JP4424696B2 - Polytetrafluoroethylene composition containing surface coating filler - Google Patents

Polytetrafluoroethylene composition containing surface coating filler Download PDF

Info

Publication number
JP4424696B2
JP4424696B2 JP29792297A JP29792297A JP4424696B2 JP 4424696 B2 JP4424696 B2 JP 4424696B2 JP 29792297 A JP29792297 A JP 29792297A JP 29792297 A JP29792297 A JP 29792297A JP 4424696 B2 JP4424696 B2 JP 4424696B2
Authority
JP
Japan
Prior art keywords
filler
weight
ptfe
parts
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29792297A
Other languages
Japanese (ja)
Other versions
JPH11116754A (en
Inventor
潤治 村田
信一 名村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP29792297A priority Critical patent/JP4424696B2/en
Publication of JPH11116754A publication Critical patent/JPH11116754A/en
Application granted granted Critical
Publication of JP4424696B2 publication Critical patent/JP4424696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、従来の充填剤入りポリテトラフルオロエチレン組成物の機械的特性、特に引張特性、耐圧縮クリープ特性を改善した充填剤含有ポリテトラフルオロエチレン組成物に関する。
【0002】
【従来技術と問題点】
従来よりポリテトラフルオロエチレン(以下、PTFEという)の耐クリープ性、耐摩擦摩耗性を改善するために、ガラス繊維や炭素繊維などの充填剤を混合する方法が知られている。しかし、フッ素樹脂は非粘着性という特徴を有しているがために充填剤との接着力に乏しく、充填剤による補強効果が十分ではなかった。
【0003】
特開昭49−5446ではガラス繊維のような充填剤を含有するPTFE組成物にテトラフルオロエチレン−エチレン系共重合体を混合することにより、充填剤による補強効果を改善する方法が開示されている。しかし、この様な手段では充填剤とフッ素樹脂間の接着性を十分には改善しがたい。
【0004】
【問題を解決するための手段】
本発明者等は、充填剤の表面をポリイミド、ポリアミドイミド、ポリイミド前駆体、ポリアミドイミド前駆体又はこれらの混合物で被覆し、さらにテトラフルオロエチレン(TFE)共重合体を添加することにより、上記充填物質で被覆された充填剤とPTFEとの接着性が改良され、かかる組成物による成型品の機械的物性、特に引張特性と耐圧縮クリープ性が改善されることを見いだした。
【0005】
本発明で使用するPTFEは、TFEの懸濁重合から得られる平均粒径1〜100μmのPTFEモールディングパウダーであっても、TFEの乳化重合によって得られる平均一次粒径0.05〜0.5μmのPTFEファインパウダーであってもよい。また、両者ともTFEのホモポリマーであっても、1重量%未満の微量のヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)、フルオロアルキルエチレン、クロロトリフルオロエチレン等の変性剤を含有する変性PTFEであってもよい。
【0006】
本発明で使用するTFE共重合体は、融点以上の温度において流動性を有するものであり、TFEとフルオロビニル化合物との共重合体やTFEとエチレンとの共重合体などを例示できる。
【0007】
これらのうち、TFEとフルオロビニル化合物との共重合体は、通常、ASTM D−3307に従って測定した場合に372℃±1℃において0.5〜500g/10分、好ましくは0.5〜100g/10分のメルトフローレート(MFR)を有するものから選択することができる。好適なフルオロビニル化合物としては、炭素数3〜10のパーフルオロアルキルトリフルオロエチエレンや式(I)
【0008】
【化1】

Figure 0004424696
【0009】
(式中、XはH又はF、mは0〜7の整数、nは0〜4整数である。)
又は式(II)
【0010】
【化2】
Figure 0004424696
【0011】
(式中、qは0〜3の整数である。)
で表されるフルオロアルコキシトリフルオロエチレン等が挙がられる。共重合体中のフルオロビニル化合物の含有量は通常0.5から20モル%の範囲から選択される。
【0012】
次に、TFEとエチレンとの共重合体は、通常、ASTM D−3159に従って測定した場合に297±1℃において0.5〜500g/10分、好ましくは0.5〜100g/10分のMFRを有するものから選択することができる。共重合体中のエチレンの含有量は30〜70モル%の範囲から選択される。
【0013】
これらTFE共重合体のうち、TFEとパーフルオロビニル化合物との共重合体が耐熱性に優れ、特に好ましい。また、TFE共重合体の粒径はこの発明の期待する効果の点で平均粒径50μm以下であることが好ましく、その添加量はPTFE100重量部に対して1〜30重量部が好ましい。
【0014】
本発明で使用する無機充填剤は特に限定されるものではなく、ガラス繊維、炭素繊維、グラファイト、ガラスビーズ、ブロンズ粉、コークス粉等を例示することが出来るが、これらのうちガラス繊維が特に好ましい。また、これら無機充填剤の2種類以上の混合物であってもよい。
【0015】
本発明では充填剤の表面をポリイミド、ポリアミドイミド、ポリイミド前駆体、ポリアミドイミド前駆体又はこれらの混合物で被覆しているが、これは充填剤と、アミド酸構造を含むポリイミド前駆体溶液またはポリアミドイミド前駆体溶液とをヘンシェルミキサー等、公知の方法により均一混合することにより可能である。アミド酸構造を含むポリイミド前駆体またはポリアミドイミド前駆体は、焼成によってアミド酸構造がイミド化し、ポリイミドまたはポリアミドイミドに変化することにより、PTFE及びTFE共重合体と、無機充填剤とを強固に結合せしめることが出来る。ポリイミド、ポリアミドイミド、ポリイミド前駆体、ポリアミドイミド前駆体又はこれらの混合物の使用量は充填剤100重量部に対して0.001〜50重量部、好ましくは5重量部以下がよい。なぜなら添加量が5重量部を越えると互いに付着しやすく、PTFE粉末との混合時に均一分散が困難となる。
【0016】
本発明で使用するポリアミド酸溶液としては、例えば式(III)
【0017】
【化3】
Figure 0004424696
【0018】
(式中、Rは
【0019】
【化4】
Figure 0004424696
【0020】
である。)
で表される骨格を有するポリアミド酸の有機溶液が好適である。
【0021】
本発明の組成物における成分の混合に際しては通常の公知の混合方法が採用される。例えば各成分をV型ブレンダー、タンブラー、ヘンシェルミキサー等の混合機で混合する等である。好ましい混合方法としては、先ず無機充填剤の表面処理を行い被覆充填剤を得た後、該被覆充填剤と、PTFE、及びTFE共重合体を混合する。無機充填剤の表面処理は、無機充填剤とポリアミド酸溶液とを先ず混合した後、加熱乾燥することが望ましい。
【0022】
また、本発明の組成物の成形方法は、限定されるものではなく公知のPTFE粉末の圧縮成形法を適用すればよい。
【0023】
【実施例】
以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0024】
原料としては、下記のものを使用した。
【0025】
1)平均粒径35μmのPTFEモールディングパウダー
(三井・デュポンフロロケミカル社製:テフロン7−J)
2)平均粒径0.2μmのTFEとパーフルオロプロピルビニルエーテル(PPVE)との共重合体(PFA)微粉末:PPVE含有量3.4重量%、MFR=15.0g/10分(372℃)
(三井・デュポンフロロケミカル社製)
3)ガラス繊維
(日東紡績社製:PFA001M)
4)ポリアミド酸溶液
(東レ社製;トレニース#3000)
引張弾性率、引張降伏点応力及び圧縮クリープは、下記の方法により測定した。
【0026】
引張弾性率及び引張降伏点応力
組成物を500kg/cmで予備成形し、380℃で30分間焼成し、外径76mm、厚さ1.5mmの円盤を得た。これからASTM−D638に従いマイクロダンベルにて試験片を打ち抜き、引張弾性率及び引張降伏点応力を測定した。
【0027】
圧縮クリープ
組成物を500kg/cmで予備成形し、370℃で3時間焼成し、外径50mm、高さ100mmのビレットを得た。これから切削することによりASTM−D621に規定される試験片を得て、圧縮クリープを測定した。
【0028】
実施例1〜2及び比較例1〜6
ガラス繊維と、N−メチルピロリドンで希釈して得た9%ポリアミド酸溶液とを卓上ミキサーで混合した後、220℃で30分乾燥することにより、ガラス繊維の表面処理を行った。ポリアミド酸の添加量は、ガラス繊維100重量部に対して0.25重量部とした。
【0029】
上記原料を、表1に示される割合にてヘンシェルミキサーで均一に混合して、被覆充填剤含有PTFE組成物を得た。この組成物について、引張弾性率、引張降伏点応力及び圧縮クリープを前記の方法により測定した。結果を表1に示す。実施例3
ガラス繊維とポリアミド酸溶液とを混合した後、300℃で30分乾燥すること以外は、実施例1と同様に行った。結果を表1に示す。
【0030】
実施例4
ガラス繊維と、N−メチルピロリドンで希釈して得た9%ポリアミド酸溶液とを卓上ミキサーで混合することにより、ガラス繊維の表面処理を行った。ポリアミド酸の添加量は、ガラス繊維100重量部に対して0.25重量部とした。
【0031】
上記原料を、表1に示される割合にてヘンシェルミキサーで均一に混合して、被覆充填剤含有PTFE組成物を得た。この組成物について、引張弾性率、引張降伏点応力及び圧縮クリープを前記の方法により測定した。結果を表1に示す。
【0032】
【表1】
Figure 0004424696
【0033】
表1のデータから、以下のように考察される。なお、表1において、実施例1の35wt.%なる被覆ガラス繊維の量はPTFEの100重量部あたり60.34重量部に相当し、実施例2、3及び4の25wt.%なる被覆ガラス繊維の量はPTFEの100重量部あたり、35.71重量部に相当する。
【0034】
実施例1〜4の粉末組成物を圧縮成型し次いで焼成することにより得られる成型品は、引張弾性率、引張降伏点応力及び耐圧縮クリープ性が優れている。また、実施例1〜4にみられるように、これらいずれの充填剤表面処理方法によっても優れた引張弾性率、引張降伏点応力及び耐圧縮クリープ性がもたらされる。
【0035】
PFAまたはETFEを添加した比較例1、3及び5は、それぞれPFAまたはETFEを添加していない比較例2及び4よりも、引張弾性率及び引張降伏点応力に優れているが、実施例1及び2は、比較例1、3及び5よりも、更に引張弾性率、引張降伏点応力及び耐圧縮クリープ性に優れている。
【0036】
また、ポリイミドにより被覆されたガラス繊維を用いてはいてもPFAの添加を省略した比較例6では、実施例2のような効果は得られない。
【0037】
更には、本発明に従ってポリイミドにより被覆されたガラス繊維を用い且つPFAを添加した実施例1〜4の組成物は、ポリイミドにより被覆されていないガラス繊維を用いた比較例3及び4の組成物に比べ、引張弾性率、引張降伏点応力及び耐圧縮クリープ性が優れている。
【0038】
【発明の効果】
本発明のポリイミド表面被覆充填剤含有PTFE組成物は、従来の充填剤含有PTFEに比べて、機械的強度、特に引張弾性率、引張降伏点応力及び耐圧縮クリープ性に優れた特性を有する。[0001]
[Industrial application fields]
The present invention relates to a filler-containing polytetrafluoroethylene composition having improved mechanical properties, in particular tensile properties and compression creep resistance properties, of a conventional filled polytetrafluoroethylene composition.
[0002]
[Prior art and problems]
Conventionally, a method of mixing a filler such as glass fiber or carbon fiber is known in order to improve the creep resistance and frictional wear resistance of polytetrafluoroethylene (hereinafter referred to as PTFE). However, since the fluororesin has a feature of non-adhesiveness, the adhesive strength with the filler is poor, and the reinforcing effect by the filler is not sufficient.
[0003]
Japanese Patent Laid-Open No. 49-5446 discloses a method for improving the reinforcing effect of a filler by mixing a tetrafluoroethylene-ethylene copolymer with a PTFE composition containing a filler such as glass fiber. . However, it is difficult to sufficiently improve the adhesion between the filler and the fluororesin by such means.
[0004]
[Means for solving problems]
The present inventors coated the surface of the filler with polyimide, polyamideimide, polyimide precursor, polyamideimide precursor or a mixture thereof, and further added a tetrafluoroethylene (TFE) copolymer, thereby filling the filler. It has been found that the adhesion between the material-coated filler and PTFE is improved and that the mechanical properties of the molded article, in particular the tensile properties and the compression creep resistance, are improved by such a composition.
[0005]
The PTFE used in the present invention is a PTFE molding powder having an average particle diameter of 1 to 100 μm obtained from suspension polymerization of TFE, and an average primary particle diameter of 0.05 to 0.5 μm obtained by emulsion polymerization of TFE. PTFE fine powder may be used. Further, even if both are homopolymers of TFE, they are modified PTFE containing a modifier of less than 1% by weight of hexafluoropropylene, perfluoro (alkyl vinyl ether), fluoroalkylethylene, chlorotrifluoroethylene and the like. May be.
[0006]
The TFE copolymer used in the present invention has fluidity at a temperature equal to or higher than the melting point, and examples thereof include a copolymer of TFE and a fluorovinyl compound and a copolymer of TFE and ethylene.
[0007]
Among these, a copolymer of TFE and a fluorovinyl compound is usually 0.5 to 500 g / 10 min at 372 ° C. ± 1 ° C., preferably 0.5 to 100 g / min when measured according to ASTM D-3307. One having a melt flow rate (MFR) of 10 minutes can be selected. Suitable fluorovinyl compounds include perfluoroalkyl trifluoroethylene having 3 to 10 carbon atoms and the formula (I).
[0008]
[Chemical 1]
Figure 0004424696
[0009]
(In the formula, X is H or F, m is an integer of 0 to 7, and n is an integer of 0 to 4.)
Or formula (II)
[0010]
[Chemical formula 2]
Figure 0004424696
[0011]
(In the formula, q is an integer of 0 to 3.)
Fluoroalkoxytrifluoroethylene represented by the following. The content of the fluorovinyl compound in the copolymer is usually selected from the range of 0.5 to 20 mol%.
[0012]
Next, the copolymer of TFE and ethylene usually has an MFR of 0.5 to 500 g / 10 min, preferably 0.5 to 100 g / 10 min at 297 ± 1 ° C. as measured according to ASTM D-3159. Can be selected from those having The content of ethylene in the copolymer is selected from the range of 30 to 70 mol%.
[0013]
Among these TFE copolymers, a copolymer of TFE and a perfluorovinyl compound is excellent in heat resistance and is particularly preferable. In addition, the particle size of the TFE copolymer is preferably 50 μm or less in terms of the expected effect of the present invention, and the addition amount is preferably 1 to 30 parts by weight with respect to 100 parts by weight of PTFE.
[0014]
The inorganic filler used in the present invention is not particularly limited, and examples thereof include glass fiber, carbon fiber, graphite, glass beads, bronze powder, coke powder, etc. Among these, glass fiber is particularly preferable. . Moreover, the mixture of 2 or more types of these inorganic fillers may be sufficient.
[0015]
In the present invention, the surface of the filler is coated with polyimide, polyamideimide, polyimide precursor, polyamideimide precursor, or a mixture thereof. This includes a filler and a polyimide precursor solution or polyamideimide containing an amic acid structure. This can be achieved by uniformly mixing the precursor solution with a known method such as a Henschel mixer. A polyimide precursor or a polyamideimide precursor containing an amic acid structure immobilizes the PTFE and TFE copolymers and the inorganic filler by imidizing the amidic acid structure upon firing and changing it to a polyimide or polyamideimide. It can be shown. The amount of the polyimide, polyamideimide, polyimide precursor, polyamideimide precursor or mixture thereof used is 0.001 to 50 parts by weight, preferably 5 parts by weight or less based on 100 parts by weight of the filler. This is because, when the added amount exceeds 5 parts by weight, they tend to adhere to each other, and uniform dispersion becomes difficult when mixed with PTFE powder.
[0016]
As the polyamic acid solution used in the present invention, for example, the formula (III)
[0017]
[Chemical 3]
Figure 0004424696
[0018]
(Where R is
[Formula 4]
Figure 0004424696
[0020]
It is. )
An organic solution of polyamic acid having a skeleton represented by the formula is preferred.
[0021]
In mixing the components in the composition of the present invention, an ordinary known mixing method is employed. For example, each component is mixed with a mixer such as a V-type blender, tumbler, Henschel mixer or the like. As a preferred mixing method, first, a surface treatment of the inorganic filler is performed to obtain a coating filler, and then the coating filler, PTFE, and TFE copolymer are mixed. As for the surface treatment of the inorganic filler, it is desirable that the inorganic filler and the polyamic acid solution are first mixed and then dried by heating.
[0022]
Moreover, the molding method of the composition of the present invention is not limited, and a known compression molding method of PTFE powder may be applied.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples.
[0024]
The following were used as raw materials.
[0025]
1) PTFE molding powder with an average particle size of 35 μm (Mitsui / DuPont Fluorochemicals: Teflon 7-J)
2) Copolymer (PFA) fine powder of TFE having an average particle size of 0.2 μm and perfluoropropyl vinyl ether (PPVE): PPVE content 3.4 wt%, MFR = 15.0 g / 10 min (372 ° C.)
(Mitsui / Du Pont Fluoro Chemical)
3) Glass fiber (Nitto Boseki Co., Ltd .: PFA001M)
4) Polyamic acid solution (manufactured by Toray Industries Inc .; Torenice # 3000)
Tensile modulus, tensile yield point stress and compressive creep were measured by the following methods.
[0026]
Tensile modulus and tensile yield point stress The composition was preformed at 500 kg / cm 2 and fired at 380 ° C. for 30 minutes to obtain a disk having an outer diameter of 76 mm and a thickness of 1.5 mm. From this, a test piece was punched out with a micro dumbbell according to ASTM-D638, and the tensile modulus and tensile yield point stress were measured.
[0027]
Compression creep The composition was preformed at 500 kg / cm < 2 > and fired at 370 [deg.] C. for 3 hours to obtain a billet having an outer diameter of 50 mm and a height of 100 mm. The test piece prescribed | regulated to ASTM-D621 was obtained by cutting from this, and the compression creep was measured.
[0028]
Examples 1-2 and Comparative Examples 1-6
The glass fiber and a 9% polyamic acid solution obtained by diluting with N-methylpyrrolidone were mixed with a desktop mixer, and then dried at 220 ° C. for 30 minutes, thereby subjecting the glass fiber to a surface treatment. The amount of polyamic acid added was 0.25 parts by weight with respect to 100 parts by weight of the glass fiber.
[0029]
The above raw materials were uniformly mixed with a Henschel mixer at the ratio shown in Table 1 to obtain a coated filler-containing PTFE composition. For this composition, the tensile modulus, tensile yield stress and compressive creep were measured by the methods described above. The results are shown in Table 1. Example 3
After mixing the glass fiber and the polyamic acid solution, the same procedure as in Example 1 was performed except that the glass fiber was dried at 300 ° C. for 30 minutes. The results are shown in Table 1.
[0030]
Example 4
Glass fiber and a 9% polyamic acid solution obtained by diluting with N-methylpyrrolidone were mixed with a desktop mixer to perform surface treatment of the glass fiber. The amount of polyamic acid added was 0.25 parts by weight with respect to 100 parts by weight of the glass fiber.
[0031]
The above raw materials were uniformly mixed with a Henschel mixer at the ratio shown in Table 1 to obtain a coated filler-containing PTFE composition. For this composition, the tensile modulus, tensile yield stress and compressive creep were measured by the methods described above. The results are shown in Table 1.
[0032]
[Table 1]
Figure 0004424696
[0033]
From the data in Table 1, it is considered as follows. In Table 1, the amount of the coated glass fiber of 35 wt.% In Example 1 corresponds to 60.34 parts by weight per 100 parts by weight of PTFE, and the coated glass fiber of 25 wt.% In Examples 2, 3 and 4 This amount corresponds to 35.71 parts by weight per 100 parts by weight of PTFE.
[0034]
Molded articles obtained by compression molding and then firing the powder compositions of Examples 1 to 4 are excellent in tensile modulus, tensile yield point stress, and compression creep resistance. Moreover, as can be seen from Examples 1 to 4, any of these filler surface treatment methods provides excellent tensile modulus, tensile yield stress, and compression creep resistance.
[0035]
Comparative Examples 1, 3 and 5 to which PFA or ETFE was added were superior to Comparative Examples 2 and 4 to which PFA or ETFE was not added, respectively. 2 is superior to Comparative Examples 1, 3 and 5 in tensile modulus, tensile yield stress and compression creep resistance.
[0036]
Moreover, even if it uses the glass fiber coat | covered with the polyimide, the effect like Example 2 is not acquired in the comparative example 6 which abbreviate | omitted addition of PFA.
[0037]
Further, the compositions of Examples 1 to 4 using glass fibers coated with polyimide according to the present invention and adding PFA are the compositions of Comparative Examples 3 and 4 using glass fibers not coated with polyimide. In comparison, the tensile modulus, tensile yield point stress, and compression creep resistance are excellent.
[0038]
【The invention's effect】
The polyimide surface coating filler-containing PTFE composition of the present invention has properties excellent in mechanical strength, particularly tensile modulus, tensile yield point stress and compression creep resistance, as compared with conventional filler-containing PTFE.

Claims (3)

ポリテトラフルオロエチレン100重量部に対してテトラフルオロエチレン共重合体を1〜30重量部、及びポリイミド、ポリアミドイミド、ポリイミド前駆体、ポリアミドイミド前駆体又はこれらの混合物により表面を被覆された無機充填剤を35.71〜60.34重量部含有することを特徴とする充填剤含有ポリテトラフルオロエチレン組成物。1 to 30 parts by weight of tetrafluoroethylene copolymer with respect to 100 parts by weight of polytetrafluoroethylene and an inorganic filler whose surface is coated with polyimide, polyamideimide, polyimide precursor, polyamideimide precursor or a mixture thereof Containing 35.71 to 60.34 parts by weight of a filler-containing polytetrafluoroethylene composition. テトラフルオロエチレン共重合体がパーフルオロ重合体であることを特徴とする請求項の充填剤含有ポリテトラフルオロエチレン組成物。The filler-containing polytetrafluoroethylene composition according to claim 1 , wherein the tetrafluoroethylene copolymer is a perfluoropolymer. 無機充填剤がガラス繊維であることを特徴とする請求項1又は2の充填剤含有ポリテトラフルオロエチレン組成物。  The filler-containing polytetrafluoroethylene composition according to claim 1 or 2, wherein the inorganic filler is glass fiber.
JP29792297A 1997-10-16 1997-10-16 Polytetrafluoroethylene composition containing surface coating filler Expired - Fee Related JP4424696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29792297A JP4424696B2 (en) 1997-10-16 1997-10-16 Polytetrafluoroethylene composition containing surface coating filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29792297A JP4424696B2 (en) 1997-10-16 1997-10-16 Polytetrafluoroethylene composition containing surface coating filler

Publications (2)

Publication Number Publication Date
JPH11116754A JPH11116754A (en) 1999-04-27
JP4424696B2 true JP4424696B2 (en) 2010-03-03

Family

ID=17852833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29792297A Expired - Fee Related JP4424696B2 (en) 1997-10-16 1997-10-16 Polytetrafluoroethylene composition containing surface coating filler

Country Status (1)

Country Link
JP (1) JP4424696B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965568A (en) * 2014-03-27 2014-08-06 安徽卧龙泵阀有限责任公司 Strong-acid-resistant composite material of corrosion-resistant lining of chemical process pump
KR101825805B1 (en) 2015-02-17 2018-02-08 주식회사 엘지화학 Encapsulation film
CN109593307A (en) * 2018-12-18 2019-04-09 南京肯特复合材料股份有限公司 PTFE composite piston ring and preparation method thereof

Also Published As

Publication number Publication date
JPH11116754A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
EP0159268B2 (en) Fluoropolymer coating and casting compositions and films derived thereform
KR100574843B1 (en) How to attach polytetrafluoroethylene to a material containing a substrate
EP2818516B1 (en) Fluorine-containing copolymer composition, molded article, and electric wire
KR102044169B1 (en) Polytetrafluoroethylene composition
JP6796125B2 (en) Core-shell particles, dispersions and powders
US7361708B2 (en) Fluorinated resin water dispersion composition and fluorinated water base coating composition
JP5249580B2 (en) Aromatic polyimide composition and articles produced therefrom
US11390772B2 (en) Fluoropolymer coating composition
JP2009528164A (en) Quick drying of fluoropolymer dispersion coating compositions
EP3548569B1 (en) Fluoropolymer coating composition
JP3235223B2 (en) Method for producing polyphenylene sulfide resin composition
JP4424696B2 (en) Polytetrafluoroethylene composition containing surface coating filler
JP6166577B2 (en) Fluororesin composition and molded product thereof
WO2018096908A1 (en) Resin composition
JP3677336B2 (en) Fluororesin powder composition for sliding members
WO1993023470A1 (en) Resin composition for sliding part
WO2019225435A1 (en) Resin composition
JP2023108326A (en) Polytetrafluoroethylene granulated powder and method for producing the same
EP2297216A1 (en) Applications of ethylene/terafluoroethylene copolymer
JP3315688B2 (en) Filler-containing polytetrafluoroethylene composition and molded article thereof
JP3041965B2 (en) Fluorine-containing molten resin composition
JP3646678B2 (en) Polyphenylene sulfide resin composition
JPS58109554A (en) Lubricating resin composition
JP2000001589A (en) Ptfe resin composition
JPH09157472A (en) Polytetrafluoroethylene powder composition and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees