, ethyl lithium, propyl lithium, n- butyl lithium, organic metal compounds such as tert- butyl lithium, and the like quaternary ammonium salts.

水素供与性物質としてのアルコール類としては、水素原子をα位に有する低級アルコール類が好ましく、具体例としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール等が挙げられ、中でもイソプロパノールが好ましい。   As the alcohol as a hydrogen-donating substance, lower alcohols having a hydrogen atom at the α-position are preferable. Specific examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and the like. Among them, isopropanol is preferable.

本発明の光学活性2級アルコールの製造方法においては、用いる水素供与性物質としては、不斉水素化反応を溶媒として後述する水溶媒で行うため、水溶性であるものがよく、中でも、反応活性、経済性を考慮して、ギ酸のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、置換アミン塩等が挙げられる。
水素供与性物質の使用量は、ケトン類に対して通常2〜20当量、好ましくは4〜10当量の範囲から適宜選択される。反応後、生成物を分離して残った水相を再使用する時は、反応で消費された水素源のギ酸塩を補充してもよい。
In the method for producing an optically active secondary alcohol of the present invention, the hydrogen-donating substance to be used is preferably water-soluble because the asymmetric hydrogenation reaction is carried out with an aqueous solvent described later as a solvent. In view of economics, formic acid alkali metal salts, alkaline earth metal salts, ammonium salts, substituted amine salts and the like can be mentioned.
The amount of the hydrogen-donating substance used is appropriately selected from the range of usually 2 to 20 equivalents, preferably 4 to 10 equivalents, with respect to the ketones. After the reaction, when the product is separated and the remaining aqueous phase is reused, the hydrogen source formate consumed in the reaction may be replenished.

本発明の光学活性2級アルコールの製造方法は、溶媒として水を用いて行うことが好ましい。水溶媒で反応することにより、生成した2級アルコールと水溶性遷移金属−アミド錯体とを含有する水相を容易に分離でき、しかも、分離した水溶性遷移金属−アミド錯体を含有する水相を繰り返し使用する、即ち、リサイクル(再使用)することが可能となる。
水の使用量は、反応基質であるケトン類の種類や溶解度、経済性等を考慮して選択されるが、基質に対して通常5〜50質量倍、好ましくは10〜40質量倍の範囲から適宜選択される。
The method for producing an optically active secondary alcohol of the present invention is preferably performed using water as a solvent. By reacting with an aqueous solvent, the aqueous phase containing the produced secondary alcohol and the water-soluble transition metal-amide complex can be easily separated, and the aqueous phase containing the separated water-soluble transition metal-amide complex can be separated. It can be used repeatedly, that is, recycled (reused).
The amount of water used is selected in consideration of the type, solubility, economy, etc. of the ketones that are the reaction substrate, but is usually 5 to 50 times by mass, preferably 10 to 40 times by mass with respect to the substrate. It is selected appropriately.

また、本発明の光学活性2級アルコールの製造方法は、用いるケトン類の種類等により、必要に応じて水と有機溶媒とを組み合わせて用いてもよい。
用いられる有機溶媒としては、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、例えばペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類、例えばジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素類、例えばジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジオキソラン等のエーテル類、例えばメタノール、エタノール、2−プロパノール、n−ブタノール、tert−ブタノール、ベンジルアルコール等のアルコール類、例えばエチレングリコール、プロピレングリコール、1,2−プロパンジオール、グリセリン等の多価アルコール類、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、アセトニトリル、N−メチルピロリドン、ジメチルスルホキシド等が挙げられる。これら溶媒は、夫々単独で用いても2種以上適宜組み合わせて用いてもよい。
有機溶媒の使用量は、用いるケトンの重量に対して、通常1〜10倍容量、好ましくは2〜5倍容量の範囲から適宜選択される。
In the method for producing an optically active secondary alcohol of the present invention, water and an organic solvent may be used in combination according to the type of ketones used.
Examples of the organic solvent used include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as pentane, hexane, heptane and octane, and halogens such as dichloromethane, chloroform, carbon tetrachloride and dichloroethane. Hydrocarbons such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, tetrahydrofuran, dioxane, dioxolane and the like such as methanol, ethanol, 2-propanol, n-butanol, tert-butanol, benzyl alcohol Alcohols such as ethylene glycol, propylene glycol, 1,2-propanediol, glycerin and other polyhydric alcohols such as N, N-dimethylformamide, N, N Amides such as dimethylacetamide, acetonitrile, N- methylpyrrolidone, dimethyl sulfoxide and the like. These solvents may be used alone or in appropriate combination of two or more.
The amount of the organic solvent used is appropriately selected from the range of usually 1 to 10 times, preferably 2 to 5 times the volume of the ketone used.

反応温度は、経済性等を考慮して、通常15〜100℃、好ましくは20〜80℃の範囲から適宜選択され、通常は比較的低温で行うことが望ましい。
反応時間は、用いる不斉水素化触媒の種類や使用量、用いるケトン化合物の種類や濃度、反応温度等の反応条件等により自ずから異なるが、数分〜数十時間程度でよく、通常4〜48時間、好ましくは6〜24時間の範囲から適宜選択される。
本発明の光学活性アルコールの製造方法は、反応形式がバッチ式であっても連続式であっても実施することができる。
The reaction temperature is appropriately selected from the range of usually 15 to 100 ° C., preferably 20 to 80 ° C. in consideration of economy and the like, and it is usually desirable to carry out at a relatively low temperature.
While the reaction time naturally varies depending on the type and amount of the asymmetric hydrogenation catalyst used, the type and concentration of the ketone compound used, the reaction conditions such as the reaction temperature, etc., it may be from several minutes to several tens of hours, usually from 4 to 48. It is suitably selected from the time, preferably in the range of 6 to 24 hours.
The method for producing an optically active alcohol of the present invention can be carried out regardless of whether the reaction format is batch or continuous.

本発明の製造方法においては、先の不斉水素化反応に用いた不斉合成触媒の水溶液を回収して使用することができる。即ち、本発明の製造方法においては、不斉合成触媒のリサイクル(再使用、再利用)が可能である。
不斉合成触媒及びその水溶液の回収は、反応液(反応系)から通常行われている操作を採用して行うことができる。
即ち、水素化反応終了後、要すれば有機溶媒又は水を反応液に加えて2相とし、この2相となっている反応液から水相を分離すれば、不斉合成触媒の水溶液を回収することができる。
回収した不斉合成触媒の水溶液(水素化反応後分離した水相)は、後処理や精製等を行わなくても、そのままケトン類の不斉水素化反応に再使用(リサイクル)することができる。
また、必要であれば、この分離した水相から濃縮等の操作により不斉合成触媒を容易に回収することもできる。
In the production method of the present invention, the aqueous solution of the asymmetric synthesis catalyst used in the previous asymmetric hydrogenation reaction can be recovered and used. That is, in the production method of the present invention, the asymmetric synthesis catalyst can be recycled (reused or reused).
Recovery of the asymmetric synthesis catalyst and its aqueous solution can be carried out by employing an operation usually performed from the reaction solution (reaction system).
That is, after completion of the hydrogenation reaction, if necessary, an organic solvent or water is added to the reaction solution to form two phases. If the aqueous phase is separated from the two-phase reaction solution, an aqueous solution of the asymmetric synthesis catalyst is recovered. can do.
The recovered aqueous solution of the asymmetric synthesis catalyst (the aqueous phase separated after the hydrogenation reaction) can be reused (recycled) for the asymmetric hydrogenation reaction of ketones without any post-treatment or purification. .
If necessary, the asymmetric synthesis catalyst can be easily recovered from the separated aqueous phase by an operation such as concentration.

水素化反応終了後、水相を分離するに際し、必要に応じて用いられる有機溶媒は、水と相分離するものであれば何れも使用可能であるが、その具体例としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジメトキシエタン、エチレングリコールジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、四塩化炭素、o−ジクロロベンゼン等のハロゲン化炭化水素類、酢酸メチル、酢酸エチル、酢酸n−ブチル、プロピオン酸メチル等のエステル類等が挙げられる。これら有機溶媒は、夫々単独で用いても2種以上適宜組み合わせて用いてもよい。   When the aqueous phase is separated after completion of the hydrogenation reaction, any organic solvent used as necessary can be used as long as it is phase-separated from water. Specific examples thereof include, for example, pentane, Aliphatic hydrocarbons such as hexane, heptane, octane, decane, cyclohexane, aromatic hydrocarbons such as benzene, toluene, xylene, diethyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, ethylene glycol diethyl ether, Ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride, o-dichlorobenzene Etc. Gen hydrocarbons, methyl acetate, ethyl acetate, n- butyl, esters of methyl propionate and the like. These organic solvents may be used alone or in appropriate combination of two or more.

一方、単離、回収した不斉合成触媒は、後処理や精製等を行った後、ケトン類の不斉水素化反応に再使用することもできるが、他の不斉水素化反応に使用することも出来る。
回収品の不斉合成触媒、即ち、反応液(反応系)から回収した不斉合成触媒を含有している水相及び単離等した不斉合成触媒を用いてケトン類の水素化反応に再使用(リサイクル)する場合には、必要に応じて新たな不斉合成触媒を追加する等、不斉合成触媒の量を適宜調節する等は任意である。
斯くして得られた光学活性2級アルコールは、医薬中間体や液晶材料等として有用である。
On the other hand, the isolated and recovered asymmetric catalyst can be reused for asymmetric hydrogenation of ketones after post-treatment and purification, etc., but is used for other asymmetric hydrogenation reactions. You can also
Recycled ketones in the hydrogenation reaction using the recovered asymmetric catalyst, that is, the aqueous phase containing the asymmetric synthesis catalyst recovered from the reaction solution (reaction system) and the isolated asymmetric synthesis catalyst. When using (recycling), it is optional to adjust the amount of the asymmetric synthesis catalyst as appropriate, such as adding a new asymmetric synthesis catalyst as necessary.
The optically active secondary alcohol thus obtained is useful as a pharmaceutical intermediate or a liquid crystal material.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
なお、以下の実施例において、物性等の測定に用いた装置は次の通りである。
1)ガスクロマトグラフィー(GLC):
カラム TC−WAX、L30m×0.25mm
カラム Chiraldex G−PN、L30m×ID 0.25mm
2)比旋光度:日本分光JASCO DIP−360型旋光度計
3)H−NMR,12C−NMR:型番 DRX−500、BURUKER社製
5)HPLC:カラム Hypersil SAS(Cl)5μm、L=250mm
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
In the following examples, the apparatus used for measuring physical properties is as follows.
1) Gas chromatography (GLC):
Column TC-WAX, L30m × 0.25mm
Column Chiraldex G-PN, L30m x ID 0.25mm
2) Specific optical rotation: JASCO JSCO DIP-360 type optical rotation meter 3) 1 H-NMR, 12 C-NMR: Model number DRX-500, manufactured by BURUKER 5) HPLC: Column Hypersil SAS (Cl) 5 μm, L = 250mm

(1R,2R)−ジフェニルエチレン−1,2−ジアミン モノベンゼンスルファミドの合成
(1R,2R)−ジフェニルエチレン−1,2−ジアミン2.5g(14.2mmol)、トリエチルアミン1.72g(17mmol)及び塩化メチレン10mlからなる溶液中へ、窒素雰囲気下、ベンゼンスルホニルクロライド3g(14.1mmol)の塩化メチレン5ml溶液を10℃以下に保ちながら、2時間を要して滴下した。冷却浴を外して更に3時間撹拌反応させた後、一夜静置した。溶媒を回収し、粗製の(1R,2R)−ジフェニルエチレン−1,2−ジアミン モノベンゼンスルファミドの固体5.82gを得た。これを酢酸エチル40mlの中ですり潰して、不溶物を濾過して除いた。不溶物乾燥重量1.38g。シリカゲルTLC(酢酸エチル)では、原料(原点)と、(1R,2R)−ジフェニルエチレン−1,2−ジアミンモノスルファミド及びジスルファミドの3スポットが観察された。
濾液である(1R,2R)−ジフェニルエチレン−1,2−ジアミン モノベンゼンスルファミドの酢酸エチル溶液をそのまま、シリカゲル化ラムクロマト(酢酸エチル)にかけて精製した。かくして、精製(1R,2R)−ジフェニルエチレン−1,2−ジアミン モノベンゼンスルファミド2.76g(白色粉末)を得た。収率:55.5%。(HPLC:98.3%)
H−NMR(MeOH)δ:3.99(1H,d,8.8Hz),4.41(1H,d,8.8Hz),6.7(2H,d,7.5Hz),6.9(3H,m),7.08(5H,m),7.2(2H,t,7.5Hz),7.33(1H,t,7.5Hz),7.49(2H,d,8.1Hz)ppm。
12C−NMR(MeOH)δ:62.3,66.7,127.8,127.9,128,128.4,128.5,128.6,128.7,128.8,129.2,129.6,133,139.7,142ppm。
Synthesis of (1R, 2R) -diphenylethylene-1,2-diamine monobenzenesulfamide (1R, 2R) -diphenylethylene-1,2-diamine 2.5 g (14.2 mmol), triethylamine 1.72 g (17 mmol) ) And 10 ml of methylene chloride were added dropwise over 2 hours while maintaining a 5 ml solution of 3 g (14.1 mmol) of benzenesulfonyl chloride in 10 ml of methylene chloride under a nitrogen atmosphere. The cooling bath was removed and the reaction was further stirred for 3 hours, and then allowed to stand overnight. The solvent was recovered to obtain 5.82 g of crude (1R, 2R) -diphenylethylene-1,2-diamine monobenzenesulfamide as a solid. This was ground in 40 ml of ethyl acetate, and insoluble matters were removed by filtration. Insoluble matter dry weight 1.38 g. In silica gel TLC (ethyl acetate), three spots of the raw material (origin) and (1R, 2R) -diphenylethylene-1,2-diamine monosulfamide and disulfamide were observed.
The ethyl acetate solution of (1R, 2R) -diphenylethylene-1,2-diamine monobenzenesulfamide as the filtrate was purified by silica gel chromatography (ethyl acetate). Thus, 2.76 g (white powder) of purified (1R, 2R) -diphenylethylene-1,2-diamine monobenzenesulfamide was obtained. Yield: 55.5%. (HPLC: 98.3%)
1 H-NMR (MeOH) δ: 3.99 (1 H, d, 8.8 Hz), 4.41 (1 H, d, 8.8 Hz), 6.7 (2 H, d, 7.5 Hz), 6. 9 (3H, m), 7.08 (5H, m), 7.2 (2H, t, 7.5Hz), 7.33 (1H, t, 7.5Hz), 7.49 (2H, d, 8.1 Hz) ppm.
12 C-NMR (MeOH) δ: 62.3, 66.7, 127.8, 127.9, 128, 128.4, 128.5, 128.6, 128.7, 128.8, 129.2 129.6, 133, 139.7, 142 ppm.

(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンの合成。
反応は窒素置換した50ml反応容器使用。0℃まで冷却した濃硫酸11.1g(113.57mmol)と30%発煙硫酸(30%SO−HSO)22.8g(SO=85.5mmol)の混合溶液中へ、(1R,2R)−ジフェニルエチレン−1,2−ジアミン モノベンゼンスルファミド1.59g(4.54mmol)を約5分で加えた。5℃以下で6時間攪拌した後、冷却浴を外して4日間静置した。反応溶液を注意深く500gの砕氷中へクエンチし、次に、50%水酸化ナトリウム水溶液によって中和し、更に、アルカリ性にした。この水溶液を蒸留濃縮し、80.8gのブロック状白色個体を得た。濃縮物中の硫酸ナトリウムを除去するため、ブロック状白色固体を砕いてから、10%含水メタノール150mlを加えて30分間加熱還流した。これを熱時ろ過し、硫酸ナトリウム(乾燥重量79.5g)を分離した。ろ液を減圧濃縮し、次いで、高真空乾燥して4.24gの固体を得た。この固体を再び10%含水メタノール14.4ml中で30分間加熱還流し、室温まで冷却した後、濾過し、濾液を濃縮後、高真空乾燥して灰白色固体2.2gを得た。
H−NMRにより、この灰白色固体は(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンであることが確認された。
分析値は以下の通り。
[α] 20=−80.2(c=1,HO)。
H−NMR(CDOD)δ:4.37(2H,s),7.18(2H,dt,7.7Hz,1〜3Hz,フェニル基の6位と6‘位のプロトン),7.32(2H,t,7.7Hz,フェニル基の5位と5’位のプロトン),7.65〜7.68(4H,m,フェニル基の2位と2‘位および、4位と4’位のプロトン)ppm。
13C−NMR(CDOD)δ:59.8,124.4,126.1,130,131.2,138.4,143.5ppm。
この固体生成物の構造はNMRスペクトル(重水中)とマススペクトル(ESI測定法)によって、(1R,2R)−ジ(3,3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンと決定された。
NMR:13C−NMR;δ=143.5、138.4ppmのシグナルはSONaが結合したベンゼン核3位および、3’位の炭素、131.2、130、126.4および、124.4ppmはベンゼン核炭素、そして、59.9ppmは1,2−ジアミノエチレンの炭素にそれぞれ帰属される。
ESIマススペクトル(m/z);ESI+:417(M+1)、439(M+Na)、395(M−Na)および、2分子のクラスターに由来する812、834および、856。ESI−:393(M−23)、371(M−2Na)および、2分子のクラスターに由来する765、787および、809。
H−NMR(500MHz、DO,ppm,Hz):4.37(2H,s、エチレンの1,2位のプロトン)、7.18(2H,dt,7.7Hz,1〜3Hz,フェニル基の6位と6’位のプロトン)、7.32(2H,t,7.7Hz,フェニル基の5位と5’位のプロトン)。7.63〜7.68(4H,m,フェニル基の2位と2’位および、4位と4’位のプロトン)。フェニル基の2位(2’位も同じ)のプロトンは1位と3位に置換基があるため他の位置のプロトンと異なったJ値すなわち、4位と5位のプロトンとのJ値は小さく0.9〜2Hzが観測される。これに対して、隣接する4位と5位および、5位と6位のプロトンのJ値はそれぞれ7.7Hzである。
Synthesis of (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine.
The reaction was performed using a 50 ml reaction vessel purged with nitrogen. To a mixed solution of 11.1 g (113.57 mmol) of concentrated sulfuric acid cooled to 0 ° C. and 22.8 g of 30% fuming sulfuric acid (30% SO 3 —H 2 SO 4 ) (SO 3 = 85.5 mmol), (1R , 2R) -diphenylethylene-1,2-diamine monobenzenesulfamide 1.59 g (4.54 mmol) was added in about 5 minutes. After stirring at 5 ° C. or lower for 6 hours, the cooling bath was removed and the mixture was allowed to stand for 4 days. The reaction solution was carefully quenched into 500 g of crushed ice, then neutralized with 50% aqueous sodium hydroxide and made alkaline. This aqueous solution was concentrated by distillation to obtain 80.8 g of a block-like white solid. In order to remove sodium sulfate in the concentrate, the block-shaped white solid was crushed, 150 ml of 10% aqueous methanol was added, and the mixture was heated to reflux for 30 minutes. This was filtered while hot to separate sodium sulfate (dry weight 79.5 g). The filtrate was concentrated under reduced pressure and then dried under high vacuum to give 4.24 g of solid. This solid was heated and refluxed again in 14.4 ml of 10% aqueous methanol for 30 minutes, cooled to room temperature, filtered, and the filtrate was concentrated and dried under high vacuum to obtain 2.2 g of an off-white solid.
1 H-NMR confirmed that the off-white solid was (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine.
The analysis values are as follows.
[Α] D 20 = −80.2 (c = 1, H 2 O).
1 H-NMR (CD 3 OD) δ: 4.37 (2H, s), 7.18 (2H, dt, 7.7 Hz, 1 to 3 Hz, protons at the 6th and 6 ′ positions of the phenyl group), 7 .32 (2H, t, 7.7 Hz, protons at the 5th and 5 'positions of the phenyl group), 7.65 to 7.68 (4H, m, the 2nd, 2' and 4th positions of the phenyl group 4'-position proton) ppm.
13 C-NMR (CD 3 OD) δ: 59.8, 124.4, 126.1, 130, 131.2, 138.4, 143.5 ppm.
The structure of this solid product was determined as (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine by NMR spectrum (heavy water) and mass spectrum (ESI measurement method). It was done.
NMR: 13 C-NMR; signals at δ = 143.5, 138.4 ppm are the 3rd and 3 ′ position carbons of SO 3 Na bonded, 3 ′ position carbon, 131.2, 130, 126.4 and 124. 4 ppm is attributed to benzene core carbon, and 59.9 ppm to 1,2-diaminoethylene carbon.
ESI mass spectrum (m / z); ESI +: 417 (M + 1), 439 (M + Na), 395 (M-Na) and 812, 834 and 856 derived from a cluster of two molecules. ESI-: 393 (M-23), 371 (M-2Na) and 765, 787 and 809 derived from a cluster of two molecules.
1 H-NMR (500 MHz, D 2 O, ppm, Hz): 4.37 (2H, s, protons at positions 1 and 2 of ethylene), 7.18 (2H, dt, 7.7 Hz, 1 to 3 Hz, 6 and 6 'protons of the phenyl group), 7.32 (2H, t, 7.7 Hz, 5 and 5' protons of the phenyl group). 7.63-7.68 (4H, m, protons at positions 2 and 2 ′ and positions 4 and 4 ′ of the phenyl group). The proton at the 2-position of the phenyl group (same as 2'-position) has substituents at the 1-position and 3-position, so the J value different from the protons at other positions, A small 0.9-2 Hz is observed. On the other hand, the J values of adjacent protons at positions 4 and 5, and positions 5 and 6 are 7.7 Hz, respectively.

(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンと、[RhCl (pentamethyl cyclopentadiene)] (以下、[Cp*RhCl と略記する。)及びギ酸アンモニウムを用いたアセトフェノンの不斉水素移動還元
窒素雰囲気下、(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミン4.4mg(0.0105mmol)、[Cp*RhCl 2.57mg(0.0041mmol)、アセトフェノン0.2g(1.66mmol)、ギ酸アンモニウム0.42g(6.7mmol)及び水4mlからなる溶液を80℃で20時間撹拌、反応させた。有機層はジイソプロピルエーテルで抽出し、無水硫酸マグネシウムで脱水した後、濃縮して、粗製の光学活性(1R)−フェネチルアルコールを得た。GC:転化率99.3%、選択率99.8%。不斉収率60.2%ee。
(1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine and [RhCl 2 (pentamethyl cycladiene)] 2 (hereinafter abbreviated as [Cp * RhCl 2 ] 2 . Asymmetric hydrogen transfer reduction of acetophenone with ammonium formate
Under nitrogen atmosphere, (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine 4.4 mg (0.0105 mmol), [Cp * RhCl 2 ] 2 2.57 mg (0 .0041 mmol), 0.2 g (1.66 mmol) of acetophenone, 0.42 g (6.7 mmol) of ammonium formate and 4 ml of water were stirred and reacted at 80 ° C. for 20 hours. The organic layer was extracted with diisopropyl ether, dehydrated with anhydrous magnesium sulfate, and concentrated to obtain crude optically active (1R) -phenethyl alcohol. GC: conversion 99.3%, selectivity 99.8%. Asymmetric yield 60.2% ee.

(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンと、[Cp*IrCl 及びギ酸アンモニウムを用いたアセトフェノンの不斉水素移動還元
金属錯体[IrCl(pentamethyl cyclopentadiene)](以下、[Cp*IrClと略記する。)を用い、反応時間を18時間とした以外は実施例3と同様にしてアセトフェノンの不斉水素移動還元を行い、粗製の光学活性(1R)−フェネチルアルコールを得た。GC:転化率73.4%、選択率99.8%。不斉収率58%ee。
Asymmetric hydrogen transfer reduction metal complex of acetophenone using (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine, [Cp * IrCl 2 ] 2 and ammonium formate [ The asymmetric hydrogen transfer reduction of acetophenone was carried out in the same manner as in Example 3 except that IrCl 2 (pentamethyl cyclopentadiene)] 2 (hereinafter abbreviated as [Cp * IrCl 2 ] 2 ) was used and the reaction time was 18 hours. The crude optically active (1R) -phenethyl alcohol was obtained. GC: Conversion 73.4%, selectivity 99.8%. Asymmetric yield 58% ee.

(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンと[Cp*RhCl 及びギ酸ナトリウムを用いたアセトフェノンの不斉水素移動還元
窒素雰囲気下、(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミン6.5mg(1.66mmol)[Cp*RhCl 5.13mg(0.0082mmol)、アセトフェノン0.2g(1.66mmol)、ギ酸ナトリウム0.46g(6.7mmol)及び水4mlからなる溶液を50℃で3時間撹拌、反応させた。有機層はジイソプロピルエーテルで抽出し、無水硫酸マグネシウムで脱水した後、濃縮して、粗製の光学活性(1R)−フェネチルアルコールを得た。GC:転化率98.8%、選択率99.4%。不斉収率64.9%ee。
Asymmetric hydrogen transfer reduction of acetophenone using (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine, [Cp * RhCl 2 ] 2 and sodium formate under a nitrogen atmosphere, (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine 6.5 mg (1.66 mmol) [Cp * RhCl 2 ] 2 5.13 mg (0.0082 mmol), acetophenone A solution consisting of 0.2 g (1.66 mmol), sodium formate 0.46 g (6.7 mmol) and water 4 ml was stirred and reacted at 50 ° C. for 3 hours. The organic layer was extracted with diisopropyl ether, dehydrated with anhydrous magnesium sulfate, and concentrated to obtain crude optically active (1R) -phenethyl alcohol. GC: conversion 98.8%, selectivity 99.4%. Asymmetric yield 64.9% ee.

(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンと[Cp*IrCl 及びギ酸ナトリウムを用いたアセトフェノンの不斉水素移動還元
金属錯体[Cp*IrClを用い、反応時間を22時間とした以外は全て実施例5と同様にしてアセトフェノンの不斉水素移動還元を行い粗製の光学活性(1R)−フェネチルアルコールを得た。GC:転化率94.4%、選択率99.8%。不斉収率68.2%ee。
Asymmetric hydrogen transfer reduced metal complex of acetophenone using (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine, [Cp * IrCl 2 ] 2 and sodium formate [Cp * using IrCl 2] 2, all except that the reaction time was 22 hours in example 5 and the same way acetophenone asymmetric hydrogen transfer reduction was carried out crude optically active (1R) - was obtained phenethyl alcohol. GC: conversion 94.4%, selectivity 99.8%. Asymmetric yield 68.2% ee.

(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンのベンゼンスルファミドの合成
窒素雰囲気下で(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミン0.5g(1.2mmol)、トリエチルアミン0.242g(2.4mmol)及びDMF10mlからなる溶液を5℃以下まで冷却した。この溶液中へ、ベンゼンスルホニル クロライド0.2545g(1.44mmol)のDMF溶液2.5mlを5℃以下に保ちながら3時間を要して滴下した。同温度で更に2.5時間撹拌、反応させた後、一夜静置した。反応液中のDMFを蒸留回収して粗製の(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンのベンゼンスルファミド0.75gを得た。
生成物のHPLC組成:(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンのモノベンゼンスルファミド52.8%、ジベンゼンスルファミド5.5%、未反応(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミン1.8%。
Synthesis of (1R, 2R) -di (3,3′ -sodiumoxysulfonylphenyl) ethylene-1,2-diamine benzenesulfamide (1R, 2R) -di (3,3′-sodium under nitrogen atmosphere A solution consisting of 0.5 g (1.2 mmol) of oxysulfonylphenyl) ethylene-1,2-diamine, 0.242 g (2.4 mmol) of triethylamine and 10 ml of DMF was cooled to 5 ° C. or lower. To this solution, 2.5 ml of a DMF solution of 0.2545 g (1.44 mmol) of benzenesulfonyl chloride was added dropwise over 3 hours while maintaining at 5 ° C. or lower. The mixture was further stirred and reacted at the same temperature for 2.5 hours, and then allowed to stand overnight. DMF in the reaction solution was recovered by distillation to obtain 0.75 g of crude (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine benzenesulfamide.
HPLC composition of product: (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine monobenzenesulfamide 52.8%, dibenzenesulfamide 5.5 %, Unreacted (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine 1.8%.

粗製の(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンのベンゼンスルファミドと[Cp*RhCl を用いたアセトフェノンの不斉水素移動還元
粗製の(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンのベンゼンスルファミド7.5mg(0.0166mmol)、[Cp*RhCl 2.47mg(0.0083mmol)、アセトフェノン0.2g(1.66mmol)、水4ml、及びギ酸ナトリウム0.92g(13.4mmol)を混合し、80℃で17時間撹拌、反応させた。生成物をジイソプロピルアルコールで抽出し、無水硫酸マグネシウムで脱水したのち濃縮して、粗製の(1R)−フェネチルアルコールを得た。GC:転化率99.3%、選択率99.9%。不斉収率52.9%ee。
Asymmetric hydrogen transfer reduction of acetophenone using crude (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine benzenesulfamide and [Cp * RhCl 2 ] 2 Crude (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine benzenesulfamide 7.5 mg (0.0166 mmol), [Cp * RhCl 2 ] 2 47 mg (0.0083 mmol), 0.2 g (1.66 mmol) of acetophenone, 4 ml of water, and 0.92 g (13.4 mmol) of sodium formate were mixed and stirred at 80 ° C. for 17 hours for reaction. The product was extracted with diisopropyl alcohol, dehydrated with anhydrous magnesium sulfate and concentrated to obtain crude (1R) -phenethyl alcohol. GC: conversion 99.3%, selectivity 99.9%. Asymmetric yield 52.9% ee.

粗製の(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンのベンゼンスルファミドと[RuI (p−cymene)] を用いたアセトフェノンの不斉水素移動還元
粗製の(1R,2R)−ジ(3、3’−ナトリウムオキシスルホニルフェニル)エチレン−1,2−ジアミンのベンゼンスルファミド7.5mg(0.0166mmol)、[RuI(p−cymene)] 4.1mg(0.0083mmol)、アセトフェノン0.2g(1.66mmol)及び水4mlからなる溶液を50℃で1.5時間撹拌、反応させた後、ギ酸ナトリウム0.92g(13.4mmol)を加え同温度で6時間撹拌、反応させた。生成物をn−ヘキサンで抽出し、無水硫酸マグネシウムで脱水した後、濃縮して、粗製の(1S)−フェネチルアルコールを得た。GC:転化率95.8%、選択率99.8%。不斉収率91.7%ee。
Asymmetric of acetophenone using crude (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine benzenesulfamide and [RuI 2 (p-cymene)] 2 Hydrogen transfer reduction Crude (1R, 2R) -di (3,3′-sodiumoxysulfonylphenyl) ethylene-1,2-diamine in benzenesulfamide 7.5 mg (0.0166 mmol), [RuI 2 (p- cymene)] 2 4.1 mg (0.0083 mmol), acetophenone 0.2 g (1.66 mmol), and 4 ml of water were stirred and reacted at 50 ° C. for 1.5 hours, and then sodium formate 0.92 g (13 .4 mmol) was added and the mixture was stirred and reacted at the same temperature for 6 hours. The product was extracted with n-hexane, dehydrated with anhydrous magnesium sulfate, and then concentrated to obtain crude (1S) -phenethyl alcohol. GC: conversion 95.8%, selectivity 99.8%. Asymmetric yield 91.7% ee.

不斉水素化反応に用いた不斉合成触媒の再利用(リサイクル)
実施例8において、反応後、生成物をジイソプロピルアルコールで抽出した後の水相にアセトフェノン0.2g(1.66mmol)を加え80℃で12時間撹拌、反応させた。反応後、実施例8と同様に処理して粗製の(1R)−フェネチルアルコールを得た。転化率95.6%、選択率99.8%。不斉収率91.7%ee。
Reusing (recycling) asymmetric synthesis catalysts used in asymmetric hydrogenation reactions
In Example 8, after the reaction, 0.2 g (1.66 mmol) of acetophenone was added to the aqueous phase after extracting the product with diisopropyl alcohol, and the mixture was stirred and reacted at 80 ° C. for 12 hours. After the reaction, the same treatment as in Example 8 was performed to obtain crude (1R) -phenethyl alcohol. Conversion 95.6%, selectivity 99.8%. Asymmetric yield 91.7% ee.

本発明の光学活性水溶性遷移金属−ジアミン錯体は、各種有機合成反応、特に水素移動型不斉還元反応等の触媒として有用であり、医薬中間体や液晶材料等として有用な光学活性2級アルコールの製造に有効に使用し得る。また、本発明の錯体触媒は、リサイクルが可能なため、コストが削減でき、また、不斉水素化反応を水溶媒中で行えるので、環境面に配慮した不斉水素化反応が可能であり、斯業に貢献するところ極めて大である。   The optically active water-soluble transition metal-diamine complex of the present invention is useful as a catalyst for various organic synthesis reactions, particularly hydrogen transfer asymmetric reduction reaction, and is useful as a pharmaceutical intermediate or liquid crystal material. Can be used effectively in the manufacture of In addition, since the complex catalyst of the present invention can be recycled, the cost can be reduced, and since the asymmetric hydrogenation reaction can be performed in an aqueous solvent, an asymmetric hydrogenation reaction in consideration of the environment is possible. It is extremely important to contribute to this business.

Claims (14)

下記一般式(1)
Figure 0004425654
[式中、R及びRは夫々独立して、水素原子又は−SO13(但し、R13炭素数1〜10のアルキル基で置換されていてもよいフェニル基を示す。)を示し、 、R 〜R 及びR 10 〜R 12 は水素原子を示し、R 及びR −SO14(但し、R14は水素原子又はアルカリ金属原子を示す。)を示し、Mはルテニウム、ロジウム又はイリジウム原子を示し、Xはハロゲン原子を示し、Lはベンゼン、メシチレン、p−シメン、ヘキサメチルベンゼン、ペンタメチルシクロペンタジエン、1,5−シクロオクタジエン又はノルボルナジエンを示す。]で表される水溶性遷移金属−ジアミン錯体。
The following general formula (1)
Figure 0004425654
[In the formula, R 1 and R 2 each independently represent a hydrogen source Komata is -SO 2 R 13 (where, R 13 represents a phenyl group which may be substituted with an alkyl group having 1 to 10 carbon atoms R 3 , R 5 to R 8 and R 10 to R 12 represent a hydrogen atom, R 4 and R 9 represent —SO 3 R 14 (wherein R 14 represents a hydrogen atom or an alkali metal atom). M) represents a ruthenium, rhodium or iridium atom , X represents a halogen atom, L represents benzene, mesitylene, p-cymene, hexamethylbenzene, pentamethylcyclopentadiene, 1,5-cyclooctadiene or Indicates norbornadiene . ] The water-soluble transition metal-diamine complex represented by this.
一般式(1)において、Mがロジウムであり、Lがペンタメチルシクロペンタジエンである、請求項1に記載の水溶性遷移金属−ジアミン錯体。  The water-soluble transition metal-diamine complex according to claim 1, wherein M is rhodium and L is pentamethylcyclopentadiene in the general formula (1). 光学活性体である、請求項1又は2に記載の水溶性遷移金属−ジアミン錯体。   The water-soluble transition metal-diamine complex according to claim 1 or 2, which is an optically active substance. 一般式(2)
Figure 0004425654
[式中、R及びRは夫々独立して、水素原子又は−SO13(但し、R13炭素数1〜10のアルキル基で置換されていてもよいフェニル基を示す。)を示し、 、R 〜R 及びR 10 〜R 12 は水素原子を示し、R 及びR −SO14(但し、R14は水素原子又はアルカリ金属原子を示す。)を示す。]で表される水溶性ジアミン化合物と、一般式(3)
[MX (3)
(式中、Mはルテニウム、ロジウム又はイリジウム原子を示し、Xはハロゲン原子を示し、Lはベンゼン、メシチレン、p−シメン、ヘキサメチルベンゼン、ペンタメチルシクロペンタジエン、1,5−シクロオクタジエン又はノルボルナジエンを示し、mは2又は3を示し、nは0又は1を示し、pは1又は2を示す。)で表される遷移金属化合物とを反応させることを特徴とする、請求項1に記載の水溶性遷移金属−ジアミン錯体の製造方法。
General formula (2)
Figure 0004425654
[In the formula, R 1 and R 2 each independently represent a hydrogen source Komata is -SO 2 R 13 (where, R 13 represents a phenyl group which may be substituted with an alkyl group having 1 to 10 carbon atoms R 3 , R 5 to R 8 and R 10 to R 12 represent a hydrogen atom, R 4 and R 9 represent —SO 3 R 14 (wherein R 14 represents a hydrogen atom or an alkali metal atom). .) showing the. And a water-soluble diamine compound represented by the general formula (3)
[MX m L n ] p (3)
(In the formula, M represents a ruthenium, rhodium or iridium atom , X represents a halogen atom, L represents benzene, mesitylene, p-cymene, hexamethylbenzene, pentamethylcyclopentadiene, 1,5-cyclooctadiene or norbornadiene. Wherein m represents 2 or 3, n represents 0 or 1, and p represents 1 or 2.), a transition metal compound represented by the following formula: Of water-soluble transition metal-diamine complex.
一般式(3)において、Mがロジウムであり、Lがペンタメチルシクロペンタジエンである、請求項4に記載の製造方法。  The production method according to claim 4, wherein, in the general formula (3), M is rhodium and L is pentamethylcyclopentadiene. 一般式(2)で表される水溶性ジアミン化合物が、光学活性水溶性ジアミン化合物であり、得られる水溶性遷移金属−ジアミン錯体が、光学活性水溶性遷移金属−ジアミン錯体である、請求項4又は5に記載の製造方法。 Water-soluble diamine compound represented by the general formula (2) is an optically active water-soluble diamine compound, resulting soluble transition metal - diamine complex is optically active water-soluble transition metal - a diamine complex according to claim 4 Or the manufacturing method of 5 . 一般式(2b)
Figure 0004425654
[式中、R及びRは夫々独立して、水素原子又は−SO13(但し、R13炭素数1〜10のアルキル基で置換されていてもよいフェニル基を示す。)を示し、R、R〜R及びR10〜R12 は水素原子を示し、R14は水素原子又はアルカリ金属原子を示す。]で表される水溶性ジアミン化合物。
General formula (2b)
Figure 0004425654
[In the formula, R 1 and R 2 each independently represent a hydrogen source Komata is -SO 2 R 13 (where, R 13 represents a phenyl group which may be substituted with an alkyl group having 1 to 10 carbon atoms .) indicates, R 3, R 5 ~R 8 and R 10 to R 12 represents a water MotoHara child, R 14 represents a hydrogen atom or an alkali metal atom. ] The water-soluble diamine compound represented by this.
光学活性体である、請求項に記載の水溶性ジアミン化合物。 The water-soluble diamine compound according to claim 7 , which is an optically active substance. 請求項3に記載の光学活性水溶性遷移金属−ジアミン錯体を含んでなる不斉合成触媒。   An asymmetric synthesis catalyst comprising the optically active water-soluble transition metal-diamine complex according to claim 3. 請求項に記載の光学活性水溶性ジアミン化合物と、一般式(3)
[MX (3)
(式中、Mはルテニウム、ロジウム又はイリジウム原子を示し、Xはハロゲン原子を示し、Lはベンゼン、メシチレン、p−シメン、ヘキサメチルベンゼン、ペンタメチルシクロペンタジエン、1,5−シクロオクタジエン又はノルボルナジエンを示し、mは2又は3を示し、nは0又は1を示し、pは1又は2を示す。)で表される遷移金属化合物とを含んでなる不斉合成触媒。
The optically active water-soluble diamine compound according to claim 8 and the general formula (3)
[MX m L n ] p (3)
(In the formula, M represents a ruthenium, rhodium or iridium atom , X represents a halogen atom, L represents benzene, mesitylene, p-cymene, hexamethylbenzene, pentamethylcyclopentadiene, 1,5-cyclooctadiene or norbornadiene. Wherein m represents 2 or 3, n represents 0 or 1, and p represents 1 or 2.).
一般式(3)において、Mがロジウムであり、Lがペンタメチルシクロペンタジエンである、請求項10に記載の不斉合成触媒。  The asymmetric synthesis catalyst according to claim 10, wherein, in the general formula (3), M is rhodium and L is pentamethylcyclopentadiene. 一般式(4)
Figure 0004425654
[式中、R21及びR22は夫々独立して、置換基を有していてもよい炭化水素基、置換基を有していてもよい複素環基又はフェロセニル基を示す(但し、R21及びR22は同一とはならない。)。また、R21とR22とが互いに結合して、カルボニル基の炭素原子と一緒になって環を形成していてもよい。]で表されるケトン類を、請求項に記載の不斉合成触媒又は/及び請求項10に記載の不斉合成触媒の存在下、界面活性剤及び相関移動触媒の不存在下に水溶媒中で不斉水素化反応させることを特徴とする、一般式(5)
Figure 0004425654
(式中、*は不斉炭素を示し、R21及びR22は前記と同じ。)で表される光学活性2級アルコール類の製造方法。
General formula (4)
Figure 0004425654
[Wherein, R 21 and R 22 each independently represents a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, or a ferrocenyl group (provided that R 21 And R 22 are not the same). R 21 and R 22 may be bonded to each other to form a ring together with the carbon atom of the carbonyl group. In the presence of the asymmetric synthesis catalyst according to claim 9 and / or the asymmetric synthesis catalyst according to claim 10 in the absence of a surfactant and a phase transfer catalyst. In which the asymmetric hydrogenation reaction is carried out, the general formula (5)
Figure 0004425654
(Wherein, * represents an asymmetric carbon, and R 21 and R 22 are the same as described above).
使用後の不斉合成触媒をリサイクルする請求項12に記載の製造方法。 The manufacturing method of Claim 12 which recycles the asymmetric synthesis catalyst after use. 請求項12に記載の製造法において、水素化反応終了後、反応液を分液して得られた不斉合成触媒を含む水溶液を用いて水素化反応を行う、請求項13に記載の製造方法。 In the production method according to claim 12, after the completion of the hydrogenation reaction is carried out the hydrogenation reaction with an aqueous solution containing an asymmetric synthesis catalyst obtained reaction solution was separated, the manufacturing method according to claim 13 .
JP2004027321A 2004-02-03 2004-02-03 Water-soluble transition metal-diamine complex, method for producing the same, and use thereof Expired - Fee Related JP4425654B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004027321A JP4425654B2 (en) 2004-02-03 2004-02-03 Water-soluble transition metal-diamine complex, method for producing the same, and use thereof
PCT/JP2005/001992 WO2005075073A1 (en) 2004-02-03 2005-02-03 Water-soluble transition metal-diamine complex and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027321A JP4425654B2 (en) 2004-02-03 2004-02-03 Water-soluble transition metal-diamine complex, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2005220041A JP2005220041A (en) 2005-08-18
JP4425654B2 true JP4425654B2 (en) 2010-03-03

Family

ID=34835888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027321A Expired - Fee Related JP4425654B2 (en) 2004-02-03 2004-02-03 Water-soluble transition metal-diamine complex, method for producing the same, and use thereof

Country Status (2)

Country Link
JP (1) JP4425654B2 (en)
WO (1) WO2005075073A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680878B2 (en) 2010-05-13 2015-03-04 関東化学株式会社 Method for producing optically active alcohol
JP5656474B2 (en) * 2010-06-28 2015-01-21 関東化学株式会社 Process for producing aliphatic optically active fluoroalcohol
JP5762887B2 (en) * 2010-08-30 2015-08-12 高砂香料工業株式会社 Iridium complex and method for producing optically active compound
CN104368385A (en) * 2014-10-11 2015-02-25 江苏常州酞青新材料科技有限公司 Preparation method of catalyst for hydrolysis of benzyl acetate
CN105061126B (en) * 2015-08-19 2017-01-18 四川大学 Highly stereoscopic selective hydrogenation method for aromatic ketone derivatives
CN113941365B (en) * 2021-10-11 2023-09-01 南开沧州渤海新区绿色化工研究有限公司 Temperature-sensitive catalyst for aromatic ketone asymmetric hydrogen transfer reaction and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736947B2 (en) * 1991-11-21 1998-04-08 高砂香料工業株式会社 Water-soluble alkali metal sulfonic acid salt-substituted binaphthylphosphine transition metal complex and asymmetric hydrogenation method using the same

Also Published As

Publication number Publication date
WO2005075073A1 (en) 2005-08-18
JP2005220041A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
Luo et al. Chemoenzymatic Synthesis and Application of Bicyclo [2.2. 2] octadiene Ligands: Increased Efficiency in Rhodium-Catalyzed Asymmetric Conjugate Additions by Electronic Tuning We acknowledge Dr. John Whittall for initial inspiration, Dr. Neil Berry for preliminary modeling and the EPSRC for a Dorothy Hodgkin Postgraduate Award to YL
EP2492275B1 (en) Novel ruthenium carbonyl complex having a tridentate ligand and manufacturing method and usage therefor
JP4718452B2 (en) Optically active transition metal-diamine complex and method for producing optically active alcohols using the same
JP5477557B2 (en) Process for producing alcohols by hydrogen reduction of esters or lactones
EP1911516B1 (en) Homogeneous asymmetric hydrogenation process
JPWO2005070875A1 (en) Method for producing amines
US7473793B2 (en) Transition metal complex and process for producing optically active alcohol
JP5491854B2 (en) Process for producing alcohols by hydrogenating lactones and carboxylic esters in the liquid phase
WO2005075073A1 (en) Water-soluble transition metal-diamine complex and use thereof
JP2003502296A (en) Sulfonylamides and carboxamides and their use in asymmetric catalysis
JPS6154795B2 (en)
JP5271503B2 (en) Method for producing organoboron compound
Yoshida et al. Rhodium-catalyzed asymmetric 1, 4-addition of 3-thiopheneboronic acid to α, β-unsaturated carbonyl compounds
US20090030231A1 (en) Process of preparing optically active b-hydroxycarboxylic acid derivative
US7312347B2 (en) Substituted optically active disphosphine compound
JP4308155B2 (en) Process for producing δ-iminomalonic acid derivative and catalyst therefor
US20070142472A1 (en) Process for producing optically active 3-(4-hydroxyphenyl)proprionic acids
CN114213370B (en) Method for synthesizing alkylated electron-rich heterocyclic aromatic hydrocarbon by photo-induced NHPI ester decarboxylation coupling
JP4845470B2 (en) Process for producing optically active amino alcohols
JP4855196B2 (en) Substituted optically active diphosphine compounds
JP2003160549A (en) METHOD FOR SYNTHESIZING OPTICALLY ACTIVE beta-ARYLAMIDE
KR20160141950A (en) An efficient process of preparation of 1-methyl-2-(2-hydroxyethyl)pyrrolidine for production in ton scale
Xue et al. Synthesis and determination of absolute configuration of tetracetate 4a-carba-D-xylofuranoside
Vasapollo et al. Palladium-catalyzed asymmetric cyclocarbonylation of allyl naphthols
JP2011140469A (en) New ligand, transition metal complex and method for producing optically active alcohol using the complex as catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Ref document number: 4425654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees