JP3677336B2 - Fluororesin powder composition for sliding members - Google Patents

Fluororesin powder composition for sliding members Download PDF

Info

Publication number
JP3677336B2
JP3677336B2 JP33070495A JP33070495A JP3677336B2 JP 3677336 B2 JP3677336 B2 JP 3677336B2 JP 33070495 A JP33070495 A JP 33070495A JP 33070495 A JP33070495 A JP 33070495A JP 3677336 B2 JP3677336 B2 JP 3677336B2
Authority
JP
Japan
Prior art keywords
powder
average particle
sliding
weight
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33070495A
Other languages
Japanese (ja)
Other versions
JPH09169880A (en
Inventor
彰作 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Riken Corp
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Riken Corp
Priority to JP33070495A priority Critical patent/JP3677336B2/en
Publication of JPH09169880A publication Critical patent/JPH09169880A/en
Application granted granted Critical
Publication of JP3677336B2 publication Critical patent/JP3677336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、潤滑油の存在下における摺動におい低摩擦性及び低摩耗性に優れ、更に軟質合金又は軟質金属からなる摺動相手材に損傷を与えない優れた成形品を成形可能な摺動部材用ふっ素樹脂粉末組成物に関する。
【0002】
【従来の技術】
充填材含有ふっ素樹脂は摺動材やシール材等として広く使用されている。特に摺動材のような用途においては、低摩擦係数であると共に耐摩耗性に優れ、且つ耐熱性・耐薬品性に優れ、しかも摺動相手材を傷つけないといった多くの特性が要求される。ここで使用されるふっ素樹脂は圧縮成形用粉末であるポリテトラフルオロエチレン(以下PTFEという)モールディングパウダーであり、一方充填材としてはガラス繊維、炭素繊維、グラファイト、二硫化モリブテン、ブロンズ粉末等の無機充填材、又は芳香族ポリエステル、ポリイミド、ポフェニレンサルファイド等の有機系充填材が知られている(特公昭49−36081号公報、特開昭57−105442号公報、特開昭58−19397号公報等)。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の充填材含有PTFEモールディングパウダーより成形される摺動材においては、PTFE自身が非粘着性の特性を有していることからPTFEと充填材とが密着性に乏しいため、充填材が摺動面においてPTFEから分離又は摺動面に露出し易く、摺接する相手材を傷つけたり摺動抵抗の増加を引き起こしたり、更には成形品の引っ張り強度、伸び、引っ張り弾性率等の機械的強度が不十分である等の問題点があった。更に近年、省エネルギー化、軽量化、及びメンテナンスフリー等の指向から摺動材が摺接する相手材の材質が軟質合金及び軟質金属、特にアルミニウム合金に変更されるものも多い。従来、摺動部材用の充填材含有PTFEではPTFE自身が摩耗しないような充填材を選択し使用してきたが、アルミニウムのような軟質で粘りのある材質に対してはPTFE樹脂自身及び摺動相手材の摩耗が大きいという問題があった。本発明は、潤滑油の存在下における摺動において、低摩擦係数であると共に耐摩耗性に優れ、充填材が脱離し難く、且つ摺動相手材を傷つけない摺動部材用ふっ素樹脂粉末組成物を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明に関わる摺動部材用ふっ素樹脂粉末組成物は、平均粒径1〜100μmのポリテトラフルオロエチレンモールディングパウダー及び平均粒径0.1〜0.5μmのテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体微粉末よりなるふっ素樹脂成分並びに充填剤として平均粒径5μm以下の無結晶アルミナ粉末及び平均粒径10μm以下のコークス粉末を含み、両粉末の容量比(無結晶アルミナ粉末/コークス粉末)が0.5〜2.0の範囲で且つ両粉末の合計量がふっ素樹脂成分100重量部に対し10〜50重量部の範囲のものである。
【0005】
かかる粉末組成物を圧縮成形し次いで焼成することにより得られる成形品は、機械的強度が高く摺動に際しては摺動面での充填材の脱離が少なくなり、その結果として、成形品それ自身の摩耗及び摺動相手材の摩耗が少なく、摩擦係数も極めて小さいものとなる。
【0006】
【発明の実施の形態】
本発明に用いられる無結晶アルミナ粉末は、平均粒径5μm以下、好ましくは0.5〜1μmのものである。平均粒径が5μmを越える場合には摺動面において成形品中のアルミナ粉末が脱離し易くなり、この脱離したアルミナ粉末は摺動相手材を傷つけるため好ましくない。無結晶アルミナ粉末とは、真比重が3.65〜3.85の範囲のX線回析的にはαアルミナへの転移が完了しない粉末であって、通常アルミナ粉末と呼ばれている真比重が3.92のX線回析的にαアルミナへの転移が完了している粉末とは区別されるものである。無結晶性アルミナ粉末は、結晶アルミナ粉末を用いた場合に比べ、成形品の引っ張り弾性率を高く保つことが可能である。即ち、充分な剛性を保つことが出来ることに加え、摺動相手材の摩耗量も少ない。
【0007】
本発明に用いられるコークス粉末は、平均粒径10μm以下のものである。平均粒径が10μmを越える場合には、成形品の動摩擦係数が上がり摺動抵抗が大きくなるため好ましくない。
【0008】
本発明における平均粒径5μm以下の無結晶アルミナ粉末と平均粒径10μm以下のコークス粉末とは、その容積比で0.5〜2.0の範囲で使用される。上記範囲においては、ふっ素樹脂粉末の帯電のし易さ等にもかかわらず、アルミナ粉末に格別な表面処理を必要とせずに乾燥状態でふっ素樹脂粉末と均一に混合することが可能である。この範囲を外れてアルミナ粉末の量が多い場合には、摺動に際し成形品がひび割れを起こし易くなる傾向があり、アルミナ粉末の量が少ない場合には摺動相手材の摩耗量が増加する傾向がある。上記充填材のふっ素樹脂粉末への添加量は、樹脂100重量部に対し10〜50重量部、好ましくは20〜30重量部の範囲である。添加量が10重量部未満の場合には成形品の伸び値が大きく変形し易く、また成形品の充分な引っ張り弾性率、即ち充分な剛性を得ることが出来ない。添加量が50重量部以上の場合には、成形品の伸び値が小さく脆くなり好ましくない。
【0009】
上記充填材粉末に加え、平均粒径10μm以下のグラファイト粉末を樹脂100重量部に対し1〜10重量の範囲で添加すれば、摺動時の発熱温度を低くすることが出来るため好ましい。
【0010】
本発明で使用するふっ素樹脂成分としては、平均粒径1〜100μmのPTFEモールディングパウダーと平均粒径0.1〜0.5μmのテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(以下PFAという)微粉末の混合物を使用する。平均粒径0.1〜0.5μmのPFA微粉末は焼成の際溶融し、充填材とPTFEモールディングパウダーの表面を充分に覆い、且つ充填材とPTFEモールディングパウダー間の空隙を確実に埋めて充填材とPTFEモールディングパウダーとの密着性を向上させ、成形品の機械的強度を向上させる。
【0011】
本発明に用いられるPTFEモールディングパウダーは、懸濁重合によって得られるテトラフルオロエチレン(TFE)の単独重合体(以下、無変性PTFEという)単独であっても、1.0重量%以下のパーフルオロ(アルキルビニルエーテル)で変性したTFEの重合体(以下、変性PTFEという。)を粉砕した圧縮成形用粉末単独であっても、或は両者の混合物であっても良いが、無変性PTFEと変性PTFEの割合が重量比で6/4〜4/6の混合物の場合には、無変性PTFE単独の場合或は変性PTFEを単独の場合に比べ、成形品の伸び、引っ張り強度、引っ張り弾性率等の機械的強度の向上、及び軟質合金または軟質金属からなる摺動相手材の摩耗量が少なくなるため特に好ましい。無変性PTFEは、特に特公昭34−10177号に記載されているような多割合の繊維状粒子を含有している無変性PTFEが、充填材との絡み合いが良く充填材の脱離を防止することができるため好ましく使用される。また、変性PTFEは前記PFAと無変性PTFEとの中間的な役割を持つものと考えられる。PTFEモールディングパウダーの粒径は、無変性PTFE及び変性PTFE共に1〜100μm、好ましくは10〜50μmである。このように微粉化されたPTFEモールディングパウダーは、充填材及びPFA微粉末と均一に混合するに有利である。PTFEモールディングパウダーの添加量はふっ素樹脂中70〜95重量%、好ましくは85〜95重量%である。添加量が70重量%未満の場合には成形性が悪くなり、成形品の機械的特性も低下し、添加量が95重量%を越えると耐摩耗性などの摺動特性の改善が顕著に認められなくなる。
【0012】
本発明に用いられる平均粒径0.1〜0.5μmのPFA微粉末は、テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの乳化重合によって得られる平均粒径0.05〜0.5μmの共重合体微粒子を該微粒子の融点未満の温度で乾燥したものである。あるいは該微粒子を凝集したのち融点未満の温度で乾燥した平均粒径1〜1000μmの二次粒子の粉末であっても良い。なぜなら、融点未満の温度で乾燥された平均粒径1〜1000μmの二次粒子の粉末は、本発明の粉末組成物を撹拌する際容易に平均粒径0.1〜0.5μmの微粉末に壊砕するからである。
【0013】
PFAが微粉末である場合においてのみ本発明における効果、即ちPTFEモールディングパウダーと充填材との密着性の向上による機械的強度の向上及び摺動に際しての充填材の露出及び脱離防止による成形品それ自身の摩耗及び相手材の摩耗の著しい減少及び摩擦係数の著しい低下という効果を得ることが出来る。従って融点以上の温度で乾燥された場合には該微粒子又は該粒子は融着し、粉末組成物を撹拌する際においても平均粒径0.1〜0.5μmの微粉末とならないため好ましくない。
【0014】
本発明に用いられるPFAのパーフルオロ(アルキルビニルエーテル)は、CF2 =CFORf (Rf は炭素数1〜10のパーフルオロアルキル基を表わす)で示されるパーフルオロ(アルキルビニルエーテル)であり、特にパーフルオロ(エチルビニルエーテル)及びパーフルオロ(プロピルビニルエーテル)が好ましい。またPFAは372℃における粘度が1×104 〜1×106 ボアズの範囲であり、テトラフルオロエチレン97.5〜95重量%とパーフルオロ(アルキルビニルエーテル)2.5〜5.0重量%からなる共重合体であることが好ましい。
【0015】
本発明における平均粒径0.1〜0.5μmのPFA微粉末の添加量は、ふっ素樹脂中5〜30重量%、好ましくは5〜15重量%である。添加量が1重量%未満の場合には、PFA微粉末が焼成の際溶融しても充填材とPTFEモールディングパウダーの表面を充分に覆うことができず、また充填材とPTFEモールディングパウダー間の空隙を確実に埋めることも出来ない。添加量が30重量%以上の場合には、効果の向上以上のコスト高による経済上の不利を招く他、焼成の際成形品の変形率が大きくなり好ましくない。
【0016】
本発明の粉末組成物の混合に際しては、通常の公知の混合方法が採用される。例えば各成分をV型ブレンダー、タンブラー、ヘンシェルミキサー等の混合機で混合する。また本発明の粉末組成物の成形方法は、限定されるものではなく公知のPTFE粉末の圧縮成形法を適用すれば良い。
【0017】
以下、本発明を実施例及び比較例により具体的に説明するが、本発明は下記の実施例に限定されるものではない。原料としては下記のものを使用した。
a)平均粒径35μmのPTFEモールディングパウダー
(三井・デュポンフロロケミカル社製:テフロン(R) 7−J)
b)平均粒径35μmの変性PTFEモールディングパウダー
(三井・デュポンフロロケミカル社製:テフロン(R) 70−J)
c)平均粒径0.2μmのPFA微粉末
(三井・デュポンフロロケミカル社製)
d)平均粒径30μmのPFA粉末
(三井・デュポンフロロケミカル社製:MP−10)
e)無結晶アルミナ粉末
(日本軽金属社製:平均粒径0.7μm,真比重3.8)
f)結晶アルミナ粉末
(日本軽金属社製:平均粒径0.6μm)
g)コークス粉末
(日本カーボン社製:平均粒径7μm,真比重1.99)
h)グラファイト粉末
(エスイーシ社製:平均粒径1μm)
【0018】
【実施例1〜3及び比較例1〜5】
上記原料を表1に示される割合にてヘンシェルミキサーで均一に混合して摺動部材用ふっ素樹脂粉末組成物を調製した。表1に示される充填材である無結晶アルミナ粉末、結晶アルミナ粉末、コークス粉末及びグラファイト粉末の量は、樹脂100重量部に対する充填材の重量部(以下、PPhという)である。このふっ素樹脂粉末組成物について、伸び値、引っ張り強度、引っ張り弾性率、動摩擦係数、及び摩耗量を下記の方法により測定した。
【0019】
【伸び値、引っ張り強度、引っ張り弾性率】
表1に示されるふっ素樹脂粉末組成物を1500kg/cm2 で予備成形し、380℃で1時間焼成し、外径50mm、厚さ2mmの円盤を得た。これからASTM−1457に従いマイクロダンベルにて試験片を打ち抜き、伸び値、引っ張り強度、引っ張り弾性率を測定した。結果を表1に示す。
【0020】
【動摩擦係数、摩耗量】
表1に示されるふっ素樹脂粉末組成物を1500kg/cm2 で予備成形し、380℃で1時間焼成し、外径65mm、内径48mm、高さ30mmの円筒状成形物を得た。これから外径52mm、内径48mm、高さ2mmのリングを切削加工し試験片とした。この試験片について次の摩擦摩耗試験方法により動摩擦係数及び摩耗量を測定した。RIK式自動昇圧型高圧摩擦摩耗試験機を使用し、摺動相手材としてAL合金ダイカスト(JIS1976 2118記載のADC12:表面粗さRa=2〜3μm)を用いた。動摩擦係数は、温度80℃のオートトランスミッション用オイルを流量150cc/分になるよう供給し、荷重25kg/cm2 、速度11m/秒、時間5時間で摺動を行い測定した。摩耗量は摺動終了後のAL合金ダイカストの摩耗量を測定した。結果を表1に示す。
【0021】
実施例1〜3のふっ素樹脂粉末組成物を圧縮成形し次いで焼成することにより得られる成形品は、伸び値、引っ張り強度、引っ張り弾性率、動摩擦係数、及び摩耗量の点で優れている。
【0022】
表1から明らかなように、無結晶アルミナ粉末が添加されていない比較例1の場合には、摺動相手材であるAL合金ダイカストの摩耗量が大きいほか、成形品の引っ張り弾性率が低く剛性に欠けること及び変形しやすいことがわかる。
【0023】
またコークス粉末が添加されない比較例2の場合には、伸び値が著しく小さくアルミナ粉末とPTFEモールディングパウダーとが均一に混合されなかったことがわかる。更に比較例2は成形品それ自身も摺動に際しひび割れを起こし、動摩擦係数は実施例1〜3に比して大きく軟質材を摺動相手材とすることは出来ないことがわかる。
【0024】
【表1】

Figure 0003677336
【0025】
PFA微粉末が添加されない比較例3の場合には、動摩擦係数が大きく発熱が起こり2時間で摺動を中止した。そのため、比較例3の測定値(*印)はこの時点での値である。さらに比較例3の伸び値は実施例1〜3に比べその値が小さいことからPTFEモールディングパウダーと充填材とのなじみが悪いことがわかる。
【0026】
更に、平均粒径0.2μmのPFA微粉末ではない平均粒径30μmのPFA粉末が添加された比較例4の場合には、摺動相手材であるAL合金ダイカストの摩耗量が実施例1〜3に比して非常に大きく軟質材を摺動相手材とすることは出来ないことがわかる。また比較例3よりも更に伸び値が小さいことからPTFEモールディングパウダーと充填材とのなじみが非常に悪いことがわかる。
【0027】
また、無結晶アルミナ粉末に代えて結晶アルミナ粉末を使用した比較例5は動摩擦係数、摩耗量共に大きい。
【0028】
【実施例4〜6】
ここで充填剤としてのグラファイト粉末の効果を説明する。前記原料を表2に示される割合にてヘンシェルミキサーで均一に混合して摺動部材用ふっ素樹脂粉末組成物を調製した。このふっ素樹脂粉末組成物について、実施例1〜3と同様なリング状の摩擦摩耗試験用試験片を作り、この試験片について摩擦摩耗試験を行った際の摺動相手材であるAL合金ダイカストの摺動中における発熱温度を測定した結果を表2に示す。グラファイト粉末を含まない場合(実施例4)に比べて、グラファイト粉末を含む場合(実施例5、6)は発熱温度が低い。
【0029】
【表2】
Figure 0003677336
【0030】
【発明の効果】
本発明の摺動部材用樹脂組成物は、アルミニウム合金などの軟質金属及び軟質合金を摺動相手材としても、自己の摩耗及び相手摺動部材の摩耗が共に少なく、特に高摺動特性が要求される過酷な使用条件、即ち、高温、高速、高荷重下での使用に際し優れた摺動特性を示すのみではなく、摺動部材用樹脂組成物として要求される耐熱性、耐薬品性、寸法安定性、優れた機械的特性をも具備する。[0001]
BACKGROUND OF THE INVENTION
The present invention is excellent in low friction and low wear in sliding in the presence of lubricating oil, and is capable of forming an excellent molded product that does not damage a sliding counterpart made of a soft alloy or a soft metal. The present invention relates to a fluororesin powder composition for members.
[0002]
[Prior art]
Filler-containing fluororesins are widely used as sliding materials and sealing materials. In particular, in applications such as sliding materials, many characteristics are required such as a low coefficient of friction, excellent wear resistance, excellent heat resistance and chemical resistance, and no damage to the sliding material. The fluororesin used here is polytetrafluoroethylene (hereinafter referred to as PTFE) molding powder which is a powder for compression molding, while the filler is inorganic such as glass fiber, carbon fiber, graphite, molybdenum disulfide, bronze powder, etc. Organic fillers such as fillers or aromatic polyesters, polyimides, and polyphenylene sulfides are known (Japanese Patent Publication Nos. 49-36081, 57-105442, 58-19397). etc).
[0003]
[Problems to be solved by the invention]
However, in the sliding material molded from the conventional filler-containing PTFE molding powder, since PTFE itself has non-adhesive properties, PTFE and the filler are poor in adhesion, so the filler The sliding surface is easily separated from PTFE or exposed to the sliding surface, damages the mating material in sliding contact, causes an increase in sliding resistance, and mechanical strength such as the tensile strength, elongation, and tensile modulus of the molded product. There were problems such as insufficient. Furthermore, in recent years, there are many cases where the material of the mating material with which the sliding material comes into sliding contact is changed to a soft alloy and a soft metal, particularly an aluminum alloy, in order to save energy, reduce weight, and maintain maintenance. Conventionally, in the PTFE containing filler for the sliding member, a filler that does not wear the PTFE itself has been selected and used. However, for a soft and sticky material such as aluminum, the PTFE resin itself and the sliding partner are used. There was a problem that material wear was large. The present invention relates to a fluororesin powder composition for a sliding member that has a low coefficient of friction, excellent wear resistance, is difficult to detach the filler, and does not damage the sliding counterpart during sliding in the presence of lubricating oil. The purpose is to provide.
[0004]
[Means for Solving the Problems]
The fluororesin powder composition for sliding members according to the present invention comprises polytetrafluoroethylene molding powder having an average particle size of 1 to 100 μm and tetrafluoroethylene / perfluoro (alkyl vinyl ether) having an average particle size of 0.1 to 0.5 μm. Fluorine resin component consisting of copolymer fine powder and amorphous alumina powder having an average particle diameter of 5 μm or less as a filler and coke powder having an average particle diameter of 10 μm or less as a filler, volume ratio of both powders (amorphous alumina powder / coke powder) Is in the range of 0.5 to 2.0, and the total amount of both powders is in the range of 10 to 50 parts by weight with respect to 100 parts by weight of the fluororesin component.
[0005]
A molded product obtained by compression molding and then firing such a powder composition has high mechanical strength and less detachment of the filler on the sliding surface during sliding. As a result, the molded product itself Wear and the sliding counterpart material are small, and the friction coefficient is extremely small.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The amorphous alumina powder used in the present invention has an average particle size of 5 μm or less, preferably 0.5 to 1 μm. When the average particle diameter exceeds 5 μm, the alumina powder in the molded product is easily detached on the sliding surface, and this detached alumina powder is not preferable because it damages the sliding partner material. Amorphous alumina powder is a powder whose true specific gravity is in the range of 3.65 to 3.85 and in which the transition to α-alumina is not completed by X-ray diffraction. Is distinguished from the powder having a transition to α-alumina of 3.92 by X-ray diffraction. The amorphous alumina powder can keep the tensile modulus of the molded product high as compared with the case where the crystalline alumina powder is used. That is, in addition to being able to maintain sufficient rigidity, the amount of wear of the sliding counterpart material is also small.
[0007]
The coke powder used in the present invention has an average particle size of 10 μm or less. When the average particle diameter exceeds 10 μm, the dynamic friction coefficient of the molded product increases and the sliding resistance increases, which is not preferable.
[0008]
The amorphous alumina powder having an average particle size of 5 μm or less and the coke powder having an average particle size of 10 μm or less in the present invention are used in a volume ratio of 0.5 to 2.0. Within the above range, the alumina powder can be uniformly mixed with the fluororesin powder in a dry state without requiring any special surface treatment despite the ease of charging of the fluororesin powder. When the amount of alumina powder is outside this range, the molded product tends to crack when sliding, and when the amount of alumina powder is small, the wear amount of the sliding material tends to increase. There is. The amount of the filler added to the fluororesin powder is in the range of 10 to 50 parts by weight, preferably 20 to 30 parts by weight with respect to 100 parts by weight of the resin. When the addition amount is less than 10 parts by weight, the elongation value of the molded product is greatly deformed easily, and sufficient tensile elastic modulus of the molded product, that is, sufficient rigidity cannot be obtained. When the amount added is 50 parts by weight or more, the elongation value of the molded product is small and fragile, which is not preferable.
[0009]
In addition to the filler powder, it is preferable to add a graphite powder having an average particle size of 10 μm or less in a range of 1 to 10 weights with respect to 100 parts by weight of the resin because the heat generation temperature during sliding can be lowered.
[0010]
As the fluororesin component used in the present invention, PTFE molding powder having an average particle diameter of 1 to 100 μm and tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA) having an average particle diameter of 0.1 to 0.5 μm. ) Use a mixture of fine powders. PFA fine powder with an average particle size of 0.1 to 0.5 μm melts during firing, sufficiently covers the surface of the filler and PTFE molding powder, and reliably fills the gap between the filler and PTFE molding powder The adhesion between the material and the PTFE molding powder is improved, and the mechanical strength of the molded product is improved.
[0011]
The PTFE molding powder used in the present invention may be a tetrafluoroethylene (TFE) homopolymer obtained by suspension polymerization (hereinafter referred to as non-modified PTFE) alone, which is 1.0% by weight or less perfluoro ( The powder for compression molding obtained by pulverizing a TFE polymer (hereinafter referred to as modified PTFE) modified with an alkyl vinyl ether may be used alone or as a mixture of both. In the case of a mixture having a ratio of 6/4 to 4/6 by weight, the machine of elongation, tensile strength, tensile modulus, etc. of the molded product is compared with the case of non-modified PTFE alone or modified PTFE alone. This is particularly preferable because of improving the mechanical strength and reducing the wear amount of the sliding counterpart made of a soft alloy or soft metal. Non-modified PTFE, particularly as described in Japanese Patent Publication No. 34-10177, contains unmodified PTFE containing a large proportion of fibrous particles and has good entanglement with the filler to prevent the detachment of the filler. Can be used preferably. Modified PTFE is considered to have an intermediate role between PFA and unmodified PTFE. The particle size of the PTFE molding powder is 1 to 100 μm, preferably 10 to 50 μm for both unmodified PTFE and modified PTFE. The finely powdered PTFE molding powder is advantageous for uniform mixing with the filler and PFA fine powder. The addition amount of PTFE molding powder is 70 to 95% by weight, preferably 85 to 95% by weight in the fluororesin. If the addition amount is less than 70% by weight, the moldability is deteriorated and the mechanical properties of the molded product are also deteriorated. If the addition amount exceeds 95% by weight, the improvement of the sliding characteristics such as wear resistance is recognized remarkably. It becomes impossible.
[0012]
The fine PFA powder having an average particle size of 0.1 to 0.5 μm used in the present invention is a copolymer fine particle having an average particle size of 0.05 to 0.5 μm obtained by emulsion polymerization of tetrafluoroethylene and perfluoroalkyl vinyl ether. Is dried at a temperature lower than the melting point of the fine particles. Alternatively, it may be a powder of secondary particles having an average particle diameter of 1 to 1000 μm, which is obtained by aggregating the fine particles and then drying at a temperature lower than the melting point. This is because the powder of secondary particles having an average particle diameter of 1-1000 μm dried at a temperature lower than the melting point is easily converted into a fine powder having an average particle diameter of 0.1-0.5 μm when the powder composition of the present invention is stirred. Because it breaks down.
[0013]
The effect in the present invention only when the PFA is a fine powder, that is, a molded product by improving the mechanical strength by improving the adhesion between the PTFE molding powder and the filler, and preventing the filler from being exposed and detached during sliding. It is possible to obtain the effects of a significant decrease in the wear of the own member and the counterpart material and a significant decrease in the friction coefficient. Accordingly, when dried at a temperature equal to or higher than the melting point, the fine particles or the particles are fused, and even when the powder composition is stirred, it is not preferable because it does not become a fine powder having an average particle size of 0.1 to 0.5 μm.
[0014]
The perfluoro (alkyl vinyl ether) of PFA used in the present invention is perfluoro (alkyl vinyl ether) represented by CF 2 ═CFOR f (R f represents a perfluoroalkyl group having 1 to 10 carbon atoms), Perfluoro (ethyl vinyl ether) and perfluoro (propyl vinyl ether) are preferred. PFA has a viscosity at 372 ° C. in the range of 1 × 10 4 to 1 × 10 6 boaz, from 97.5 to 95% by weight of tetrafluoroethylene and 2.5 to 5.0% by weight of perfluoro (alkyl vinyl ether). It is preferable that it is a copolymer.
[0015]
The amount of fine PFA powder having an average particle size of 0.1 to 0.5 μm in the present invention is 5 to 30% by weight, preferably 5 to 15% by weight in the fluororesin. When the added amount is less than 1% by weight, the surface of the filler and PTFE molding powder cannot be sufficiently covered even if the PFA fine powder melts during firing, and the gap between the filler and PTFE molding powder is not sufficient. Can not be filled reliably. When the addition amount is 30% by weight or more, it causes an economic disadvantage due to the cost increase beyond the improvement of the effect, and the deformation rate of the molded product is increased at the time of firing, which is not preferable.
[0016]
In mixing the powder composition of the present invention, an ordinary known mixing method is employed. For example, each component is mixed by a mixer such as a V-type blender, tumbler, Henschel mixer or the like. Moreover, the molding method of the powder composition of the present invention is not limited, and a known compression molding method of PTFE powder may be applied.
[0017]
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to the following Example. The following were used as raw materials.
a) PTFE molding powder with an average particle size of 35 μm (Mitsui / DuPont Fluorochemicals: Teflon (R) 7-J)
b) an average particle size of 35μm modified PTFE molding powder (Mitsui-Dupont Fluorochemicals Co., Ltd. Teflon (R) 70-J)
c) PFA fine powder with an average particle size of 0.2 μm (Mitsui / Dupont Fluoro Chemical Co., Ltd.)
d) PFA powder having an average particle size of 30 μm (Mitsui / DuPont Fluorochemical Co., Ltd .: MP-10)
e) Amorphous alumina powder (manufactured by Nippon Light Metal Co., Ltd .: average particle size 0.7 μm, true specific gravity 3.8)
f) Crystalline alumina powder (Nippon Light Metal Co., Ltd .: average particle size 0.6 μm)
g) Coke powder (Nippon Carbon Co., Ltd .: average particle size 7 μm, true specific gravity 1.99)
h) Graphite powder (manufactured by ESC: average particle size 1 μm)
[0018]
Examples 1 to 3 and Comparative Examples 1 to 5
The above raw materials were uniformly mixed at a ratio shown in Table 1 with a Henschel mixer to prepare a fluororesin powder composition for sliding members. The amounts of amorphous alumina powder, crystalline alumina powder, coke powder, and graphite powder, which are fillers shown in Table 1, are parts by weight of filler (hereinafter referred to as PPh) with respect to 100 parts by weight of resin. With respect to this fluororesin powder composition, the elongation value, tensile strength, tensile elastic modulus, dynamic friction coefficient, and wear amount were measured by the following methods.
[0019]
[Elongation value, tensile strength, tensile modulus]
The fluororesin powder composition shown in Table 1 was preformed at 1500 kg / cm 2 and fired at 380 ° C. for 1 hour to obtain a disk having an outer diameter of 50 mm and a thickness of 2 mm. From this, the test piece was punched out with a micro dumbbell according to ASTM-1457, and the elongation value, tensile strength, and tensile elastic modulus were measured. The results are shown in Table 1.
[0020]
[Dynamic friction coefficient, wear amount]
The fluororesin powder composition shown in Table 1 was preformed at 1500 kg / cm 2 and fired at 380 ° C. for 1 hour to obtain a cylindrical molded product having an outer diameter of 65 mm, an inner diameter of 48 mm, and a height of 30 mm. From this, a ring having an outer diameter of 52 mm, an inner diameter of 48 mm, and a height of 2 mm was cut into a test piece. The dynamic friction coefficient and the wear amount of this test piece were measured by the following friction and wear test method. A RIK type automatic pressurization type high-pressure frictional wear tester was used, and an AL alloy die casting (ADC12 described in JIS 1976 2118: surface roughness Ra = 2 to 3 μm) was used as a sliding partner material. The dynamic friction coefficient was measured by supplying oil for autotransmission at a temperature of 80 ° C. at a flow rate of 150 cc / min, sliding at a load of 25 kg / cm 2 , a speed of 11 m / sec, and a time of 5 hours. The amount of wear was determined by measuring the amount of wear of the AL alloy die cast after sliding. The results are shown in Table 1.
[0021]
Molded articles obtained by compression molding and then firing the fluororesin powder compositions of Examples 1 to 3 are excellent in terms of elongation value, tensile strength, tensile elastic modulus, dynamic friction coefficient, and wear amount.
[0022]
As is apparent from Table 1, in the case of Comparative Example 1 in which the amorphous alumina powder is not added, the wear amount of the AL alloy die casting as the sliding partner material is large, and the molded product has low tensile elastic modulus and rigidity. It can be seen that it is lacking and is easily deformed.
[0023]
Further, in the case of Comparative Example 2 in which no coke powder was added, it can be seen that the elongation value was remarkably small and the alumina powder and the PTFE molding powder were not uniformly mixed. Furthermore, in Comparative Example 2, the molded product itself cracks when sliding, and the dynamic friction coefficient is larger than that of Examples 1 to 3, and it can be seen that a soft material cannot be used as the sliding counterpart material.
[0024]
[Table 1]
Figure 0003677336
[0025]
In the case of Comparative Example 3 in which no PFA fine powder was added, the dynamic friction coefficient was large and heat generation occurred, and the sliding was stopped after 2 hours. Therefore, the measured value (* mark) of Comparative Example 3 is a value at this time. Furthermore, since the elongation value of Comparative Example 3 is smaller than those of Examples 1 to 3, it can be seen that the familiarity between PTFE molding powder and the filler is poor.
[0026]
Further, in the case of Comparative Example 4 in which PFA powder having an average particle size of 30 μm, which is not a PFA fine powder having an average particle size of 0.2 μm, was added, the wear amount of the AL alloy die casting as the sliding counterpart material was determined in Examples 1 to 3. It can be seen that a soft material cannot be used as a sliding counterpart material, which is much larger than 3. Further, since the elongation value is smaller than that of Comparative Example 3, it is understood that the familiarity between the PTFE molding powder and the filler is very bad.
[0027]
Further, Comparative Example 5 using the crystalline alumina powder instead of the amorphous alumina powder has a large coefficient of dynamic friction and wear.
[0028]
Examples 4 to 6
Here, the effect of the graphite powder as the filler will be described. The raw materials were uniformly mixed at a ratio shown in Table 2 with a Henschel mixer to prepare a fluororesin powder composition for sliding members. With respect to this fluororesin powder composition, a ring-shaped test piece for frictional wear test similar to that of Examples 1 to 3 was prepared, and the AL alloy die casting, which is a sliding counterpart when the frictional wear test was performed on this test piece, was made. Table 2 shows the results of measuring the heat generation temperature during sliding. When the graphite powder is included (Examples 5 and 6), the heat generation temperature is lower than when the graphite powder is not included (Example 4).
[0029]
[Table 2]
Figure 0003677336
[0030]
【The invention's effect】
The resin composition for a sliding member of the present invention has both low wear and wear of the mating sliding member even when a soft metal such as an aluminum alloy and a soft alloy are used as the sliding mating material, and particularly high sliding characteristics are required. In addition to exhibiting excellent sliding characteristics when used under severe usage conditions, i.e., high temperature, high speed, and high load, heat resistance, chemical resistance and dimensions required as a resin composition for sliding members It also has stability and excellent mechanical properties.

Claims (4)

平均粒径1〜100μmのポリテトラフルオロエチレンモールディングパウダー及び平均粒径0.1〜0.5μmのテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体微粉末よりなるふっ素樹脂成分並びに充填剤として平均粒径5μm以下の無結晶アルミナ粉末及び平均粒径10μm以下のコークス粉末を含み、両粉末の容量比(無結晶アルミナ粉末/コークス粉末)が0.5〜2.0の範囲で、且つ両粉末の合計量がふっ素樹脂成分100重量部に対し10〜50重量部の範囲である摺動部材用ふっ素樹脂粉末組成物。Fluorine resin component comprising polytetrafluoroethylene molding powder having an average particle diameter of 1 to 100 μm and fine powder of tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer having an average particle diameter of 0.1 to 0.5 μm and an average as a filler Including a non-crystalline alumina powder having a particle size of 5 μm or less and a coke powder having an average particle size of 10 μm or less, the volume ratio of both powders (non-crystalline alumina powder / coke powder) is in the range of 0.5 to 2.0, and both powders Is a fluororesin powder composition for sliding members in which the total amount of is in the range of 10 to 50 parts by weight per 100 parts by weight of the fluororesin component. 平均粒径10μm以下のグラファイト粉末をふっ素樹脂成分100重量部に対し1〜10重量部の範囲で含む請求項1に記載の組成物。The composition according to claim 1, comprising graphite powder having an average particle size of 10 µm or less in an amount of 1 to 10 parts by weight per 100 parts by weight of the fluororesin component. ポリテトラフルオロエチレンモールディングパウダーがポリテトラフルオロエチレンホモポリマー及びパーフルオロ(アルキルビニルエーテル)で変性されたポリテトラフルオロエチレンの混合物であり、且つ両者の重量比が4/6〜6/4である請求項1又は請求項2に記載の組成物。The polytetrafluoroethylene molding powder is a mixture of polytetrafluoroethylene homopolymer and polytetrafluoroethylene modified with perfluoro (alkyl vinyl ether), and the weight ratio of the two is 4/6 to 6/4. The composition according to claim 1 or claim 2. テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体微粉末がふっ素樹脂成分中5〜30重量%の範囲である請求項1、請求項2又は請求項3に記載のふっ素樹脂粉末組成物。4. The fluororesin powder composition according to claim 1, wherein the fine powder of tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer is in the range of 5 to 30% by weight in the fluororesin component.
JP33070495A 1995-12-19 1995-12-19 Fluororesin powder composition for sliding members Expired - Fee Related JP3677336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33070495A JP3677336B2 (en) 1995-12-19 1995-12-19 Fluororesin powder composition for sliding members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33070495A JP3677336B2 (en) 1995-12-19 1995-12-19 Fluororesin powder composition for sliding members

Publications (2)

Publication Number Publication Date
JPH09169880A JPH09169880A (en) 1997-06-30
JP3677336B2 true JP3677336B2 (en) 2005-07-27

Family

ID=18235634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33070495A Expired - Fee Related JP3677336B2 (en) 1995-12-19 1995-12-19 Fluororesin powder composition for sliding members

Country Status (1)

Country Link
JP (1) JP3677336B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4262341B2 (en) * 1998-12-02 2009-05-13 株式会社竹中工務店 Slip isolation device and isolation structure
JP5034150B2 (en) 2000-12-05 2012-09-26 旭硝子株式会社 Polytetrafluoroethylene granulated product and molded product thereof
JP2002209975A (en) * 2001-01-19 2002-07-30 Daikyo Seiko Ltd Laminated rubber stopper for medical vial
US7892600B2 (en) * 2002-12-06 2011-02-22 E. I. Du Pont De Nemours And Company Rotolining process
JP2004346265A (en) * 2003-05-26 2004-12-09 Hitachi Industrial Equipment Systems Co Ltd Sliding material and oil-free scroll compressor
JP2006096991A (en) * 2004-08-31 2006-04-13 Kurabe Ind Co Ltd Ptfe resin molded item, monolithic structure using ptfe resin molded body and their preparation process
JP4983153B2 (en) * 2006-08-24 2012-07-25 ダイキン工業株式会社 Fluorine-containing resin aqueous dispersion
EP2767557B1 (en) * 2013-02-14 2017-03-22 3M Innovative Properties Company Fluoropolymer compositions with microspheres
KR20190101958A (en) * 2016-10-17 2019-09-02 부르크하르트 콤프레션 아게 Sealing member and / or guide ring made of a composition of polytetrafluoroethylene, perfluoroalkoxy polymer and filler

Also Published As

Publication number Publication date
JPH09169880A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
US7056589B2 (en) Plain bearing composite material
JP2018524440A (en) Functional coating forming composition having high releasability and low friction
JP3677336B2 (en) Fluororesin powder composition for sliding members
JPH07268126A (en) Lubricating resin composition
JP2022140773A (en) Polytetrafluoroethylene composition
EP1584655B1 (en) Fluororesin composition
JP2003041083A (en) Modified polytetrafluoroethylene composition
TW201336917A (en) Fluororesin and polyamide fiber composition, and sliding member made therefrom
JP3235223B2 (en) Method for producing polyphenylene sulfide resin composition
JP2016164216A (en) Fluorine resin composition for sliding member with low friction property and low wear property
JP2000143922A (en) Polytetrafluoroethylene composition
JP2007314641A (en) Fluororesin composition
US20240026140A1 (en) Compression molding composition, method for producing the same, and molded product
US5710205A (en) Composition of fluoropolymers
JP2004211792A (en) Sliding member for seal and its manufacturing method
JPS60127933A (en) Material for sliding section of machine tool
JP2002317089A (en) Polytetrafluoroethylene resin composition
JPH09157472A (en) Polytetrafluoroethylene powder composition and its production
JP3315688B2 (en) Filler-containing polytetrafluoroethylene composition and molded article thereof
EP0611384B1 (en) Composition of fluoropolymers
WO2004094528A1 (en) Polytetrafluoroethylene resin composition
JP2002128981A (en) Pressure-resistant slidable tetrafluoroethylene resin composition
JP2589714B2 (en) Sliding material composition
JP2004501271A (en) Improving the noise behavior of non-asbestos friction materials by using fluoropolymers
JP4424696B2 (en) Polytetrafluoroethylene composition containing surface coating filler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 19970303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees