JP4419247B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4419247B2
JP4419247B2 JP2000030177A JP2000030177A JP4419247B2 JP 4419247 B2 JP4419247 B2 JP 4419247B2 JP 2000030177 A JP2000030177 A JP 2000030177A JP 2000030177 A JP2000030177 A JP 2000030177A JP 4419247 B2 JP4419247 B2 JP 4419247B2
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
capacity
electrolyte secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000030177A
Other languages
Japanese (ja)
Other versions
JP2001223022A (en
Inventor
明彦 小岩井
亨 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000030177A priority Critical patent/JP4419247B2/en
Publication of JP2001223022A publication Critical patent/JP2001223022A/en
Application granted granted Critical
Publication of JP4419247B2 publication Critical patent/JP4419247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオンの吸蔵・放出現象を利用した非水電解液二次電池、特に、高温保存特性に優れた非水電解液二次電池に関する。
【0002】
【従来の技術】
リチウムイオンの吸蔵・放出を利用した非水電解液二次電池は、高電圧でエネルギー密度が高いことから、パソコン、携帯電話等の小型化に伴い、情報関連機器、通信機器の分野では実用化が進み、広く一般に普及するに至っている。その一方で、環境問題、資源問題から電気自動車の開発が急がれ、この非水電解液二次電池を電気自動車用電源として用いることも検討されている。
【0003】
この非水電解液二次電池を電気自動車の電源として用いる場合には、高温下に長時間放置されることをも想定しなければならない。ところが、非水電解液二次電池を高温下に長時間放置すると、容量低下を起こし、その後充電を行っても、元の容量まで回復しないという現象が生じる。つまり、非水電解液二次電池は、高温下における保存特性が良好ではないという問題点を抱えていた。特に、ヘキサフルオロ燐酸リチウム(LiPF6)を電解液とした非水電解液を用いる二次電池では、この問題が特に深刻であった。
【0004】
上記問題点を解決する手段として、従来から、特開平8−7922号公報に示されるように、電解質としてLiPF6とテトラフルオロほう酸リチウム(LiBF4)を混合して用いるもの等があった。
【0005】
【発明が解決しようとする課題】
しかし、上記電解質としてLiPF6とLiBF4を混合して用いる手段では、LiBF4のイオン伝導度が低いため、高温保存特性は向上するものの、電池容量が低下する欠点があった。
【0006】
本発明は、上記問題点に鑑みてなされたものであり、電解液を改善することにより、電池容量の低下を抑えるとともに、高温保存特性に優れた非水電解液二次電池を提供することを課題としている。
【0007】
【課題を解決するための手段】
本発明の非水電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極および負極と、リチウム塩を有機溶媒に溶解させた非水電解液とを含んでなる非水電解液二次電池であって、前記非水電解液は、ピリリウム化合物が添加されていることを特徴とする。
【0008】
また、前記ピリリウム化合物が2,4,6-トリフェニルピリリウム、4-メチル-2-フェニル-1-ベンゾピリリウムまたはそれらの誘導体を陽イオンとする塩であることを特徴とする。
【0009】
また、ピリリウム化合物の添加率が、非水電解液を100重量%とした場合の0.1重量%以上1重量%以下であることを特徴とする。
【0010】
つまり、ピリリウム化合物、例えば2,4,6-トリフェニルピリリウム(化1、分子式:C23H17O)または4-メチル-2-フェニル-1-ベンゾピリリウム(化2、分子式:C16H13O)を陽イオンとする塩を溶解させて非水電解液を改善し、これらの作用によって、非水電解液二次電池の容量の低下を抑え、かつ高温保存特性を向上させるものである。
【0011】
【化1】

Figure 0004419247
【化2】
Figure 0004419247
2,4,6-トリフェニルピリリウムまたは4-メチル-2-フェニル-1-ベンゾピリリウム等のピリリウム化合物の作用は、現時点では明確になっていないが、それらを含む非水電解液を用いた時に形成される負極活物質表面の被膜が、充電状態にある負極と非水電解液との反応を防止する作用をもつものと推測される。そして、この作用により、本発明の非水電解液二次電池は、電池容量の低下を抑えるとともに、高温保存特性の良好な二次電池となる。
【0012】
【発明の実施の形態】
以下に、本発明の非水電解液二次電池の代表的な実施形態について説明する。本発明の二次電池は、リチウムイオンを吸蔵・放出可能な正極および負極と、リチウム塩を有機溶媒に溶解させた非水電解液を主要な構成要素として構成される。
【0013】
正極は、リチウムイオンを吸蔵・放出できる正極活物質に導電材および結着材を混合した正極合材に適当な溶剤を加えて混合して作製したペーストを、アルミニウム等の金属箔製の集電体表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。
【0014】
正極活物質には、4V級の電池が構成できるものとして、LiCoO2、LiNiO2、LiMn2O4等のリチウム遷移金属複合酸化物粉状体を用いることができる。この中でも、スピネル構造のLiMn2O4は、原料コストが安く、大量の活物質を使用しなければならない電気自動車用電源として用いる二次電池の場合、有利なものとなる。なお、スピネル構造のLiMn2O4は、化学量論的組成のものに限られず、結晶構造を安定化させるために、Mnサイトの一部をLiで置換させたLi1+xMn2-xO4、他金属Mで置換させたLiMn2-xMxO4、Liおよび他金属Mで置換させたLi1+xMn2-x-yMyO4等の組成のものを用いることができる。
【0015】
導電材は、正極の電気伝導性を確保するためのものであり、例えば、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の一種又は二種以上を混合したものを用いることができる。結着材は、活物質粒子を繋ぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリエチレン、ポリプロピレン等の熱可塑性樹脂を用いることができる。これらの活物質、導電材、結着材を分散させる溶剤としてはN-メチル-2-ピロリドン等の有機溶剤を用いることができる。
【0016】
負極には、金属リチウム、リチウム合金が使用できる。ただし、金属リチウム等はデンドライドの析出という問題があるため、これらに代えて、正極同様、リチウムイオンを吸蔵・放出できる負極活物質に結着材を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅箔等の金属箔集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。この場合、負極活物質として例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体等を用いることができる。
【0017】
この場合、負極結着材としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂などを、これら活物質および結着材を分散させる溶剤としてはN-メチル-2-ピロリドン等の有機溶剤を用いることができる。
【0018】
正極と負極の間に挟装されるセパレータは、正極と負極とを分離し電解液を保持するためのものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
【0019】
本発明の非水電解液二次電池は、電解質としてのリチウム塩を有機溶媒に溶解させた非水電解液にピリリウム化合物を添加することを特徴とするものである。
【0020】
リチウム塩は有機溶媒に溶解することによって解離し、リチウムイオンとなって電解液中に存在する。使用できるリチウム塩としては、例えば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiAsF6、LiN(CF3SO2)2、LiN(C2F5SO2)2が挙げられる。これらのリチウム塩は、それぞれ単独で用いてもよく、また、これらのうち二種以上のものを混合して用いることもできる。これらのリチウム塩の中でも、電気化学的に高い安定性を持ち、イオン伝導性も高いという点を考慮すればLiPF6を用いることが望ましい。
【0021】
リチウム塩を溶解させる有機溶媒には、非プロトン性の有機溶媒を用いる。例えば、環状カーボネート、鎖状カーボネート、環状エステル、環状エーテルあるいは鎖状エーテルの一種又は二種以上からなる混合溶媒を用いることができる。環状カーボネートの例示としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が、鎖状カーボネートの例示としてはジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等が、環状エステルの例示としてはガンマブチルラクトン、ガンマバレルラクトン等が、環状エーテルの例示としてはテトラヒドロフラン、2-メチルテトラヒドロフラン等が、鎖状エーテルの例示としてはジメトキシエタン、エチレングリコールジメチルエーテル等がそれぞれ挙げられる。
【0022】
ピリリウム化合物の例示としては、2,4,6-トリフェニルピリリウム (化1) 、4-メチル-2-フェニル-1-ベンゾピリリウム(化2)またはそれらの誘導体(化3、4、Rn (n=1〜17)は、水素原子、メチル基、エチル基、プロピル基、イソプロピル基等を表す)を陽イオンとする塩を挙げることができる。またピリリウム化合物の陰イオンの例示としては、テトラフルオロほう酸(BF4 -)、ヘキサフルオロ燐酸(PF6 -)、トリフルオロメタンスルホン酸(CF3SO3 -)、過塩素酸(ClO4 -)等が挙げられる。
【0023】
また、ピリリウム化合物の電解液への添加率は、電解液を100重量%とした場合の0.01重量%以上5重量%以下であることが望ましい。添加率が0.01重量%未満の場合には、高温保存特性の改善効果が小さくなり、また、添加率が5重量%を越える場合には電池の内部抵抗が増加し電池容量が大きく低下するおそれがあるためである。上記添加範囲において、0.1重量%以上1重量%以下とすることが特に望ましい。
【0024】
以上のもので構成される本発明の非水電解液二次電池であるが、その形状は円筒型、積層型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させて電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を集電用リード等を用いて接続し、この電極体に上記電解液を含浸させて電池ケースに密閉して電池を完成させることができる。
【0025】
【化3】
Figure 0004419247
【化4】
Figure 0004419247
【実施例】
上記実施形態に基づいて、実際に18650型サイズの円筒型二次電池を作製し、この電池に対して充放電試験および高温保存試験を行い、容量残存率および容量回復率について評価を行った。以下に、この内容について説明する。
【0026】
正極活物質としてスピネル構造のLi1.11Mn1.89O4を用いた。なお、このLi1.11Mn1.89O4は、Li2CO3とMnO2とを37:126のモル比で混合させたものを850℃で加熱することにより合成したものである。まず、Li1.11Mn1.89O486重量部に、導電材として黒鉛粉末を10重量部、結着材としてポリフッ化ビニリデン(PVdF)を4重量部とを混合した正極合材に、溶剤としてN-メチル-2-ピロリドン(NMP)を適量加えてペーストを作製した。次いで、このペーストを厚さ20μmのアルミニウム箔製集電体の両面に、片面あたり100μmの厚さで塗布し、これを乾燥後、ロールプレスにて片面55μmの厚さまで密度を高めて正極を形成させた。尚、この正極の面積は243cm2とした。
【0027】
負極活物質には人造球状黒鉛を用いた。まず、この人造球状黒鉛95重量部と、結着材としてのPVdFを5重量部とを混合した負極合材に、溶剤としてNMPを適量加えてペーストを作製した。次いで、このペーストを、厚さ10μmの銅箔製集電体の両面に片面当たり55μmの厚さで塗布し、これを乾燥後、ロールプレスにて片面40μmの厚さまで密度を高めて負極を形成させた。尚、負極の面積は280cm2とした。
【0028】
上記正極および負極を、厚さ25μmのポリエチレン製微多孔膜からなるセパレータを介し対向させて捲回してロール状の電極体を形成させた。この電極体を、以下に説明する非水電解液とともに18650型電池ケースに密封して非水電解液二次電池を完成させた。
【0029】
非水電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比にして3:7に混合した混合溶媒に、電解質としてLiPF6を1Mの濃度になるように溶解させた電解液(以下、「標準電解液」という)をまず調整した。この標準電解液100重量%に対してテトラフルオロほう酸2,4,6-トリフェニルピリリウムが0.25、0.5重量%となるよう添加された非水電解液と、またテトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムが0.25、0.5、1重量%となるよう添加された非水電解液を調整した。
【0030】
テトラフルオロほう酸2,4,6-トリフェニルピリリウムが0.25、0.5重量%となるよう添加された非水電解液を用いた二次電池を作製し、それぞれ実施例1、2の二次電池とした。また、テトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムが0.25、0.5、1重量%となるよう添加された非水電解液を用いた二次電池を作製し、それぞれ実施例3、4、5の二次電池とした。
【0031】
上記実施例の二次電池と比較するために、標準電解液を用いた二次電池、すなわち、テトラフルオロほう酸2,4,6-トリフェニルピリリウムとテトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムが添加されていない非水電解液を用いた二次電池を作製し、比較例の二次電池とした。
【0032】
これらの実施例および比較例の非水電解液二次電池に対して、高温保存特性を評価すべく充放電試験を実施した。充電の条件は、まず終止電圧4.2Vまで電流密度1.1mA/cm2の定電流で充電を行い、4.2Vに達した後に定電圧で総充電時間が2.5時間となるまで充電するものとした。また、放電の条件は、終止電圧3.0Vまで電流密度1.1mA/cm2の定電流で放電を行うものとした。
【0033】
各電池に対して、まず室温にて10サイクルの充放電試験を実施して、10サイクル目の放電容量を測定した。次いで、同条件にて充電のみを行い、60℃の高温下、3週間保存した。保存後、上記放電条件で室温にて放電させて、各電池の保存後の残存容量を測定した。さらにその後、室温にて前記条件にて5サイクルの充放電試験を行い、5サイクル目の放電容量(回復容量)を測定した。
【0034】
そして、次式にて容量残存率と容量回復率を求めて評価した。
【0035】
[容量残存率]=[残存容量]/[保存前10サイクル目の放電容量]x100(%)
[容量回復率]=[回復容量]/[保存前10サイクル目の放電容量]x100(%)
実施例および比較例の各二次電池の容量残存率、容量回復率および保存前10サイクル目の放電容量比(比較例の二次電池を100%とする)を表1に示す。また、テトラフルオロほう酸2,4,6-トリフェニルピリリウムまたはテトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムの添加率と容量残存率、容量回復率との関係をそれぞれ図1、2に示す。
【0036】
また、充放電試験における初回の充電容量と不可逆容量(充電容量と放電容量との差)のテトラフルオロほう酸2,4,6-トリフェニルピリリウムまたはテトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムの添加率による変化を図3、4に示す。尚、それぞれの値は正極合材単位重量当たりの変化として示した。
【0037】
表1および図1、2から明かなように、実施例1〜5の二次電池は、比較例の二次電池と比べて、ほぼ同等な電池容量をもつうえに、高温保存後の容量残存率および容量回復率の値が大きいことが判る。この結果から、本発明の非水電解液二次電池は、大きな電池容量を持ち、かつ、高温保存特性に優れていることが確認できる。
【0038】
【表1】
Figure 0004419247
【0039】
また、図3、4より、不可逆容量がテトラフルオロほう酸2,4,6-トリフェニルピリリウムまたはテトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムの添加により増加していることがわかる。不可逆容量の増加は、負極活物質表面の保護被膜の増加に対応しているものと考えられ、この被膜が充電状態にある負極と電解液との反応を抑制するために、本発明の二次電池が高温保存特性に優れるものと考えられる。一般的に不可逆容量の増加は、電池容量を低下させる原因となる。しかし、本発明の二次電池は、図3、4から明らかなように、テトラフルオロほう酸2,4,6-トリフェニルピリリウムまたはテトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムの添加により初回充電容量が増加し、この増加量が不可逆容量の増加量とほぼ対応しているため、電池容量の低下を抑制していることがわかる。これらの作用により、本発明の非水電解液二次電池は、大きな電池容量を持ち、かつ、高温保存特性に優れているものと考えられる。
【0040】
【発明の効果】
本発明の非水電解液二次電池は、非水電解液にピリリウム化合物、例えば、2,4,6-トリフェニルピリリウムまたは4-メチル-2-フェニル-1-ベンゾピリリウムを陽イオンとする塩を添加して構成したものである。このような構成としたことにより、大きな容量を持ち、かつ、高温保存特性に優れた非水電解液二次電池となる。
【図面の簡単な説明】
【図1】テトラフルオロほう酸2,4,6-トリフェニルピリリウムの添加率と容量残存率、容量回復率との関係
【図2】テトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムの添加率と容量残存率、容量回復率との関係
【図3】テトラフルオロほう酸2,4,6-トリフェニルピリリウムの添加による初回充電容量および不可逆容量の変化
【図4】テトラフルオロほう酸4-メチル-2-フェニル-1-ベンゾピリリウムの添加による初回充電容量および不可逆容量の変化[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery using a lithium ion storage / release phenomenon, and more particularly to a non-aqueous electrolyte secondary battery excellent in high-temperature storage characteristics.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries that use lithium ion storage and release are high voltage and high energy density, so they are put to practical use in the field of information-related equipment and communication equipment with downsizing of personal computers and mobile phones. Has progressed and has become widely popular. On the other hand, the development of electric vehicles has been accelerated due to environmental problems and resource problems, and the use of this non-aqueous electrolyte secondary battery as a power source for electric vehicles is also being studied.
[0003]
When this non-aqueous electrolyte secondary battery is used as a power source for an electric vehicle, it must be assumed that it is left at a high temperature for a long time. However, if the non-aqueous electrolyte secondary battery is left at a high temperature for a long time, the capacity is reduced, and even after charging, there is a phenomenon that the original capacity is not recovered. That is, the non-aqueous electrolyte secondary battery has a problem that the storage characteristics at high temperatures are not good. In particular, this problem is particularly serious in a secondary battery using a non-aqueous electrolyte using lithium hexafluorophosphate (LiPF 6 ) as an electrolyte.
[0004]
As means for solving the above-described problems, conventionally, as disclosed in JP-A-8-7922, there has been a method using a mixture of LiPF 6 and lithium tetrafluoroborate (LiBF 4 ) as an electrolyte.
[0005]
[Problems to be solved by the invention]
However, the means using a mixture of LiPF 6 and LiBF 4 as the electrolyte has a drawback in that although the high-temperature storage characteristics are improved because the ion conductivity of LiBF 4 is low, the battery capacity is reduced.
[0006]
The present invention has been made in view of the above problems, and provides a nonaqueous electrolyte secondary battery excellent in high-temperature storage characteristics while suppressing a decrease in battery capacity by improving the electrolyte. It is an issue.
[0007]
[Means for Solving the Problems]
The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent. The non-aqueous electrolyte is characterized in that a pyrylium compound is added.
[0008]
The pyrylium compound is a salt having 2,4,6-triphenylpyrylium, 4-methyl-2-phenyl-1-benzopyrylium or a derivative thereof as a cation.
[0009]
Further, the addition rate of the pyrylium compound is characterized by being 0.1 wt% or more and 1 wt% or less when the nonaqueous electrolytic solution is 100 wt%.
[0010]
That is, pyrylium compounds such as 2,4,6-triphenylpyrylium (Chemical Formula 1, Molecular Formula: C 23 H 17 O) or 4-methyl-2-phenyl-1-benzopyrylium (Chemical Formula 2, Molecular Formula: C 16 H 13 O) cation is dissolved to improve the non-aqueous electrolyte, and these actions suppress the decrease in the capacity of the non-aqueous electrolyte secondary battery and improve the high-temperature storage characteristics. is there.
[0011]
[Chemical 1]
Figure 0004419247
[Chemical formula 2]
Figure 0004419247
Although the action of pyrylium compounds such as 2,4,6-triphenylpyrylium or 4-methyl-2-phenyl-1-benzopyrylium has not been clarified at present, nonaqueous electrolytes containing them are used. It is presumed that the coating film on the surface of the negative electrode active material formed at the time of charging has an action of preventing the reaction between the negative electrode in a charged state and the non-aqueous electrolyte. And by this effect | action, while the non-aqueous-electrolyte secondary battery of this invention suppresses the fall of battery capacity, it becomes a secondary battery with a favorable high temperature storage characteristic.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Below, typical embodiment of the non-aqueous-electrolyte secondary battery of this invention is described. The secondary battery of the present invention includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent as main components.
[0013]
The positive electrode is a current collector made of a metal foil such as aluminum, using a paste prepared by adding an appropriate solvent to a positive electrode mixture in which a conductive material and a binder are mixed with a positive electrode active material capable of inserting and extracting lithium ions. It can be applied and dried on the body surface and compressed to increase the electrode density as necessary.
[0014]
As the positive electrode active material, a powder of lithium transition metal composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be used as a material capable of constituting a 4V class battery. Among these, spinel-structured LiMn 2 O 4 is advantageous in the case of a secondary battery used as a power source for an electric vehicle in which the raw material cost is low and a large amount of active material must be used. The spinel-structured LiMn 2 O 4 is not limited to the stoichiometric composition, and Li 1 + x Mn 2-x in which a part of the Mn site is substituted with Li in order to stabilize the crystal structure. O 4, can be used in the composition such as Li 1 + x Mn 2-xy M y O 4 , which was replaced with LiMn 2-x M x O 4 , Li and other metal M was substituted with other metal M .
[0015]
The conductive material is for ensuring the electrical conductivity of the positive electrode, and for example, a material obtained by mixing one or two or more carbon material powders such as carbon black, acetylene black, and graphite can be used. The binder plays a role of binding the active material particles. For example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polyethylene or polypropylene can be used. An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active materials, conductive materials, and binders.
[0016]
Metal lithium and lithium alloy can be used for the negative electrode. However, since lithium metal has a problem of precipitation of dendrites, instead of these, like the positive electrode, a binder is mixed with a negative electrode active material capable of occluding and releasing lithium ions, and an appropriate solvent is added to form a paste. The negative electrode composite can be formed by applying and drying on the surface of a metal foil current collector such as a copper foil and then compressing it to increase the electrode density as necessary. In this case, for example, natural graphite, artificial graphite, a fired organic compound such as a phenol resin, a powdery carbon material such as coke, or the like can be used as the negative electrode active material.
[0017]
In this case, as the negative electrode binder, a fluorine-containing resin such as polyvinylidene fluoride is used as in the positive electrode, and an organic solvent such as N-methyl-2-pyrrolidone is used as a solvent for dispersing these active materials and the binder. be able to.
[0018]
The separator sandwiched between the positive electrode and the negative electrode is for separating the positive electrode and the negative electrode to hold the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
[0019]
The non-aqueous electrolyte secondary battery of the present invention is characterized by adding a pyrylium compound to a non-aqueous electrolyte obtained by dissolving a lithium salt as an electrolyte in an organic solvent.
[0020]
The lithium salt is dissociated by dissolving in an organic solvent, and becomes lithium ions and exists in the electrolytic solution. Examples of the lithium salt that can be used include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 . These lithium salts may be used alone or in combination of two or more thereof. Among these lithium salts, it is desirable to use LiPF 6 in view of high electrochemical stability and high ion conductivity.
[0021]
As the organic solvent for dissolving the lithium salt, an aprotic organic solvent is used. For example, a mixed solvent composed of one or more of cyclic carbonate, chain carbonate, cyclic ester, cyclic ether, or chain ether can be used. Examples of cyclic carbonates are ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, etc., examples of chain carbonates are dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, etc., examples of cyclic esters are gamma butyl lactone, Examples of gamma barrel lactones include cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, and examples of chain ethers include dimethoxyethane and ethylene glycol dimethyl ether.
[0022]
Examples of pyrylium compounds include 2,4,6-triphenylpyrylium (Chemical Formula 1), 4-methyl-2-phenyl-1-benzopyrylium (Chemical Formula 2) or derivatives thereof (Chemical Formulas 3, 4, Rn) (n = 1 to 17) represents a salt having a cation as a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, or the like. Examples of anions of pyrylium compounds include tetrafluoroboric acid (BF 4 ), hexafluorophosphoric acid (PF 6 ), trifluoromethanesulfonic acid (CF 3 SO 3 ), perchloric acid (ClO 4 ), etc. Is mentioned.
[0023]
The addition rate of the pyrylium compound to the electrolytic solution is preferably 0.01% by weight or more and 5% by weight or less when the electrolytic solution is 100% by weight. When the addition rate is less than 0.01% by weight, the effect of improving the high-temperature storage characteristics is reduced, and when the addition rate exceeds 5% by weight, the internal resistance of the battery may increase and the battery capacity may be greatly reduced. Because there is. In the above addition range, it is particularly desirable that the content be 0.1 wt% or more and 1 wt% or less.
[0024]
The non-aqueous electrolyte secondary battery of the present invention configured as described above can have various shapes such as a cylindrical type and a laminated type. Regardless of which shape is used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the current is collected from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal. A battery can be completed by connecting using a lead or the like, and impregnating the electrode body with the electrolyte solution and sealing the battery case.
[0025]
[Chemical 3]
Figure 0004419247
[Formula 4]
Figure 0004419247
【Example】
Based on the above embodiment, an 18650-type cylindrical secondary battery was actually manufactured, a charge / discharge test and a high-temperature storage test were performed on the battery, and the capacity remaining rate and the capacity recovery rate were evaluated. This will be described below.
[0026]
As the positive electrode active material, Li 1.11 Mn 1.89 O 4 having a spinel structure was used. The Li 1.11 Mn 1.89 O 4 was synthesized by heating a mixture of Li 2 CO 3 and MnO 2 at a molar ratio of 37: 126 at 850 ° C. First, 86 parts by weight of Li 1.11 Mn 1.89 O 4 , 10 parts by weight of graphite powder as a conductive material and 4 parts by weight of polyvinylidene fluoride (PVdF) as a binder were mixed with N— An appropriate amount of methyl-2-pyrrolidone (NMP) was added to prepare a paste. Next, this paste is applied to both sides of an aluminum foil current collector with a thickness of 20 μm at a thickness of 100 μm per side, dried, and then the density is increased to a thickness of 55 μm on one side by a roll press to form a positive electrode. I let you. The area of this positive electrode was 243 cm 2 .
[0027]
Artificial spherical graphite was used as the negative electrode active material. First, a paste was prepared by adding an appropriate amount of NMP as a solvent to a negative electrode mixture obtained by mixing 95 parts by weight of this artificial spherical graphite and 5 parts by weight of PVdF as a binder. Next, this paste is applied to both sides of a copper foil current collector having a thickness of 10 μm at a thickness of 55 μm per side, dried, and then the density is increased to a thickness of 40 μm on one side by a roll press to form a negative electrode. I let you. The area of the negative electrode was 280 cm 2 .
[0028]
The positive electrode and the negative electrode were wound with a separator made of a polyethylene microporous film having a thickness of 25 μm facing each other to form a roll-shaped electrode body. This electrode body was sealed in a 18650 type battery case together with a non-aqueous electrolyte described below to complete a non-aqueous electrolyte secondary battery.
[0029]
The non-aqueous electrolyte is an electrolyte obtained by dissolving LiPF 6 as an electrolyte to a concentration of 1M in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7. (Hereinafter referred to as “standard electrolyte”) was first adjusted. A non-aqueous electrolyte in which 2,4,6-triphenylpyrylium tetrafluoroborate is added to 0.25 and 0.5% by weight with respect to 100% by weight of this standard electrolyte, and 4-methyl-2 tetrafluoroborate A non-aqueous electrolyte solution added with -phenyl-1-benzopyrylium at 0.25, 0.5, and 1% by weight was prepared.
[0030]
A secondary battery using a non-aqueous electrolyte added with 2,4,6-triphenylpyrylium tetrafluoroborate at 0.25 and 0.5% by weight was prepared. did. Also, secondary batteries using non-aqueous electrolytes to which 4-methyl-2-phenyl-1-benzopyrylium tetrafluoroborate was added to 0.25, 0.5, and 1% by weight were prepared. 4, 5 and 5 were used.
[0031]
For comparison with the secondary battery of the above example, a secondary battery using a standard electrolyte solution, that is, tetrafluoroborate 2,4,6-triphenylpyrylium and tetrafluoroborate 4-methyl-2-phenyl- A secondary battery using a non-aqueous electrolyte to which 1-benzopyrylium was not added was produced and used as a comparative secondary battery.
[0032]
A charge / discharge test was conducted on the non-aqueous electrolyte secondary batteries of these examples and comparative examples in order to evaluate the high-temperature storage characteristics. The charging conditions are as follows. First, the battery is charged to a final voltage of 4.2V at a constant current of a current density of 1.1 mA / cm 2. After reaching 4.2V, the battery is charged at a constant voltage until the total charging time reaches 2.5 hours. To do. The discharge was performed under a constant current with a current density of 1.1 mA / cm 2 up to a final voltage of 3.0 V.
[0033]
Each battery was first subjected to a charge / discharge test of 10 cycles at room temperature to measure the discharge capacity at the 10th cycle. Next, only charging was performed under the same conditions, and the battery was stored at a high temperature of 60 ° C. for 3 weeks. After storage, the battery was discharged at room temperature under the above discharge conditions, and the remaining capacity of each battery after storage was measured. Thereafter, a charge / discharge test of 5 cycles was performed at room temperature under the above-mentioned conditions, and the discharge capacity (recovery capacity) of the 5th cycle was measured.
[0034]
Then, the remaining capacity rate and the capacity recovery rate were obtained and evaluated by the following formula.
[0035]
[Capacity remaining rate] = [Remaining capacity] / [Discharge capacity at 10th cycle before storage] × 100 (%)
[Capacity recovery rate] = [Recovery capacity] / [Discharge capacity at the 10th cycle before storage] × 100 (%)
Table 1 shows the capacity remaining rate, the capacity recovery rate, and the discharge capacity ratio of the 10th cycle before storage (the secondary battery of the comparative example is 100%) for each of the secondary batteries of the examples and comparative examples. In addition, the relationship between the addition rate of 2,4,6-triphenylpyrylium tetrafluoroborate or 4-methyl-2-phenyl-1-benzopyrylium tetrafluoroborate, the capacity remaining rate, and the capacity recovery rate is shown in FIG. 2 shows.
[0036]
In addition, the initial charge capacity and irreversible capacity (difference between charge capacity and discharge capacity) in charge / discharge tests are 2,4,6-triphenylpyrylium tetrafluoroborate or 4-methyl-2-phenyl-1 tetrafluoroborate. Changes in the addition rate of -benzopyrylium are shown in FIGS. Each value is shown as a change per unit weight of the positive electrode mixture.
[0037]
As is clear from Table 1 and FIGS. 1 and 2, the secondary batteries of Examples 1 to 5 have substantially the same battery capacity as that of the secondary battery of the comparative example, and the remaining capacity after high-temperature storage. It can be seen that the rate and the capacity recovery rate are large. From this result, it can be confirmed that the nonaqueous electrolyte secondary battery of the present invention has a large battery capacity and excellent high-temperature storage characteristics.
[0038]
[Table 1]
Figure 0004419247
[0039]
3 and 4, the irreversible capacity is increased by the addition of 2,4,6-triphenylpyrylium tetrafluoroborate or 4-methyl-2-phenyl-1-benzopyrylium tetrafluoroborate. Recognize. The increase in the irreversible capacity is considered to correspond to the increase in the protective coating on the surface of the negative electrode active material, and in order to suppress the reaction between the negative electrode in a charged state and the electrolytic solution, The battery is considered to be excellent in high temperature storage characteristics. In general, an increase in irreversible capacity causes a decrease in battery capacity. However, as is apparent from FIGS. 3 and 4, the secondary battery of the present invention is composed of 2,4,6-triphenylpyrylium tetrafluoroborate or 4-methyl-2-phenyl-1-benzopyrylium tetrafluoroborate. It can be seen that the initial charge capacity is increased by the addition, and this increase amount substantially corresponds to the increase amount of the irreversible capacity. By these actions, the nonaqueous electrolyte secondary battery of the present invention is considered to have a large battery capacity and excellent high-temperature storage characteristics.
[0040]
【The invention's effect】
The non-aqueous electrolyte secondary battery of the present invention includes a pyrium compound such as 2,4,6-triphenylpyrylium or 4-methyl-2-phenyl-1-benzopyrylium as a cation in the non-aqueous electrolyte. It is constituted by adding a salt. With such a configuration, a nonaqueous electrolyte secondary battery having a large capacity and excellent high-temperature storage characteristics is obtained.
[Brief description of the drawings]
[Fig. 1] Relationship between the addition rate of 2,4,6-triphenylpyrylium tetrafluoroborate, the residual capacity rate, and the capacity recovery rate [Fig. 2] 4-methyl-2-phenyl-1-benzopyric tetrafluoroborate Relationship between addition rate of lithium, remaining capacity rate, and recovery rate of capacity [Fig. 3] Change in initial charge capacity and irreversible capacity by addition of 2,4,6-triphenylpyrylium tetrafluoroborate [Fig. 4] Tetrafluoroborate Changes in initial charge capacity and irreversible capacity by addition of 4-methyl-2-phenyl-1-benzopyrylium

Claims (2)

リチウムイオンを吸蔵・放出可能な正極および負極と、リチウム塩を有機溶媒に溶解させた非水電解液とを含んでなる非水電解液二次電池であって、前記非水電解液は、2,4,6-トリフェニルピリリウム、4-メチル-2-フェニル-1-ベンゾピリリウムまたはそれらの誘導体を陽イオンとする塩からなるピリリウム化合物が添加されていることを特徴とする非水電解液二次電池。A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent, wherein the non-aqueous electrolyte is 2 , 4,6-Triphenylpyrylium, 4-methyl-2-phenyl-1-benzopyrylium or a pyrylium compound consisting of a salt of a derivative thereof as a cation Liquid secondary battery. ピリリウム化合物の添加率が、非水電解液を100重量%とした場合の0.1重量%以上1重量%以下であることを特徴とする請求項に記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1 , wherein the addition rate of the pyrylium compound is 0.1 wt% or more and 1 wt% or less when the nonaqueous electrolyte is 100 wt%.
JP2000030177A 2000-02-08 2000-02-08 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4419247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030177A JP4419247B2 (en) 2000-02-08 2000-02-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030177A JP4419247B2 (en) 2000-02-08 2000-02-08 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001223022A JP2001223022A (en) 2001-08-17
JP4419247B2 true JP4419247B2 (en) 2010-02-24

Family

ID=18555221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030177A Expired - Fee Related JP4419247B2 (en) 2000-02-08 2000-02-08 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4419247B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225375A (en) * 1984-04-23 1985-11-09 Showa Denko Kk Secondary battery
JPS6124176A (en) * 1984-07-13 1986-02-01 Showa Denko Kk Secondary cell
JPS62200718A (en) * 1986-02-28 1987-09-04 日本ケミコン株式会社 Electrolyte for electrolytic capacitor
JPH1021912A (en) * 1996-06-28 1998-01-23 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode
JP4066465B2 (en) * 1996-10-15 2008-03-26 宇部興産株式会社 Nonaqueous electrolyte secondary battery
JP4056117B2 (en) * 1997-12-17 2008-03-05 三洋電機株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2001223022A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
CN110612632B (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
EP2863468B1 (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4151060B2 (en) Non-aqueous secondary battery
JP4780833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US8029934B2 (en) Lithium secondary battery
JP5357517B2 (en) Lithium ion secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
CN110383563B (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP4417649B2 (en) Nonaqueous electrolyte secondary battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
JP2018085213A (en) Lithium secondary battery
JP5259996B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
JP5350849B2 (en) Lithium secondary battery
KR20190088333A (en) Electrode for solid electrolyte battery and solid electrolyte battery including the same
JP4565287B2 (en) Non-aqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2011096520A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP4419247B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees