JP4424799B2 - 3次元イメージング方法及びシステム - Google Patents

3次元イメージング方法及びシステム Download PDF

Info

Publication number
JP4424799B2
JP4424799B2 JP33898899A JP33898899A JP4424799B2 JP 4424799 B2 JP4424799 B2 JP 4424799B2 JP 33898899 A JP33898899 A JP 33898899A JP 33898899 A JP33898899 A JP 33898899A JP 4424799 B2 JP4424799 B2 JP 4424799B2
Authority
JP
Japan
Prior art keywords
pixel value
central
contraction
post
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33898899A
Other languages
English (en)
Other versions
JP2000279416A (ja
JP2000279416A5 (ja
Inventor
ハーヴェイ・エリス・クライン
ウィリアム・トーマス・ハットフィールド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2000279416A publication Critical patent/JP2000279416A/ja
Publication of JP2000279416A5 publication Critical patent/JP2000279416A5/ja
Application granted granted Critical
Publication of JP4424799B2 publication Critical patent/JP4424799B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52034Data rate converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/916Ultrasound 3-D imaging

Description

【0001】
【発明の属する技術分野】
本発明は一般的には、医療診断の目的のために人体の解剖学的構造をイメージングすることに関する。具体的には、本発明は、人体内の血管から反射した超音波エコーの強度を検出することにより血管の3次元イメージングを行う方法及び装置に関する。
【0002】
【発明の背景】
最も広く用いられている診断用超音波イメージングのモードに、B及びMモード(体内の物理的構造をイメージングするのに用いられる)、ドプラ並びにカラー・フロー(後者の2つは、主として血管内等での流れ特性をイメージングするのに用いられる)がある。従来のBモード・イメージングでは、超音波スキャナによって、ピクセルの輝度が反射エコーの強度に基づいて定められる画像が作成され、即ち反射波の振幅を用いて組織の白黒画像が形成される。
【0003】
2次元超音波画像はしばしば、走査されている解剖学的構造の2次元的表現を観察者が視覚化することができないために解釈が困難になる。しかしながら、超音波プローブにより関心のある区域の全体を掃引し、2次元画像を蓄積して3次元ボリュームを形成すれば、解剖学的構造は、熟練した観察者又は熟練していない観察者の双方にとって遥かに視覚化し易くなる。
【0004】
Bモード超音波イメージングは、スペックル(speckle )と呼ばれる固有の画像アーティファクトを生ずる。スペックルは、多数の受信エコーの干渉パターンから形成される画像内に見られる斑点である。この斑点は主として、音波の干渉パターン内のゼロ部(null)によって生ずるが、例えばランダムな電子的ノイズなどの画像内のその他の異常によっても斑点が生じることがある。音波のゼロ部は、超音波画像の完全なダイナミック・レンジを表示するのに要求される対数圧縮によって強調される。これらのゼロ部は、画像では黒い穴として現われる。スペックル・ノイズ及びアーティファクトは、3次元超音波イメージングにおいて許容可能な視角の範囲を制限する。
【0005】
反射エコーの和を変化させるあらゆるパラメータがスペックル・パターンを変化させるので、スペックル画像アーティファクトを減少させる多くの従来手法が存在している。これらの従来手法の実例としては、マルチ送信集束、空間的合成、周波数合成及び空間的低域通過フィルタ処理がある。マルチ送信集束、空間的合成及び周波数合成の各手法ではフレーム・レートが低下し、これに対し空間的低域通過フィルタ処理では分解能が低下する。
【0006】
【発明の開示】
本発明の好ましい実施態様では、3次元超音波イメージングにおけるスペックル・アーティファクト・データが、関心のあるボリュームからの取得データを画像平面へ投影する前に減少させられる。この結果を得るための装置は、連続的に又は外部トリガ事象に応答して、即ち多数のスライスについて、シネ・メモリ内にBモード画像及び/又はカラー・フロー・モード画像を収集する超音波スキャナを含んでいる。各々のスライスについてのそれぞれの関心のある領域からのデータはマスタ・コントローラへ送られ、これらのデータは「関心のあるボリューム」を形成する。マスタ・コントローラは、関心のあるボリューム内のピクセル・データに対して反復的にモルフォロジ・フィルタ処理(morphologically filtering )を行い、次いで、レイ・キャスティング(ray-casting )法を用いてモルフォロジ・フィルタ処理済みデータを複数の回転された画像平面へ反復的に投影するというアルゴリズムを実行する。
【0007】
本発明の好ましい実施態様によれば、マスタ・コントローラは、モルフォロジ・フィルタ処理によってピクセル・データに含まれるスペックル及び/又はノイズを平滑化する。このフィルタ処理は、ピクセル・データから成るソース・データ・ボリュームの全体にわたって7点カーネルを段階移動(stepping)させることにより実行される。カーネルは、中央ピクセル値と、中央ピクセル値に隣接する6つのピクセル値、即ち、X、Y及びZ方向で隣接するそれぞれの対のピクセル値とで構成されている。カーネルは、ソース・データ・ボリューム全体にわたって段階移動してモルフォロジ・フィルタ出力値を形成し、これらの出力値が、スペックルの減少した新たなソース・データ・ボリュームを形成する。
【0008】
本発明によるモルフォロジ・フィルタ処理を実行するアルゴリズムは、n回の収縮(erosion )演算と、これに続くn回の膨張(dilation)演算とを含んでおり、ここで、nは任意の正の整数である。好ましい実施例では、n=3である。
【0009】
次いで、そのモルフォロジ・フィルタ処理済みピクセル・データ・ボリュームが、各々の相次ぐ画像平面へ投影される。投影された画像はスペックル及びノイズが減少しており、これらの画像はシネ・メモリに別個のフレームとして記憶され、各々のフレームは最後の背景フレームにスーパインポーズ(重ね表示)される。次いで、再構成されたこれらのフレームは、システム操作者によって選択的に表示される。画像は、物体ボリューム内の血管を明瞭に示す。シネ・モードで表示する場合には、血管が回転するので、2次元スライスをイメージングすることにより達成されるものに比べ、深さを一層充分に知覚することが出来る。
【0010】
【好適実施態様の詳しい説明】
本発明は、図1に全体的に示す形式の超音波イメージング・システムに組み込むことができる。超音波トランスデューサ・アレイ2の個々の素子が、ビームフォーマ4によって作動されて、同じ送信特性によって同じ送信焦点位置に集束される小音波(wavelet )を送信することによって、送信ビームを形成する。各々の送信ビームは、走査されている物体内に伝播し、物体内の超音波散乱体によって反射されてアレイに戻る。このような各回の送信ファイアリングの後に、トランスデューサ・アレイ素子によって検出されたエコー信号は、ビームフォーマ4のそれぞれの受信チャネルへ供給される。受信ビームフォーマは、マスタ・コントローラ(図1には示されていない)の指令下でエコーを追跡する。受信ビームフォーマは、受信されたエコー信号に対して適正な受信集束時間遅延を与えて、これらの信号を加算することにより、特定の送信焦点ゾーンに対応する一連のレンジ(距離)から反射した全超音波エネルギを正確に表すRF(無線周波)エコー信号を形成する。ベースバンド・システムでは、ビームフォーマはまた、ヒルベルト(Hilbert )帯域通過フィルタ処理によってRFエコー信号をそのI成分とQ成分とに変換する。次いで、これらのI成分及びQ成分は、各回の送信ファイアリング毎に受信加算器(図示されていない)において加算される。代替的には、ヒルベルト帯域通過フィルタ処理をビーム加算の後に行ってもよい。随意選択により、復調器(図示されていない)によってビームフォーマ4の出力信号の周波数をシフトさせる。このことを達成する1つの方法は、入力信号に複素正弦exp(i2πfd t)を乗算することであり、ここで、fd は所要の周波数シフトである。
【0011】
ベースバンド・システムでは、I成分及びQ成分はBモード・プロセッサ6へ送られる。Bモード・プロセッサ6は、量(I2 +Q21/2 を算出することによりビーム加算後の受信信号の包絡線を形成する包絡線検波器8を含んでいる。信号の包絡線に対して対数圧縮10等の何らかの追加的なBモード処理を施して表示データを形成し、スキャン・コンバータ12へ供給する。RFシステムでは、包絡線検波がRF信号に対して行われる。
【0012】
一般的に述べると、表示データは、スキャン・コンバータ12によってビデオ表示用のXYフォーマットへ変換される。走査変換(スキャン・コンバート)後のフレームは、ビデオ・プロセッサ14へ渡される。ビデオ・プロセッサ14は、ビデオ・データをビデオ表示用のグレイ・スケール又はグレイ・マップとして写像する。次いで、グレイ・スケールの画像フレームがビデオ・モニタ16へ送られて表示される。
【0013】
ビデオ・モニタ16によって表示される画像は、各々のデータが表示のそれぞれのピクセルの強度又は輝度を指示しているようなデータの画像フレームから形成されている。1つの画像フレームは、例えば、256×256のデータ配列で構成されており、このデータ配列中の各々の強度データが、ピクセル輝度を指示する8ビットの二進数である。表示モニタ16上での各々のピクセルの輝度は、周知の方式でデータ配列内の対応する要素の値を読み取ることにより、絶えず更新されている。各々のピクセルは、呼び掛け用超音波パルスに応答したそれぞれのサンプル・ボリュームの後方散乱体断面積と採用されているグレイ・マップとの関数である強度値を有する。従来の超音波イメージング・システムは、典型的には、生の音波サンプル・データの単純な伝達関数である様々なグレイ・マップを採用して、グレイ値を表示している。
【0014】
図2に示すように、システムの制御は、ホスト・コンピュータ又はマスタ・コントローラ22に集中されており、マスタ・コントローラ22は、オペレータ・インタフェイス(図示されていない)を介して操作者の入力を受け取って、様々なサブシステムを制御する。マスタ・コントローラ22はまた、システムのタイミング信号及び制御信号を発生し、これらの信号は、システム制御バス46及び走査制御バス(図示されていない)を介して分配される。
【0015】
スキャン・コンバータ12は、音線(acoustic line )メモリ18と、XY表示メモリ20とを含んでいる。音線メモリ18は、Bモード・プロセッサから処理済みのディジタル・データを受け取って、Bモード・データについて、極座標(R−θ)セクタ・フォーマット又はデカルト座標リニア・アレイ・フォーマットから、XY表示メモリ20に記憶される適当に拡縮(スケーリング)されたデカルト座標表示ピクセル・データへの座標変換を行う。Bモードでは、強度データがXY表示メモリ20に記憶され、各々のアドレス(番地)が3つの8ビット・ピクセルを記憶している。ビデオ・プロセッサ14は、図形データ、画像データ及び時間線データの間で多重化を行って、ビデオ・モニタ16上にラスタ走査フォーマットで最終的なビデオ出力信号を形成し、それに加えて様々なグレイ・スケール・マップを供給する。
【0016】
Bモード・データの多数の相次ぐフレームは、先入れ先出し方式でシネ・メモリ24に記憶されている。シネ・メモリ24は、利用者に対して実時間で表示される画像データを絶えず取得しながらバックグラウンドで動作している循環画像バッファのように動作する。利用者がシステムをフリーズさせると、利用者は、シネ・メモリ内に過去に取得されている画像データを観察することが可能になる。シネ・メモリは、単一の画像の観察及び多数の画像ループの観察のための常駐のディジタル画像記憶、並びに様々な制御作用を提供する。単一画像のシネ再生中に表示される関心のある領域は、画像の取得中に用いられた関心のある領域である。シネ・メモリ24はまた、マスタ・コントローラ22を介してディジタル式保管装置へ画像を転送するためのバッファとしての役割も果たす。
【0017】
マスタ・コントローラ22は、中央処理装置(CPU)42とランダム・アクセス・メモリ(RAM)44とを含んでいる。CPU42は、強度データから成る取得ボリュームを様々な角度で捉えた多数の3次元投影画像へ変換するのに用いられるルーチンを記憶している読み出し専用メモリを組み込んでいる。CPU42は、システム制御バス46を介して、XYメモリ20及びシネ・メモリ24を制御する。具体的には、CPU42は、XYメモリ20からビデオ・プロセッサ14及びシネ・メモリ24へのピクセル・データの流れ、並びにシネ・メモリからビデオ・プロセッサ及びCPU自体へのピクセル・データの流れを制御する。強度データの各々のフレームは、被検体を通る多数の平行な走査又はスライスの1つに相当しており、XYメモリ20に記憶され、次のサイクルではビデオ・プロセッサ14及びシネ・メモリ24へ送信される。フレームのスタックは、走査されている物体ボリュームに相当しており、シネ・メモリ24のセクション24Aに記憶される。初期化(図3の工程26)時に、CPU42は、シネ・メモリ・セクション24Aから、関心のある物体ボリュームに対応する強度データのみを検索する。これは、関心のある物体ボリュームを横断する任意の走査から取得された各々の記憶されているフレームから、関心のある領域にある強度データのみを検索することにより達成される。このようにして、相次ぐフレームのスタックの各々からの関心のある領域に対応する強度データが、関心のあるソース・データ・ボリュームを形成する。
【0018】
図4に模式的に示されているソース・データ・ボリュームは、物体ボリューム52を超音波トランスデューサで走査することにより形成される。物体ボリューム52は、各々が同じ数の物体ボリューム要素(ボクセル)OVを含んでいる積み重なった連続的なスライス又はシートOS1 ,OS2 ,…,OSk の系列を形成するように走査される。各々のボクセルは、シート平面(例えば、XY平面)内で矩形の輪郭(プロフィール)を有しており、縦横の各辺は等しい長さSを有し得るので、この輪郭は正方形となり得るが、シート厚Tは一般にいずれの辺の長さにも等しくない。このように、第1の物体スライスOS1 は、第1の多数の物体ボクセルOVi,j,1 を含んでおり、ここで、i及びjはそれぞれ、ボクセルのX軸及びY軸での位置である。同様に、第2の物体スライスOS2 は、物体ボクセルOVi,j,2 を含んでいる。任意の物体スライスOSk は、ボクセルOVi,j,k を含んでおり、ここで、kはこのボクセルのZ軸での位置である。各々の物体ボクセルOVi,j,k は解析され、そのデータ値(強度、速度又はパワー)が、データ・ボリューム54の対応するデータ・ボクセルDVi,j,k に配置される。各々の物体スライスOSk の厚み及び各々の物体ボクセル面のサイズ(ボクセルのXY平面におけるサイズ)が一般に同じではない場合にも、データ・ボリューム54は単純なi,j,k立方格子となる。即ち、物体ボリュームは、各々のボクセルについて異なるX、Y及びZの寸法を有していてもよいばかりでなく、任意の次元におけるボクセルの総数も必ずしも同じでなくてもよい。例えば、典型的な超音波3次元走査では、各々のスライスが256×256マトリクスのボクセルを含むようにして、128個のスライスを得ることができる。
【0019】
図3に示すように、関心のある物体ボリュームに対応するピクセル・データ集合内の強度データは、スペックル・ノイズを平滑化すると共にアーティファクトを減少させるために、投影の前にモルフォロジ・フィルタ処理される(工程28)。これにより、投影の際にスペックル・ノイズによるデータの損失が防止される。例えば、血管は、周囲の組織よりも音波反射性が小さい。従って、血管は、最小強度投影を用いてイメージングすることができる。代替的には、反転ビデオ/最小モードでは、強度データは反転されて、血管を暗く表示せずに明るく表示する。この場合には、最大強度投影を用いて血管をイメージングすることができる。所望のピクセル・データに対して明るいスペックルとなっているような最大強度の選択を防止するためには、投影の前に、これらのような明るいスペックル強度を除去するフィルタを用いればよい。モルフォロジ・フィルタ処理及び投影の両方とも、好ましくはマスタ・コントローラによって実行されるが、それぞれの専用プロセッサによって実行することもできる。
【0020】
本発明の好ましい実施例によれば、ソース・データ・ボリュームは、ソース・データ・ボリュームの中央ピクセル値とこの中央ピクセル値に隣接する6つのピクセル値とで構成されているカーネルに対して動作するモルフォロジ・フィルタを用いて、CPU42(図2)によってフィルタ処理される。カーネルは、ソース・データ・ボリューム全体にわたって段階移動されて、モルフォロジ・フィルタ出力値を発生し、これらの出力値が、スペックルの減少した新たなソース・データ・ボリュームを形成する。本発明に従ってモルフォロジ・フィルタ処理を実行するアルゴリズムは、n回の収縮(erosion )演算と、これに続くn回の膨張(dilation)演算とを含んでおり、ここで、nは任意の正の整数である。好ましい実施例では、n=3である。カーネルの中央ピクセル値をDVi,j,k と表わすと、±X方向で隣接するピクセル値はそれぞれDVi+1,j,k 及びDVi-1,j,k と表わされ、±Y方向で隣接するピクセル値はそれぞれDVi,j+1,k 及びDVi,j-1,k と表わされ、±Z方向で隣接するピクセル値はそれぞれDVi,j,k+1 及びDVi,j,k-1 と表わされる。収縮演算は次の工程を含む。各々のカーネルについて、プロセッサは、中央ピクセル値DVi,j,k と、X軸に沿った2つのピクセル値DVi+1,j,k 及びDVi-1,j,k との相対的な大きさを決定する。ここには4つの可能性がある。即ち、(1)DVi+1,j,k <DVi,j,k <DVi-1,j,k 、(2)DVi+1,j,k >DVi,j,k >DVi-1,j,k 、(3)DVi+1,j,k <DVi,j,k >DVi-1,j,k 、及び(4)DVi+1,j,k >DVi,j,k <DVi-1,j,k である。そして、どの可能性が当てはまるかに応じて、プロセッサは勾配Gx を算出する。可能性(1)については、Gx =DVi+1,j,k −DVi,j,k 、可能性(2)については、Gx =DVi,j,k −DVi-1,j,k 、可能性(3)については、Gx =[(DVi+1,j,k −DVi,j,k2 +(DVi,j,k −DVi-1,j,k21/2 、及び可能性(4)については、Gx =0とする。以上の工程をY方向及びZ方向についても繰り返す。Y方向については、プロセッサは、中央ピクセル値DVi,j,k と、2つのピクセル値DVi,j+1,k 及びDVi,j-1,k との相対的な大きさを決定する。やはり、4つの可能性がある。即ち、(1)DVi,j+1,k <DVi,j,k <DVi,j-1,k 、(2)DVi,j+1,k >DVi,j,k >DVi,j-1,k 、(3)DVi,j+1,k <DVi,j,k >DVi,j-1,k 、(4)DVi,j+1,k >DVi,j,k <DVi,j-1,k である。そして、どの可能性が当てはまるかに応じて、プロセッサは勾配Gy を算出する。可能性(1)については、Gy =DVi,j+1,k −DVi,j,k 、可能性(2)については、Gy =DVi,j,k −DVi,j-1,k 、可能性(3)については、Gy =[(DVi,j+1,k −DVi,j,k2 +(DVi,j,k −DVi,j-1,k21/2 、及び可能性(4)については、Gy =0である。Z方向については、プロセッサは、中央ピクセル値DVi,j,k と、2つのピクセル値DVi,j,k+1 及びDVi,j,k-1 との相対的な大きさを決定する。この場合にも、4つの可能性がある。即ち、(1)DVi,j,k+1 <DVi,j,k <DVi,j,k-1 、(2)DVi,j,k+1 >DVi,j,k >DVi,j,k-1 、(3)DVi,j,k+1 <DVi,j,k >DVi,j,k-1 、及び(4)DVi,j,k+1 >DVi,j,k <DVi,j,k-1 である。そして、どの場合が当てはまるかに応じて、プロセッサは次のようにして勾配Gz を算出する。即ち、可能性(1)については、Gz =DVi,j,k+1 −DVi,j,k 、可能性(2)については、Gz =DVi,j,k −DVi,j,k-1 、可能性(3)については、Gz =[(DVi,j,k+1 −DVi,j,k2 +(DVi,j,k −DVi,j,k-121/2 、及び可能性(4)については、Gz =0である。次いで、プロセッサは、次の量を算出する。
【0021】
G′=(1/3)(Gx 2+Gy 2+Gz 21/2
次いで、量G′をピクセル値DVi,j,k から減算して、新たなピクセル値DVi,j,k ′を求める。ソース・データ・ボリュームのすべての値(第1のバッファ・メモリに記憶されている)が以上の方式で収縮され終わったときに、得られた値は1回収縮データ・ボリュームを形成しており、このデータ・ボリュームは、マスタ・コントローラ内の第2のバッファ・メモリに記憶される。本発明は、1回のみの収縮(及び1回のみの膨張)を用いてソース・データ・ボリュームからスペックルを除去するような状況を網羅するに十分なだけ広範であるが、好ましい実施例によれば、ソース・データ・ボリュームは3回収縮される。即ち、1回収縮データ・ボリュームを収縮して2回収縮データ・ボリュームを形成し、このデータ・ボリュームを第1のバッファ・メモリ(又は第3のバッファ・メモリ)に記憶させることができる。次いで、2回収縮データ・ボリュームを収縮して、3回収縮データ・ボリュームを形成する(例えば、第2のバッファ・メモリに記憶させる。)。
【0022】
所望の回数の収縮の後に、マスタ・コントローラは、同じ回数の膨張工程を実行する。膨張演算は、収縮の議論で用いたものと同じデータ値符号を用いて記述されるが、1回目の膨張で膨張されるデータ値は、ソース・データ・ボリュームからのデータ値ではなく、3回収縮データ・ボリュームからのデータ値であることを理解されたい。各回の膨張毎に、プロセッサは、データ・ボリュームの全体にわたって7つのピクセルから成るカーネルを段階移動させる。各々のカーネル毎に、プロセッサは、中央ピクセル値DVi,j,k と、X軸に沿った2つのピクセル値DVi+1,j,k 及びDVi-1,j,k との相対的な大きさを決定する。この場合にも、4つの可能性がある。即ち、(1)DVi+1,j,k <DVi,j,k <DVi-1,j,k 、(2)DVi+1,j,k >DVi,j,k >DVi-1,j,k 、(3)DVi+1,j,k <DVi,j,k >DVi-1,j,k 、及び(4)DVi+1,j,k >DVi,j,k <DVi-1,j,k である。そして、どの可能性が当てはまるかに応じて、プロセッサは次のようにして勾配Gx を算出する。即ち、可能性(1)については、Gx =DVi,j,k −DVi-1,j,k 、可能性(2)については、Gx =DVi+1,j,k −DVi,j,k 、可能性(3)については、Gx =0、及び可能性(4)については、Gx =[(DVi+1,j,k −DVi,j,k2 +(DVi,j,k −DVi-1,j,k21/2 とする。以上の工程をY方向及びZ方向についても繰り返す。Y方向については、プロセッサは、中央ピクセル値DVi,j,k と、2つのピクセル値DVi,j+1,k 及びDVi,j-1,k との相対的な大きさを決定し、次いで、勾配Gy を算出する。Z方向については、プロセッサは、中央ピクセル値DVi,j,k と、2つのピクセル値DVi,j,k+1 及びDVi,j,k-1 との相対的な大きさを決定し、次いで、勾配Gz を算出する。ここでも、プロセッサは、量G′を算出する。量G′がピクセルDVi,j,k から減算された収縮の場合とは異なり、膨張の場合には、量G′はピクセル値DVi,j,k に加算されて、新たなピクセル値DVi,j,k ′を形成する。3回収縮データ・ボリュームのすべての値(第2のバッファ・メモリから検索される)が以上の方式で膨張され終わったときに、得られた値は1回膨張データ・ボリュームを形成しており、このデータ・ボリュームは、第1のバッファ・メモリに記憶される。次いで、1回膨張データ・ボリュームを以上の方式で膨張して、2回膨張データ・ボリュームを形成し、このデータ・ボリュームを第2のバッファ・メモリに記憶させることができる。そして、2回膨張データ・ボリュームを膨張して、3回膨張(即ち、モルフォロジ・フィルタ処理された)データ・ボリュームを形成する(例えば、第1のバッファ・メモリに記憶させる。)。このモルフォロジ・フィルタ処理済みのデータでは、スペックルが減少している。
【0023】
モルフォロジ・フィルタ処理に続いて、CPU42(図2)は、1993年7月6日に付与され本出願人に譲渡された米国特許第5,226,113号に開示されているレイ・キャスティング(ray-casting )アルゴリズムを用いて、モルフォロジ・フィルタ処理済みデータ・ボリュームに対して一連の変換を実行する。相次ぐ変換は、例えば+90°〜−90°の角度範囲内で、例えば10°の間隔の角度増分で行われる最大、最小又は平均による強度、速度又はパワーの投影に相当する。但し、角度増分は10°でなくてもよく、本発明はいかなる特定の角度範囲にも限定されない。
【0024】
好ましい実施例に用いられるレイ・キャスティング法によれば、サンプル50(図4を参照)の立体的に表現(レンダリング)された投影画像を、任意の視角、例えば、角度パラメータ(θ,φ)によって表される球面投影角から表示する。ここで、θは、視線58の延長58′がXY平面に対してなす角度であり、また、φは、延長58′に関する視線58の角度である。
【0025】
具体的には、図4に示すように、物体50の画像は、CPU42(図2)によってデータ・ボクセルDVi,j,k の格子点から画像平面56に向かって投影される(図3の工程34)。便宜的に、格子点は、例えば、データ・ボリュームの原点に最も近いデータ・ボクセルの頂点としてよい。投射線62は、物体ボリューム52を眺める球面角度パラメータ(θ,φ)から変換された球面角度パラメータ(α,β)を持つ投影角度でデータ・ボリューム54を出発する。これら2つの角度は、非立方体である物体ボリューム52に対して立方体であるデータ・ボリューム54を用いることによる幾何学的な歪みのため、同一ではない。しかしながら、投影射線62は、データ・ボリュームのx軸に関して角度αをなすと共
【外1】
Figure 0004424799
α及びβは、回転処理(後述する)によって、所望の視角(θ,φ)で物体ボリューム52を眺めることに対応するように決定される(球面座標での操作を仮定している。)。射線62の各々は、データ・ボリュームのボクセルの格子点から画像平面に向かって投射される。
【0026】
すべての射線62が画像平面の何らかの部分に入射するが、考察されている画像平面ピクセル60aの範囲内に到達した射線のみが、この画像平面ピクセルのデータに寄与することを許される。このように、物体ボリューム52のうちの眺めている部分と、この選択された物体ボリュームを眺める視角(θ,φ)とを選択すると、データ・ボリュームの対応する部分の各々のボクセルのデータ値が、画像平面56に向かって角度(α,β)で投射される(物体ボリュームに関して歪んだデータ・ボリュームを眺めることに対応する。)。第1のボクセル(例えば、ボクセルDVi,1,k )のデータ値はこのようにして、選択されたθ及びφの値に従って、射線62aに沿って逆投影される。この射線62aは、ピクセル60a内の位置64aにおいて画像平面56に入射し、このピクセルに入射するのはこれが最初の射線であるので、入射データの強度、速度又はパワーの値が所望のピクセル60aに帰属される(記憶される)。データ・ボリュームの次のボクセル(例えば、ボクセルDVi,2,k )は、ボクセルの格子点から画像平面56上の位置64bへ同じ角度(α,β)構成で投影されるその関連した射線62bを有する。入射位置64bが、所望のピクセル60aの範囲内にあるとすると、この第2の投影後の値は(最大ピクセル投影の場合には)、現在記憶されている第1の値と比較されて、より大きい方の値がピクセル60aについて記憶装置に配置される。平均値投影の場合には、カレントの投影後のデータ・ボクセルの値が、この投影射線が入射した画像平面のピクセルに既に記憶されている和に加算され、その和が最終的に、このピクセルについてのこれらのような入射線のカウント数で除算される。選択されたデータ・ボリュームの各々のボクセルが画像平面56に向かって順に入って投影されるにつれて、データ・ボリュームのボクセル(例えば、ボクセルDVi,3,k )は遂には、その関連する射線62pに沿って投影されると所望のピクセル60aの範囲内に入射しなくなるので、そのデータ値(例えば、強度)は、ピクセル60aについて現在記憶されているデータ値とは比較されない。この時点で、ピクセル60aについての最大データ値が、特定の3次元視角(θ,φ)におけるデータのこの投影について設定される。しかしながら、射線62pは実際には、入射点64pを有しており、入射点64pは他の画像平面ピクセル(例えば、ピクセル60b)の範囲内に位置しているので、この位置に記憶されているデータ値と比較され、比較の後に、より大きい方の値がこのピクセルについて記憶装置に返される。新たな投影を取得するときには、すべてのデータ値はゼロにリセットされる。このように、画像平面ピクセルの各々が画像投影手順の開始時にリセットされ、データ・ボリュームのボクセルのすべてが(空間の全体で、又は選択された物体ボリューム52の部分によって設定される選択された部分で)個別に且つ順に走査される。各々のデータ・ボクセルDVのデータ値が、関連する射線62を通して投影され、画像平面56の1つのピクセル60aにおいて画像平面56に入射し、ここで、各々のピクセルの最大値を射線投射されたデータ・ボリュームのボクセルの現在の値に対して比較してそのうちの大きい方を決定し、次いで、この大きい方の値が最大値画像の一部として記憶される。実際には、最大ピクセル投影の場合には、新たに投射された射線が入射した画像平面のピクセルについて既に記憶されているデータ値よりも、新たに投射されたデータ・ボクセル値の方が大きい場合にのみ、記憶されている最大値が変更される。
【0027】
上述の手法のもう1つの面によれば、データ投影は拡縮されて(図3の工程36)、物体ボリュームと画像平面との間のあらゆる異方性が、逆投影が完了した後の単一の組の計算のみによって除去される。図5に示すように、物体ボリューム52は実在のボリュームである一方、データ・ボリューム54は抽象概念であるので、第1段階では、物体ボリューム52及びデータ・ボリューム54の両方に関して、任意の視線方向66が配置される角度ψと異なる角度γにおいて、立方体のデータ・ボリューム格子54の提示によるデータ投影の歪みの量を決定することが必要である。各々のボクセルの見かけ上の寸法は、実効仰角ψ及びγが変化するにつれて変化してゆく。縦横(アスペクト)比A(物体ボリューム52内での実際のスライス厚Tの同じ物体ボリューム52内での実際のピクセル・サイズSに対する比として定義される)が1単位でなければ(即ち、物体ボクセルが、データ・ボリューム54の場合に見られるように立方体ボクセルではないので、1単位よりも大きく又は小さくなるならば)、仰角ψ及びγは異なるものとなり、データ・ボリュームにおける実効仰角ψは、物体ボリュームにおける実際の仰角γと異なることになる。データの回転は、次の式によって得られる物体の仰角に従って行われる。
【0028】
ψ=tan-1[(1/A)tan(γ)]
この後に、仰角拡縮ファクタをすべての投影後のデータの高さに乗算することにより、投影後のデータを物体ボリュームにおいて正しい高さ(回転が水平軸の周りで行われる場合)を有するように拡縮することができる。古い投影後の画像の高さHは、実効拡縮ファクタEs によって補正することができ、ここで、
s =[(Acosγ)2 +sin2 γ]1/2
であり、新たな高さは、H′=H・Es である。回転が垂直軸の周りで行われる場合には、幅についても同じことが当てはまる。
【0029】
上述の関係を利用すると、歪みは1つの軸のみに沿ったものであるので、データ・ボリュームの角度(α,β)の回転がそれぞれ角度(θ,φ)となり、すると、角度θが角度αと等しくなる。3×3の回転行列[M]の各要素を決定することができ、2つの関連する回転角が与えられると、これらの関係を用いて、データ・ボリュームから画像平面への変換が決定される。
【0030】
X′=M1X+M2Y+M3Z+XO
Y′=M4X+M5Y+M6Z+YO
ここで、M1〜M6は、回転行列の最初の2行であり(即ち、M1=−sinθ、M2=cosθsinψ、M3=0、M4=−cosθsinψ2、M5=−sinθsinψ、及びM6=cosψ)、X′及びY′は、投影された点の画像平面上での位置であり、XO及びYOは、画像平面の選択された部分が開始する位置である画像平面のX及びYのオフセット(それぞれX及びYの最低値の点を基準とする)である。データが画像平面56へ投影された後に、異方性の物体ボクセルの影響を補正するように画像を拡縮する。ファクタM1〜M6は、投影の開始時(所与のθ及びφ)に予め算出しておいて(図3の工程32)、すべての回転計算に用い得ることが理解されよう。
【0031】
図6は、マスタ・コントローラ22(図2)又は独立した専用プロセッサに組み込まれる上述のレイ・キャスティング法を実行する手段を示している。このような手段は、シネ・メモリ24(図2)からのデータ入力70aにおいて受け取られるスライス・データを記憶する3次元データ・メモリ70を含んでいる。各々の物体ボクセルに関連するデータは、CPU74からのボクセル・アドレス入力70bにおいて受け取られるボクセル・アドレス入力情報に応答して、このボクセルのアドレスに記憶される。一旦、データ・メモリ手段が充填されたら(図4に示すように、物体ボリューム52からデータ・ボリューム54へのすべての所要データの転送に対応する)、関心のある物体ボリュームの部分が選択され、その開始頂点と、X、Y及びZ方向での範囲とを設定するデータが、CPU74からアドレス発生器72の入力72aへ送られる。アドレスは、アドレス出力72bにおいて、選択された物体ボリューム内の各々のボクセルのX,Y,Zアドレスを順に与える。出力72bは、データ・メモリ70の出力データ・アドレス入力70cに結合されているので、この時点でアドレス指定されたこの1つのボクセルについて記憶されているデータが、データ・メモリ出力70dから供給される。ボクセルのX,Y,Zのアドレスの系列はまた、回転パラメータ計算器76の第1の入力76aにも供給され、回転パラメータ計算器76は、CPU74を介して角度(α,β)情報を算出された行列要素M1〜M6の値として受け取って、出力76cにおいて、選択された視角(θ,φ)で眺めたときの物体のこのX,Y,Zピクセルに対応する画像平面ピクセルのアドレスX′,Y′を供給する。視角(θ,φ)情報は、システムに入って、CPU74によって処理される。この結果は、視角行列手段78の入力78b及び78cに入れられて、その出力78aにおいて行列要素M1〜M6を供給し、ここから回転パラメータ計算器76へ供給する。画像平面のピクセル・アドレスX′,Y′は、画像平面メモリ80として動作するフレーム・バッファのアドレス入力80aに現われる。同時に、データ・ボリュームから投影平面への投影後の強度データが、3次元データ・メモリの出力70dから、画像平面メモリの新規データ入力80bに現われる。これらのデータはまた、データ比較器82の新規データ入力82aにも現われる。入力80aのこのアドレスについて画像平面メモリ80に過去に保存されている強度データは、旧データ出力80cに現われ、そこから比較器手段82の旧データ入力82bに現われる。入力82b及び82aにおける旧データ及び新規データはそれぞれ、比較器82で比較され、入力82aの新規データが入力82bの旧データよりも大きさが大きければ、比較器82の出力82cが、ある選択された論理条件(例えば、高論理レベル)にイネーブルされる。出力82cは、画像平面メモリの置換制御データ入力80dに結合されており、置換データ制御入力80dが選択された論理レベルにある場合には、入力80aによって制御されるアドレスに記憶されているデータが変更されて、入力80bの新たなデータを受け入れるようにする。このように、記憶されているデータは、(CPU74からの)データ/制御ポート80eを介した信号等によって最初にリセットされ、新たなデータが過去に記憶されている古いデータの値を上回ったことを指示する比較に応答して、各々の画像平面ピクセル位置X′,Y′毎に最大値のデータが記憶される。すべての選択されたアドレスがアドレス発生器72によって順に走査された後に、画像平面メモリ80に記憶されているデータをCPU74において拡縮して、拡縮後の画像平面データを、表示、永久保存又は類似の目的のためにメモリ80から引き出すことができる。
【0032】
本発明の更に別の面によれば、拡縮後の画像平面データは、表示の前に写像されて、所望の輝度及びコントラストの範囲を実現する(図3の工程38)。3次元再構成の基礎となるソース・フレームについて関心のある領域を読み込みながら、マスタ・コントローラ22において所与の強度を有するピクセルの数のヒストグラムを随意選択により作成する。代替的には、投影後の画像を用いてヒストグラムを形成することもできる。同時に、最大ピクセル強度を決定する。各々のビン(bin )内のピクセルの数を、ピクセルの総数の所与の百分率に達するまで計数する。このビンの数が、ピクセルの閾値となる。次いで、意図されている結果に応じてピクセル閾値よりも大きい又は小さい各々のピクセル値が所望の輝度及びコントラストの範囲に写像されるように、マップを作成する。
【0033】
シネ・メモリ24(図1)に記憶されている各々のスライス又はフレームからの関心のある領域のピクセルは、CPU42によってモルフォロジ・フィルタ処理された後に、メモリ44(図2を参照)に記憶される。シネ・メモリに記憶されている関心のある領域のピクセルは、ここから読み出して、相次ぐピクセルとして又はピクセルの配列として、モルフォロジ・フィルタへ供給することができる。
【0034】
以上に述べたモルフォロジ・フィルタ処理及び投影の手法は、シネ・メモリから検索された関心のあるデータ・ボリュームについてのBモード強度データ、カラー・フロー速度データ又はパワー・データに対して別々に適用することができる。投影後の画像の各々のピクセルは、モルフォロジ・フィルタ処理及び所与の画像平面への投影によって導き出された強度データ、速度データ又はパワー・データを含む。加えて、シネ・メモリがオペレータによってフリーズされた後に、図2に示すように、CPU42は選択により、シネ・メモリ24のセクション24B内の多数の相次ぐアドレスに、XYメモリ20からの最新のフレームを記憶する。第1の投影視角についての投影後の画像データは、シネ・メモリ・セクション24Bの第1のアドレスに書き込まれるので、関心のある領域の投影後の画像データは背景フレームにスーパインポーズされる。この処理は、すべての投影後の画像がシネ・メモリ・セクション24Bに記憶されるまで各々の角度増分毎に繰り返される。各々の投影後の画像フレームは、変換後のデータを含んでいる関心のある領域と、随意選択により、関心のある領域を包囲する背景の周縁とで構成されており、背景の周縁は、関心のある領域の変換後のデータで上書きされていない背景フレーム・データから成っている。背景画像によって、各々の表示投影がどこから眺めたものであるかがより明瞭になる。次いで、操作者は、表示のために任意の投影後の画像を選択することができる。加えて、投影後の画像の系列を表示モニタ上で再生して、物体ボリュームが観察者の目の前で回転しているかのように物体ボリュームを表現することができる。
【0035】
本発明の好ましい実施例によれば、この超音波イメージング・システムは、複数の異なる投影モードを有する。例えば、投影は、最大値又は最小値ピクセルを含み得る。代替的には、ピクセル・データを反転させた後に最大値を画像平面へ投影するといった血管のイメージングに有用なモードを選択してもよい。別のモードによれば、レイ・キャスティング法を用いて表面表現(サーフェス・レンダリング)を行うこともできる。
【0036】
本発明のいくつかの好ましい特徴についてのみ図示し説明してきたが、当業者には多くの改変及び変形が想到されよう。従って、特許請求の範囲は、発明の要旨に含まれるようなすべての改変又は変形をカバーするものとする。
【図面の簡単な説明】
【図1】実時間超音波イメージング・システム内の主要な機能的サブシステムを示すブロック図である。
【図2】本発明の好ましい実施例に従って、モルフォロジ・フィルタ処理された強度ピクセル・データの相次ぐ立体投影を含んでいるフレームを再構成する手段を示すブロック図である。
【図3】本発明の好ましい実施例に従って、モルフォロジ・フィルタ処理された強度ピクセル・データの相次ぐ立体投影を含んでいるフレームを再構成するアルゴリズムの工程を示す流れ図である。
【図4】従来技術に従って逆レイ・キャスティング投影を立体表現することに関連するサンプリングされた関心のある物体ボリューム、関連するデータ・ボリューム及び画像投影平面の略図である。
【図5】物体ボリューム及びデータ・ボリュームの類似した眺めに対応していて、且つ3次元超音波イメージングにおける所要の拡縮定数を定義するのに有用な1対の2次元幾何構成を示す略図である。
【図6】3次元超音波イメージングにおいて最大強度投影を行う手段のブロック図である。

Claims (16)

  1. 物体ボリューム内の超音波散乱性媒体の3次元イメージングのためのシステムであって、
    前記物体ボリュームに交差する走査平面内で該走査平面内の多数のサンプル・ボリュームにおいて、超音波ビームを送信すると共に、反射した超音波エコーを検出する超音波トランスデューサ・アレイと、前記散乱性媒体により反射された超音波エコーから少なくとも部分的に導かれ、その各々が前記走査平面内の前記多数のサンプル・ボリュームのそれぞれに対応するピクセル・データを取得する手段と、多数の相次ぐ走査平面の各々について、ソース・データ・ボリュームを形成するソース・ピクセル値から成るそれぞれのフレームを記憶するメモリと、(1)前記ソース・データ・ボリュームをフィルタ処理して、前記ソース・データ・ボリュームよりも少ないスペックルを有するモルフォロジ・フィルタ処理されたデータ・ボリュームを形成するモルフォロジ・フィルタ、及び(2)前記のモルフォロジ・フィルタ処理済みデータ・ボリュームを画像平面へ投影して、投影画像を表わす投影データ集合を形成するランダム・アクセス・メモリを含んでいる中央処理装置と、多数のピクセルの形態で前記投影画像を表示する表示モニタと、該表示モニタに結合されていて、該表示装置に前記投影画像を表示するためのビデオ・プロセッサと、を備え、前記モルフォロジ・フィルタは、(a)中央のソース・ピクセル値と、所定の方向において前記中央のソース・ピクセル値に隣接する第1及び第2のソース・ピクセル値とについての相対的な値を決定すると共に、前記方向について前記中央のソース・ピクセル値と前記第1及び第2のソース・ピクセル値のうち一方との間の差の関数である収縮勾配を算出する手段と、(b)前記収縮勾配の関数として収縮量を算出する手段と、(c)前記中央のソース・ピクセル値から前記収縮量を減算して、収縮後のピクセル値を形成する手段と、を含んでいる、システム。
  2. 前記モルフォロジ・フィルタは、(a)中央の収縮後のピクセル値と、前記方向において前記中央の収縮後のピクセル値に隣接する第1及び第2の収縮後のピクセル値とについての相対的な値を決定すると共に、前記方向について前記中央の収縮後のピクセル値と前記第1及び第2の収縮後のピクセル値のうち一方との間の差の関数である膨張勾配を算出する手段と、(b)前記膨張勾配の関数として膨張量を算出する手段と、(c)前記中央の収縮後のピクセル値に前記膨張量を加算して、モルフォロジ・フィルタ処理されたピクセル値を形成する手段と、を更に含んでいる請求項に記載のシステム。
  3. 前記データ・プロセッサは、n回の収縮工程及びこれに続くn回の膨張工程において前記ソース・データをモルフォロジ・フィルタ処理するようにプログラムされており、ここで、nは正の整数である請求項1に記載のイメージング・システム。
  4. n=3である請求項3に記載のイメージング・システム。
  5. 前記データ・プロセッサにおいてプログラムされている1回目の収縮工程は、(a)第1、第2及び第3の方向の各々について、中央のソース・ピクセル値と、該中央のソース・ピクセル値に隣接する第1及び第2のソース・ピクセル値とについての相対的な値を決定し、前記それぞれの方向について前記中央のソース・ピクセル値と前記第1及び第2のソース・ピクセル値のうち一方との間の差の関数である第1、第2及び第3の収縮勾配をそれぞれ算出する工程と、(b)前記第1、第2及び第3の収縮勾配の関数として収縮量を算出する工程と、(c)前記中央のソース・ピクセル値から前記収縮量を減算して、収縮後のピクセル値を形成する工程と、を含んでいる請求項3に記載のイメージング・システム。
  6. 前記データ・プロセッサにおいてプログラムされている1回目の膨張工程は、(a)第1、第2及び第3の方向の各々について、中央の収縮後のピクセル値と、該中央の収縮後のピクセル値に隣接する第1及び第2の収縮後のピクセル値とについての相対的な値を決定し、前記それぞれの方向について前記中央の収縮後のピクセル値と前記第1及び第2の収縮後のピクセル値のうち一方との間の差の関数である第1、第2及び第3の膨張勾配をそれぞれ算出する工程と、(b)前記第1、第2及び第3の膨張勾配の関数として膨張量を算出する工程と、(c)前記中央の収縮後のピクセル値に前記膨張量を加算する工程と、を含んでいる請求項5に記載のイメージング・システム。
  7. 前記1回目の収縮工程についての前記第1の収縮勾配は、(a)前記中央のソース・ピクセル値が前記第1のソース・ピクセル値よりも大きく、且つ前記第2のソース・ピクセル値が前記中央のソース・ピクセル値よりも大きいならば、前記中央のソース・ピクセル値と前記第1のソース・ピクセル値との間の第1の差、(b)前記中央のソース・ピクセル値が前記第2のソース・ピクセル値よりも大きく、且つ前記第1のソース・ピクセル値が前記中央のソース・ピクセル値よりも大きいならば、前記中央のソース・ピクセル値と前記第2のソース・ピクセル値との間の第2の差、(c)前記中央のソース・ピクセル値が前記第1及び第2のソース・ピクセル値よりも大きいならば、前記第1の差及び前記第2の差の平方和の平方根、及び(d)前記中央のソース・ピクセル値が前記第1及び第2のソース・ピクセル値よりも小さいならば、ゼロのうち1つの値を含んでいる請求項6に記載のイメージング・システム。
  8. 前記1回目の膨張工程についての前記第1の膨張勾配は、(a)前記中央の収縮後のピクセル値が前記第2の収縮後のピクセル値よりも大きく、且つ前記第1の収縮後のピクセル値が前記中央の収縮後のピクセル値よりも大きいならば、前記中央の収縮後のピクセル値と前記第1の収縮後のピクセル値との間の第1の差、(b)前記中央の収縮後のピクセル値が前記第1の収縮後のピクセル値よりも大きく、且つ前記第2の収縮後のピクセル値が前記中央の収縮後のピクセル値よりも大きいならば、前記中央の収縮後のピクセル値と前記第2の収縮後のピクセル値との間の第2の差、(c)前記中央の収縮後のソース・ピクセル値が前記第1及び第2の収縮後のピクセル値よりも小さいならば、前記第1の差及び前記第2の差の平方和の平方根、及び(d)前記中央の収縮後のピクセル値が前記第1及び第2の収縮後のピクセル値よりも大きいならば、ゼロのうち1つの値を含んでいる請求項7に記載のイメージング・システム。
  9. 前記膨張量は、前記第1、第2及び第3の膨張勾配の平方和の平方根の関数である請求項6に記載のイメージング・システム。
  10. 前記収縮量は、前記第1、第2及び第3の収縮勾配の平方和の平方根の関数である請求項5に記載のイメージング・システム。
  11. 物体ボリューム内の超音波散乱性媒体の3次元イメージングのための方法であって、前記物体ボリュームに交差する走査平面内で該走査平面内の多数のサンプル・ボリュームへ超音波ビームを送信する工程と、前記走査平面内の前記多数のサンプル・ボリュームから反射した超音波エコーを検出する工程と、前記物体ボリュームの全体にわたって前記走査平面を走査させる工程と、前記散乱性媒体により反射された超音波エコーから少なくとも部分的に導かれ、その各々が前記多数のサンプル・ボリュームのそれぞれに対応するピクセル・データを取得する工程と、前記多数のサンプル・ボリュームの各々について、取得されたピクセル・データを記憶してソース・データ・ボリュームを形成する工程と、該ソース・データ・ボリュームをモルフォロジ・フィルタ処理して、前記ソース・データ・ボリュームよりも少ないスペックルを有するモルフォロジ・フィルタ処理済みデータ・ボリュームを形成する工程と、該モルフォロジ・フィルタ処理済みデータ・ボリュームを画像平面へ投影して、投影画像を表わす投影データ集合を形成する工程と、前記投影画像を表示する工程と、を有し、
    ルフォロジ・フィルタ処理する前記工程は、n回の収縮工程、及びこれに続くn回の膨張工程を実行する工程を含んでおり、ここで、nは正の整数であり、
    前記収縮工程のうち1回目の収縮工程は、(a)第1、第2及び第3の方向の各々について、中央のソース・ピクセル値と、該中央のソース・ピクセル値に隣接する第1及び第2のソース・ピクセル値とについての相対的な値を決定し、前記それぞれの方向について前記中央のソース・ピクセル値と前記第1及び第2のソース・ピクセル値のうち一方との間の差の関数である第1、第2及び第3の収縮勾配をそれぞれ算出する工程と、(b)前記第1、第2及び第3の収縮勾配の関数として収縮量を算出する工程と、(c)前記中央のソース・ピクセル値から前記収縮量を減算して、収縮後のピクセル値を形成する工程と、を含んでいる前記方法。
  12. 前記膨張工程のうち1回目の膨張工程は、(a)第1、第2及び第3の方向の各々について、中央の収縮後のピクセル値と、該中央の収縮後のピクセル値に隣接する第1及び第2の収縮後のピクセル値とについての相対的な値を決定し、前記それぞれの方向について前記中央の収縮後のピクセル値と前記第1及び第2の収縮後のピクセル値のうち一方との間の差の関数である第1、第2及び第3の膨張勾配をそれぞれ算出する工程と、(b)前記第1、第2及び第3の膨張勾配の関数として膨張量を算出する工程と、(c)前記中央の収縮後のピクセル値に前記膨張量を加算する工程と、を含んでいる請求項11に記載の方法。
  13. 前記1回目の収縮工程についての前記第1の収縮勾配は、(a)前記中央のソース・ピクセル値が前記第1のソース・ピクセル値よりも大きく、且つ前記第2のソース・ピクセル値が前記中央のソース・ピクセル値よりも大きいならば、前記中央のソース・ピクセル値と前記第1のソース・ピクセル値との間の第1の差、(b)前記中央のソース・ピクセル値が前記第2のソース・ピクセル値よりも大きく、且つ前記第1のソース・ピクセル値が前記中央のソース・ピクセル値よりも大きいならば、前記中央のソース・ピクセル値と前記第2のソース・ピクセル値との間の第2の差、(c)前記中央のソース・ピクセル値が前記第1及び第2のソース・ピクセル値よりも大きいならば、前記第1の差及び前記第2の差の平方和の平方根、及び(d)前記中央のソース・ピクセル値が前記第1及び第2のソース・ピクセル値よりも小さいならば、ゼロのうち1つの値を含んでいる請求項12に記載の方法。
  14. 前記1回目の膨張工程についての前記第1の膨張勾配は、(a)前記中央の収縮後のピクセル値が前記第2の収縮後のピクセル値よりも大きく、且つ前記第1の収縮後のピクセル値が前記中央の収縮後のピクセル値よりも大きいならば、前記中央の収縮後のピクセル値と前記第1の収縮後のピクセル値との間の第1の差、(b)前記中央の収縮後のピクセル値が前記第1の収縮後のピクセル値よりも大きく、且つ前記第2の収縮後のピクセル値が前記中央の収縮後のピクセル値よりも大きいならば、前記中央の収縮後のピクセル値と前記第2の収縮後のピクセル値との間の第2の差、(c)前記中央の収縮後のピクセル値が前記第1及び第2の収縮後のピクセル値よりも小さいならば、前記第1の差及び前記第2の差の平方和の平方根、及び(d)前記中央の収縮後のピクセル値が前記第1及び第2の収縮後のピクセル値よりも大きいならば、ゼロのうち1つの値を含んでいる請求項13に記載の方法。
  15. 前記膨張量は、前記第1、第2及び第3の膨張勾配の平方和の平方根の関数である請求項12に記載の方法。
  16. 前記収縮量は、前記第1、第2及び第3の収縮勾配の平方和の平方根の関数である請求項11に記載の方法。
JP33898899A 1998-12-09 1999-11-30 3次元イメージング方法及びシステム Expired - Lifetime JP4424799B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/210,706 US6155978A (en) 1998-12-09 1998-12-09 Three-dimensional imaging by projecting morphologically filtered pixel data
US09/210706 1998-12-09

Publications (3)

Publication Number Publication Date
JP2000279416A JP2000279416A (ja) 2000-10-10
JP2000279416A5 JP2000279416A5 (ja) 2009-03-05
JP4424799B2 true JP4424799B2 (ja) 2010-03-03

Family

ID=22783947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33898899A Expired - Lifetime JP4424799B2 (ja) 1998-12-09 1999-11-30 3次元イメージング方法及びシステム

Country Status (4)

Country Link
US (1) US6155978A (ja)
EP (1) EP1008864B1 (ja)
JP (1) JP4424799B2 (ja)
DE (1) DE69938892D1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497828B1 (en) * 1992-01-10 2009-03-03 Wilk Ultrasound Of Canada, Inc. Ultrasonic medical device and associated method
DE69710932T2 (de) * 1997-12-31 2003-09-04 Ge Ultrasound Israel Ltd Verfahren und vorrichtung zur bestimmung der relativlage von tomographischen schichten
US6511426B1 (en) 1998-06-02 2003-01-28 Acuson Corporation Medical diagnostic ultrasound system and method for versatile processing
US6633679B1 (en) * 1999-03-23 2003-10-14 Teletechnologies, Ltd. Visually lossless still image compression for CMYK, CMY and Postscript formats
US6522786B1 (en) * 1999-06-14 2003-02-18 General Electric Company Gradient filter and method for three dimensional NMR data set
US6250146B1 (en) * 1999-09-14 2001-06-26 Cleveland Motion Controls, Inc. Web tension transducer apparatus
US7615008B2 (en) 2000-11-24 2009-11-10 U-Systems, Inc. Processing and displaying breast ultrasound information
US7597663B2 (en) 2000-11-24 2009-10-06 U-Systems, Inc. Adjunctive ultrasound processing and display for breast cancer screening
US7556602B2 (en) * 2000-11-24 2009-07-07 U-Systems, Inc. Breast cancer screening with adjunctive ultrasound mammography
US7103205B2 (en) * 2000-11-24 2006-09-05 U-Systems, Inc. Breast cancer screening with ultrasound image overlays
US7940966B2 (en) 2000-11-24 2011-05-10 U-Systems, Inc. Full-field breast image data processing and archiving
KR100388407B1 (ko) * 2001-04-27 2003-06-25 주식회사 메디슨 표시 장치의 화소에 대응하는 복셀에서 수신 집속하는 3차원 초음파 영상 시스템
US7285094B2 (en) 2002-01-30 2007-10-23 Nohara Timothy J 3D ultrasonic imaging apparatus and method
JP3944059B2 (ja) * 2002-11-14 2007-07-11 アロカ株式会社 超音波診断装置
US20050110793A1 (en) * 2003-11-21 2005-05-26 Steen Erik N. Methods and systems for graphics processing in a medical imaging system
JP4530834B2 (ja) * 2003-12-26 2010-08-25 富士フイルム株式会社 超音波画像処理方法及び超音波画像処理装置、並びに、超音波画像処理プログラム
US7914454B2 (en) * 2004-06-25 2011-03-29 Wilk Ultrasound Of Canada, Inc. Real-time 3D ultrasonic imaging apparatus and method
US8834371B2 (en) * 2005-03-31 2014-09-16 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus and ultrasound image processing program
JP5138369B2 (ja) * 2005-05-19 2013-02-06 株式会社日立メディコ 超音波診断装置及びその画像処理方法
JP5002181B2 (ja) * 2006-03-31 2012-08-15 株式会社東芝 超音波診断装置及び超音波診断装置制御方法
WO2007114375A1 (ja) * 2006-03-31 2007-10-11 Kabushiki Kaisha Toshiba 超音波診断装置及び超音波診断装置制御方法
JP5165858B2 (ja) * 2006-05-26 2013-03-21 株式会社東芝 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
US7961975B2 (en) * 2006-07-31 2011-06-14 Stc. Unm System and method for reduction of speckle noise in an image
US8184927B2 (en) * 2006-07-31 2012-05-22 Stc.Unm System and method for reduction of speckle noise in an image
CN101290684B (zh) * 2007-04-19 2012-07-18 深圳迈瑞生物医疗电子股份有限公司 三维超声图像的快速体绘制方法与装置
CN101292883B (zh) * 2007-04-23 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 超声三维快速成像方法及其装置
EP2044886A1 (en) * 2007-10-03 2009-04-08 Fujifilm Corporation Ultrasonic diagnosis method and apparatus
DE102008032686B4 (de) * 2008-07-06 2020-07-16 Dürr Dental SE Verfahren zur Verbesserung des Kontrastes von Bildern, insbesondere Grauwertbildern und Vorrichtung zu seiner Durchführung
JP5269517B2 (ja) * 2008-08-14 2013-08-21 株式会社東芝 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP5641503B2 (ja) * 2010-10-15 2014-12-17 国立大学法人 筑波大学 マルチステップ・ラティス・ボクセル法
JP5738822B2 (ja) * 2012-11-05 2015-06-24 株式会社東芝 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP5646670B2 (ja) * 2013-03-11 2014-12-24 株式会社東芝 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
US10846852B2 (en) * 2016-12-23 2020-11-24 Bio-Rad Laboratories, Inc. Reduction of background signal in blot images

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632071B1 (fr) * 1988-05-31 1991-03-15 Labo Electronique Physique Echographe ultrasonore a bruit d'interference reduit
US5409007A (en) * 1993-11-26 1995-04-25 General Electric Company Filter to reduce speckle artifact in ultrasound imaging
US5779641A (en) * 1997-05-07 1998-07-14 General Electric Company Method and apparatus for three-dimensional ultrasound imaging by projecting filtered pixel data
US6058218A (en) * 1997-11-10 2000-05-02 General Electric Company Enhanced visualization of weak image sources in the vicinity of dominant sources

Also Published As

Publication number Publication date
DE69938892D1 (de) 2008-07-24
JP2000279416A (ja) 2000-10-10
EP1008864B1 (en) 2008-06-11
US6155978A (en) 2000-12-05
EP1008864A2 (en) 2000-06-14
EP1008864A3 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
JP4424799B2 (ja) 3次元イメージング方法及びシステム
JP4155618B2 (ja) 超音波散乱媒体の三次元イメージング・システムおよび方法
JP4204095B2 (ja) 被検体ボリュームの三次元イメージング・システムおよび方法
US5779641A (en) Method and apparatus for three-dimensional ultrasound imaging by projecting filtered pixel data
US5904653A (en) Method and apparatus for three-dimensional ultrasound imaging combining intensity data with color flow velocity or power data
US6102861A (en) Method and apparatus for three-dimensional ultrasound imaging using surface-enhanced volume rendering
US5329929A (en) Ultrasonic diagnostic apparatus
US5895358A (en) Method and apparatus for mapping color flow velocity data into display intensities
US6106470A (en) Method and appartus for calculating distance between ultrasound images using sum of absolute differences
KR100669302B1 (ko) 평균 또는 중간 화소 투영을 이용한 속도 및 파워 데이터의 3차원 초음파 화상 진단
US6413219B1 (en) Three-dimensional ultrasound data display using multiple cut planes
US6102858A (en) Method and apparatus for three-dimensional ultrasound imaging using contrast agents and harmonic echoes
US20040081340A1 (en) Image processing apparatus and ultrasound diagnosis apparatus
US6126603A (en) Method and apparatus for segmenting color flow mode data using velocity information in three-dimensional ultrasound imaging
US20110125016A1 (en) Fetal rendering in medical diagnostic ultrasound
EP0952458B1 (en) Method and apparatus for ultrasound imaging using adaptive gray mapping
US6458082B1 (en) System and method for the display of ultrasound data
JP3936450B2 (ja) 投影画像生成装置及び医用画像装置
US6306092B1 (en) Method and apparatus for calibrating rotational offsets in ultrasound transducer scans
US6482159B1 (en) Method for the examination of objects with ultrasound
Watkin et al. Three-dimensional reconstruction and enhancement of arbitrarily oriented and positioned 2D medical ultrasonic images
Brett Volume segmentation and visualisation for a 3D ultrasound acquisition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4424799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term