JP2011140469A - New ligand, transition metal complex and method for producing optically active alcohol using the complex as catalyst - Google Patents

New ligand, transition metal complex and method for producing optically active alcohol using the complex as catalyst Download PDF

Info

Publication number
JP2011140469A
JP2011140469A JP2010002718A JP2010002718A JP2011140469A JP 2011140469 A JP2011140469 A JP 2011140469A JP 2010002718 A JP2010002718 A JP 2010002718A JP 2010002718 A JP2010002718 A JP 2010002718A JP 2011140469 A JP2011140469 A JP 2011140469A
Authority
JP
Japan
Prior art keywords
group
substituent
transition metal
compound
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010002718A
Other languages
Japanese (ja)
Inventor
Koichi Mikami
幸一 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Tokyo Institute of Technology NUC
Original Assignee
Takasago International Corp
Tokyo Institute of Technology NUC
Takasago Perfumery Industry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp, Tokyo Institute of Technology NUC, Takasago Perfumery Industry Co filed Critical Takasago International Corp
Priority to JP2010002718A priority Critical patent/JP2011140469A/en
Publication of JP2011140469A publication Critical patent/JP2011140469A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce optically active alcohols highly efficiently and highly selectively by asymmetrically reducing various ketones using as a catalyst a transition metal complex of a new triphosphane compound. <P>SOLUTION: The triphosphane compound is represented by general formula (1) (wherein R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>, R<SP>5</SP>and R<SP>6</SP>are each an alkyl group, aryl group, aralkyl group, cycloalkyl group, alkoxy group or the like). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規なトリホスファン化合物、該化合物を配位子とする遷移金属錯体、およびこれを用いる触媒反応に関する。触媒反応における効果として、カルボニル化合物の不斉還元反応があげられる。すなわち当該ホスファン化合物、キラルジアミンを配位子とする周期表第8−10族錯体を触媒として用いる光学活性アルコールの新規製造方法に関する。   The present invention relates to a novel triphosphane compound, a transition metal complex having the compound as a ligand, and a catalytic reaction using the same. An effect in the catalytic reaction is an asymmetric reduction reaction of a carbonyl compound. That is, it is related with the novel manufacturing method of the optically active alcohol which uses the said phosphane compound and the periodic table group 8-10 complex which uses chiral diamine as a ligand as a catalyst.

軸不斉、あるいは面不斉を特徴とするキラルジホスファン化合物を配位子とする遷移金属錯体は、不斉反応の触媒として極めて有用であり、これまで数多くの触媒が開発されてきた。中でもケトン類の不斉水素化反応におけるルテニウム−キラルジホスファン−キラルジアミン錯体は、塩基化合物との組み合わせにより、優れた成果が報告されている(例えば特許文献1)。しかしながら工業的な実施においては、ジホスファン化合物およびジアミン化合物の両方にキラル化合物を用いる点で、原料の入手性や経済性に関する課題が大きい。一方、キラルジホスファン化合物の代わりにアキラルなホスファン配位子を何らかの方法で活用できれば、より安価に光学活性化合物が得られる有利な方法となり得る。このようなアキラルなジホスフィン配位子を用いた不斉水素化反応の例としては、2,2’−ビス(ジアリールホスフィノ)−1,1’−ビフェニル(BIPHEP)を用いた報告がある(非特許文献1。)。ここには,ルテニウム−ジホスファン−光学活性ジアミン錯体を用いた不斉水素化反応の例が示されている。しかしながらアセトナフトンを基質とした場合では、代表的なキラルホスファンであるBINAPに比べて光学純度が低いという課題を有している。また、特許文献2にはアキラルなベンゾフェノン系ジホスファン(DPBP)リガンドについて述べられている。すなわち、ルテニウム−DPBP−キラルジアミン錯体、およびロジウム−DPBP−キラルジアミン錯体を触媒とするケトン類の不斉還元反応であるが、DPBPの製造には工業的に入手困難な原材料が用いられている。   Transition metal complexes having chiral diphosphane compounds characterized by axial asymmetry or plane asymmetry are extremely useful as catalysts for asymmetric reactions, and many catalysts have been developed so far. Among them, a ruthenium-chiral diphosphane-chiral diamine complex in an asymmetric hydrogenation reaction of ketones has been reported to have excellent results in combination with a base compound (for example, Patent Document 1). However, in industrial implementation, there are significant problems regarding the availability of raw materials and economic efficiency in that chiral compounds are used for both diphosphane compounds and diamine compounds. On the other hand, if an achiral phosphane ligand can be used in some way instead of a chiral diphosphane compound, it can be an advantageous method for obtaining an optically active compound at a lower cost. As an example of the asymmetric hydrogenation reaction using such an achiral diphosphine ligand, there is a report using 2,2′-bis (diarylphosphino) -1,1′-biphenyl (BIPHEP) ( Non-patent document 1.). Here, an example of an asymmetric hydrogenation reaction using a ruthenium-diphosphane-optically active diamine complex is shown. However, when acetonaphthone is used as a substrate, there is a problem that optical purity is lower than BINAP, which is a typical chiral phosphane. Patent Document 2 describes an achiral benzophenone diphosphane (DPBP) ligand. That is, asymmetric reduction reaction of ketones catalyzed by ruthenium-DPBP-chiral diamine complex and rhodium-DPBP-chiral diamine complex, but raw materials that are difficult to obtain industrially are used for the production of DPBP. .

特開平11−189600号公報JP 11-189600 A WO2005/016943 A1WO2005 / 016943 A1

K.Mikamiら,Angew.Chem.Int.Ed.,1999年,38巻,495頁K. Mikami et al., Angew. Chem. Int. Ed. 1999, 38, 495.

本発明の目的は、工業的な入手性に課題があり、かつ高価なキラルホスファン化合物に代わる配位子の発明、および該化合物、キラルジアミンを構成成分とするキラルな遷移金属錯体を用い、種々のケトン類を不斉還元して高効率的、高選択的に光学活性アルコール類を製造する技術を提供することにある。   The object of the present invention is to use the invention of a ligand to replace an expensive chiral phosphane compound, which has a problem in industrial availability, and a chiral transition metal complex comprising the compound and a chiral diamine as a constituent component. An object is to provide a technique for producing optically active alcohols with high efficiency and high selectivity by asymmetric reduction of various ketones.

本発明者らは、前記課題を解決すべく鋭意研究の途上、特定の構造上の特徴を有するアキラルなトリホスファン配位子と周期表の第8〜10族遷移金属が2種のキラリティー(P,M−キラリティー)を有するらせん状の錯体(L2M3錯体)を形成することを見出した。さらに当該錯体をキラルジアミンと処理することにより、上記のL2M3錯体の不斉環境を制御することに成功した。すなわちC3−対象性を有するアキラルなトリホスファン配位子と周期表第8−10族遷移金属からなるL2M3錯体を合成し、該錯体をキラルジアミン存在下、溶液中で動的にらせん構造を変化させて一方のキラリティーを有する錯体を選択的に得ることに成功した。   In the course of earnest research to solve the above-mentioned problems, the inventors of the present invention have two chiralities in which an achiral triphosphane ligand having a specific structural feature and a Group 8-10 transition metal of the periodic table are ( It was found that a helical complex (L2M3 complex) having (P, M-chirality) was formed. Furthermore, it succeeded in controlling the asymmetric environment of said L2M3 complex by processing the said complex with chiral diamine. That is, an L2M3 complex composed of an achiral triphosphane ligand having C3-targetivity and a transition metal of Group 8-10 of the periodic table was synthesized, and the complex was dynamically changed in solution in the presence of the chiral diamine. And successfully obtained a complex having one chirality.

Figure 2011140469
Figure 2011140469

更に研究を重ねた結果、ロジウム−トリホスファン−キラルジアミン錯体は、種々のケトン化合物を高い光学純度で、且つ高収率が不斉還元し、光学活性アルコールを与えることを見出し、本発明を完成するに至った。   As a result of further research, it has been found that rhodium-triphosphane-chiral diamine complexes can provide optically active alcohols by asymmetric reduction of various ketone compounds with high optical purity and high yield. It came to do.

本発明は以下の[1]から[8]に関するものである。
[1]下記一般式(1)で表されるトリホスファン化合物。
The present invention relates to the following [1] to [8].
[1] A triphosphane compound represented by the following general formula (1).

Figure 2011140469
Figure 2011140469

(一般式(1)中、R、R、R、R、R及びRは同一であっても異なっていてもよく、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアラルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよい置換アミノ基、置換基を有していてもよい環状アミノ基を表し、RとR、RとR又はRとRとが、それぞれが置換しているリン原子と共に環を形成していてもよい。)
[2]R、R、R、R、R及びRが置換基を有していてもよいアリール基、置換基を有していてもよい脂肪族複素環基又は置換基を有してもよい芳香族複素環基である前記[1]に記載のトリホスファン化合物。
[3]前記[1]又は[2]のいずれかに記載のトリホスファン化合物と周期表の第8〜10族遷移金属とからなる遷移金属−ホスファン化合物。
[4]周期表の第8−10属遷移金属がロジウム、パラジウム、ルテニウム又はイリジウムである前記[3]に記載の遷移金属−ホスファン化合物。
[5]遷移金属−ホスファン化合物が、下記一般式(2)
[Rh(L){N−N}](X) (2)
(式中、Lは請求項1又は請求項2に記載のトリホスファン化合物を表し、N−Nは光学活性ジアミンを表し、Xはアニオン性配位子を表す。)
で表される化合物である前記[4]に記載の光学活性遷移金属−ホスファン化合物。
[6]前記[3]〜[5]のいずれかに記載の遷移金属−ホスファン化合物を触媒とする触媒的有機合成反応。
[7]下記一般式(3)
(In General Formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different, and may have an alkyl group or a substituent which may have a substituent. Aryl group which may have a group, aralkyl group which may have a substituent, cycloalkyl group which may have a substituent, alkoxy group which may have a substituent, substituent An aryloxy group which may have a substituent, an aralkyloxy group which may have a substituent, a cycloalkyloxy group which may have a substituent, and an aliphatic complex which may have a substituent R 1 and R represent a cyclic group, an aromatic heterocyclic group which may have a substituent, a substituted amino group which may have a substituent, or a cyclic amino group which may have a substituent. 2, R 3 and a R 4 or R 5 and R 6, together with the phosphorus atom to which each is substituted It may form.)
[2] R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may have an aryl group which may have a substituent, an aliphatic heterocyclic group or a substituent which may have a substituent The triphosphane compound according to [1], which is an aromatic heterocyclic group which may have
[3] A transition metal-phosphane compound comprising the triphosphane compound according to any one of [1] or [2] above and a Group 8-10 transition metal in the periodic table.
[4] The transition metal-phosphane compound according to [3], wherein the group 8-10 transition metal in the periodic table is rhodium, palladium, ruthenium, or iridium.
[5] The transition metal-phosphane compound is represented by the following general formula (2)
[Rh 3 (L) 2 {N−N} 3 ] (X) 3 (2)
(In the formula, L represents the triphosphane compound according to claim 1 or 2, NN represents an optically active diamine, and X represents an anionic ligand.)
The optically active transition metal-phosphane compound according to [4], which is a compound represented by the formula:
[6] Catalytic organic synthesis reaction using the transition metal-phosphane compound according to any one of [3] to [5] as a catalyst.
[7] The following general formula (3)

Figure 2011140469
Figure 2011140469

(式中、R及びRは、それぞれ異なって、置換基を有していてもよい炭化水素基、置換基を有していてもよい脂肪族複素環基又は置換基を有していてもよい芳香族複素環基を示す。また、RとRが互いに結合して、カルボニル基の炭素原子と一緒になって環を形成していてもよい。)
で表されるカルボニル化合物を、前記[3]又は[4]に記載の遷移金属−ホスファン化合物を触媒として用いて不斉還元することを特徴とする、下記一般式(4)
(In the formula, R 7 and R 8 are different and each have a hydrocarbon group which may have a substituent, an aliphatic heterocyclic group which may have a substituent, or a substituent. And R 7 and R 8 may be bonded together to form a ring together with the carbon atom of the carbonyl group.)
Wherein the carbonyl compound represented by formula (4) is asymmetrically reduced using the transition metal-phosphane compound according to the above [3] or [4] as a catalyst.

Figure 2011140469
Figure 2011140469

(式中、*は不斉炭素であることを示し、R及びRは前記と同じ意味を表す。)
で表される光学活性アルコールの製造方法。
[8]前記[5]に記載の光学活性遷移金属−ホスファン化合物を触媒として用いることを特徴とする前記[7]に記載の光学活性アルコールの製造方法。
(In the formula, * indicates an asymmetric carbon, and R 7 and R 8 have the same meaning as described above.)
The manufacturing method of optically active alcohol represented by these.
[8] The method for producing an optically active alcohol according to [7], wherein the optically active transition metal-phosphane compound according to [5] is used as a catalyst.

本発明により、種々のケトン類を不斉還元して高効率的、高選択的に光学活性アルコール類を製造する技術を提供することが可能となった。   According to the present invention, it is possible to provide a technique for producing optically active alcohols with high efficiency and high selectivity by asymmetric reduction of various ketones.

以下、本発明を詳細に説明する。
一般式(1)で表されるトリホスファン化合物において置換基を有していてもよいアルキル基としては、直鎖状でも分岐状でもよい、例えば炭素数1〜20、好ましくは炭素数1〜10、より好ましくは炭素数1〜6のアルキル基が挙げられる。該アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、tert−ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、セチル基、ステアリル基などアルキル基が挙げられる。
Hereinafter, the present invention will be described in detail.
The alkyl group which may have a substituent in the triphosphane compound represented by the general formula (1) may be linear or branched, for example, having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. More preferably, an alkyl group having 1 to 6 carbon atoms is used. Examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, tert- Examples of the alkyl group include pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cetyl group, and stearyl group.

また、これらアルキル基は置換基を有していてもよく、該置換基としては、炭化水素基、脂肪族複素環基、芳香族複素環基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アミノ基、置換アミノ基、シアノ基、水酸基、三置換シリル基及びハロゲン原子等が挙げられる。
アルキル基に置換する炭化水素基としては、例えばアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられる。
These alkyl groups may have a substituent, and examples of the substituent include a hydrocarbon group, an aliphatic heterocyclic group, an aromatic heterocyclic group, an alkoxy group, an aryloxy group, an aralkyloxy group, an amino group. Group, substituted amino group, cyano group, hydroxyl group, trisubstituted silyl group, halogen atom and the like.
Examples of the hydrocarbon group substituted for the alkyl group include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, and an aralkyl group.

アルキル基としては、直鎖状でも分岐状でもよい、例えば炭素数1〜20の直鎖又は分岐もしくは環状のアルキル基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、tert−ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、セチル基、ステアリル基などのアルキル基が挙げられる。
シクロアルキル基としては、シクロペンチル基、シクロヘキシル基、シクロオクチル基などのシクロアルキル基などが挙げられる。
アルケニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2〜15、好ましくは炭素数2〜10、より好ましくは炭素数2〜6のアルケニル基が挙げられ、具体的にはエテニル基、プロペニル基、1−ブテニル基、ペンテニル基、ヘキセニル基等が挙げられる。
アルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2〜15、好ましくは炭素数2〜10、より好ましくは炭素数2〜6のアルキニル基が挙げられ、具体的にはエチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、3−ブチニル基、ペンチニル基、ヘキシニル基等が挙げられる。
The alkyl group may be linear or branched, for example, a linear or branched or cyclic alkyl group having 1 to 20 carbon atoms is preferable, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n -Butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, neopentyl group, tert-pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cetyl group, stearyl group And alkyl groups such as
Examples of the cycloalkyl group include cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
The alkenyl group may be linear or branched, for example, an alkenyl group having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, specifically an ethenyl group. , Propenyl group, 1-butenyl group, pentenyl group, hexenyl group and the like.
The alkynyl group may be linear or branched, for example, an alkynyl group having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, specifically an ethynyl group. 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-butynyl group, pentynyl group, hexynyl group and the like.

アリール基としては、例えば炭素数6〜20のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アントリル基、フェナンスリル基、ビフェニル基、ターフェニル基等が挙げられる。
アラルキル基としては、前記アルキル基の少なくとも1個の水素原子が前記アリール基で置換された基が挙げられ、例えば炭素数7〜12のアラルキル基が好ましく、具体的にはベンジル基、2−フェニルエチル基、1−フェニルプロピル基、3−ナフチルプロピル基等が挙げられる。
As an aryl group, a C6-C20 aryl group is mentioned, for example, Specifically, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, a terphenyl group etc. are mentioned.
Examples of the aralkyl group include a group in which at least one hydrogen atom of the alkyl group is substituted with the aryl group. For example, an aralkyl group having 7 to 12 carbon atoms is preferable, specifically, a benzyl group, 2-phenyl An ethyl group, 1-phenylpropyl group, 3-naphthylpropyl group, etc. are mentioned.

脂肪族複素環基としては、例えば炭素数2〜14で、異種原子として少なくとも1個、好ましくは1〜3個の例えば窒素原子、酸素原子、硫黄原子等のヘテロ原子を含んでいる、5〜8員、好ましくは5又は6員の単環の脂肪族複素環基、多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、ピロリジル−2−オン基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基、テトラヒドロチエニル基等が挙げられる。   Examples of the aliphatic heterocyclic group include 2 to 14 carbon atoms and at least one hetero atom, preferably 1 to 3 hetero atoms such as a nitrogen atom, an oxygen atom, and a sulfur atom. Examples thereof include an 8-membered, preferably 5- or 6-membered monocyclic aliphatic heterocyclic group, and a polycyclic or condensed aliphatic heterocyclic group. Specific examples of the aliphatic heterocyclic group include pyrrolidyl-2-one group, piperidino group, piperazinyl group, morpholino group, tetrahydrofuryl group, tetrahydropyranyl group, tetrahydrothienyl group and the like.

芳香族複素環基としては、例えば炭素数2〜15で、異種原子として少なくとも1個、好ましくは1〜3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる、5〜8員、好ましくは5又は6員の単環式ヘテロアリール基、多環式又は縮合環式のヘテロアリール基が挙げられ、具体的にはフリル基、チエニル基、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基等が挙げられる。   The aromatic heterocyclic group has, for example, 2 to 15 carbon atoms and contains at least one, preferably 1 to 3 hetero atoms such as nitrogen, oxygen and sulfur atoms as hetero atoms, 5 to 8 Member, preferably 5 or 6-membered monocyclic heteroaryl group, polycyclic or condensed ring heteroaryl group, specifically, furyl group, thienyl group, pyridyl group, pyrimidyl group, pyrazyl group, Pyridazyl group, pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, benzofuryl group, benzothienyl group, quinolyl group, isoquinolyl group, quinoxalyl group, phthalazyl group, quinazolyl group, naphthyridyl group, cinnolyl group, benzimidazolyl group, benzoxazolyl group Group, benzothiazolyl group and the like.

アルコキシ基としては、直鎖状でも分岐状でもよい、例えば炭素数1〜6のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、2−ブトキシ基、イソブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、2−メチルブトキシ基、3−メチルブトキシ基、2,2−ジメチルプロピルオキシ基、n−ヘキシルオキシ基、2−メチルペンチルオキシ基、3−メチルペンチルオキシ基、4−メチルペンチルオキシ基、5−メチルペンチルオキシ基、シクロヘキシルオキシ基、メトキシメトキシ基、2−エトキシエトキシ基等が挙げられる。   The alkoxy group may be linear or branched, for example, an alkoxy group having 1 to 6 carbon atoms, and specifically includes a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and an n-butoxy group. 2-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, 2-methylbutoxy group, 3-methylbutoxy group, 2,2-dimethylpropyloxy group, n-hexyloxy group, 2-methyl Examples include a pentyloxy group, a 3-methylpentyloxy group, a 4-methylpentyloxy group, a 5-methylpentyloxy group, a cyclohexyloxy group, a methoxymethoxy group, and a 2-ethoxyethoxy group.

アリールオキシ基としては、例えば炭素数6〜14のアリールオキシ基が挙げられ、具体的にはフェノキシ基、トリルオキシ基、キシリルオキシ基、ナフトキシ基、アントリルオキシ基等が挙げられる。
アラルキルオキシ基としては、例えば炭素数7〜12のアラルキルオキシ基が挙げられ、具体的にはベンジルオキシ基、4−メトキシフェニルメチル基、1−フェニルエトキシ基、2−フェニルエトキシ基、1−フェニルプロポキシ基、2−フェニルプロポキシ基、3−フェニルプロポキシ基、1−フェニルブトキシ基、3−フェニルブトキシ基、4−フェニルブトキシ基、1−フェニルペンチルオキシ基、2−フェニルペンチルオキシ基、3−フェニルペンチルオキシ基、4−フェニルペンチルオキシ基、5−フェニルペンチルオキシ基、1−フェニルヘキシルオキシ基、2−フェニルヘキシルオキシ基、3−フェニルヘキシルオキシ基、4−フェニルヘキシルオキシ基、5−フェニルヘキシルオキシ基、6−フェニルヘキシルオキシ基等が挙げられる。
Examples of the aryloxy group include an aryloxy group having 6 to 14 carbon atoms, and specific examples include a phenoxy group, a tolyloxy group, a xylyloxy group, a naphthoxy group, and an anthryloxy group.
Examples of the aralkyloxy group include an aralkyloxy group having 7 to 12 carbon atoms, and specifically include a benzyloxy group, a 4-methoxyphenylmethyl group, a 1-phenylethoxy group, a 2-phenylethoxy group, and a 1-phenyl group. Propoxy group, 2-phenylpropoxy group, 3-phenylpropoxy group, 1-phenylbutoxy group, 3-phenylbutoxy group, 4-phenylbutoxy group, 1-phenylpentyloxy group, 2-phenylpentyloxy group, 3-phenyl Pentyloxy group, 4-phenylpentyloxy group, 5-phenylpentyloxy group, 1-phenylhexyloxy group, 2-phenylhexyloxy group, 3-phenylhexyloxy group, 4-phenylhexyloxy group, 5-phenylhexyl Oxy group, 6-phenylhexyloxy group, etc. And the like.

置換アミノ基としては、アミノ基の1個又は2個の水素原子がアルキル基またはアリール基等の置換基で置換されたアミノ基が挙げられる。
アルキル基で置換されたアミノ基、即ちアルキル基置換アミノ基の具体例としては、N−メチルアミノ基、N,N−ジメチルアミノ基、N,N−ジエチルアミノ基、N,N−ジイソプロピルアミノ基、N−シクロヘキシルアミノ基等のモノ又はジアルキルアミノ基が挙げられる。
アリール基で置換されたアミノ基、即ちアリール基置換アミノ基の具体例としては、N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジトリルアミノ基、N−ナフチルアミノ基、N−ナフチル−N−フェニルアミノ基等のモノ又はジアリールアミノ基が挙げられる。
アラルキル基で置換されたアミノ基、即ちアラルキル基置換アミノ基の具体例としては、N−ベンジルアミノ基、N,N−ジベンジルアミノ基等のモノ又はジアラルキルアミノ基が挙げられる。
Examples of the substituted amino group include an amino group in which one or two hydrogen atoms of the amino group are substituted with a substituent such as an alkyl group or an aryl group.
Specific examples of an amino group substituted with an alkyl group, that is, an alkyl group-substituted amino group include N-methylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-diisopropylamino group, Examples thereof include mono- or dialkylamino groups such as N-cyclohexylamino group.
Specific examples of the amino group substituted with an aryl group, that is, the aryl group-substituted amino group include N-phenylamino group, N, N-diphenylamino group, N, N-ditolylamino group, N-naphthylamino group, N- Examples thereof include mono- or diarylamino groups such as naphthyl-N-phenylamino group.
Specific examples of the amino group substituted with an aralkyl group, that is, an aralkyl group-substituted amino group include mono- or diaralkylamino groups such as an N-benzylamino group and an N, N-dibenzylamino group.

三置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、tert−ブチルジフェニルシリル基、トリフェニルシリル基等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、ハロゲン化されたアルキル基としては、例えばモノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基等が挙げられる。
一般式(1)の化合物におけるアリール基としては、具体的には前記したようなアリール基が挙げられる。また、これらアリール基は置換基を有してもよく該置換基としては、アルキル基、アリール基、複素環基、三置換シリル基、ハロゲン原子等が挙げられ、具体例としては前記したようなものが挙げられる。
Examples of the trisubstituted silyl group include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group, a tert-butyldiphenylsilyl group, and a triphenylsilyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the halogenated alkyl group include a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, and a pentafluoroethyl group. Can be mentioned.
Specific examples of the aryl group in the compound of the general formula (1) include the aryl groups as described above. These aryl groups may have a substituent. Examples of the substituent include an alkyl group, an aryl group, a heterocyclic group, a trisubstituted silyl group, a halogen atom, and the like. Specific examples are as described above. Things.

一般式(1)の化合物におけるアラルキル基としては、前記アルキル基の少なくとも1個の水素原子が前記アリール基で置換された基が挙げられ、例えば炭素数7〜15のアラルキル基が好ましく、具体的にはベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルプロピル基、3−ナフチルプロピル基等が挙げられる。また、これらアラルキル基は置換基を有してもよく該置換基としては、アルキル基、ハロゲン原子等が挙げられ、具体例としては前記したようなものが挙げられる。   Examples of the aralkyl group in the compound of the general formula (1) include groups in which at least one hydrogen atom of the alkyl group is substituted with the aryl group. For example, an aralkyl group having 7 to 15 carbon atoms is preferable. Examples include benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylpropyl group, 3-naphthylpropyl group and the like. These aralkyl groups may have a substituent, and examples of the substituent include an alkyl group and a halogen atom, and specific examples thereof include those described above.

一般式(1)の化合物におけるシクロアルキル基としては炭素数3〜30、好ましくは炭素数3〜20、より好ましくは炭素数3〜10の単環式、多環式、又は縮合環式のシクロアルキル基が挙げられ、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。また、これらシクロアルキル基は置換基を有してもよく該置換基としては、アルキル基、ハロゲン原子等が挙げられ、具体例としては前記したようなものが挙げられる。   The cycloalkyl group in the compound of the general formula (1) is a monocyclic, polycyclic, or condensed cyclic cyclohexane having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms. An alkyl group is mentioned, for example, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group etc. are mentioned. These cycloalkyl groups may have a substituent, and examples of the substituent include an alkyl group and a halogen atom, and specific examples thereof include those described above.

一般式(1)の化合物における置換基を有していてもよいアルコキシ基は、アルコキシ基及び置換アルコキシ基が挙げられる。アルコキシ基としては、直鎖状でも分岐状でもよい、例えば炭素数1〜20のアルコキシ基が挙げられ、その具体例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、2−ブトキシ基、イソブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、2−メチルブトキシ基、3−メチルブトキシ基、2,2−ジメチルプロピルオキシ基、n−ヘキシルオキシ基、2−メチルペンチルオキシ基、3−メチルペンチルオキシ基、4−メチルペンチルオキシ基、5−メチルペンチルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、メトキシメトキシ基等が挙げられる。前記アルコキシ基は、中でも炭素数1〜10のアルコキシ基が好ましい。   Examples of the alkoxy group which may have a substituent in the compound of the general formula (1) include an alkoxy group and a substituted alkoxy group. The alkoxy group may be linear or branched, for example, an alkoxy group having 1 to 20 carbon atoms, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n- Butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, 2-methylbutoxy group, 3-methylbutoxy group, 2,2-dimethylpropyloxy group, n-hexyloxy group, 2 -Methylpentyloxy group, 3-methylpentyloxy group, 4-methylpentyloxy group, 5-methylpentyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, methoxymethoxy group and the like. The alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms.

一般式(1)の化合物における置換基を有していてもよいアリールオキシ基は、アリールオキシ基及び置換アリールオキシ基が挙げられる。アリールオキシ基としては、例えば炭素数6〜20のアリールオキシ基が挙げられ、その具体例としては、フェノキシ基、ナフトキシ基、アントリルオキシ基等が挙げられる。置換基としては、前記したようなアルキル基、アルコキシ基、ハロゲン原子、アリール基等が挙げられる。前記アリールオキシ基は、中でも炭素数6〜14のアリールオキシ基が好ましい。
一般式(1)の化合物におけるアラルキル基としては、例えば炭素数7〜15のアラルキル基が好ましく、具体的にはベンジルオキシ基、1−フェニルエチルオキシ基、2−フェニルエチルオキシ基、1−フェニルプロピルオキシ基、3−ナフチルプロピルオキシ基等が挙げられる。また、これらアラルキル基は置換基を有してもよく該置換基としては、アルキル基、ハロゲン原子等が挙げられ、具体例としては前記したようなものが挙げられる。
Examples of the aryloxy group which may have a substituent in the compound of the general formula (1) include an aryloxy group and a substituted aryloxy group. Examples of the aryloxy group include an aryloxy group having 6 to 20 carbon atoms, and specific examples thereof include a phenoxy group, a naphthoxy group, and an anthryloxy group. Examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, and an aryl group as described above. The aryloxy group is preferably an aryloxy group having 6 to 14 carbon atoms.
As the aralkyl group in the compound of the general formula (1), for example, an aralkyl group having 7 to 15 carbon atoms is preferable, and specifically, a benzyloxy group, a 1-phenylethyloxy group, a 2-phenylethyloxy group, a 1-phenylpropoxy group. Examples include a ruoxy group and a 3-naphthylpropyloxy group. These aralkyl groups may have a substituent, and examples of the substituent include an alkyl group and a halogen atom, and specific examples thereof include those described above.

一般式(1)の化合物におけるシクロアルキルオキシ基としては炭素数3〜30、好ましくは炭素数3〜20、より好ましくは炭素数3〜10の単環式、多環式、又は縮合環式のシクロアルキル基が挙げられ、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。また、これらシクロアルキルオキシ基は置換基を有してもよく該置換基としては、アルキル基、ハロゲン原子等が挙げられ、具体例としては前記したようなものが挙げられる。
一般式(1)の化合物における脂肪族又は芳香族複素環基としては、具体的には前記したような複素環基が挙げられる。また、これら複素環基は置換基を有してもよく該置換基としては、アルキル基、アリール基が挙げられ、具体例としては前記したようなものが挙げられる。
The cycloalkyloxy group in the compound of the general formula (1) is a monocyclic, polycyclic or condensed cyclic group having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms. A cycloalkyl group is mentioned, For example, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group etc. are mentioned. These cycloalkyloxy groups may have a substituent, and examples of the substituent include an alkyl group and a halogen atom, and specific examples thereof include those described above.
Specific examples of the aliphatic or aromatic heterocyclic group in the compound of the general formula (1) include the heterocyclic groups described above. These heterocyclic groups may have a substituent, and examples of the substituent include an alkyl group and an aryl group, and specific examples thereof include those described above.

置換アミノ基としては、アミノ基の1個又は2個の水素原子が保護基等の置換基で置換されたアミノ基が挙げられる。アミノ保護基の具体例としては、置換基を有していてもよい炭化水素基、置換基を有していてもよいアシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリールオキシカルボニル基、置換基を有していてもよいアラルキルオキシカルボニル基等が挙げられる。   Examples of the substituted amino group include amino groups in which one or two hydrogen atoms of the amino group are substituted with a substituent such as a protecting group. Specific examples of the amino protecting group include a hydrocarbon group which may have a substituent, an acyl group which may have a substituent, an alkoxycarbonyl group which may have a substituent, and a substituent. The aryloxycarbonyl group which may have, the aralkyloxycarbonyl group which may have a substituent, etc. are mentioned.

アルキル基で置換されたアミノ基、即ちアルキル基置換アミノ基の具体例としては、N
−メチルアミノ基、N,N−ジメチルアミノ基、N,N−ジエチルアミノ基、N,N−ジ
イソプロピルアミノ基、N−メチル−N−イソプロピルアミノ基、N−シクロヘキシルア
ミノ基等のモノ又はジアルキルアミノ基が挙げられる。
アリール基で置換されたアミノ基、即ちアリール基置換アミノ基の具体例としては、N−フェニルアミノ基、N,N−ジフェニルアミノ基、N−ナフチルアミノ基、N−ナフチル−N−フェニルアミノ基等のモノ又はジアリールアミノ基が挙げられる。
アラルキル基で置換されたアミノ基、即ちアラルキル基置換アミノ基の具体例としては、
N−ベンジルアミノ基、N,N−ジベンジルアミノ基等のモノ又はジアラルキルアミノ基
が挙げられる。
また、N−メチル−N−フェニルアミノ基、N−ベンジル−N−メチルアミノ基等のジ置換アミノ基が挙げられる。
アシル基で置換されたアミノ基、即ちアシルアミノ基の具体例としては、ホルミルアミノ基、アセチルアミノ基、プロピオニルアミノ基、ピバロイルアミノ基、ペンタノイルアミノ基、ヘキサノイルアミノ基、ベンゾイルアミノ基、−NHSOCH、−NHSO、−NHSOCH、−NHSOCF、−NHSON(CH等が挙げられる。
アルコキシカルボニル基で置換されたアミノ基、即ちアルコキシカルボニルアミノ基の具体例としては、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、n−プロポキシカルボニルアミノ基、n−ブトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、ペンチルオキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基等が挙げられる。
アリールオキシカルボニル基で置換されたアミノ基、即ちアリールオキシカルボニルアミノ基の具体例としては、アミノ基の1個の水素原子が前記したアリールオキシカルボニル基で置換されたアミノ基が挙げられ、その具体例としてフェノキシカルボニルアミノ基、ナフチルオキシカルボニルアミノ基等が挙げられる。
アラルキルオキシカルボニル基で置換されたアミノ基、即ちアラルキルオキシカルボニルアミノ基の具体例としては、ベンジルオキシカルボニルアミノ基等が挙げられる。
また、RとR、RとR及びRとRと、それぞれが置換しているリン原子と共に形成する環としては、ホスホール環、ホスホラン環、ホスフィン環、ホスファン環等が挙げられ、これらの環は炭素数1〜4のアルキル基で置換されていてもよい。
一般式(1)で表される本発明のトリホスファン化合物は、例えば以下の方法によって合成できる。
Specific examples of an amino group substituted with an alkyl group, that is, an alkyl group-substituted amino group include N
Mono- or dialkylamino groups such as -methylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-diisopropylamino group, N-methyl-N-isopropylamino group, N-cyclohexylamino group Is mentioned.
Specific examples of the amino group substituted with an aryl group, that is, the aryl group-substituted amino group include N-phenylamino group, N, N-diphenylamino group, N-naphthylamino group, and N-naphthyl-N-phenylamino group. Mono- or diarylamino groups such as
Specific examples of an amino group substituted with an aralkyl group, that is, an aralkyl group-substituted amino group,
Examples thereof include mono- or diaralkylamino groups such as N-benzylamino group and N, N-dibenzylamino group.
Moreover, di-substituted amino groups such as N-methyl-N-phenylamino group and N-benzyl-N-methylamino group can be mentioned.
Specific examples of an amino group substituted with an acyl group, that is, an acylamino group, include formylamino group, acetylamino group, propionylamino group, pivaloylamino group, pentanoylamino group, hexanoylamino group, benzoylamino group, —NHSO 2. CH 3 , —NHSO 2 C 6 H 5 , —NHSO 2 C 6 H 4 CH 3 , —NHSO 2 CF 3 , —NHSO 2 N (CH 3 ) 2 and the like can be mentioned.
Specific examples of the amino group substituted with an alkoxycarbonyl group, that is, the alkoxycarbonylamino group include a methoxycarbonylamino group, an ethoxycarbonylamino group, an n-propoxycarbonylamino group, an n-butoxycarbonylamino group, and a tert-butoxycarbonylamino group. Group, pentyloxycarbonylamino group, hexyloxycarbonylamino group and the like.
Specific examples of an amino group substituted with an aryloxycarbonyl group, that is, an aryloxycarbonylamino group include an amino group in which one hydrogen atom of the amino group is substituted with the aryloxycarbonyl group described above. Examples include a phenoxycarbonylamino group, a naphthyloxycarbonylamino group, and the like.
Specific examples of the amino group substituted with an aralkyloxycarbonyl group, that is, an aralkyloxycarbonylamino group include a benzyloxycarbonylamino group.
Examples of the ring formed with R 1 and R 2 , R 3 and R 4, and R 5 and R 6 together with the substituted phosphorus atom include a phosphole ring, a phosphorane ring, a phosphine ring, and a phosphane ring. These rings may be substituted with an alkyl group having 1 to 4 carbon atoms.
The triphosphane compound of the present invention represented by the general formula (1) can be synthesized, for example, by the following method.

Figure 2011140469
Figure 2011140469

すなわち、1,3,5−トリス(3’−ヒドロキシフェニル)ベンゼンをトリフラート化して得た1,3,5−トリス(3’−トリフルオロメタンスルホニルオキシフェニル)ベンゼンとジフェニルホスフィンオキサイドをパラジウム触媒存在下カップリング反応に付し、対応するホスフィンオキサイドを合成し、次いでトリクロロシランによりホスフィンオキサイドの還元反応を行い目的とするC3-DPPB、C3-DM-DPPBが得られる。   That is, 1,3,5-tris (3′-trifluoromethanesulfonyloxyphenyl) benzene obtained by triflation of 1,3,5-tris (3′-hydroxyphenyl) benzene and diphenylphosphine oxide in the presence of a palladium catalyst. It is subjected to a coupling reaction to synthesize the corresponding phosphine oxide, and then the target C3-DPPB and C3-DM-DPPB are obtained by reducing the phosphine oxide with trichlorosilane.

このようにして合成される本発明のホスファン化合物は、周期表第8〜10属の遷移金属化合物と反応させることにより、遷移金属−ホスファン錯体を得ることができる。周期表第8〜10属の遷移金属としては、ロジウム、ルテニウム、パラジウム、イリジウム、ニッケル、白金等が挙げられ、この中でもロジウム、ルテニウム、パラジウムが好ましい。
本発明のホスファン化合物と反応させることができる遷移金属化合物としては、例えば以下のようなものが挙げられる。
Thus, the phosphane compound of this invention synthesize | combined can obtain a transition metal-phosphane complex by making it react with the transition metal compound of the 8th-10th group of a periodic table. Examples of transition metals belonging to Groups 8 to 10 of the periodic table include rhodium, ruthenium, palladium, iridium, nickel, and platinum. Among these, rhodium, ruthenium, and palladium are preferable.
Examples of the transition metal compound that can be reacted with the phosphane compound of the present invention include the following.

ルテニウム化合物としては、例えば、RuCl水和物、RuBr水和物、RuI水和物等の無機ルテニウム化合物、RuCl(DMSO)、[Ru(cod)Cl、[Ru(nbd)Cl、(cod)Ru(2−methallyl)、[Ru(benzene)Cl、[Ru(benzene)Br、[Ru(benzene)I、[Ru(p−cymene)Cl、[Ru(p−cymene)Br、[Ru(p−cymene)I、[Ru(mesitylene)Cl、[Ru(mesitylene)Br、[Ru(mesitylene)I、[Ru(hexamethylbenzene)Cl、[Ru(hexamethylbenzene)Br、[Ru(hexamethylbenzene)I、RuCl(PPh、RuBr(PPh、RuI(PPh、RuH(PPh、RuClH(PPh、RuH(OAc)(PPh、RuH(PPh等が挙げられる。例示中、DMSOはジメチルスルホキシド、codは1,5−シクロオクタジエン、nbdはノルボルナジエン、Phはフェニル基をそれぞれ表す(以下、同様)。 The ruthenium compound, for example, RuCl 3 hydrate, RuBr 3 hydrate, inorganic ruthenium compounds such as RuI 3 hydrate, RuCl 2 (DMSO) 4, [Ru (cod) Cl 2] n, [Ru ( nbd) Cl 2 ] n , (cod) Ru (2-methyl) 2 , [Ru (benzone) Cl 2 ] 2 , [Ru (benzone) Br 2 ] 2 , [Ru (benzene) I 2 ] 2 , [Ru (p-cymene) Cl 2] 2, [Ru (p-cymene) Br 2] 2, [Ru (p-cymene) I 2] 2, [Ru (mesitylene) Cl 2] 2, [Ru (mesitylene) Br 2] 2, [Ru (mesitylene ) I 2] 2, [Ru (hexamethylbenzene) Cl 2] 2, [Ru (hexamethylbenzene) Br 2] 2, [Ru (hexamethylbenzene) I 2] 2, RuCl 2 (PPh 3) 3, RuBr 2 (PPh 3) 3, RuI 2 (PPh 3) 3, RuH 4 (PPh 3 ) 3 , RuClH (PPh 3 ) 3 , RuH (OAc) (PPh 3 ) 3 , RuH 2 (PPh 3 ) 4 and the like. In the examples, DMSO represents dimethyl sulfoxide, cod represents 1,5-cyclooctadiene, nbd represents norbornadiene, and Ph represents a phenyl group (hereinafter the same).

ロジウム化合物としては、例えば、[Rh(nbd)]SbF、[Rh(cod)]SbF、[Rh(nbd)Cl]、[Rh(cod)Cl]、[Rh(cod)]BF、[Rh(cod)]ClO、[Rh(cod)]PF、[Rh(cod)]BPh、[Rh(cod)]BARF、[Rh(nbd)]BF、[Rh(nbd)]ClO、[Rh(nbd)]PF、[Rh(nbd)]BPh等が挙げられる。好ましくは、[Rh(nbd)]SbF、[Rh(cod)]SbFなどである。 Examples of rhodium compounds include [Rh (nbd) 2 ] SbF 6 , [Rh (cod) 2 ] SbF 6 , [Rh (nbd) Cl] 2 , [Rh (cod) Cl] 2 , [Rh (cod) 2 ] BF 4 , [Rh (cod) 2 ] ClO 4 , [Rh (cod) 2 ] PF 6 , [Rh (cod) 2 ] BPh 4 , [Rh (cod) 2 ] BARF, [Rh (nbd) 2 ] BF 4, [Rh (nbd ) 2] ClO 4, [Rh (nbd) 2] PF 6, include [Rh (nbd) 2] BPh 4 and the like. [Rh (nbd) 2 ] SbF 6 , [Rh (cod) 2 ] SbF 6 and the like are preferable.

イリジウム化合物としては、例えば、[Ir(cod)(CHCN)]BF、[Ir(cod)Cl]、[Ir(cod)]BF、[Ir(cod)]ClO、[Ir(cod)]PF、[Ir(cod)]BPh、[Ir(nbd)]BF、[Ir(nbd)]ClO、[Ir(nbd)]PF、[Ir(nbd)]BPhで等が挙げられる。
パラジウム化合物としては、例えば、PdCl、PdBr、Pd(OAc)、Pd(acac)、PdCl(NCMe)、PdCl(NCPh)、PdCl(PPh、PdCl(NH、PdCl(cod)、Pd(OTf)、[PdCl(π−アリル)]等が挙げられる。好ましくは、PdCl(NCMe)などである。
ニッケル化合物としては、例えば、NiCl、NiBrおよびNiIである。
Examples of the iridium compound include [Ir (cod) (CH 3 CN) 2 ] BF 4 , [Ir (cod) Cl] 2 , [Ir (cod) 2 ] BF 4 , [Ir (cod) 2 ] ClO 4. , [Ir (cod) 2 ] PF 6 , [Ir (cod) 2 ] BPh 4 , [Ir (nbd) 2 ] BF 4 , [Ir (nbd) 2 ] ClO 4 , [Ir (nbd) 2 ] PF 6 , [Ir (nbd) 2 ] BPh 4 and the like.
Examples of the palladium compound include PdCl 2 , PdBr 2 , Pd (OAc) 2 , Pd (acac) 2 , PdCl 2 (NCMe), PdCl 2 (NCPh), PdCl 2 (PPh 3 ) 2 , PdCl 2 (NH 3 ) 4 , PdCl 2 (cod), Pd (OTf) 2 , [PdCl (π-allyl)] 2 and the like. PdCl 2 (NCMe) 2 or the like is preferable.
Examples of the nickel compound include NiCl 2 , NiBr 2, and NiI 2 .

一般式(1)で表される本発明のホスファン化合物に遷移金属化合物を作用させることにより得られる錯体は既報の方法に従って調製できる。例えば本発明において用いられる一般式(2)で表されるロジウム−ホスファン錯体は、文献(K.Mikamiら,Chem.Commun.,2006,2365)に記載の方法により製造できる。   A complex obtained by allowing a transition metal compound to act on the phosphane compound of the present invention represented by the general formula (1) can be prepared according to a previously reported method. For example, the rhodium-phosphane complex represented by the general formula (2) used in the present invention can be produced by the method described in the literature (K. Mikami et al., Chem. Commun., 2006, 2365).

次に、本発明の光学活性アルコールの製造方法について説明する。
一般式(3)において、R及びRで示される置換基を有してもよい炭化水素基は、炭化水素基及び置換炭化水素基を表し、置換基を有していてもよい脂肪族及び芳香族複素環基は、複素環基及び置換複素環基を表す。炭化水素基及び脂肪族及び芳香族複素環基は、上記一般式(1)のところで説明した各基と同じである。
置換炭化水素基(置換基を有する炭化水素基)としては、上記炭化水素基の少なくとも1個の水素原子が置換基で置換された炭化水素基が挙げられる。置換炭化水素基としては、置換アルキル基、置換アリール基、置換アルケニル基、置換アルキニル基、置換アラルキル基等が挙げられる。
置換複素環基(置換基を有する複素環基)としては、上記複素環基の少なくとも1個の水素原子が置換基で置換された複素環基が挙げられる。置換複素環基としては、置換脂肪族複素環基及び置換芳香族複素環基等が挙げられる。
Next, the manufacturing method of the optically active alcohol of this invention is demonstrated.
In the general formula (3), the hydrocarbon group which may have a substituent represented by R 7 and R 8 represents a hydrocarbon group and a substituted hydrocarbon group, and may be an aliphatic group which may have a substituent. And an aromatic heterocyclic group represents a heterocyclic group and a substituted heterocyclic group. The hydrocarbon group and the aliphatic and aromatic heterocyclic group are the same as the groups described in the general formula (1).
Examples of the substituted hydrocarbon group (hydrocarbon group having a substituent) include hydrocarbon groups in which at least one hydrogen atom of the hydrocarbon group is substituted with a substituent. Examples of the substituted hydrocarbon group include a substituted alkyl group, a substituted aryl group, a substituted alkenyl group, a substituted alkynyl group, and a substituted aralkyl group.
Examples of the substituted heterocyclic group (heterocyclic group having a substituent) include heterocyclic groups in which at least one hydrogen atom of the heterocyclic group is substituted with a substituent. Examples of the substituted heterocyclic group include a substituted aliphatic heterocyclic group and a substituted aromatic heterocyclic group.

置換炭化水素基、置換複素環基の置換基としては、炭化水素基、複素環基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アシル基、アシルオキシ基、ハロゲン原子、ハロゲン化炭化水素基、アルキレンジオキシ基、アミノ基、置換アミノ基、シアノ基、ニトロ基、ヒドロキシ基、置換シリル基等が挙げられる。
置換基としての炭化水素基及び複素環基は、上記一般式(1)のところで説明した各基と同じである。また、ハロゲン原子、ハロゲン化炭化水素基、アルコキシ基、アリールオキシ基、アラルキルオキシ基及び置換アミノ基も、上記一般式(1)のところで、置換基として説明した各基と同じである。アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基及びスルホニル基は、上記一般式(1)のところで置換基としての置換アミノ基におけるアミノ基の置換基として説明した各基と同じである。
置換基としてのアシルオキシ基としては、脂肪族カルボン酸、芳香族カルボン酸等のカルボン酸由来の例えば炭素数2〜18のアシルオキシ基が挙げられ、具体例としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、ピバロイルオキシ基、ペンタノイルオキシ基、ヘキサノイルオキシ基、ラウロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基等が挙げられる。
置換シリル基としては、例えば、シリル基の3個の水素原子が上記で説明したアルキル基、アリール基、アラルキル基等の炭化水素基等の置換基で置換されたトリ置換シリル基が挙げられ、具体例としては、例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、tert−ブチルジフェニルシリル基、トリフェニルシリル基等が挙げられる。
Substituents for substituted hydrocarbon groups and substituted heterocyclic groups include hydrocarbon groups, heterocyclic groups, alkoxy groups, aryloxy groups, aralkyloxy groups, alkoxycarbonyl groups, aryloxycarbonyl groups, aralkyloxycarbonyl groups, acyl groups. Acyloxy group, halogen atom, halogenated hydrocarbon group, alkylenedioxy group, amino group, substituted amino group, cyano group, nitro group, hydroxy group, substituted silyl group and the like.
The hydrocarbon group and heterocyclic group as a substituent are the same as each group demonstrated in the said General formula (1). The halogen atom, halogenated hydrocarbon group, alkoxy group, aryloxy group, aralkyloxy group and substituted amino group are the same as the groups described as substituents in the above general formula (1). The acyl group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group and sulfonyl group are the same as the groups described as substituents of the amino group in the substituted amino group as the substituent in the general formula (1). is there.
Examples of the acyloxy group as a substituent include an acyloxy group having 2 to 18 carbon atoms derived from a carboxylic acid such as an aliphatic carboxylic acid and an aromatic carboxylic acid. Specific examples include, for example, an acetoxy group and a propionyloxy group. , Butyryloxy group, pivaloyloxy group, pentanoyloxy group, hexanoyloxy group, lauroyloxy group, stearoyloxy group, benzoyloxy group and the like.
Examples of the substituted silyl group include a tri-substituted silyl group in which three hydrogen atoms of the silyl group are substituted with a substituent such as a hydrocarbon group such as an alkyl group, an aryl group, and an aralkyl group described above. Specific examples include a trimethylsilyl group, a tert-butyldimethylsilyl group, a tert-butyldiphenylsilyl group, and a triphenylsilyl group.

また、一般式(3)において、RとRとが互いに結合して、カルボニル基の炭素原子と一緒になって環を形成している場合の環としては、単環、多環、縮合環の何れでもよく、例えば4〜8員環等が挙げられる。また、環を構成する炭素鎖中に、−O−、−NH−等を有していてもよい。RとRとが互いに結合して、カルボニル基と一緒になって環を形成する場合の環の具体例としては、シクロペンタノン環、シクロヘキサノン環、例えば5〜7員のラクトン環、例えば5〜7員のラクタム環等が挙げられる。これら形成する環は、一般式(3)におけるカルボニル基の炭素原子が、不斉水素化反応により不斉炭素となり得るような環であればよい。
本発明の光学活性2級アルコールの製造方法は、本発明に係る不斉合成触媒の存在下で行われる。
本発明の不斉合成触媒としては、例えば、ロジウム−ホスファン錯体は、文献(K.Mikamiら,Chem.Commun.,2006,2365)に記載の方法により製造できる。
In the general formula (3), when R 7 and R 8 are bonded to each other to form a ring together with the carbon atom of the carbonyl group, the ring may be monocyclic, polycyclic, condensed Any of a ring may be sufficient, for example, a 4-8 membered ring etc. are mentioned. Moreover, in the carbon chain which comprises a ring, you may have -O-, -NH-, etc. Specific examples of the ring in the case where R 7 and R 8 are bonded to each other to form a ring together with a carbonyl group include a cyclopentanone ring, a cyclohexanone ring, such as a 5- to 7-membered lactone ring, such as 5-7 membered lactam ring etc. are mentioned. The ring to be formed may be any ring as long as the carbon atom of the carbonyl group in the general formula (3) can become an asymmetric carbon by an asymmetric hydrogenation reaction.
The method for producing an optically active secondary alcohol of the present invention is carried out in the presence of the asymmetric synthesis catalyst according to the present invention.
As an asymmetric synthesis catalyst of the present invention, for example, a rhodium-phosphane complex can be produced by the method described in the literature (K. Mikami et al., Chem. Commun., 2006, 2365).

本発明で用いられるN−Nで表される光学活性ジアミン化合物の具体例としては、例えば、1,2−ジアミノプロパン、2−メチル−1,3−ジアミノブタン、2,3−ジアミノブタン、1,2−ジアミノペンタン、1,3−ジアミノペンタン、1,2−シクロペンタンジアミン、1,2−シクロヘキサンジアミン、1,2−シクロヘプタンジアミン、2,3−ジメチル−2,3−ジアミノブタン、2−ジメチルアミノ−1−フェニルエチルアミン、2−ジエチルアミノ−1−フェニルエチルアミン、2−ジイソプロピルアミノ−1−フェニルエチルアミン、1,2−ジフェニルエチレンジアミン、1,2−ビス(4−メトキシフェニル)エチレンジアミン、1,2−ジシクロヘキシルエチレンジアミン、1,2−ビス(4−N,N−ジメチルアミノフェニル)エチレンジアミン、1,2−ビス(4−N,N−ジエチルアミノフェニル)エチレンジアミン、1,2−ビス(4−N,N−ジプロピルアミノフェニル)エチレンジアミン、(N−ベンゼンスルホニル)−1,2−ビス(4−N,N−ジメチルアミノフェニル)エチレンジアミン、(N−p−トルエンスルホニル)−1,2−ビス(4−N,N−ジメチルアミノフェニル)エチレンジアミン、(N−メタンスルホニル)−1,2−ビス(4−N,N−ジメチルアミノフェニル)エチレンジアミン、(N−トリフルオロメタンスルホニル)−1,2−ビス(4−N,N−ジメチルアミノフェニル)エチレンジアミン、(N−ベンゼンスルホニル)−1,2−ビス(4−N,N−ジエチルアミノフェニル)エチレンジアミン、(N−ベンゼンスルホニル)−1,2−ビス(4−N,N−ジプロピルアミノフェニル)エチレンジアミン、1−メチル−2,2−ジフェニルエチレンジアミン、1−イソブチル−2,2−ジフェニルエチレンジアミン、1−イソプロピル−2,2−ジフェニルエチレンジアミン、1−メチル−2,2−ジ(p−メトキシフェニル)エチレンジアミン、1−イソブチル−2,2−ジ(p−メトキシフェニル)エチレンジアミン、1−イソプロピル−2,2−ジ(p−メトキシフェニル)エチレンジアミン、1−ベンジル−2,2−ジ(p−メトキシフェニル)エチレンジアミン、1−メチル−2,2−ジナフチルエチレンジアミン、1−イソブチル−2,2−ジナフチルエチレンジアミン、1−イソプロピル−2,2−ジナフチルエチレンジアミン、N,N'−ビス(フェニルメチル)−1,2−ジフェニル−1,2−エチレンジアミン、N,N'−ビス(メシチルメチル)−1,2−ジフェニル−1,2−エチレンジアミン、N,N'−ビス(ナフチルメチル)−1,2−ジフェニル−1,2−エチレンジアミン等の光学活性体が挙げられる。   Specific examples of the optically active diamine compound represented by NN used in the present invention include, for example, 1,2-diaminopropane, 2-methyl-1,3-diaminobutane, 2,3-diaminobutane, , 2-diaminopentane, 1,3-diaminopentane, 1,2-cyclopentanediamine, 1,2-cyclohexanediamine, 1,2-cycloheptanediamine, 2,3-dimethyl-2,3-diaminobutane, 2 -Dimethylamino-1-phenylethylamine, 2-diethylamino-1-phenylethylamine, 2-diisopropylamino-1-phenylethylamine, 1,2-diphenylethylenediamine, 1,2-bis (4-methoxyphenyl) ethylenediamine, 1, 2-dicyclohexylethylenediamine, 1,2-bis (4-N, N-dimethyl) Aminophenyl) ethylenediamine, 1,2-bis (4-N, N-diethylaminophenyl) ethylenediamine, 1,2-bis (4-N, N-dipropylaminophenyl) ethylenediamine, (N-benzenesulfonyl) -1, 2-bis (4-N, N-dimethylaminophenyl) ethylenediamine, (Np-toluenesulfonyl) -1,2-bis (4-N, N-dimethylaminophenyl) ethylenediamine, (N-methanesulfonyl)- 1,2-bis (4-N, N-dimethylaminophenyl) ethylenediamine, (N-trifluoromethanesulfonyl) -1,2-bis (4-N, N-dimethylaminophenyl) ethylenediamine, (N-benzenesulfonyl) -1,2-bis (4-N, N-diethylaminophenyl) ethylenediamine, N-benzenesulfonyl) -1,2-bis (4-N, N-dipropylaminophenyl) ethylenediamine, 1-methyl-2,2-diphenylethylenediamine, 1-isobutyl-2,2-diphenylethylenediamine, 1-isopropyl -2,2-diphenylethylenediamine, 1-methyl-2,2-di (p-methoxyphenyl) ethylenediamine, 1-isobutyl-2,2-di (p-methoxyphenyl) ethylenediamine, 1-isopropyl-2,2- Di (p-methoxyphenyl) ethylenediamine, 1-benzyl-2,2-di (p-methoxyphenyl) ethylenediamine, 1-methyl-2,2-dinaphthylethylenediamine, 1-isobutyl-2,2-dinaphthylethylenediamine, 1-isopropyl-2,2-dinaphthylethylenedia N, N′-bis (phenylmethyl) -1,2-diphenyl-1,2-ethylenediamine, N, N′-bis (mesitylmethyl) -1,2-diphenyl-1,2-ethylenediamine, N, N Examples include optically active substances such as' -bis (naphthylmethyl) -1,2-diphenyl-1,2-ethylenediamine.

不斉合成触媒の使用量は、ケトン類に対して、通常10−1〜10−4当量、好ましくは10−2〜10−3当量の範囲から適宜選択される。
本発明の光学活性2級アルコールの製造方法、即ち、上記一般式(3)で表されるケトン類の不斉水素化反応は、水素移動反応によって行われる。
水素移動反応による不斉水素化反応は、水素供与性物質を反応系内に存在させるのが好ましい。水素供与性物質は、有機化合物又は/及び無機化合物あって、反応系内で、例えば熱的作用や触媒作用によって、水素を供与できる化合物であれば何れも使用可能である。
The amount of the asymmetric synthesis catalyst used is appropriately selected from the range of usually 10 -1 to 10 -4 equivalents, preferably 10 -2 to 10 -3 equivalents, relative to the ketones.
The method for producing the optically active secondary alcohol of the present invention, that is, the asymmetric hydrogenation reaction of the ketones represented by the general formula (3) is performed by a hydrogen transfer reaction.
In the asymmetric hydrogenation reaction by hydrogen transfer reaction, it is preferable that a hydrogen donating substance is present in the reaction system. The hydrogen-donating substance is an organic compound and / or an inorganic compound, and any compound can be used as long as it can donate hydrogen in the reaction system by, for example, thermal action or catalytic action.

水素供与性物質としては、例えば、ギ酸又はその塩類、ギ酸と塩基との組み合わせ、ヒドロキノン、亜リン酸、アルコール類等が挙げられる。これらの中では、ギ酸又はその塩類、ギ酸と塩基との組み合わせからなるもの、アルコール類等が特に好ましい。
ギ酸又はその塩類におけるギ酸の塩類としては、ギ酸のアルカリ金属塩、アルカリ土類金属塩等のギ酸の金属塩、アンモニウム塩、置換アミン塩等が挙げられる。
また、ギ酸と塩基との組み合わせ反応系内でギ酸の塩の形態となるもの或いは実質的にギ酸の塩の形態となるものであればよい。
ギ酸と塩を形成するアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられる。また、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
これらギ酸のアルカリ金属塩、アルカリ土類金属塩等のギ酸の金属塩や、アンモニウム塩、置換アミン塩等を形成する塩基、並びに、ギ酸と塩基との組み合わせにおける塩基としては、アンモニア、無機塩基、有機塩基等が挙げられる。
Examples of the hydrogen donating substance include formic acid or a salt thereof, a combination of formic acid and a base, hydroquinone, phosphorous acid, alcohols and the like. Among these, formic acid or a salt thereof, a combination of formic acid and a base, alcohols and the like are particularly preferable.
Examples of formic acid salts in formic acid or salts thereof include formic acid metal salts such as alkali metal salts and alkaline earth metal salts of formic acid, ammonium salts, and substituted amine salts.
Any formic acid salt form or substantially formic acid salt form may be used in the combined reaction system of formic acid and base.
Examples of the alkali metal that forms a salt with formic acid include lithium, sodium, potassium, rubidium, and cesium. Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like.
Bases for forming formic acid metal salts such as alkali metal salts and alkaline earth metal salts of these formic acids, ammonium salts, substituted amine salts, etc., and bases in a combination of formic acid and bases include ammonia, inorganic bases, An organic base etc. are mentioned.

無機塩基としては、例えば、炭酸カリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸化ナトリウム、炭酸マグネシウム、炭酸カルシウム等のアルカリ又はアルカリ土類金属塩、水素化ナトリウム、水素化ホウ素ナトリウム、水素化リチウムアルミニウム等の金属水素化物類等が挙げられる。
有機塩基としては、例えば、カリウムメトキシド、ナトリウムメトキシド、リチウムメトキシド、ナトリウムエトキシド、カリウムイソプロポキシド、カリウムtert−ブトキシド、カリウムナフタレニド等のアルカリ金属アルコキシド、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウム、酢酸カルシウム等のアルカリ・アルカリ土類金属の塩、トリエチルアミン、ジイソプロピルエチルアミン、N,N−ジメチルアニリン、ピペリジン、ピリジン、4−ジメチルアミノピリジン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、トリ−n−ブチルアミン、N−メチルモルホリン等の有機アミン類、臭化メチルマグネシウム、臭化エチルマグネシウム、臭化プロピルマグネシウム、メチルリチウム、エチルリチウム、プロピルリチウム、n−ブチルリチウム、tert−ブチルリチウム等の有機金属化合物類、4級アンモニウム塩等が挙げられる。
Examples of the inorganic base include potassium carbonate, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydroxide, magnesium carbonate, calcium carbonate and other alkali or alkaline earth metal salts, hydrogenated Examples thereof include metal hydrides such as sodium, sodium borohydride, lithium aluminum hydride and the like.
Examples of the organic base include alkali metal alkoxides such as potassium methoxide, sodium methoxide, lithium methoxide, sodium ethoxide, potassium isopropoxide, potassium tert-butoxide, potassium naphthalenide, sodium acetate, potassium acetate, acetic acid. Alkali / alkaline earth metal salts such as magnesium and calcium acetate, triethylamine, diisopropylethylamine, N, N-dimethylaniline, piperidine, pyridine, 4-dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] nona Organic amines such as -5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene, tri-n-butylamine, N-methylmorpholine, methylmagnesium bromide, ethylmagnesium bromide, odor Propyl Magnesium, methyl lithium, ethyl lithium, propyl lithium, n- butyl lithium, organic metal compounds such as tert- butyl lithium, and the like quaternary ammonium salts.

水素供与性物質としてのアルコール類としては、水素原子をα位に有する低級アルコール類が好ましく、具体例としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール等が挙げられ、中でもイソプロパノールが好ましい。
水素供与性物質の使用量は、ケトン類に対して通常2〜20当量、好ましくは4〜10当量の範囲から適宜選択される。
As the alcohol as a hydrogen-donating substance, lower alcohols having a hydrogen atom at the α-position are preferable. Specific examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and the like. Among them, isopropanol is preferable.
The amount of the hydrogen-donating substance used is appropriately selected from the range of usually 2 to 20 equivalents, preferably 4 to 10 equivalents, with respect to the ketones.

また、本発明の光学活性2級アルコールの製造方法は、用いるケトン類の種類等により、必要に応じて有機溶媒と組み合わせて用いてもよい。
用いられる有機溶媒としては、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、例えばペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類、例えばジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素類、例えばジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジオキソラン等のエーテル類、例えばメタノール、エタノール、2−プロパノール、n−ブタノール、tert−ブタノール、ベンジルアルコール等のアルコール類、例えばエチレングリコール、プロピレングリコール、1,2−プロパンジオール、グリセリン等の多価アルコール類、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、アセトニトリル、N−メチルピロリドン、ジメチルスルホキシド等が挙げられる。これら溶媒は、夫々単独で用いても2種以上適宜組み合わせて用いてもよい。
有機溶媒の使用量は、用いるケトンの重量に対して、通常1〜10倍容量、好ましくは2〜5倍容量の範囲から適宜選択される。
反応温度は、経済性等を考慮して、通常15〜100℃、好ましくは20〜80℃の範囲から適宜選択され、通常は比較的低温で行うことが望ましい。
反応時間は、用いる不斉水素化触媒の種類や使用量、用いるケトン化合物の種類や濃度、反応温度等の反応条件等により異なるが、数分〜数十時間程度でよく、通常4〜48時間、好ましくは6〜24時間の範囲から適宜選択される。
In addition, the method for producing an optically active secondary alcohol of the present invention may be used in combination with an organic solvent according to the type of ketones used.
Examples of the organic solvent used include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as pentane, hexane, heptane and octane, and halogens such as dichloromethane, chloroform, carbon tetrachloride and dichloroethane. Hydrocarbons such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, tetrahydrofuran, dioxane, dioxolane and the like such as methanol, ethanol, 2-propanol, n-butanol, tert-butanol, benzyl alcohol Alcohols such as ethylene glycol, propylene glycol, 1,2-propanediol, glycerin and other polyhydric alcohols such as N, N-dimethylformamide, N, N Amides such as dimethylacetamide, acetonitrile, N- methylpyrrolidone, dimethyl sulfoxide and the like. These solvents may be used alone or in appropriate combination of two or more.
The amount of the organic solvent used is appropriately selected from the range of usually 1 to 10 times, preferably 2 to 5 times the volume of the ketone used.
The reaction temperature is appropriately selected from the range of usually 15 to 100 ° C., preferably 20 to 80 ° C. in consideration of economy and the like, and it is usually desirable to carry out at a relatively low temperature.
While the reaction time varies depending on the type and amount of the asymmetric hydrogenation catalyst used, the type and concentration of the ketone compound used, the reaction conditions such as the reaction temperature, etc., it may be about several minutes to several tens of hours, usually 4 to 48 hours Preferably, it is appropriately selected from the range of 6 to 24 hours.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
なお、以下の実施例において物性等の測定に用いた装置は次の通りである。
H−NMR:Bruker AV300 (300 MHz)
31P−NMR:Bruker AV300 (121 MHz)
ガスクロマトグラフィー(以下GCと略す):GC-14B(島津製作所)PEG-20 M
CP-Cyclodextrin-β-2,3,6-M-19 (i.d. 0.25 mm x 25 m, CHROMPACK; GL Science)
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
In addition, the apparatus used for the measurement of physical properties etc. in the following examples is as follows.
1 H-NMR: Bruker AV300 (300 MHz)
31 P-NMR: Bruker AV300 (121 MHz)
Gas chromatography (hereinafter abbreviated as GC): GC-14B (Shimadzu Corporation) PEG-20 M
CP-Cyclodextrin-β-2,3,6-M-19 (id 0.25 mm x 25 m, CHROMPACK; GL Science)

また、実施例で用いた記号及び略号は以下の通りである。   The symbols and abbreviations used in the examples are as follows.

Figure 2011140469
DPEN(小文字も同じ):1,2−ジフェニルエチレンジアミン
Figure 2011140469
DPEN (lower case is the same): 1,2-diphenylethylenediamine

(実施例1)1,3,5−トリス(3’−ジフェニルホスフィノフェニル)ベンゼン(C−DPPB)の合成
(1)1,3,5−トリス(3’−トリフルオロメタンスルホニルオキシフェニル)ベンゼンの合成
1,3,5−トリス(3’−ヒドロキシフェニル)ベンゼン1.8g(5.0mmol)及びジメチルアミノピリジン122mg(1.0mmol)を窒素雰囲気下で塩化メチレン30mlに溶解し、0℃に冷却した。そこへ、2,6−ルチジン2.3ml(20mmol)を加えた後、トリフルオロメタンスルホン酸無水物3.0ml(18mmol)を滴下し、その後室温で18時間攪拌した。反応混合物を水、食塩水で洗浄した後、硫酸マグネシウムで乾燥した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)で精製することにより表題化合物が3.1g(82%収率)得られた。
Example 1 Synthesis of 1,3,5-tris (3′-diphenylphosphinophenyl) benzene (C 3 -DPPB) (1) 1,3,5-tris (3′-trifluoromethanesulfonyloxyphenyl) Synthesis of benzene 1.8 g (5.0 mmol) of 1,3,5-tris (3′-hydroxyphenyl) benzene and 122 mg (1.0 mmol) of dimethylaminopyridine were dissolved in 30 ml of methylene chloride under a nitrogen atmosphere. Cooled to. To this, 2.3 ml (20 mmol) of 2,6-lutidine was added, and then 3.0 ml (18 mmol) of trifluoromethanesulfonic anhydride was added dropwise, followed by stirring at room temperature for 18 hours. The reaction mixture was washed with water and brine and then dried over magnesium sulfate. After distilling off the solvent under reduced pressure, purification by silica gel column chromatography (ethyl acetate: hexane = 1: 4) gave 3.1 g (82% yield) of the title compound.

(2)1,3,5−トリス(3’−ジフェニルホスフィニルフェニル)ベンゼンの合成
1,3,5−トリス(3’−トリフルオロメタンスルホニルオキシフェニル)ベンゼン3.0g(4.0mmol)、酢酸パラジウム89.8mg(0.4mmol)、1,4−ビス(ジフェニルホスフィノ)ブタン170.6mg(0.4mmol)及びジフェニルホスフィンオキシド3.6g(18mmol)を窒素雰囲気下でジメチルスルホキシド30mlに溶解し、更にN,N−ジイソプロピルエチルアミン0.7ml(4mmol)を加えて100℃で18時間攪拌した。反応混合物を室温まで冷却し、塩化メチレン20mlを加えた。この溶液を1N塩酸水溶液、水、食塩水で順次洗浄した後、硫酸マグネシウムで乾燥した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル→塩化メチレン:メタノール=10:1)で精製することにより表題化合物が3.2g(89%収率)得られた。
(2) Synthesis of 1,3,5-tris (3′-diphenylphosphinylphenyl) benzene 3.0 g (4.0 mmol) of 1,3,5-tris (3′-trifluoromethanesulfonyloxyphenyl) benzene, 89.8 mg (0.4 mmol) of palladium acetate, 170.6 mg (0.4 mmol) of 1,4-bis (diphenylphosphino) butane and 3.6 g (18 mmol) of diphenylphosphine oxide were dissolved in 30 ml of dimethyl sulfoxide under a nitrogen atmosphere. Further, 0.7 ml (4 mmol) of N, N-diisopropylethylamine was added and stirred at 100 ° C. for 18 hours. The reaction mixture was cooled to room temperature and 20 ml of methylene chloride was added. The solution was washed successively with 1N aqueous hydrochloric acid, water and brine, and then dried over magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate → methylene chloride: methanol = 10: 1) to obtain 3.2 g (89% yield) of the title compound.

(3)1,3,5−トリス(3’−ジフェニルホスフィノフェニル)ベンゼンの合成
1,3,5−トリス(3’−ジフェニルホスフィニルフェニル)ベンゼン3.2g(3.5mmol)を窒素雰囲気下でトルエン25mlに溶解し、更にトリエチルアミン19.4ml(140mmol)を加えた溶液を0℃に冷却した。そこにトリクロロシラン3.5ml(35mmol)を加えて、0℃のまま30分間攪拌した。その後、ゆっくりと還流する温度まで上げていき4時間還流した。反応混合物を0℃まで冷却し、25%水酸化ナトリウム水溶液50mlをゆっくり滴下した。水層を塩化メチレン25mlで抽出し、1N塩酸水溶液で2回洗浄した後、硫酸マグネシウムで乾燥した。減圧濃縮して溶媒を留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:6)で精製する事により、表題化合物が1.1g(35%収率)得られた。
31P−NMR(CDCl):δ −4.63(s)
(3) Synthesis of 1,3,5-tris (3′-diphenylphosphinophenyl) benzene 3.2 g (3.5 mmol) of 1,3,5-tris (3′-diphenylphosphinylphenyl) benzene was nitrogenated. It melt | dissolved in 25 ml of toluene under atmosphere, and also the solution which added 19.4 ml (140 mmol) of triethylamine was cooled at 0 degreeC. Trichlorosilane 3.5ml (35mmol) was added there, and it stirred for 30 minutes with 0 degreeC. Then, it raised to the temperature which refluxed slowly, and was refluxed for 4 hours. The reaction mixture was cooled to 0 ° C., and 50 ml of 25% aqueous sodium hydroxide solution was slowly added dropwise. The aqueous layer was extracted with 25 ml of methylene chloride, washed twice with 1N aqueous hydrochloric acid solution, and dried over magnesium sulfate. After concentration under reduced pressure and evaporation of the solvent, purification by silica gel column chromatography (ethyl acetate: hexane = 1: 6) gave 1.1 g (35% yield) of the title compound.
31 P-NMR (CDCl 3 ): δ −4.63 (s)

(実施例2)1,3,5−トリス(3’−ジ−(3,5−キシリル)ホスフィノフェニル)ベンゼン(C−DM−DPPB)の合成
(1)1,3,5−トリス(3’−ジ−(3,5−キシリル)フェニルホスフィニルフェニル)ベンゼンの合成
1,3,5−トリス(3’−トリフルオロメタンスルホニルオキシフェニル)ベンゼン750mg(1mmol)、酢酸パラジウム22.4mg(0.1mmol)、1,4−ビス(ジフェニルホスフィノ)ブタン42.6mg(0.1mmol)及びジ−(3,5−キシリル)ホスフィンオキシド1.2g(4.5mmol)を窒素雰囲気下でジメチルスルホキシド20mlに溶解し、更にN,N−ジイソプロピルエチルアミン0.2ml(1.0mmol)を加えて100℃で18時間攪拌した。反応混合物を室温まで冷却し、塩化メチレン20mlを加えた。この溶液を1N塩酸水溶液、水、食塩水で順次洗浄した後、硫酸マグネシウムで乾燥した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル→塩化メチレン:メタノール=10:1)で精製することにより表題化合物が838mg(78%収率)得られた。
Example 2 Synthesis of 1,3,5-tris (3′-di- (3,5-xylyl) phosphinophenyl) benzene (C 3 -DM-DPPB) (1) 1,3,5-Tris Synthesis of (3′-di- (3,5-xylyl) phenylphosphinylphenyl) benzene 1,3,5-tris (3′-trifluoromethanesulfonyloxyphenyl) benzene 750 mg (1 mmol), palladium acetate 22.4 mg (0.1 mmol), 42.6 mg (0.1 mmol) of 1,4-bis (diphenylphosphino) butane and 1.2 g (4.5 mmol) of di- (3,5-xylyl) phosphine oxide under a nitrogen atmosphere Dissolved in 20 ml of dimethyl sulfoxide, further added 0.2 ml (1.0 mmol) of N, N-diisopropylethylamine and stirred at 100 ° C. for 18 hours. The reaction mixture was cooled to room temperature and 20 ml of methylene chloride was added. The solution was washed successively with 1N aqueous hydrochloric acid, water and brine, and then dried over magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate → methylene chloride: methanol = 10: 1) to obtain 838 mg (78% yield) of the title compound.

(2)1,3,5−トリス(3’−ジ−(3,5−キシリル)ホスフィノフェニル)ベンゼンの合成
1,3,5−トリス(3’−ジ−(3,5−キシリル)フェニルホスフィニルフェニル)ベンゼン752mg(0.7mmol)を窒素雰囲気下でトルエン15mlに溶解し、更にトリエチルアミン3.9ml(28mmol)を加えた溶液を0℃に冷却した。そこにトリクロロシラン0.7ml(7.0mmol)を加えて、0℃のまま30分間攪拌した。その後、ゆっくりと還流する温度まで上げていき4時間還流した。反応混合物を0℃まで冷却し、25%水酸化ナトリウム水溶液25mlをゆっくり滴下した。水層を塩化メチレン10mlで抽出し、1N塩酸水溶液で2回洗浄した後、硫酸マグネシウムで乾燥した。減圧濃縮して溶媒を留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:6)で精製する事により、表題化合物が309mg(43%収率)得られた。
(2) Synthesis of 1,3,5-tris (3′-di- (3,5-xylyl) phosphinophenyl) benzene 1,3,5-tris (3′-di- (3,5-xylyl) A solution obtained by dissolving 752 mg (0.7 mmol) of phenylphosphinylphenyl) benzene in 15 ml of toluene under a nitrogen atmosphere and further adding 3.9 ml (28 mmol) of triethylamine was cooled to 0 ° C. Trichlorosilane 0.7ml (7.0mmol) was added there, and it stirred for 30 minutes with 0 degreeC. Then, it raised to the temperature which refluxed slowly, and was refluxed for 4 hours. The reaction mixture was cooled to 0 ° C., and 25 ml of 25% aqueous sodium hydroxide solution was slowly added dropwise. The aqueous layer was extracted with 10 ml of methylene chloride, washed twice with 1N aqueous hydrochloric acid solution, and then dried over magnesium sulfate. After concentration under reduced pressure and evaporation of the solvent, purification by silica gel column chromatography (ethyl acetate: hexane = 1: 6) gave 309 mg (43% yield) of the title compound.

(実施例3)PdCl(C−dppb) の合成
アルゴン気流下、室温にてシュレンクチューブにPdCl(NCMe) (38.9mg,0.15mmol)、C−DPBP(85.9mg,0.1mmol)を秤量し、塩化メチレン(10mL)を加えた。3時間攪拌後、減圧下で反応溶液を濃縮しPdCl(C−DPPB)(106.9mg,95%収率)を得た。
H−NMR(CDCl):δ 6.93(t,6H,J=7.8Hz), 7.37−7.86(m,72H),8.08(s,6H),9.64(t,6H,J=7.5 Hz)
31P−NMR(CDCl):δ 24.79(s)
Example 3 Synthesis of Pd 3 Cl 6 (C 3 -dppb) 2 PdCl 2 (NCMe) 2 (38.9 mg, 0.15 mmol), C 3 -DPBP (85) in a Schlenk tube at room temperature under an argon stream. 9 mg, 0.1 mmol) and methylene chloride (10 mL) was added. After stirring for 3 hours, the reaction solution was concentrated under reduced pressure to obtain Pd 3 Cl 6 (C 3 -DPPB) 2 (106.9 mg, 95% yield).
1 H-NMR (CDCl 3 ): δ 6.93 (t, 6H, J = 7.8 Hz), 7.37-7.86 (m, 72H), 8.08 (s, 6H), 9.64 (T, 6H, J = 7.5 Hz)
31 P-NMR (CDCl 3 ): δ 24.79 (s)

得られたPdCl(C−dppb)錯体について単結晶X線構造解析装置AFC10/Saturn(株式会社リガク製)を使用し、結晶データと回折データを収集した(Mo Kα(λ=0.71073Å)。収集した回折データを用いて、各単結晶の構造を明らかにした(SIR92)。パラジウム-トリホスファン有機金属錯体(PdC1−(C−dppb))の結晶を構造解析した結果、(図2)に示すように結晶上面からC3対称リガンドを示す。直行する側面からはC2対称を示しており、D3点群である。即ち、C−dppb2分子(L)とパラジウム(M)によるL2M3有機金属錯体を形成しており、C3−helicalコンフォメーションを有していることがあきらかとなった。 For the obtained Pd 3 Cl 6 (C 3 -dppb) 2 complex, crystal data and diffraction data were collected using a single crystal X-ray structure analyzer AFC10 / Saturn (manufactured by Rigaku Corporation) (Mo Kα (λ = The collected diffraction data revealed the structure of each single crystal (SIR92), and the crystals of the palladium-triphosphane organometallic complex (Pd 3 C1 6- (C 3 -dppb) 2 ) as a result of structural analysis, showing a C3 symmetry ligand from the crystal upper surface as shown in (Fig. 2). from the side surface orthogonal shows a C2 symmetry, a D3-point group. that is, C 3 -dppb2 molecule (L) It was revealed that an L2M3 organometallic complex was formed with palladium (M) and had a C3-helical conformation.

(実施例4)[Rh(C−dm−dppb)(nbd)](SbFの合成
アルゴン気流下、室温にてシュレンクチューブに[Rh(nbd)]SbF(78.4mg,0.15mmol)、C−DM−DPPB(2)(102.7mg,0.1mmol)を秤量し、塩化メチレン(10mL)を加えた。3時間攪拌後、減圧下で反応溶液を濃縮して得たオレンジ色の残渣をジエチルエーテルで3度洗浄し、[Rh(C−dm−dppb)(nbd)](SbF(153.9mg,92%収率)を得た。
H−NMR(CDCl)δ 2.26(br,72H),2.36(br,6H),4.13(d,6H,J=19.5Hz),4.48−4.72(m,12H),6.78−7.81(m,66H).
31P−NMR(CDCl)δ 29.39(d,JP−Rh=155.5Hz).
(Example 4) Synthesis of [Rh 3 (C 3 -dm-dppb) 2 (nbd) 3 ] (SbF 6 ) 3 [Rh (nbd) 2 ] SbF 6 (78 .4 mg, 0.15 mmol) and C 3 -DM-DPPB (2) (102.7 mg, 0.1 mmol) were weighed and methylene chloride (10 mL) was added. After stirring for 3 hours, the orange residue obtained by concentrating the reaction solution under reduced pressure was washed three times with diethyl ether, and [Rh 3 (C 3 -dm-dppb) 2 (nbd) 3 ] (SbF 6 ). 3 (153.9 mg, 92% yield) was obtained.
1 H-NMR (CDCl 3 ) δ 2.26 (br, 72H), 2.36 (br, 6H), 4.13 (d, 6H, J = 19.5 Hz), 4.48-4.72 ( m, 12H), 6.78-7.81 (m, 66H).
31 P-NMR (CDCl 3 ) δ 29.39 (d, J P-Rh = 155.5 Hz).

(実施例5)[Rh(C−dm−dppb)(cod)](SbFの合成
1,3,5−トリス(3’−ジ−(3,5−キシリル)ホスフィノフェニル)ベンゼン(C−DM−DPPB)10.3mg(0.010mmol)、[Rh(cod)]SbF 8.3mg(0.015mmol)を窒素雰囲気下で塩化メチレン5mlに溶解し、室温で2時間攪拌した。溶媒を減圧留去した後、反応混合物をジエチルエーテル3mlで3回洗浄した。洗浄後、減圧乾燥することにより表題化合物が16.1mg(95%収率)得られた。
(Example 5) [Rh 3 (C 3 -dm-dppb) 2 (cod) 3] (SbF 6) 3 Synthesis 1,3,5-tris (3'-- (3,5-xylyl) phosphate Finophenyl) benzene (C 3 -DM-DPPB) 10.3 mg (0.010 mmol), [Rh (cod) 2 ] SbF 6 8.3 mg (0.015 mmol) were dissolved in 5 ml of methylene chloride under a nitrogen atmosphere. Stir at room temperature for 2 hours. After the solvent was distilled off under reduced pressure, the reaction mixture was washed 3 times with 3 ml of diethyl ether. After washing, drying under reduced pressure gave 16.1 mg (95% yield) of the title compound.

(実施例6)[Rh(C−dm−dppb)(acetone)](SbFの合成
アルゴン気流下、室温にてシュレンクチューブに[Rh(C−dm−dppb)(nbd)](SbF(33.5mg,0.01mmol)を秤量し、アセトン(5mL)を加えた。混合液を凍結後、水素ガス(ab.1atm)を水素ガス封入の風船を用いてチャージした。室温へ昇温した後に30分攪拌後、減圧下で反応溶液を濃縮して得たオレンジ色の残渣をジエチルエーテルで3度洗浄し、[Rh(C−dm−dppb)(acetone)](SbF(23.9mg,定量的収率)を得た。
Example 6 Synthesis of [Rh 3 (C 3 -dm-dppb) 2 (acetone) 3 ] (SbF 6 ) 3 [Rh 3 (C 3 -dm-dppb) was added to a Schlenk tube at room temperature under an argon stream. 2 (nbd) 3 ] (SbF 6 ) 3 (33.5 mg, 0.01 mmol) was weighed and acetone (5 mL) was added. After the mixture was frozen, hydrogen gas (ab.1 atm) was charged using a balloon filled with hydrogen gas. After warming to room temperature and stirring for 30 minutes, the orange residue obtained by concentrating the reaction solution under reduced pressure was washed three times with diethyl ether, and [Rh 3 (C 3 -dm-dppb) 2 (acetone) 3 ] (SbF 6 ) 3 (23.9 mg, quantitative yield) was obtained.

(実施例7)[Rh(C−dm−dppb){(S,S)−dpen}](SbFの合成
アルゴン気流下、室温にてシュレンクチューブに[Rh(C−dm−dppb)(acetone)](SbF(23.9mg,0.01mmol)と(S,S)−DPEN(6.3mg,0.03mmol)を秤量し、クロロホルム(5mL)を加えた。混合液を室温で5分攪拌後、減圧下で反応溶液を濃縮して[Rh(C−dm−dppb){(S,S)−dpen}](SbF(41.2mg,定量的収率)を得た。
H−NMR(CDCl)δ 2.32(br,72H),4.18(d,6H,J=7.8Hz),4.86(d,6H,J=7.8Hz),4.99(s,6H),6.92−7.67(m,96H).
31P−NMR(CDCl)δ 49.80(d,JP−Rh=132.4Hz).
(Example 7) Synthesis of [Rh 3 (C 3 -dm-dppb) 2 {(S, S) -dpen} 3 ] (SbF 6 ) 3 [Rh 3 (C 3- dm-dppb) 2 (acetone) 3 ] (SbF 6 ) 3 (23.9 mg, 0.01 mmol) and (S, S) -DPEN (6.3 mg, 0.03 mmol) were weighed and chloroform (5 mL ) Was added. After the mixture was stirred at room temperature for 5 minutes, the reaction solution was concentrated under reduced pressure to obtain [Rh 3 (C 3 -dm-dppb) 2 {(S, S) -dpen} 3 ] (SbF 6 ) 3 (41. 2 mg, quantitative yield).
1 H-NMR (CDCl 3 ) δ 2.32 (br, 72H), 4.18 (d, 6H, J = 7.8 Hz), 4.86 (d, 6H, J = 7.8 Hz), 4. 99 (s, 6H), 6.92-7.67 (m, 96H).
31 P-NMR (CDCl 3 ) δ 49.80 (d, J P-Rh = 132.4 Hz).

(実施例8)(R)−1−(1−Naphthyl)ethanolの合成
アルゴン気流下、シュレンクチューブに[Rh(C−dm−dppb){(S,S)−dpen}](SbF(12.4mg,0.003mmol)を秤量し2−プロパノール(3.6mL)を加え室温にて攪拌した。同溶液にt−BuOK/2−プロパノール(0.1M,0.6mL,0.06mmol)を加えて室温で20分間攪拌した後、1−acetonaphthone(38μL,0.33mmol)を加えさらに室温で24時間攪拌した。減圧下で反応溶液を濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(hexane/EtOAc=3/1)に付し、(R)−1−(1−Naphthyl)ethanol(43.7mg,77%収率、82%ee)を得た。
Example 8 Synthesis of (R) -1- (1-Naphthyl) ethanol [Rh 3 (C 3 -dm-dppb) 2 {(S, S) -dpen} 3 ] (in a Schlenk tube under an argon stream) SbF 6 ) 3 (12.4 mg, 0.003 mmol) was weighed, 2-propanol (3.6 mL) was added, and the mixture was stirred at room temperature. To this solution, t-BuOK / 2-propanol (0.1 M, 0.6 mL, 0.06 mmol) was added and stirred at room temperature for 20 minutes, then 1-acetonathone (38 μL, 0.33 mmol) was added, and 24 hours at room temperature. Stir for hours. The residue obtained by concentrating the reaction solution under reduced pressure was subjected to silica gel column chromatography (hexane / EtOAc = 3/1) to give (R) -1- (1-Naphthyl) ethanol (43.7 mg, 77% yield). Rate, 82% ee).

(比較例)(R)−1−(1−Naphthyl)ethanolの合成
上記実施例8のロジウム錯体を[Rh(C−dm−dppb){(S,S)−dpen}](SbFから[Rh{(R)−binap}{(S,S)−dpen}](SbF)に代えて、さらに反応を60℃で行った以外は実施例8と同様の操作を行なったところ、目的物である(R)−1−(1−Naphthyl)ethanolを収率98%、光学純度72%eeで得た。本発明の化合物を用いた場合に比べて目的物の光学純度が低かった。
(Comparative Example) Synthesis of (R) -1- (1-Naphthyl) ethanol The rhodium complex of Example 8 was converted to [Rh 3 (C 3 -dm-dppb) 2 {(S, S) -dpen} 3 ] ( SbF 6 ) 3 to [Rh {(R) -binap} {(S, S) -dpen}] (SbF 6 ), except that the reaction was further carried out at 60 ° C., the same operation as in Example 8 was performed. As a result, the target product (R) -1- (1-Naphthyl) ethanol was obtained with a yield of 98% and an optical purity of 72% ee. The optical purity of the target product was lower than when the compound of the present invention was used.

本発明の光学活性遷移金属−ホスファン錯体は、各種有機合成反応、特に水素移動型不斉還元反応等の触媒として有用であり、医薬中間体や液晶材料等として有用な光学活性2級アルコールの製造に有効に使用し得る。   The optically active transition metal-phosphane complex of the present invention is useful as a catalyst for various organic synthesis reactions, particularly hydrogen transfer-type asymmetric reduction reaction, etc., and production of optically active secondary alcohols useful as pharmaceutical intermediates and liquid crystal materials It can be used effectively.

実施例1で得られた1,3,5−トリス(3’−ジフェニルホスフィノフェニル)ベンゼン(C−DPPB)のH−NMRチャートを示す。1 shows a 1 H-NMR chart of 1,3,5-tris (3′-diphenylphosphinophenyl) benzene (C 3 -DPPB) obtained in Example 1. FIG. PdCl(C−dpppb)の単結晶X線構造解析結果を示す。It shows a Pd 3 Cl 6 (C 3 -dpppb ) 2 single crystal X-ray structural analysis results.

Claims (8)

下記一般式(1)
Figure 2011140469
(一般式(1)中、R、R、R、R、R及びRは同一であっても異なっていてもよく、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアラルキルオキシ基、置換基を有していてもよいシクロアルキルオキシ基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよい置換アミノ基、置換基を有していてもよい環状アミノ基を表し、RとR、RとR又はRとRとが、それぞれが置換しているリン原子と共に環を形成していてもよい。)
で表されるトリホスファン化合物。
The following general formula (1)
Figure 2011140469
(In General Formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different, and may have an alkyl group or a substituent which may have a substituent. Aryl group which may have a group, aralkyl group which may have a substituent, cycloalkyl group which may have a substituent, alkoxy group which may have a substituent, substituent An aryloxy group which may have a substituent, an aralkyloxy group which may have a substituent, a cycloalkyloxy group which may have a substituent, and an aliphatic complex which may have a substituent R 1 and R represent a cyclic group, an aromatic heterocyclic group which may have a substituent, a substituted amino group which may have a substituent, or a cyclic amino group which may have a substituent. 2, R 3 and a R 4 or R 5 and R 6, together with the phosphorus atom to which each is substituted It may form.)
A triphosphane compound represented by:
、R、R、R、R及びRが置換基を有していてもよいアリール基、置換基を有していてもよい脂肪族複素環基又は置換基を有してもよい芳香族複素環基である請求項1に記載のトリホスファン化合物。 R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have an aryl group which may have a substituent, an aliphatic heterocyclic group which may have a substituent or a substituent. The triphosphane compound according to claim 1, which may be an aromatic heterocyclic group. 請求項1又は請求項2のいずれかに記載のトリホスファン化合物と周期表の第8〜10族遷移金属とからなる遷移金属−ホスファン化合物。 A transition metal-phosphane compound comprising the triphosphane compound according to claim 1 or 2 and a Group 8-10 transition metal of the periodic table. 周期表の第8−10属遷移金属がロジウム、パラジウム、ルテニウム又はイリジウムである請求項3に記載の遷移金属−ホスファン化合物。 The transition metal-phosphane compound according to claim 3, wherein the group 8-10 transition metal of the periodic table is rhodium, palladium, ruthenium or iridium. 遷移金属−ホスファン化合物が、下記一般式(2)
[Rh(L){N−N}](X) (2)
(式中、Lは請求項1又は請求項2に記載のトリホスファン化合物を表し、N−Nは光学活性ジアミンを表し、Xはアニオン性配位子を表す。)
で表される化合物である請求項4に記載の光学活性遷移金属−ホスファン化合物。
The transition metal-phosphane compound is represented by the following general formula (2)
[Rh 3 (L) 2 {N−N} 3 ] (X) 3 (2)
(In the formula, L represents the triphosphane compound according to claim 1 or 2, NN represents an optically active diamine, and X represents an anionic ligand.)
The optically active transition metal-phosphane compound according to claim 4, which is a compound represented by the formula:
請求項3〜5のいずれかに記載の遷移金属−ホスファン化合物を触媒とする触媒的有機合成反応。 Catalytic organic synthesis reaction using the transition metal-phosphane compound according to any one of claims 3 to 5 as a catalyst. 下記一般式(3)
Figure 2011140469
(式中、R及びRは、それぞれ異なって、置換基を有していてもよい炭化水素基、置換基を有していてもよい脂肪族複素環基又は置換基を有していてもよい芳香族複素環基を示す。また、RとRとが互いに結合して、カルボニル基の炭素原子と一緒になって環を形成していてもよい。)
で表されるカルボニル化合物を、請求項3又は請求項4に記載の遷移金属−ホスファン化合物を触媒として用いて不斉還元することを特徴とする、下記一般式(4)
Figure 2011140469
(式中、*は不斉炭素であることを示し、R及びRは前記と同じ意味を表す。)
で表される光学活性アルコールの製造方法。
The following general formula (3)
Figure 2011140469
(In the formula, R 7 and R 8 are different and each have a hydrocarbon group which may have a substituent, an aliphatic heterocyclic group which may have a substituent, or a substituent. R 7 and R 8 may be bonded together to form a ring together with the carbon atom of the carbonyl group.
Wherein the carbonyl compound represented by formula (4) is asymmetrically reduced using the transition metal-phosphane compound according to claim 3 or 4 as a catalyst.
Figure 2011140469
(In the formula, * indicates an asymmetric carbon, and R 7 and R 8 have the same meaning as described above.)
The manufacturing method of optically active alcohol represented by these.
請求項5に記載の光学活性遷移金属−ホスファン化合物を触媒として用いることを特徴とする請求項7記載の光学活性アルコールの製造方法。 The method for producing an optically active alcohol according to claim 7, wherein the optically active transition metal-phosphane compound according to claim 5 is used as a catalyst.
JP2010002718A 2010-01-08 2010-01-08 New ligand, transition metal complex and method for producing optically active alcohol using the complex as catalyst Pending JP2011140469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002718A JP2011140469A (en) 2010-01-08 2010-01-08 New ligand, transition metal complex and method for producing optically active alcohol using the complex as catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002718A JP2011140469A (en) 2010-01-08 2010-01-08 New ligand, transition metal complex and method for producing optically active alcohol using the complex as catalyst

Publications (1)

Publication Number Publication Date
JP2011140469A true JP2011140469A (en) 2011-07-21

Family

ID=44456608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002718A Pending JP2011140469A (en) 2010-01-08 2010-01-08 New ligand, transition metal complex and method for producing optically active alcohol using the complex as catalyst

Country Status (1)

Country Link
JP (1) JP2011140469A (en)

Similar Documents

Publication Publication Date Title
EP2492275B1 (en) Novel ruthenium carbonyl complex having a tridentate ligand and manufacturing method and usage therefor
Luo et al. Chemoenzymatic Synthesis and Application of Bicyclo [2.2. 2] octadiene Ligands: Increased Efficiency in Rhodium-Catalyzed Asymmetric Conjugate Additions by Electronic Tuning We acknowledge Dr. John Whittall for initial inspiration, Dr. Neil Berry for preliminary modeling and the EPSRC for a Dorothy Hodgkin Postgraduate Award to YL
JP5477557B2 (en) Process for producing alcohols by hydrogen reduction of esters or lactones
JP5694275B2 (en) Catalyst for homogeneous asymmetric hydrogenation
JPWO2006046508A1 (en) Ruthenium complex and method for producing tert-alkyl alcohol using the same
JP4718452B2 (en) Optically active transition metal-diamine complex and method for producing optically active alcohols using the same
JP5491854B2 (en) Process for producing alcohols by hydrogenating lactones and carboxylic esters in the liquid phase
US20060142603A1 (en) Novel transition metal complex and process for producing optically active alcohol
JP6054108B2 (en) Process for producing optically active 2,3-dihydrofarnesal
JP4425654B2 (en) Water-soluble transition metal-diamine complex, method for producing the same, and use thereof
WO2014077323A1 (en) Method for producing optically active isopulegol and optically active menthol
JP2011140469A (en) New ligand, transition metal complex and method for producing optically active alcohol using the complex as catalyst
US7312347B2 (en) Substituted optically active disphosphine compound
JP2008260758A (en) Manufacturing method of alcohols
JP4845470B2 (en) Process for producing optically active amino alcohols
JP4855196B2 (en) Substituted optically active diphosphine compounds
Zhang et al. Synthesis of enantiopure C3-symmetric bulky trialkanolamines and their enantioselective inductivity during the alkynylation of aldehydes
JP6548657B2 (en) Method of producing alcohol
JP4546773B2 (en) Method for producing cyano compounds
JP2017081933A (en) Method for producing optically active 2,3-dihydrofarnesal
JP2009001545A (en) Method for producing alcohols