JP4416621B2 - Method for polishing surface of electrophotographic photosensitive member and method for producing electrophotographic photosensitive member - Google Patents

Method for polishing surface of electrophotographic photosensitive member and method for producing electrophotographic photosensitive member Download PDF

Info

Publication number
JP4416621B2
JP4416621B2 JP2004294907A JP2004294907A JP4416621B2 JP 4416621 B2 JP4416621 B2 JP 4416621B2 JP 2004294907 A JP2004294907 A JP 2004294907A JP 2004294907 A JP2004294907 A JP 2004294907A JP 4416621 B2 JP4416621 B2 JP 4416621B2
Authority
JP
Japan
Prior art keywords
polishing
photosensitive member
electrophotographic photosensitive
magnetic powder
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004294907A
Other languages
Japanese (ja)
Other versions
JP2006106476A (en
JP2006106476A5 (en
Inventor
智仁 小澤
邦正 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004294907A priority Critical patent/JP4416621B2/en
Publication of JP2006106476A publication Critical patent/JP2006106476A/en
Publication of JP2006106476A5 publication Critical patent/JP2006106476A5/ja
Application granted granted Critical
Publication of JP4416621B2 publication Critical patent/JP4416621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

本発明は、複写機、プリンター、ファックス等の電子写真プロセスを利用した画像形成装置に適用可能なアモルファスシリコン系の光導電層を形成した電子写真感光体(以下、「a−Si感光体」という場合もある。)の表面の研磨方法および電子写真感光体の製造方法に関するものである。 The present invention is an electrophotographic photosensitive member (hereinafter referred to as “a-Si photosensitive member”) having an amorphous silicon photoconductive layer that can be applied to an image forming apparatus using an electrophotographic process such as a copying machine, a printer, or a fax machine. If also.) it relates to the preparation how the polishing method and the electrophotographic photosensitive member the surface of the.

従来、電子写真感光体に関して、電子写真感光体表面の層厚むらを制御した電子写真感光体の製造方法や、クリーニング性向上及び高湿環境下での画像流れ防止を目的とした電子写真感光体表面の微細形状を規定した技術等の研磨技術を用いた電子写真感光体の製造方法の提案がなされている。   Conventionally, regarding an electrophotographic photosensitive member, an electrophotographic photosensitive member manufacturing method in which the layer thickness unevenness of the surface of the electrophotographic photosensitive member is controlled, and an electrophotographic photosensitive member for the purpose of improving the cleaning property and preventing an image from flowing under a high humidity environment. Proposals have been made for a method for producing an electrophotographic photosensitive member using a polishing technique such as a technique for defining a fine surface shape.

中でも、表面にSiC層を有する電子写真感光体に研磨テープを圧接させることにより、電子写真感光体表面の層厚むらをÅオーダー(10-10mオーダー)で除去する研磨技術が開示されている(特許文献1を参照)。 In particular, there is disclosed a polishing technique for removing unevenness of the layer thickness on the surface of an electrophotographic photosensitive member on the order of 10 −10 m by bringing a polishing tape into pressure contact with the electrophotographic photosensitive member having a SiC layer on the surface. (See Patent Document 1).

また、10μm×10μmの範囲における表面粗さを研磨手段により制御した電子写真感光体の製造方法についても開示されている(特許文献2を参照)。
特公平07−77702号公報 特開2002−40697号公報
Also disclosed is a method for producing an electrophotographic photoreceptor in which the surface roughness in the range of 10 μm × 10 μm is controlled by a polishing means (see Patent Document 2).
Japanese Patent Publication No. 07-77702 JP 2002-40697 A

しかしながら、上述した従来の研磨テープを用いた電子写真感光体の製造方法においては、以下のような課題があった。   However, the above-described conventional method for producing an electrophotographic photosensitive member using an abrasive tape has the following problems.

まず、研磨テープを圧接させてa−Si感光体の表面を研磨した場合、研磨テープとa−Si感光体との摺擦面での摩擦熱により、砥粒を固定するための接着剤の役割を果たす樹脂成分が研磨テープからa−Si感光体に転写される場合があった。電子写真装置において、このような樹脂成分が付着した電子写真感光体を用いた場合、高湿環境下で樹脂成分の影響により電子写真感光体表面への水分の吸着による表面抵抗の低下とそれに伴って発生する画像流れ(高湿流れ)が発生する場合があった。また、電子写真感光体表面へと樹脂成分が転写させる際に、研磨時に発生した研磨残渣が樹脂成分中に混入して付着することにより、画像形成プロセス内において、電子写真感光体表面とクリーニングブレードとの摩擦抵抗の増加によるトルク上昇及び研磨残渣によるクリーニングブレードの損傷のために、クリーニング不良を生じる場合があった。   First, when the surface of the a-Si photosensitive member is polished by press-contacting the polishing tape, the role of the adhesive for fixing the abrasive grains by the frictional heat on the rubbing surface between the polishing tape and the a-Si photosensitive member. In some cases, the resin component fulfilling the above is transferred from the polishing tape to the a-Si photoconductor. In an electrophotographic apparatus, when an electrophotographic photosensitive member to which such a resin component is attached is used, a decrease in surface resistance due to the adsorption of moisture on the surface of the electrophotographic photosensitive member due to the influence of the resin component in a high humidity environment and accompanying this In some cases, an image flow (high humidity flow) occurs. In addition, when the resin component is transferred to the surface of the electrophotographic photosensitive member, the polishing residue generated during polishing is mixed and adhered into the resin component, so that the surface of the electrophotographic photosensitive member and the cleaning blade are included in the image forming process. Due to an increase in torque due to an increase in frictional resistance and damage to the cleaning blade due to polishing residue, cleaning failure may occur.

逆に、樹脂成分の電子写真感光体への転写を抑制するために、Tg(ガラス転移温度)の高い樹脂を用いた研磨テープの使用したり、また、摺擦面の冷却等を行ったりするなどの方法を取ると、研磨テープの変形量が減少するために、電子写真感光体と研磨テープとの接触面積の低下により研磨レートが低下して研磨処理の時間が伸びる場合があった。   On the contrary, in order to suppress the transfer of the resin component to the electrophotographic photosensitive member, a polishing tape using a resin having a high Tg (glass transition temperature) is used, or the rubbing surface is cooled. When the above method is used, the amount of deformation of the polishing tape decreases, and therefore the polishing rate may decrease due to the decrease in the contact area between the electrophotographic photosensitive member and the polishing tape, and the polishing process time may increase.

また、研磨テープによる研磨工程を長時間行うと、電子写真感光体表面に存在する異常成長部を研磨した時に発生しやすい大きな研磨残渣や表面に付着したダスト等が電子写真感光体と研磨テープとの研磨面に挟まれる確率が高くなるため電子写真感光体表面に研磨による傷が発生する場合があった。   In addition, if the polishing process with the polishing tape is performed for a long time, large polishing residues and dust adhering to the surface that are likely to occur when polishing abnormally grown portions existing on the surface of the electrophotographic photosensitive member are separated from the electrophotographic photosensitive member and the polishing tape. In some cases, the surface of the electrophotographic photosensitive member may be damaged by polishing because the probability of being sandwiched between the polished surfaces increases.

更に、使用済みの研磨テープは、砥粒の脱落及び樹脂成分の加圧、加熱による変形等が生じていることから再生利用が難しく、また研磨工程において多量の研磨テープを使用することから、電子写真感光体表面の研磨が製品のコストダウンの妨げになっていた。   In addition, the used abrasive tape is difficult to recycle because the abrasive grains fall off, the resin component is pressurized and deformed by heating, and a large amount of abrasive tape is used in the polishing process. Polishing the surface of the photographic photoreceptor has hindered cost reduction of the product.

更には、電子写真感光体の表面は微小な凹凸を有しており、このような表面を研磨テープにより研磨することで凸部が選択的に研磨され、これによって平らな研磨面を生じる。このため、研磨砥粒を変更しても電子写真感光体表面の良好な微小な凹凸形状が必ずしも得られなかった。更に、研磨テープによる研磨面が平面となってしまうために、加圧弾性ローラーから加えられる単位当りの圧力は研磨が進むにつれ減少する。これにより、研磨時間の増加に伴い研磨レートが低下するため、目的とする表面形状にするまでに多くの時間を要する場合があった。   Furthermore, the surface of the electrophotographic photosensitive member has minute irregularities, and the convex portions are selectively polished by polishing such a surface with a polishing tape, thereby producing a flat polished surface. For this reason, even if the abrasive grains were changed, a good fine uneven shape on the surface of the electrophotographic photosensitive member was not necessarily obtained. Furthermore, since the polishing surface by the polishing tape becomes flat, the pressure per unit applied from the pressure elastic roller decreases as polishing proceeds. As a result, the polishing rate decreases as the polishing time increases, and thus it may take a long time to achieve the target surface shape.

更には、研磨テープによる安定した研磨を実現するためには、安定して研磨可能な研磨装置が必須であり、電子写真感光体の長手方向での加圧及び研磨テープの張りの均一性、回転部の変心等の設計に高精度が求められるうえ、研磨装置の小型化による生産性の改善等も求められるため、要求を満たす研磨装置の設計が非常に難しかった。   Furthermore, in order to realize stable polishing with the polishing tape, a polishing apparatus capable of stable polishing is essential. The pressure in the longitudinal direction of the electrophotographic photosensitive member, the uniformity of the tension of the polishing tape, and the rotation In addition to the high accuracy required for the design of the center change, the improvement of productivity due to the miniaturization of the polishing apparatus and the like is also required. Therefore, it is very difficult to design a polishing apparatus that satisfies the requirements.

そこで、本発明の目的は、研磨テープを用いて研磨を行うことにより生じうる上述した課題の少なくとも1つを解決することが可能な電子写真感光体の表面の研磨方法等を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for polishing the surface of an electrophotographic photosensitive member that can solve at least one of the above-described problems that may occur by polishing using a polishing tape. .

上記目的を達成するため、本発明の電子写真感光体の表面の研磨方法は、基体及び該基体上に形成された光導電層を有し、該光導電層が非晶質材料で構成されている電子写真感光体の表面を研磨する方法において、砥粒及び該砥粒を固定するための接着剤である樹脂成分を有する研磨テープを該電子写真感光体の表面に圧接させて、該電子写真感光体の表面を研磨する研磨工程(i)と、該研磨工程(i)の後、磁性ローラーの外周面上に磁力で付着している磁性粉体を該電子写真感光体の表面に接触させ、該磁性ローラーを回転させて、該電子写真感光体の表面を研磨する研磨工程(ii)とを有し、該研磨工程(i)に要する時間が、全研磨工程に要する時間の40%以下であることを特徴とする。 In order to achieve the above object, a method for polishing a surface of an electrophotographic photoreceptor of the present invention comprises a substrate and a photoconductive layer formed on the substrate, and the photoconductive layer is composed of an amorphous material. In the method of polishing a surface of an electrophotographic photosensitive member, an abrasive tape having an abrasive grain and a resin component that is an adhesive for fixing the abrasive grain is brought into pressure contact with the surface of the electrophotographic photosensitive member, thereby A polishing step (i) for polishing the surface of the photoreceptor, and after the polishing step (i), a magnetic powder adhering to the outer peripheral surface of the magnetic roller by a magnetic force is brought into contact with the surface of the electrophotographic photoreceptor. the magnetic roller is rotated, have a polishing step of polishing the surface of the electrophotographic photosensitive member (ii), the time required for the polishing step (i) is less than 40% of the time required for the entire grinding process It is characterized by being.

本発明によれば、磁性粉体が磁性ローラーの外周面上に磁力で付着している磁性粉体によって電子写真感光体の表面が研磨されるため、研磨テープを用いて研磨を行うことにより生じうる上述のような問題を低減することが可能である。   According to the present invention, the surface of the electrophotographic photosensitive member is polished by the magnetic powder having the magnetic powder adhering to the outer peripheral surface of the magnetic roller by a magnetic force. It is possible to reduce the above-mentioned problems.

また、研磨テープによる研磨の後に、磁性粉体による研磨を行った場合、研磨テープから電子写真感光体に転写した樹脂成分を磁性粉体による研磨で除去できることから、研磨テープのみを用いて研磨を行う場合に比べて生じうる問題を軽減することができる。 Further, after the polishing by Migaku Ken tape, when performing polishing using magnetic powder, the transfer resin component from the polishing tape on the electrophotographic photosensitive member because it can be removed by polishing with magnetic powder, by using only polishing tape Problems that may occur compared to the case where polishing is performed can be reduced.

次に、本発明の実施形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

[電子写真感光体表面研磨装置]
図1(a)は、本発明の一実施形態による、磁性ローラー上の磁性粉体で電子写真感光体表面を研磨する研磨装置を示した模式的な概略断面図であり、図1(b)は、図1(a)の要部の詳細を示す模式的な概略断面図である。
[Electrophotographic photoconductor surface polishing equipment]
FIG. 1A is a schematic cross-sectional view showing a polishing apparatus for polishing the surface of an electrophotographic photosensitive member with magnetic powder on a magnetic roller according to an embodiment of the present invention, and FIG. These are typical schematic sectional drawings which show the detail of the principal part of Fig.1 (a).

図1(a)に示す研磨装置は、内部に磁性体を有する磁性ローラーであるマグネットローラー102を有している。このマグネットローラー102は、マグネットローラー容器104の内部に収容されている。マグネットローラー102は、表面に磁力で付着した磁性粉体103によって覆われている。電子写真感光体101とマグネットローラー102は不図示の回転機構に接続されており、それぞれ回転可能になっている。マグネットローラー容器104は可動台107に固定されている。可動台107は、移動機構108によって、電子写真感光体101に近づく方向へ、マグネットローラー102の表面の磁性粉体103が電子写真感光体(a−Si感光体)101に接する位置までベース109上を移動する。この研磨装置は、このようにして磁性粉体103を電子写真感光体101に接触させることで、電子写真感光体101の表面を磁性粉体103で研磨する。   The polishing apparatus shown in FIG. 1A has a magnet roller 102 that is a magnetic roller having a magnetic body therein. The magnet roller 102 is accommodated in the magnet roller container 104. The magnet roller 102 is covered with a magnetic powder 103 attached to the surface by magnetic force. The electrophotographic photosensitive member 101 and the magnet roller 102 are connected to a rotation mechanism (not shown) and can rotate. The magnet roller container 104 is fixed to the movable table 107. The movable table 107 is moved on the base 109 to a position where the magnetic powder 103 on the surface of the magnet roller 102 is in contact with the electrophotographic photosensitive member (a-Si photosensitive member) 101 in a direction approaching the electrophotographic photosensitive member 101 by the moving mechanism 108. To move. This polishing apparatus polishes the surface of the electrophotographic photosensitive member 101 with the magnetic powder 103 by bringing the magnetic powder 103 into contact with the electrophotographic photosensitive member 101 in this manner.

磁性粉体103は、マグネットローラー102内部の磁性体によってブラシ状に形成される。電子写真感光体101の表面をそのブラシ状の磁性粉体103で研磨することで、研磨時に発生した研磨残渣及び研磨前、研磨中に付着したダスト等を研磨面から除去することにより、研磨傷を抑制することが可能となる。   The magnetic powder 103 is formed in a brush shape by a magnetic body inside the magnet roller 102. By polishing the surface of the electrophotographic photosensitive member 101 with the brush-like magnetic powder 103, the polishing residue generated during polishing and the dust adhering before and during polishing are removed from the polishing surface, thereby causing polishing scratches. Can be suppressed.

マグネットローラー102内部の磁性体は、通常のフェライト磁石等の金属や、プラスティックマグネット等の磁性体を円筒状に形成したものであり、マグネットローラー上に良好なブラシ状の磁性粉体を形成するためには多極磁性体を用いることが好ましい。   The magnetic body inside the magnet roller 102 is formed by forming a metal such as a normal ferrite magnet or a magnetic body such as a plastic magnet into a cylindrical shape, and forms a good brush-like magnetic powder on the magnet roller. It is preferable to use a multipolar magnetic material.

また、磁性体の磁束線密度が低いものを用いた場合、マグネットローラー102の表面で生じる磁性粉体103の穂立ち部の流動性が高くなるため、電子写真感光体101の表面の微細な形状の凹部へと選択的に入り易くなり、研磨後の微細な形状は丸みを有する形状となる。逆に、磁性体の磁束線密度が高いものを用いた場合、穂立ち部の流動性が低下するために微細な形状の中で高い凸部が研磨されやすくなり、研磨後の微細な形状は凸部が平坦化された形状となる。よって、磁性体の磁束線密度は、電子写真感光体101の表面の形状等によって適宜選択する必要があるが、磁束線密度が低くすぎる場合には磁性粉体103をマグネットローラー102の表面に維持できなくなることから、マグネットローラー102の表面で300G(ガウス)以上とすることができるような磁性体を使用することが好ましい。   In addition, when a magnetic material having a low magnetic flux line density is used, the flowability of the head of the magnetic powder 103 generated on the surface of the magnet roller 102 is increased, so that the surface of the electrophotographic photosensitive member 101 has a fine shape. It becomes easy to selectively enter the concave portion, and the fine shape after polishing becomes a round shape. On the other hand, when a magnetic material with a high magnetic flux line density is used, the fluidity of the head portion is reduced, so that the high convex portion is easily polished in the fine shape, and the fine shape after polishing is The convex portion has a flattened shape. Therefore, the magnetic flux line density of the magnetic material needs to be appropriately selected depending on the shape of the surface of the electrophotographic photosensitive member 101. However, if the magnetic flux line density is too low, the magnetic powder 103 is maintained on the surface of the magnet roller 102. Since it becomes impossible to do so, it is preferable to use a magnetic material that can be 300 G (Gauss) or more on the surface of the magnet roller 102.

図1(b)に示すように、マグネットローラー102の表面を覆う磁性粉体103の層厚は、マグネットローラー102と板状の磁性体規制ブレード105との間隔(SB距離)により制御される。磁性粉体層の電子写真感光体101上におけるニップ幅(電子写真感光体101と磁性粉体103との接触部における、電子写真感光体101の周方向の幅)は、研磨レートや研磨後の形状に影響を与えるため、ニップ幅を安定して制御することにより安定性及び再現性の高い研磨が可能となる。ニップ幅の制御手段として、図1の研磨装置では、上記のSB距離、および電子写真感光体101とマグネットローラー102との間隔であるSD距離を制御することで容易に実現できる。SD距離は、図1に示す研磨装置においては、マグネットローラー容器104に接続されたマイクロメーター106により容易に調整が可能である。ニップ幅は、広げると研磨レートが上がり、狭めると研磨レートが下がることから、SB距離及びSD距離は適宜選択する必要がある。マグネットローラー102と電子写真感光体101との接触を防ぐ観点から、SB距離及びSD距離は100μm以上にすることが好ましい一方、ニップ幅を広げていくと研磨レートが飽和することからSB距離は1500μm以下にすることが好ましい。   As shown in FIG. 1B, the layer thickness of the magnetic powder 103 covering the surface of the magnet roller 102 is controlled by the interval (SB distance) between the magnet roller 102 and the plate-like magnetic body regulating blade 105. The nip width of the magnetic powder layer on the electrophotographic photosensitive member 101 (the width in the circumferential direction of the electrophotographic photosensitive member 101 at the contact portion between the electrophotographic photosensitive member 101 and the magnetic powder 103) is determined by the polishing rate or after polishing. Since the shape is affected, stable and reproducible polishing is possible by stably controlling the nip width. As the nip width control means, the polishing apparatus of FIG. 1 can be easily realized by controlling the SB distance and the SD distance that is the distance between the electrophotographic photosensitive member 101 and the magnet roller 102. In the polishing apparatus shown in FIG. 1, the SD distance can be easily adjusted by the micrometer 106 connected to the magnet roller container 104. When the nip width is widened, the polishing rate increases, and when it is narrowed, the polishing rate decreases. Therefore, the SB distance and the SD distance must be appropriately selected. From the viewpoint of preventing the contact between the magnet roller 102 and the electrophotographic photosensitive member 101, the SB distance and the SD distance are preferably set to 100 μm or more. On the other hand, the polishing rate is saturated when the nip width is widened, so the SB distance is 1500 μm. The following is preferable.

上述したように、マグネットローラー102の外周は、マグネットローラー102が有する磁性体の磁力により付着した磁性粉体103で覆われている。この磁性粉体103としては、一般にフェライト、マグネタイト等の磁性粉体や、周知の磁性トナーのキャリアを使用することが可能である。磁性粉体103の表面が樹脂膜等でコーティングされていると、電子写真感光体101と磁性粉体103との摩擦が低下して研磨レートが低下するため、磁性粉体103には表面が樹脂膜等でコーティングされていない磁性粉体を使用することが好ましい。   As described above, the outer periphery of the magnet roller 102 is covered with the magnetic powder 103 attached by the magnetic force of the magnetic material included in the magnet roller 102. As the magnetic powder 103, it is generally possible to use a magnetic powder such as ferrite or magnetite, or a known magnetic toner carrier. If the surface of the magnetic powder 103 is coated with a resin film or the like, the friction between the electrophotographic photosensitive member 101 and the magnetic powder 103 is reduced and the polishing rate is reduced. It is preferable to use magnetic powder that is not coated with a film or the like.

また、磁性粉体103の形状は、焼結体等の球形の磁性粉体と焼結体を粉砕したもの等の不定形の磁性粉体とに大きく分けられる。球形の磁性粉体よりも不定形の磁性粉体の方が電子写真感光体101の表面と磁性粉体103との摩擦抵抗が大きくなるため研磨レートが高くなる。このことから、磁性粉体103の形状は研磨レート等に応じて適宜選択する必要がある。   The shape of the magnetic powder 103 is roughly divided into a spherical magnetic powder such as a sintered body and an irregular magnetic powder such as a pulverized sintered body. The amorphous magnetic powder has a higher polishing rate because the frictional resistance between the surface of the electrophotographic photosensitive member 101 and the magnetic powder 103 is larger than the spherical magnetic powder. For this reason, the shape of the magnetic powder 103 needs to be appropriately selected according to the polishing rate and the like.

更に、磁性粉体103の粒径は、電子写真感光体101の研磨前の表面形状や、研磨後に目標とする表面形状等によって適宜選択する必要がある。これについては図2〜6を用いて説明する。   Furthermore, the particle size of the magnetic powder 103 needs to be appropriately selected depending on the surface shape of the electrophotographic photoreceptor 101 before polishing, the target surface shape after polishing, and the like. This will be described with reference to FIGS.

図2,図4および図6は、電子写真感光体表面を10μm×10μm視野で観察したAFM像の一例を示す図である。図2のAFM像では、1〜2μm程度の幅の山部とサブμm程度の幅の谷部とが見られる。このような微細な表面形状を有するa−Si感光体101の表面を、図3に示すように粒径が比較的小さい粒度分布(約0.3〜1μm)を有する磁性粉体103で研磨すると、磁性粉体103の粒径が谷部の幅より細かいために谷部も研磨できるため、研磨後のa−Si感光体101の表面形状は図4のAFM像に示すような丸みを帯びた形状となる。   2, 4 and 6 are views showing an example of an AFM image obtained by observing the surface of the electrophotographic photosensitive member with a 10 μm × 10 μm field of view. In the AFM image of FIG. 2, a crest having a width of about 1 to 2 μm and a trough having a width of about sub μm can be seen. When the surface of the a-Si photosensitive member 101 having such a fine surface shape is polished with a magnetic powder 103 having a relatively small particle size distribution (about 0.3 to 1 μm) as shown in FIG. Since the particle diameter of the magnetic powder 103 is smaller than the width of the valley portion, the valley portion can also be polished. Therefore, the surface shape of the a-Si photosensitive member 101 after the polishing is rounded as shown in the AFM image of FIG. It becomes a shape.

逆に、a−Si感光体101の表面を、図5に示すように粒径が比較的大きい粒度分布(約10〜60μm)を有する磁性粉体103で研磨すると、磁性粉体103の粒径が谷部の幅よりも大きく、谷部には磁性粉体103が入れないために、山部が選択的に研磨される。そのため、研磨後のa−Si感光体101の表面形状は図6のAFM像に示すような山部が平坦な形状となる。よって、電子写真感光体101の研磨前の表面形状や、研磨後に目標とする表面形状等によって磁性粉体の粒径を適宜選択する必要があるが、研磨による電子写真感光体101の加工ダメージを少なくする観点から粒径が100μm以下の磁性粉体103を用いることが好ましい。   Conversely, when the surface of the a-Si photosensitive member 101 is polished with the magnetic powder 103 having a relatively large particle size distribution (about 10 to 60 μm) as shown in FIG. Is larger than the width of the valley, and the magnetic powder 103 does not enter the valley, so that the peak is selectively polished. Therefore, the surface shape of the a-Si photosensitive member 101 after polishing has a flat shape as shown in the AFM image of FIG. Therefore, it is necessary to appropriately select the particle size of the magnetic powder according to the surface shape of the electrophotographic photosensitive member 101 before polishing, the target surface shape after polishing, and the like. From the viewpoint of reducing, it is preferable to use the magnetic powder 103 having a particle size of 100 μm or less.

本実施形態の研磨装置は、磁性粉体103による研磨の際、電子写真感光体101を回転させてその表面を研磨することにより、電子写真感光体101の外周面を均一に研磨することが可能である。このときの電子写真感光体101の回転数は、回転数を下げると電子写真感光体101の表面の微細な凹部を選択的に研磨し、かつ研磨レートも低下する傾向が見られ、回転数を上げていくと凸部が研磨されやすく、かつ研磨レートも向上する傾向が見られるため、研磨前後の電子写真感光体101の表面形状、研磨レート及び研磨量によって適宜選択する必要があるが、安定した研磨を行うためには10〜500rpmとすることが好ましい。   The polishing apparatus of this embodiment can uniformly polish the outer peripheral surface of the electrophotographic photosensitive member 101 by rotating the electrophotographic photosensitive member 101 and polishing the surface when polishing with the magnetic powder 103. It is. The rotational speed of the electrophotographic photosensitive member 101 at this time tends to selectively polish fine recesses on the surface of the electrophotographic photosensitive member 101 and lower the polishing rate when the rotational speed is lowered. Since the convex portion is easily polished and the polishing rate tends to be improved as it is raised, it is necessary to select appropriately depending on the surface shape, polishing rate, and polishing amount of the electrophotographic photoreceptor 101 before and after polishing. In order to perform the polished, it is preferable to set to 10 to 500 rpm.

また、電子写真感光体101の表面を研磨する際に、マグネットローラー102に吸着されている磁性粉体103を絶えず入れ替えることにより安定した研磨を行うことが可能となるため、マグネットローラー102も回転させることが好ましい。このとき、電子写真感光体101の表面と磁性粉体103とが接する位置において、電子写真感光体101の回転方向とマグネットローラー102の回転方向とが同一方向であるよりも逆方向である方が研磨レートが向上することから、マグネットローラー102の回転方向は図1(a)に示すように電子写真感光体101の回転方向とは逆方向であることが研磨時間短縮の点から好ましい。   Further, when the surface of the electrophotographic photosensitive member 101 is polished, it is possible to perform stable polishing by constantly replacing the magnetic powder 103 adsorbed on the magnet roller 102, so that the magnet roller 102 is also rotated. It is preferable. At this time, at the position where the surface of the electrophotographic photosensitive member 101 and the magnetic powder 103 are in contact, the rotation direction of the electrophotographic photosensitive member 101 and the rotation direction of the magnet roller 102 are opposite to each other than the same direction. Since the polishing rate is improved, the rotation direction of the magnet roller 102 is preferably opposite to the rotation direction of the electrophotographic photosensitive member 101 as shown in FIG.

図7は、本実施形態の研磨装置の一変形例を示す図である。さらに研磨レートを向上させるには、図7に示すように1つの電子写真感光体201に対して複数の研磨ユニットを備え、複数のマグネットローラー202で電子写真感光体201の表面の研磨することが有効である。図7の研磨装置のように2本のマグネットローラー202を使用することで、図1の研磨装置と比べ約2倍の研磨レートが得られ、研磨後の形状は図1で示す研磨装置で研磨した時と同等の表面形状が得られる。   FIG. 7 is a view showing a modification of the polishing apparatus of the present embodiment. In order to further improve the polishing rate, a plurality of polishing units are provided for one electrophotographic photosensitive member 201 as shown in FIG. 7, and the surface of the electrophotographic photosensitive member 201 is polished by a plurality of magnet rollers 202. It is valid. By using two magnet rollers 202 as in the polishing apparatus of FIG. 7, a polishing rate approximately twice that of the polishing apparatus of FIG. 1 can be obtained, and the shape after polishing is polished by the polishing apparatus shown in FIG. A surface shape equivalent to that obtained is obtained.

なお、図7において符号201〜209を参照して示す研磨装置の各構成は、図1において符号101〜109を参照して示した各構成と同様であるので、それらに関する詳しい説明は省略する。   In addition, since each structure of the grinding | polishing apparatus shown with reference to 201-209 in FIG. 7 is the same as each structure shown with reference to 101-109 in FIG. 1, the detailed description regarding them is abbreviate | omitted.

ただし、図7に示す研磨装置においては、目的とする研磨後の表面形状を得るために、2つの研磨ユニットにおいてそれぞれ使用される磁性粉体203の材質、形状、粒度分布及び粒径、マグネットローラー202内部の磁性体及び磁束線密度、マグネットローラー202及び電子写真感光体201の回転数、SD距離、SB距離等のパラメーターの1つ以上を互いに異なる値に設定して、電子写真感光体101の表面を研磨しても良い。   However, in the polishing apparatus shown in FIG. 7, in order to obtain the target surface shape after polishing, the material, shape, particle size distribution and particle size of the magnetic powder 203 used in each of the two polishing units, the magnet roller One or more parameters such as the magnetic body and magnetic flux line density in 202, the rotational speed of the magnet roller 202 and the electrophotographic photosensitive member 201, the SD distance, and the SB distance are set to different values, and the electrophotographic photosensitive member 101 The surface may be polished.

図8は、本実施形態の研磨装置の他の変形例を模式的に示す概略断面図である。図8に示す研磨装置は、磁性粉体303を用いた研磨ユニットと、研磨テープ310を用いた研磨ユニットとを有している。磁性粉体303を用いた研磨ユニット(符号302〜309)は、図1および図7に示した研磨装置と同様であるので、ここではその研磨ユニットに関する説明は省略し、研磨テープ310を用いた研磨ユニットについて説明する。   FIG. 8 is a schematic cross-sectional view schematically showing another modification of the polishing apparatus of the present embodiment. The polishing apparatus shown in FIG. 8 has a polishing unit using magnetic powder 303 and a polishing unit using polishing tape 310. The polishing units (reference numerals 302 to 309) using the magnetic powder 303 are the same as those of the polishing apparatus shown in FIGS. 1 and 7, and therefore the description of the polishing unit is omitted here and the polishing tape 310 is used. The polishing unit will be described.

研磨テープ310を用いた研磨ユニットは、内部に圧接部材としての加圧弾性ローラー311が接続されている加圧弾性ローラー容器312を有している。研磨テープ310は、不図示の回転機構に接続された定量送り出しローラー314とキャプスタンローラー315とによって送り出し量が制御されており、送り出しロール316から送り出された研磨テープ310は、搬送経路支持棒313を経由して巻き取りロール317によって巻き取られる構成となっている。加圧弾性ローラー容器312は、移動機構318によって電子写真感光体301の方向へと移動することによって、電子写真感光体301の表面に研磨テープ310を押し当てて研磨を行うように構成されている。図8に示す研磨装置のように、磁性粉体303を備えたマグネットローラー302と研磨テープ310とを併用して研磨することにより、磁性粉体303のみで研磨するよりも更に広い範囲で電子写真感光体301の表面形状を変化させることが可能となる。   The polishing unit using the polishing tape 310 has a pressure elastic roller container 312 to which a pressure elastic roller 311 as a pressure contact member is connected. The polishing tape 310 is controlled in its feed amount by a fixed feed roller 314 and a capstan roller 315 connected to a rotation mechanism (not shown), and the polishing tape 310 fed from the feed roll 316 is transported by the conveyance path support bar 313. It is the structure wound up by the winding roll 317 via. The pressure elastic roller container 312 is configured to perform polishing by pressing the polishing tape 310 against the surface of the electrophotographic photosensitive member 301 by moving in the direction of the electrophotographic photosensitive member 301 by the moving mechanism 318. . As in the polishing apparatus shown in FIG. 8, by using a magnet roller 302 having a magnetic powder 303 and the polishing tape 310 in combination, the electrophotography can be performed in a wider range than polishing with only the magnetic powder 303. The surface shape of the photoreceptor 301 can be changed.

図8に示す研磨装置には、磁性粉体303を用いた研磨ユニットと研磨テープ310を用いた研磨ユニットとが各1つずつ設置されているが、各々の研磨ユニット数は、研磨レートや、目的とする電子写真感光体表面の形状等により適宜決定すればよい。   In the polishing apparatus shown in FIG. 8, one polishing unit using the magnetic powder 303 and one polishing unit using the polishing tape 310 are installed one by one. What is necessary is just to determine suitably by the shape etc. of the surface of the target electrophotographic photoreceptor.

研磨テープ310は、通常はラッピングテープと呼ばれるものが好ましく、それに含まれる砥粒としては炭化珪素(SiC)、酸化アルミニウム(Al23)、α酸化鉄(Fe23)、酸化クロム(Cr23)、ダイヤモンド(C)、シリカ(SiO2)、炭酸バリウム(BaCO3)等が用いられる。また、砥粒の粒径は、細かすぎると研磨レートが低下し、粗すぎると電子写真感光体301の表面への加工ダメージが大きくなることから、0.1〜100μm、更には1〜40μmが好適である。 The abrasive tape 310 is preferably a so-called lapping tape, and the abrasive grains contained in the abrasive tape 310 are silicon carbide (SiC), aluminum oxide (Al 2 O 3 ), α-iron oxide (Fe 2 O 3 ), chromium oxide ( Cr 2 O 3 ), diamond (C), silica (SiO 2 ), barium carbonate (BaCO 3 ) and the like are used. Further, if the abrasive grain size is too fine, the polishing rate decreases, and if it is too coarse, the processing damage to the surface of the electrophotographic photosensitive member 301 increases, so 0.1 to 100 μm, more preferably 1 to 40 μm. Is preferred.

研磨テープ310には、一般によく知られた塗布方法、例えばドクターブレード(ナイフエッジ)コート法、デップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法等により、砥粒を含む接着剤を塗布することが可能である。   For the polishing tape 310, generally well-known coating methods such as a doctor blade (knife edge) coating method, a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, and an extrusion coating method are used. It is possible to apply an adhesive containing abrasive grains.

研磨テープの送り速度は、研磨レート、研磨傷、処理コスト、摩擦による発熱等を考慮しながら適宜決定すれば良いが、1〜300mm/min、更には10〜100mm/minにすることが好ましい。   The feed rate of the polishing tape may be appropriately determined in consideration of the polishing rate, polishing scratches, processing cost, heat generated by friction, etc., but is preferably 1 to 300 mm / min, more preferably 10 to 100 mm / min.

加圧弾性ローラー311は、芯金上に可撓性部材としてのゴムを形成することにより作成される。このゴムに用いる材質としては、ネオプレン(登録商標)ゴム、シリコーンゴム等の材質が挙げられる。JISゴム硬度が高くなると研磨レートは向上するが徐々に飽和していくため、加圧弾性ローラー311のゴムにはJISゴム硬度が20〜90程度のものを用いるのが好ましい。   The pressure elastic roller 311 is created by forming rubber as a flexible member on a cored bar. Examples of the material used for the rubber include neoprene (registered trademark) rubber and silicone rubber. As the JIS rubber hardness increases, the polishing rate improves, but gradually saturates. Therefore, it is preferable to use the pressure elastic roller 311 having a JIS rubber hardness of about 20 to 90.

また、加圧弾性ローラー311の形状は、感光体301の母線方向に均一な処理を行うために中央部の直径が両端部より太いものが好ましく、直径差が0.01〜0.6mm、さらには0.02〜0.4mmが好適である。   In addition, the shape of the pressure elastic roller 311 is preferably such that the diameter of the central part is larger than that of both ends in order to perform uniform processing in the generatrix direction of the photoreceptor 301, and the diameter difference is 0.01 to 0.6 mm. Is preferably 0.02 to 0.4 mm.

更に、電子写真感光体301を研磨する際に、回転する電子写真感光体301への加圧弾性ローラー311の押し当て圧力を9.8×103〜2.0×106N/m2にすることが好ましく、4.9×104〜9.8×105N/m2にすることがより好ましい。押し当て圧力が低すぎると研磨レートの低下につながり、逆に、高すぎると研磨面での発熱により研磨テープ310の樹脂成分が多量に電子写真感光体301の表面へと転写されてしまうためである。 Further, when the electrophotographic photosensitive member 301 is polished, the pressing pressure of the pressure elastic roller 311 to the rotating electrophotographic photosensitive member 301 is 9.8 × 10 3 to 2.0 × 10 6 N / m 2 . It is preferable to make it 4.9 × 10 4 to 9.8 × 10 5 N / m 2 . If the pressing pressure is too low, the polishing rate is lowered. On the other hand, if the pressing pressure is too high, a large amount of the resin component of the polishing tape 310 is transferred to the surface of the electrophotographic photosensitive member 301 due to heat generated on the polishing surface. is there.

電子写真感光体301と研磨テープ310とが接する研磨面において、摩擦熱による研磨テープ310の樹脂成分の電子写真感光体301への転写及び研磨テープ310からの砥粒の脱落等を防ぐために、研磨面を水や冷風等で冷却した方が好ましい。研磨面の冷却方法としては、研磨面を直接冷却しても良いし、加圧弾性ローラー表面に冷却手段を接触させても良いし、電子写真感光体301の内部を冷却しても良い。   In order to prevent transfer of the resin component of the polishing tape 310 to the electrophotographic photosensitive member 301 due to frictional heat and dropping off of the abrasive grains from the polishing tape 310 on the polishing surface where the electrophotographic photosensitive member 301 and the polishing tape 310 are in contact with each other. It is preferable to cool the surface with water or cold air. As a method for cooling the polishing surface, the polishing surface may be directly cooled, a cooling means may be brought into contact with the surface of the pressure elastic roller, or the inside of the electrophotographic photosensitive member 301 may be cooled.

図8に示す研磨装置のように、磁性粉体303を用いた研磨ユニットと研磨テープ310を用いた研磨ユニットとを両方備える場合には、磁性粉体303で研磨を行った後に研磨テープ310で研磨を行っても良いし、逆に、研磨テープ310で研磨を行った後に磁性粉体303で研磨を行っても良いし、更には、磁性粉体303と研磨テープ310とで同時に研磨を行っても良い。   When both a polishing unit using the magnetic powder 303 and a polishing unit using the polishing tape 310 are provided as in the polishing apparatus shown in FIG. 8, the polishing tape 310 is used after polishing with the magnetic powder 303. Polishing may be performed, or conversely, polishing may be performed with the magnetic powder 303 after polishing with the polishing tape 310, and further, polishing may be performed simultaneously with the magnetic powder 303 and the polishing tape 310. May be.

また、図1及び図9に示す研磨装置のように、磁性粉体を用いた研磨装置と研磨テープを用いた研磨装置とが別々の装置であっても良いが、研磨時間の短縮、作業性の向上の面から、図8に示す研磨装置のように磁性粉体303及び研磨テープ310の両方を備える研磨装置の方がより好ましい。なお、図9に示す研磨装置(符号410〜419)は、図8に示した研磨装置のうち研磨テープを用いた研磨ユニットのみで構成されているものであり、これに関する詳しい説明は省略する。   Further, as in the polishing apparatus shown in FIGS. 1 and 9, the polishing apparatus using magnetic powder and the polishing apparatus using a polishing tape may be separate apparatuses, but the polishing time is shortened and workability is improved. From the standpoint of improvement, a polishing apparatus provided with both the magnetic powder 303 and the polishing tape 310 as in the polishing apparatus shown in FIG. 8 is more preferable. The polishing apparatus (reference numerals 410 to 419) shown in FIG. 9 is composed only of a polishing unit using a polishing tape in the polishing apparatus shown in FIG. 8, and detailed description thereof will be omitted.

図8に示す研磨装置によれば、磁性粉体303を用いて研磨した後に研磨テープ310を用いて研磨することにより、電子写真感光体301に目的の表面形状を作りだすために必要な時間が短縮可能であるとともに、研磨テープ310の使用量も抑えられることからコストダウンにも繋がる。   According to the polishing apparatus shown in FIG. 8, the time necessary for producing the desired surface shape on the electrophotographic photosensitive member 301 is shortened by polishing using the magnetic powder 303 and then using the polishing tape 310. This is possible, and the amount of the polishing tape 310 used can be reduced, leading to cost reduction.

また、研磨テープ310を用いて研磨した後に磁性粉体303を用いて研磨することにより、上記のような研磨時間の短縮及びコストダウンの効果に加え、研磨テープ310で研磨した際に電子写真感光体へと付着した樹脂成分及び研磨残渣を磁性粉体303による研磨で除去することが可能となるため、クリーニング不良及び高湿環境下での「高湿流れ」を抑制することが可能となる。   Further, by polishing with the magnetic powder 303 after polishing with the polishing tape 310, in addition to the effect of shortening the polishing time and reducing the cost as described above, the electrophotographic photosensitive when the polishing with the polishing tape 310 is performed. Since the resin component and the polishing residue adhering to the body can be removed by polishing with the magnetic powder 303, it becomes possible to suppress cleaning failure and “high humidity flow” in a high humidity environment.

更に、磁性粉体303と研磨テープ310とを併用して同時に研磨することにより、研磨テープ310で研磨した際に付着する樹脂成分及び研磨残渣を直ぐに除去することができるため、上記のように研磨時間の短縮、コストダウン、クリーニング不良および「高湿流れ」の抑制の効果に加え、研磨傷を抑制することが可能となる。   Furthermore, since the magnetic powder 303 and the polishing tape 310 are used together and polished simultaneously, the resin component and polishing residue adhering when the polishing is performed with the polishing tape 310 can be immediately removed. In addition to the effects of shortening time, cost reduction, poor cleaning, and “high humidity flow”, it is possible to suppress polishing scratches.

本発明において、研磨テープ310で研磨を行った後に磁性粉体303で研磨を行い、且つ研磨テープ310を用いた研磨工程に要する時間を全研磨工程に要する時間の40%以下にすることで電子写真感光体を研磨することが、より好ましい。これは、磁性粉体303を用いた研磨工程のみで電子写真感光体表面を研磨した時、研磨初期に磁性粉体303が異常成長部の周囲のみを研磨してしまう場合があり、その結果、ごく希ではあるが、異常成長部が脱落し、その脱落部分が白ポチとして画像に現れる場合があった。しかし、このような構成とすることで、研磨初期に研磨テープ310を用いた研磨工程により電子写真感光体表面の異常成長部を平坦化でき、更にその後に、磁性粉体を用いた研磨工程により電子写真感光体の表面形状を制御することが可能となるため、更に安定して電子写真感光体表面を研磨することが可能となる。このとき、研磨テープ310を用いた研磨工程の時間を全研磨工程の40%より長い時間とすると、電子写真感光体301と研磨テープ310との研磨面に、異常成長部を研磨した時に発生しやすい大きな研磨残渣や、研磨途中で電子写真感光体の表面に付着したダスト等が挟まれる確率が高くなるため、電子写真感光体に研磨による傷が発生する場合があるため、研磨テープ310を用いた研磨工程の時間を全研磨工程の40%以下とすることが好ましい。 In the present invention, the polishing is performed with the magnetic powder 303 after the polishing with the polishing tape 310, and the time required for the polishing process using the polishing tape 310 is reduced to 40% or less of the time required for the entire polishing process. It is more preferable to polish the photographic photoreceptor. This is because when the electrophotographic photosensitive member surface is polished only by the polishing step using the magnetic powder 303, the magnetic powder 303 may polish only the periphery of the abnormally grown portion in the initial stage of polishing. Although it is very rare, the abnormally grown part dropped out, and the dropped part sometimes appeared in the image as a white spot. However, by adopting such a configuration, the abnormally grown portion on the surface of the electrophotographic photosensitive member can be flattened by a polishing process using the polishing tape 310 in the initial stage of polishing, and then, by a polishing process using magnetic powder. Since the surface shape of the electrophotographic photosensitive member can be controlled, the surface of the electrophotographic photosensitive member can be more stably polished. At this time, if the time of the polishing process using the polishing tape 310 is longer than 40% of the total polishing process, it occurs when the abnormally grown portion is polished on the polishing surface of the electrophotographic photoreceptor 301 and the polishing tape 310. Since there is a high probability that large polishing residues that are easy to grind and dust adhered to the surface of the electrophotographic photosensitive member during the polishing will be pinched, the electrophotographic photosensitive member may be damaged by polishing. It is preferable to set the polishing process time to 40% or less of the entire polishing process.

[電子写真感光体]
本発明に用いられる電子写真感光体は、基体上に少なくとも非晶質材料で構成された光導電層を有することを特徴としている。図10に、本発明に好適な電子写真感光体の一実施形態としてa−Si感光体の模式的な概略断面図を示す。
[Electrophotographic photoreceptor]
The electrophotographic photosensitive member used in the present invention is characterized by having a photoconductive layer composed of at least an amorphous material on a substrate. FIG. 10 is a schematic cross-sectional view of an a-Si photosensitive member as an embodiment of an electrophotographic photosensitive member suitable for the present invention.

図10(a)に示す電子写真用感光体1100は、円筒状基体1101の上に、水素原子またはハロゲン原子を構成要素として含むアモルファスシリコン(以下「a−Si:H,X」と表記する。)を有する光導電性を有する光導電層1102が設けられている。   An electrophotographic photoreceptor 1100 shown in FIG. 10A is expressed as amorphous silicon (hereinafter, “a-Si: H, X”) containing a hydrogen atom or a halogen atom as a constituent element on a cylindrical substrate 1101. And a photoconductive layer 1102 having photoconductivity.

図10(b)に示す電子写真用感光体1100は、円筒状基体1101の上に、a−Si:H,Xからなり光導電性を有する光導電層1102と、アモルファスシリコン系(又はアモルファス炭素系)表面層1103とが設けられて構成されている。   An electrophotographic photoreceptor 1100 shown in FIG. 10B includes a photoconductive layer 1102 made of a-Si: H, X and having photoconductivity on a cylindrical substrate 1101, and an amorphous silicon (or amorphous carbon). System) surface layer 1103 is provided.

図10(c)に示す電子写真用感光体1100は、円筒状基体1101の上に、アモルファスシリコン系電荷注入阻止層1104と、a−Si:H,Xからなり光導電性を有する光導電層1102と、アモルファスシリコン系(又はアモルファス炭素系)表面層1103とが設けられて構成されている。光導電層1102と表面層1103との界面に関しては、連続的に変化させ界面反射を抑制する界面制御を施しても良い。   An electrophotographic photoreceptor 1100 shown in FIG. 10C includes an amorphous silicon-based charge injection blocking layer 1104 and a photoconductive layer made of a-Si: H, X and having photoconductivity on a cylindrical substrate 1101. 1102 and an amorphous silicon (or amorphous carbon) surface layer 1103 are provided. The interface between the photoconductive layer 1102 and the surface layer 1103 may be subjected to interface control that continuously changes and suppresses interface reflection.

図10(d)に示す電子写真用感光体1100は、円筒状基体1101の上に、光導電層1102が設けられている。この光導電層1102はa−Si:H,Xからなる電荷発生層1105及び電荷輸送層1106からなり、その上にアモルファスシリコン系(又はアモルファス炭素系)表面層1103が設けられている。電荷発生層1105と表面層1104との界面に関しては、連続的に変化させ界面反射を抑制する界面制御を施しても良い。   An electrophotographic photoreceptor 1100 shown in FIG. 10D is provided with a photoconductive layer 1102 on a cylindrical substrate 1101. The photoconductive layer 1102 includes a charge generation layer 1105 and a charge transport layer 1106 made of a-Si: H, X, and an amorphous silicon (or amorphous carbon) surface layer 1103 is provided thereon. The interface between the charge generation layer 1105 and the surface layer 1104 may be continuously changed to perform interface control that suppresses interface reflection.

本実施形態における電子写真感光体1100の表面の研磨は、図10(b)、図10(c)および図10(d)のように表面層1103まで形成した後に行っても良い。あるいは、図10(a)のように光導電層1102まで形成した後に表面の研磨を行い、その研磨後に光導電層1102上に表面層1103を形成しても良い。   The surface of the electrophotographic photosensitive member 1100 in this embodiment may be polished after the surface layer 1103 is formed as shown in FIGS. 10B, 10C, and 10D. Alternatively, as shown in FIG. 10A, the surface may be polished after forming the photoconductive layer 1102, and the surface layer 1103 may be formed on the photoconductive layer 1102 after the polishing.

[電子写真感光体製造装置]
上述してきたa−Si感光体は、一般的に知られている真空蒸着法、スパッタリング法、イオンブレーティング法、熱CVD法、光CVD法、プラズマCVD法等の成膜方法により、図10に示すように基体上にアモルファスシリコンからなる光導電層を形成することで作製することができる。なかでも、プラズマCVD法、すなわち、原料ガスにRF帯やVHF帯の高周波電力を印加してグロー放電により分解し、基体上に堆積膜を形成する方法によりa−Si感光体を作製することが好ましい。
[Electrophotographic photoreceptor manufacturing equipment]
The above-described a-Si photosensitive member is formed by a generally known vacuum deposition method, sputtering method, ion plating method, thermal CVD method, photo CVD method, plasma CVD method, etc., as shown in FIG. As shown, it can be produced by forming a photoconductive layer made of amorphous silicon on a substrate. In particular, an a-Si photosensitive member can be produced by a plasma CVD method, that is, a method in which RF gas or VHF band high-frequency power is applied to a source gas and decomposed by glow discharge to form a deposited film on a substrate. preferable.

図11は、電源周波数としてVHF帯を用いた高周波プラズマCVD法による電子写真感光体製造装置の一例を示す模式的な概略構成図である。図11に示す製造装置は電子写真感光体を同時に6本作製することが可能な構成である。この製造装置は、少なくとも、円筒状基体1001を内包できる減圧可能な反応容器1002と、反応容器1002内に原料ガスを供給するための原料ガス導入管1009及び原料ガスを分解するための電力を導入するカソード1007からなる堆積装置と、反応容器1002内に原料ガスを供給する原料ガス供給装置1004と、反応容器1002内を排気するための不図示の排気装置と、カソード1007に電力を供給する電力供給装置とを有している。   FIG. 11 is a schematic schematic configuration diagram showing an example of an electrophotographic photoreceptor manufacturing apparatus using a high frequency plasma CVD method using a VHF band as a power supply frequency. The manufacturing apparatus shown in FIG. 11 has a configuration capable of simultaneously producing six electrophotographic photosensitive members. This manufacturing apparatus introduces at least a reaction vessel 1002 capable of containing a cylindrical substrate 1001, a source gas introduction pipe 1009 for supplying a source gas into the reaction vessel 1002, and electric power for decomposing the source gas. A deposition apparatus comprising a cathode 1007, a source gas supply apparatus 1004 for supplying source gas into the reaction container 1002, an exhaust apparatus (not shown) for exhausting the reaction container 1002, and power for supplying power to the cathode 1007 And a supply device.

次に、この製造装置を用いたa−Si感光体の製造方法について説明する。まず、反応容器1002内に円筒状基体1001を設置し、不図示の排気装置により排気口1012を介して反応容器1002内を排気した後、不活性ガスを反応容器1002内に供給する。そして、反応容器1002の内圧を所望の圧力に設定した後に、ヒーター1008によって円筒状基体1001を所望の温度まで加熱する。   Next, a method for producing an a-Si photoreceptor using this production apparatus will be described. First, the cylindrical substrate 1001 is installed in the reaction vessel 1002, the inside of the reaction vessel 1002 is evacuated through an exhaust port 1012 by an unillustrated exhaust device, and then an inert gas is supplied into the reaction vessel 1002. Then, after setting the internal pressure of the reaction vessel 1002 to a desired pressure, the cylindrical substrate 1001 is heated to a desired temperature by the heater 1008.

以上の手順により加熱工程が終了した後、続いて堆積層形成工程を行う。反応容器1002内の不活性ガスを不図示の排気装置により排気した後、反応容器1002内に原料ガス供給装置1004から原料ガス導入管1009を介して原料ガスを供給する。反応容器1002の内圧が安定したところで、高周波電力源1005からカソード1007にマッチングボックス1006を介して高周波電力の供給を行い、反応容器1002内にグロー放電を生起させる。この放電エネルギーによって、反応容器1002内の原料ガスが分解され、円筒状基体1001上に所定の堆積層が形成される。なお、堆積層の基体周方向の均一性を向上させるために、堆積層形成中、モーター1011によって駆動部1010を介して基体1001を所定の速度で回転させることが有効である。こうして、堆積層が所望の膜厚に到達したら高周波電力の供給を停止し、原料ガス供給装置1004からの原料ガスの供給を停止することで堆積層の形成を終える。同様の作業を複数回続けて行うことによって、多層構造を持つ堆積層を円筒状基体1001上に形成することができる。   After the heating step is completed by the above procedure, a deposited layer forming step is subsequently performed. After the inert gas in the reaction vessel 1002 is exhausted by an exhaust device (not shown), the source gas is supplied into the reaction vessel 1002 from the source gas supply device 1004 through the source gas introduction pipe 1009. When the internal pressure of the reaction vessel 1002 is stabilized, high-frequency power is supplied from the high-frequency power source 1005 to the cathode 1007 via the matching box 1006 to cause glow discharge in the reaction vessel 1002. With this discharge energy, the source gas in the reaction vessel 1002 is decomposed, and a predetermined deposition layer is formed on the cylindrical substrate 1001. In order to improve the uniformity of the deposited layer in the circumferential direction of the substrate, it is effective to rotate the substrate 1001 at a predetermined speed by the motor 1011 via the drive unit 1010 during the formation of the deposited layer. Thus, when the deposition layer reaches a desired film thickness, the supply of high-frequency power is stopped, and the supply of the source gas from the source gas supply device 1004 is stopped to finish the formation of the deposition layer. By repeating the same operation a plurality of times, a deposition layer having a multilayer structure can be formed on the cylindrical substrate 1001.

[電子写真装置]
本発明により作製された電子写真感光体が用いられる電子写真装置の一実施形態を図12に示す。なお、本例の電子写真装置は、円筒状の電子写真感光体が用いられる場合に好適なものである。
[Electrophotographic equipment]
FIG. 12 shows an embodiment of an electrophotographic apparatus in which the electrophotographic photosensitive member produced according to the present invention is used. The electrophotographic apparatus of this example is suitable when a cylindrical electrophotographic photosensitive member is used.

図12において、電子写真感光体504の周囲に、電子写真感光体504に静電潜像形成のための帯電を行う一次帯電器505と、静電潜像の形成された電子写真感光体504に現像剤(トナー)を供給するための現像器506と、電子写真感光体表面のトナーを紙などの転写材513に移行させるための転写帯電器507と、電子写真感光体表面の浄化を図るクリーナー508とが配設されている。本例は感光体表面の均一削除を有効に行うため、前述のような弾性ローラー508aとクリーニングブレード508bを用いて電子写真感光体表面の浄化を行っているが、いずれか一方のみでも差し支えない。また、クリーナー508と一次帯電器505の間には、次回の複写動作に備えて電子写真感光体表面の除電を行うための除電ランプ510が配設されており、また転写材513は送りローラー514により送られる。露光Aの光源には、ハロゲン光源、あるいは単一波長を主とする光源を用いる。   In FIG. 12, a primary charger 505 that charges the electrophotographic photosensitive member 504 for forming an electrostatic latent image around the electrophotographic photosensitive member 504, and an electrophotographic photosensitive member 504 on which the electrostatic latent image is formed. A developer 506 for supplying a developer (toner), a transfer charger 507 for transferring toner on the surface of the electrophotographic photosensitive member to a transfer material 513 such as paper, and a cleaner for purifying the surface of the electrophotographic photosensitive member 508 is disposed. In this example, in order to effectively remove the surface of the photosensitive member effectively, the surface of the electrophotographic photosensitive member is cleaned using the elastic roller 508a and the cleaning blade 508b as described above, but only one of them may be used. Further, between the cleaner 508 and the primary charger 505, a neutralizing lamp 510 is disposed for neutralizing the surface of the electrophotographic photosensitive member in preparation for the next copying operation, and the transfer material 513 is a feed roller 514. Sent by. As a light source for exposure A, a halogen light source or a light source mainly having a single wavelength is used.

このような電子写真装置を用いた複写画像の形成は、例えば以下のように行なわれる。まず、電子写真感光体504を所定の速度で矢印の方向へ回転させ、一次帯電器505を用いて電子写真感光体504の表面を一様に帯電させる。次に、帯電された電子写真感光体504の表面に画像の露光Aを行い、該画像の静電潜像を電子写真感光体504の表面に形成させる。そして電子写真感光体504表面に静電潜像の形成された静電潜像部が現像器506の設置部を通過する際に、現像器506によってトナーが電子写真感光体504の表面に供給され、静電潜像がトナー506aによる画像として顕像化(現像)され、更にこのトナー画像は感光体504の回転とともに転写帯電器507の設置部に到達し、ここで送りローラー514によって送られてくる転写材513に転写される。   Formation of a copy image using such an electrophotographic apparatus is performed as follows, for example. First, the electrophotographic photosensitive member 504 is rotated at a predetermined speed in the direction of the arrow, and the surface of the electrophotographic photosensitive member 504 is uniformly charged using the primary charger 505. Next, image exposure A is performed on the surface of the charged electrophotographic photosensitive member 504, and an electrostatic latent image of the image is formed on the surface of the electrophotographic photosensitive member 504. Then, when the electrostatic latent image portion on which the electrostatic latent image is formed on the surface of the electrophotographic photosensitive member 504 passes through the installation portion of the developing device 506, the developing device 506 supplies toner to the surface of the electrophotographic photosensitive member 504. Then, the electrostatic latent image is visualized (developed) as an image by the toner 506a, and this toner image reaches the installation portion of the transfer charger 507 as the photosensitive member 504 rotates, and is sent by the feed roller 514 here. The image is transferred to the transfer material 513 that comes.

転写終了後、分離帯電器により転写材を電子写真感光体から静電気力を利用して分離させる。分離はベルト、爪などを用いて機械的に分離しても良い。次の複写工程に備えるために電子写真感光体504の表面から残留トナーがクリーナー508によって除去され、更に該表面の電位がゼロ若しくは殆どゼロとなるように除電ランプ510により除電され、1回の複写工程を終了する。   After the transfer is completed, the transfer material is separated from the electrophotographic photosensitive member by a separation charger using electrostatic force. The separation may be performed mechanically using a belt, a claw, or the like. In order to prepare for the next copying process, residual toner is removed from the surface of the electrophotographic photosensitive member 504 by the cleaner 508, and the charge is removed by the charge removing lamp 510 so that the surface potential becomes zero or almost zero. The process ends.

以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらにより何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited at all by these.

<電子写真感光体製造例1>
図11に示すプラズマ処理装置を用いて、円筒状基体(直径80mm、長さ358mmの鏡面加工を施した円筒状のアルミニウムシリンダー)上に下記表1に示す条件で、電荷注入阻止層、光導電層、表面層の順に成膜を行い、正帯電a−Si感光体を8本作製した。なお、表1に示す製造条件中の「200→20」は、SiH4の流量を200ml/min(normal)から20ml/min(normal)まで連続的に変化させることを表し、同様に「0→80」はCH4の流量を0ml/min(normal)から80ml/min(normal)まで連続的に変化させることを表している。
<Electrophotographic photosensitive member production example 1>
Using the plasma processing apparatus shown in FIG. 11, a charge injection blocking layer and a photoconductive layer are formed on a cylindrical substrate (cylindrical aluminum cylinder having a mirror finish with a diameter of 80 mm and a length of 358 mm) under the conditions shown in Table 1 below. The layers were formed in the order of the surface layer, and eight positively charged a-Si photoconductors were produced. In addition, “200 → 20” in the manufacturing conditions shown in Table 1 represents that the flow rate of SiH 4 is continuously changed from 200 ml / min (normal) to 20 ml / min (normal). “80” represents that the flow rate of CH 4 is continuously changed from 0 ml / min (normal) to 80 ml / min (normal).

表1の条件により作製した電子写真感光体の表面粗さRaを、下記の方法で、電子写真感光体の長手方向中心を円周方向に60°間隔で6点測定したところ、Raの平均値は45nmであり、電子写真感光体の全周にわたってほぼ均一であった。   The surface roughness Ra of the electrophotographic photosensitive member produced under the conditions shown in Table 1 was measured at six points in the circumferential direction at 60 ° intervals in the circumferential direction by the following method. Was 45 nm and was substantially uniform over the entire circumference of the electrophotographic photosensitive member.

電子写真感光体の表面粗さRaは、Quesant社製の走査型プローブ顕微鏡(SPM: Scanning Probe Microscope)であるQ-SCOPE250(Version3.181)により測定したAFM(Atomic Force Microscope)観察像から計算した値を用いた。測定範囲は、10μm×10μmの範囲であり、電子写真感光体の表面粗さRaは、測定されたAFM観察像をQ-SCOPE250の「Tilt Removal」により「Parabolic Line by line補正」を行った後に得られる三次元形状から成るAFM観察像から計算された値を用いた。   The surface roughness Ra of the electrophotographic photosensitive member was calculated from an AFM (Atomic Force Microscope) observation image measured by a Q-SCOPE250 (Version 3.181) which is a scanning probe microscope (SPM) manufactured by Quesant. Values were used. The measurement range is a range of 10 μm × 10 μm, and the surface roughness Ra of the electrophotographic photosensitive member is obtained by performing “Parabolic Line by line correction” on the measured AFM observation image by “Tilt Removal” of Q-SCOPE250. The value calculated from the obtained AFM observation image having a three-dimensional shape was used.

参考例1>
電子写真感光体製造例1で作製した電子写真感光体を、図1に示す研磨装置を用いて磁性粉体により電子写真感光体の表面粗さRaの平均が30nm±1nmになるまで研磨処理を実施した。
< Reference Example 1>
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 1 is polished with magnetic powder until the average surface roughness Ra of the electrophotographic photosensitive member becomes 30 nm ± 1 nm using the polishing apparatus shown in FIG. Carried out.

具体的には、電子写真感光体の回転数を90rpm、マグネットローラーの回転数を240rpm、SD距離を0.4mm、SB距離を1.0mmに調節し、磁性粉体には同和鉄粉工業株式会社製Cu-Znフィライト(DFC450)を用いた。   Specifically, the rotation speed of the electrophotographic photosensitive member is adjusted to 90 rpm, the rotation speed of the magnet roller is adjusted to 240 rpm, the SD distance is adjusted to 0.4 mm, and the SB distance is adjusted to 1.0 mm. Company-made Cu-Zn phyllite (DFC450) was used.

上記条件で得られた研磨処理後の電子写真感光体について、高湿流れ、研磨傷、クリーニング不良を下記の条件により評価した。測定に使用した電子写真装置は、キヤノン製デジタル電子写真装置iR−6000(前露光660nmLEDアレイ、画像露光655nmレーザー、プロセススピード265mm/sec)を用いた。   The electrophotographic photoreceptor after the polishing treatment obtained under the above conditions was evaluated under the following conditions for high humidity flow, polishing scratches, and poor cleaning. The electrophotographic apparatus used for the measurement was a Canon digital electrophotographic apparatus iR-6000 (pre-exposure 660 nm LED array, image exposure 655 nm laser, process speed 265 mm / sec).

高湿流れ、研磨傷及びクリーニング不良についての評価は、電子写真感光体を30℃、80%の高温高湿環境下に設置し、昼間に電子写真感光体を稼働して耐久を実施している間は感光体ヒーターをオンにして感光体表面温度を約40℃に維持し、夜間に電子写真装置を停止している間は感光体ヒーターをオフにするシーケンスで耐久評価により実施した。具体的には、印字率1%と通常より印字率が低いテストパターンを用いて、一日当り2万枚の連続通紙耐久を15日間実施して30万枚までの通紙耐久を行い、2万枚毎の終了時及び朝一のスタート時にいろはチャート、ベタ黒チャート及び中間調チャートを出力し、高湿流れの評価を行った。研磨傷は、2万枚終了時のベタ黒チャート及び中間調チャートを出力した画像で評価した。クリーニング不良は、2万枚終了時に目視で電子写真感光体上におけるクリーニング不良の有無を判断することにより評価した。その評価結果を下記の表2に示す。   Evaluation of high humidity flow, polishing scratches and poor cleaning is carried out by installing the electrophotographic photosensitive member in a high temperature and high humidity environment of 30 ° C. and 80% and operating the electrophotographic photosensitive member in the daytime. During this period, the photoconductor heater was turned on to maintain the photoconductor surface temperature at about 40 ° C., and the electrophotographic apparatus was turned off during the night, and the photoconductor heater was turned off, and the durability evaluation was performed. Specifically, using a test pattern with a printing rate of 1% and a printing rate lower than normal, 20,000 continuous paper passes per day were carried out for 15 days, and up to 300,000 papers were passed. Iroha chart, solid black chart and halftone chart were output at the end of every 10,000 sheets and at the start of the morning, and the high humidity flow was evaluated. Polishing scratches were evaluated by images output from a solid black chart and a halftone chart at the end of 20,000 sheets. The cleaning failure was evaluated by judging the presence or absence of a cleaning failure on the electrophotographic photosensitive member at the end of 20,000 sheets. The evaluation results are shown in Table 2 below.

参考例2>
2つの研磨ユニットを備えた図7の研磨装置を用いて、表2に示したように研磨処理時間を10分とした以外は参考例1と同様に研磨処理及び評価を行った。その評価結果を表2に示す。
< Reference Example 2>
Using the polishing apparatus of FIG. 7 equipped with two polishing units, polishing treatment and evaluation were performed in the same manner as in Reference Example 1 except that the polishing time was 10 minutes as shown in Table 2. The evaluation results are shown in Table 2.

参考例3>
電子写真感光体製造例1により作した電子写真感光体を、図8に示す研磨装置により磁性粉体と研磨テープとを同時に用いて表面粗さRaの平均が30nm±1nmになるまで研磨処理を実施した。
< Reference Example 3>
The electrophotographic photosensitive member was manufactured created by the electrophotographic photosensitive member Production Example 1, the polishing process to an average surface roughness Ra by using a polishing tape and the magnetic powder at the same time by the polishing apparatus shown in FIG. 8 is 30 nm ± 1 nm Carried out.

具体的には、磁性粉体を用いた研磨ユニットの条件は参考例1と同様であり、研磨テープを用いた研磨ユニットの条件は、研磨テープの送り速度を30mm/minとし、加圧弾性ローラーから電子写真感光体への圧力を2.0×105N/m2とし、加圧弾性ローラーの材質にはJISゴム硬度50のネオプレン(登録商標)ゴムを用い、加圧弾性ローラーの形状は中央部の直径が両端部より0.1mm太い形状とし、研磨テープには富士写真フィルム社製ラッピングテープLT−C2000(砥粒:炭化珪素(SiC)、粒径:6μm、塗布方法:ドクターブレード(ナイフエッジ)コート法)を用い、研磨テープの冷却は行わなかった。 Specifically, the conditions of the polishing unit using the magnetic powder are the same as those in Reference Example 1, and the conditions of the polishing unit using the polishing tape are such that the feeding speed of the polishing tape is 30 mm / min, and the pressure elastic roller The pressure to the electrophotographic photosensitive member is 2.0 × 10 5 N / m 2 , neoprene (registered trademark) rubber having a JIS rubber hardness of 50 is used as the material of the pressure elastic roller, and the shape of the pressure elastic roller is The diameter of the center is 0.1 mm thicker than both ends, and the polishing tape is a wrapping tape LT-C2000 manufactured by Fuji Photo Film Co., Ltd. (abrasive: silicon carbide (SiC), particle size: 6 μm, coating method: doctor blade ( Using the knife edge) coating method), the polishing tape was not cooled.

上記研磨処理条件で処理した電子写真感光体について、参考例1と同様に高湿流れ、研磨傷、クリーニング不良の各項目を評価した。その評価結果を表2に示す。 The electrophotographic photosensitive member processed under the above polishing conditions was evaluated for each item of high humidity flow, polishing scratches, and poor cleaning as in Reference Example 1. The evaluation results are shown in Table 2.

<実施例4>
電子写真感光体製造例1により作した電子写真感光体を、図8に示す研磨装置を用いて、磁性粉体と研磨テープとを同時に用いるのではなく、研磨テープで研磨した後に磁性粉体で研磨を行うことにより電子写真感光体の表面粗さRaの平均が30nm±1nmになるまで研磨処理を実施した。このときの具体的な研磨条件は表2に示したように、研磨テープで2分間研磨した後に磁性粉体で19分間の研磨を行うように、研磨テープから磁性粉体による研磨に切り替えた以外は参考例3と同様にして研磨した。
<Example 4>
The electrophotographic photosensitive member was manufactured created by the electrophotographic photosensitive member Production Example 1, by using the polishing apparatus shown in FIG. 8, instead of using a polishing tape and the magnetic powder at the same time, the magnetic powder after polishing with the polishing tape Polishing was performed until the average surface roughness Ra of the electrophotographic photosensitive member was 30 nm ± 1 nm. The specific polishing conditions at this time were as shown in Table 2, except that the polishing tape was switched to the polishing with the magnetic powder so that the polishing was performed for 2 minutes with the polishing tape and then the polishing with the magnetic powder for 19 minutes. Was polished in the same manner as in Reference Example 3.

上記研磨処理条件で処理した電子写真感光体について、参考例1と同様に高湿流れ、研磨傷、クリーニング不良を評価した。その評価結果を表2に示す。
<実施例5>
電子写真感光体製造例1により作した電子写真感光体を、図8に示す研磨装置を用いて、研磨テープで研磨した後に磁性粉体で研磨を行うことにより電子写真感光体の表面粗さRaの平均が30nm±1nmになるまで研磨処理を実施した。表2に示したように、研磨テープで10分間研磨した後に磁性粉体で15分間の研磨を行うように、研磨テープから磁性粉体による研磨に切り替えた以外の研磨条件は参考例3と同様に研磨した。
The electrophotographic photosensitive member processed under the above polishing conditions was evaluated in the same manner as in Reference Example 1 for high humidity flow, polishing scratches, and poor cleaning. The evaluation results are shown in Table 2.
<Example 5>
The electrophotographic photosensitive member was manufactured created by the electrophotographic photosensitive member Production Example 1, by using the polishing apparatus shown in FIG. 8, the surface roughness of the electrophotographic photosensitive member by polishing is performed with magnetic powder after polishing with the polishing tape Polishing was performed until the average of Ra reached 30 nm ± 1 nm. As shown in Table 2, the polishing conditions were the same as in Reference Example 3 except that the polishing tape was changed to polishing with magnetic powder so that the polishing was performed with polishing tape for 10 minutes and then with magnetic powder for 15 minutes. Polished.

上記研磨処理条件で処理した電子写真感光体について、参考例1と同様に高湿流れ、研磨傷、クリーニング不良を評価した。その評価結果を表2に示す。 The electrophotographic photosensitive member processed under the above polishing conditions was evaluated in the same manner as in Reference Example 1 for high humidity flow, polishing scratches, and poor cleaning. The evaluation results are shown in Table 2.

参考例6>
電子写真感光体製造例1により作した電子写真感光体を、図8に示す研磨装置を用いて、研磨テープで研磨した後に磁性粉体で研磨を行うことにより電子写真感光体の表面粗さRaの平均が30nm±1nmになるまで研磨処理を実施した。このときの具体的な研磨条件は表2に示したように、研磨テープで14分間研磨した後に磁性粉体で14分間の研磨を行うように、研磨テープから磁性粉体による研磨に切り替えた以外は参考例3と同様に研磨した。
< Reference Example 6>
The electrophotographic photosensitive member was manufactured created by the electrophotographic photosensitive member Production Example 1, by using the polishing apparatus shown in FIG. 8, the surface roughness of the electrophotographic photosensitive member by polishing is performed with magnetic powder after polishing with the polishing tape Polishing was performed until the average of Ra reached 30 nm ± 1 nm. The specific polishing conditions at this time were as shown in Table 2 except that the polishing tape was switched to the polishing with the magnetic powder so that the polishing was performed for 14 minutes with the polishing tape and then the polishing with the magnetic powder for 14 minutes. Was polished in the same manner as in Reference Example 3.

上記研磨処理条件で得られた電子写真感光体について、参考例1と同様に高湿流れ、研磨傷、クリーニング不良を評価した。その評価結果を表2に示す。 The electrophotographic photoreceptor obtained under the above polishing conditions was evaluated in the same manner as in Reference Example 1 for high humidity flow, polishing scratches, and poor cleaning. The evaluation results are shown in Table 2.

参考例7>
電子写真感光体製造例1により作した電子写真感光体を、図8に示す研磨装置を用いて、実施例4とは逆に磁性粉体で研磨した後に研磨テープで研磨を行うことにより電子写真感光体の表面粗さRaの平均が30nm±1nmになるまで研磨処理を実施した。このときの具体的な研磨条件は表2に示したように、磁性粉体で14分間研磨した後に研磨テープで14分間の研磨を行うように、磁性粉体から研磨テープによる研磨に切り替えた以外は参考例3と同様に研磨した。
< Reference Example 7>
The electrophotographic photosensitive member was manufactured created by the electrophotographic photosensitive member Production Example 1, the electron by using the polishing apparatus shown in FIG. 8, which performs polishing with a polishing tape after polishing with magnetic powder in contrast to the fourth embodiment Polishing was performed until the average surface roughness Ra of the photographic photoconductor was 30 nm ± 1 nm. As shown in Table 2, the specific polishing conditions at this time were changed from the magnetic powder to the polishing with the polishing tape so that the polishing was performed with the magnetic powder for 14 minutes and then the polishing tape with the polishing tape for 14 minutes. Was polished in the same manner as in Reference Example 3.

上記研磨処理条件で処理した電子写真感光体について、参考例1と同様に高湿流れ、研磨傷、クリーニング不良を評価した。その評価結果を表2に示す。 The electrophotographic photosensitive member processed under the above polishing conditions was evaluated in the same manner as in Reference Example 1 for high humidity flow, polishing scratches, and poor cleaning. The evaluation results are shown in Table 2.

<比較例1>
電子写真感光体製造例1により作した電子写真感光体を、図9に示す研磨装置により、研磨テープを用いて電子写真感光体の表面粗さRaの平均が30nm±1nmになるまで研磨処理を実施した。このときの具体的な研磨条件は、表2に示したように、研磨テープで40分間研磨処理した以外は参考例3に記載した研磨テープを用いた研磨ユニットの条件と同じである。
<Comparative Example 1>
The electrophotographic photosensitive member was manufactured created by the electrophotographic photosensitive member Production Example 1, by polishing apparatus shown in FIG. 9, the polishing treatment until the average surface roughness Ra of the electrophotographic photosensitive member becomes 30 nm ± 1 nm using a polishing tape Carried out. The specific polishing conditions at this time are the same as the conditions of the polishing unit using the polishing tape described in Reference Example 3 except that the polishing process was performed for 40 minutes with the polishing tape as shown in Table 2.

上記研磨処理条件で処理した電子写真感光体について、参考例1と同様に高湿流れ、研磨傷、クリーニング不良を評価した。その評価結果を表2に示す。 The electrophotographic photosensitive member processed under the above polishing conditions was evaluated in the same manner as in Reference Example 1 for high humidity flow, polishing scratches, and poor cleaning. The evaluation results are shown in Table 2.

[評価結果]
参考例1〜3、6および、実施例4および5、比較例1について、高湿流れ、研磨傷、クリーニング不良に関する評価結果を表2に示す。
[Evaluation results]
Table 2 shows the evaluation results on the high-humidity flow, the polishing scratches, and the cleaning failure for Reference Examples 1 to 3, 6, and 7 , Examples 4 and 5, and Comparative Example 1.


表2中において、評価結果を示す記号はそれぞれ、◎:非常に優れている、〇:優れている、△:実用上問題なし、×:実用上問題あり、を意味している。   In Table 2, symbols indicating the evaluation results respectively mean ◎: very good, ◯: excellent, Δ: no practical problem, ×: practical problem.

表2から分かるように、磁性粉体による研磨(参考例1,2)又は磁性粉体と研磨テープとを併用した研磨(参考例3、6および、実施例4および5)は、研磨テープだけで研磨を行う従来技術(比較例1)よりも研磨時間が短縮され、かつ研磨後の電子写真感光体の高湿流れ、研磨傷及びクリーニング不良が良化されている。なかでも、磁性粉体による研磨(参考例1,2)および磁性粉体と研磨テープとを使用した研磨(参考例3、6および、実施例4および5)によって研磨された電子写真感光体は、良好な評価結果が得られ、特に、研磨テープのみを用いた研磨時間が全研磨工程に要する時間の40%以下とする条件で研磨を行った場合(実施例4,5)には特に良好な評価結果が得られた。 As can be seen from Table 2, polishing with magnetic powder ( Reference Examples 1 and 2) or polishing using a combination of magnetic powder and polishing tape ( Reference Examples 3 , 6 and 7 , Examples 4 and 5 ) is an abrasive tape. The polishing time is shortened as compared with the conventional technique (Comparative Example 1) in which polishing is performed alone, and the high-humidity flow, polishing scratches and poor cleaning of the electrophotographic photosensitive member after polishing are improved. Among them, the electrophotographic photoreceptor polished by polishing with magnetic powder ( Reference Examples 1 and 2) and polishing using magnetic powder and polishing tape ( Reference Examples 3 , 6 and 7 , Examples 4 and 5 ). Shows a good evaluation result, especially when polishing is performed under conditions where the polishing time using only the polishing tape is 40% or less of the time required for the entire polishing step (Examples 4 and 5). Good evaluation results were obtained.

この結果から、高湿流れにしては、参考例7のように磁性粉体で研磨した後に研磨テープを使用することで研磨テープによる研磨時間を短縮して、研磨テープから電子写真感光体の表面に転写される樹脂成分の量を減らすこと、さらに、参考例3および、実施例4および5のように磁性粉体と研磨テープで同時に研磨するか、または研磨テープで研磨した後に磁性粉体で研磨することで、研磨テープから電子写真感光体の表面に転写された樹脂成分を除去すること、さらには、参考例1または2のように磁性粉体のみによる研磨手段を用いて研磨することで、樹脂成分が電子写真感光体の表面に付着させないこと、が良好な結果が得られた要因であると考えられる。 From this result, the high humidity flow reduces the polishing time with the polishing tape by using the polishing tape after polishing with the magnetic powder as in Reference Example 7, and the surface of the electrophotographic photosensitive member from the polishing tape. reducing the amount of resin component to be transferred to further reference example 3 and 6, either simultaneously polished by the polishing tape and the magnetic powder as in example 4 and 5, or a magnetic powder after polishing with the polishing tape The resin component transferred from the polishing tape to the surface of the electrophotographic photosensitive member is removed by polishing with a polishing tape, and further, polishing is performed using a polishing means only with magnetic powder as in Reference Example 1 or 2. Thus, it is considered that the resin component does not adhere to the surface of the electrophotographic photosensitive member, which is a factor for obtaining a good result.

また、研磨傷に関しては、参考例3および、実施例4および5のように研磨テープの使用時間を短縮して研磨残渣やダスト等の異物が研磨面へと入り込む確率を減らすこと、さらに、参考例7のように研磨テープの使用時間を短縮して異物が研磨面に入り込む確率を減らすと共に、磁性粉体により研磨初期に発生する異常成長部から比較的大きな研磨残渣を除去すること、さらには、参考例1または2のように磁性粉体のみによる研磨手段を用いて研磨することで研磨時に異物が研磨面に入り込みにくくすること、が良好な結果が得られた要因であり、特に、研磨テープのみを用いた研磨工程の時間を全研磨工程に要する時間の40%以下にすることで、より良好な結果が得られると考えられる。 As for the scratches, Reference Example 3 and 6, the foreign matter such as abrasive residue or dust to shorten the operating time of the abrasive tape as in Example 4 and 5 is possible to reduce the probability of entering into the polishing surface, further, As in Reference Example 7, the use time of the polishing tape is shortened to reduce the probability that foreign matter enters the polishing surface, and the magnetic powder removes a relatively large polishing residue from the abnormally grown portion that occurs at the initial stage of polishing. The reason why good results are obtained is that foreign substances do not easily enter the polished surface by polishing by using a polishing means only with magnetic powder as in Reference Example 1 or 2, It is considered that a better result can be obtained by setting the time of the polishing process using only the polishing tape to 40% or less of the time required for the entire polishing process.

さらに、クリーニング不良は関しては、参考例7のように磁性粉体で研磨した後に研磨テープを使用することで研磨テープによる研磨時間を短縮し、研磨テープから電子写真感光体表面に転写される樹脂成分の量を低減させること、さらに、参考例3および、実施例4および5のように磁性粉体と研磨テープで同時に研磨するか、または研磨テープで研磨した後に磁性粉体で研磨することで、研磨テープから電子写真感光体の表面に転写された樹脂成分を除去すること、さらには、参考例1または2のように磁性粉体のみによる研磨手段を用いて研磨することで、樹脂成分が電子写真感光体の表面に付着させないようにし、これにより研磨後の電子写真感光体表面の微細な形状に丸みを持たせたこと、が良好な結果が得られた要因であると考えられる。 Further, regarding the cleaning failure, the polishing time is shortened by using the polishing tape after being polished with the magnetic powder as in Reference Example 7, and transferred from the polishing tape to the surface of the electrophotographic photosensitive member. The amount of the resin component is reduced, and further, the magnetic powder and the polishing tape are polished at the same time as in Reference Examples 3 and 6 and Examples 4 and 5 , or after polishing with the polishing tape, the magnetic powder is polished. By removing the resin component transferred to the surface of the electrophotographic photosensitive member from the polishing tape, and further polishing by using a polishing means only with magnetic powder as in Reference Example 1 or 2, The reason for the good results was that the components were not allowed to adhere to the surface of the electrophotographic photosensitive member, and the fine shape of the electrophotographic photosensitive member surface after polishing was rounded. Conceivable.

なお、研磨テープを用いた研磨工程を行った後に、磁性粉体を用いた研磨工程と研磨テープを用いた研磨工程とを同時に行う工程を行って電子写真感光体表面を研磨することも有効である。この場合にも、研磨テープのみを用いた研磨工程の時間を全研磨工程に要する時間の40%以下にすることで、より良好な結果を得ることが可能である。   It is also effective to polish the surface of the electrophotographic photosensitive member by performing a polishing process using a magnetic powder and a polishing process using a polishing tape at the same time after performing a polishing process using a polishing tape. is there. Even in this case, it is possible to obtain a better result by setting the time of the polishing process using only the polishing tape to 40% or less of the time required for the entire polishing process.

本発明の一実施形態による、磁性ローラー上の磁性粉体で電子写真感光体表面を研磨する研磨装置を示す図である。It is a figure which shows the grinding | polishing apparatus which grind | polishes the electrophotographic photoreceptor surface with the magnetic powder on a magnetic roller by one Embodiment of this invention. 電子写真感光体表面を10μm×10μm視野で観察したAFM像の一例を示す図である。It is a figure which shows an example of the AFM image which observed the electrophotographic photoreceptor surface in a 10 micrometer x 10 micrometer visual field. 磁性粉体の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of magnetic powder. 電子写真感光体表面を10μm×10μm視野で観察したAFM像の一例を示す図である。It is a figure which shows an example of the AFM image which observed the electrophotographic photoreceptor surface in a 10 micrometer x 10 micrometer visual field. 磁性粉体の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of magnetic powder. 電子写真感光体表面を10μm×10μm視野で観察したAFM像の一例を示す図である。It is a figure which shows an example of the AFM image which observed the electrophotographic photoreceptor surface in a 10 micrometer x 10 micrometer visual field. 図1に示した研磨装置の一変形例を示す図である。It is a figure which shows the modification of the grinding | polishing apparatus shown in FIG. 図1に示した研磨装置の他の変形例を示す図である。It is a figure which shows the other modification of the grinding | polishing apparatus shown in FIG. 研磨テープを用いた研磨装置を示す図である。It is a figure which shows the grinding | polishing apparatus using a grinding tape. 電子写真感光体の一実施形態であるa−Si感光体の模式的な概略断面図である。It is a typical schematic sectional drawing of the a-Si photoreceptor which is one Embodiment of an electrophotographic photoreceptor. 電源周波数としてVHF帯を用いた高周波プラズマCVD法による電子写真感光体製造装置の一例を示す模式的な概略構成図である。It is a typical schematic block diagram which shows an example of the electrophotographic photoreceptor manufacturing apparatus by the high frequency plasma CVD method using a VHF band as a power supply frequency. 本発明の電子写真装置の一実施形態を示す模式的断面図である。1 is a schematic cross-sectional view showing an embodiment of an electrophotographic apparatus of the present invention.

符号の説明Explanation of symbols

101,201,301 電子写真感光体
102,202,302 マグネットローラー
103,203,303 磁性粉体
101, 201, 301 Electrophotographic photosensitive member 102, 202, 302 Magnet roller 103, 203, 303 Magnetic powder

Claims (3)

基体及び該基体上に形成された光導電層を有し、該光導電層が非晶質材料で構成されている電子写真感光体の表面を研磨する方法において、
砥粒及び該砥粒を固定するための接着剤である樹脂成分を有する研磨テープを該電子写真感光体の表面に圧接させて、該電子写真感光体の表面を研磨する研磨工程(i)と、該研磨工程(i)の後、磁性ローラーの外周面上に磁力で付着している磁性粉体を該電子写真感光体の表面に接触させ、該磁性ローラーを回転させて、該電子写真感光体の表面を研磨する研磨工程(ii)とを有し、
該研磨工程(i)に要する時間が、全研磨工程に要する時間の40%以下であることを特徴とする電子写真感光体の表面の研磨方法。
In a method of polishing a surface of an electrophotographic photoreceptor having a substrate and a photoconductive layer formed on the substrate, the photoconductive layer being made of an amorphous material,
A polishing step (i) of polishing the surface of the electrophotographic photosensitive member by bringing a polishing tape having abrasive grains and a resin component that is an adhesive for fixing the abrasive grains into pressure contact with the surface of the electrophotographic photosensitive member; After the polishing step (i), the magnetic powder adhering to the outer peripheral surface of the magnetic roller by a magnetic force is brought into contact with the surface of the electrophotographic photosensitive member, the magnetic roller is rotated, and the electrophotographic photosensitive member is rotated. A polishing step (ii) for polishing the surface of the body,
A method for polishing the surface of an electrophotographic photosensitive member, wherein the time required for the polishing step (i) is 40% or less of the time required for the entire polishing step.
前記研磨工程(ii)が、前記磁性ローラーを複数用いて前記電子写真感光体の表面を研磨する工程である請求項1に記載の電子写真感光体の表面の研磨方法。   The method of polishing a surface of an electrophotographic photosensitive member according to claim 1, wherein the polishing step (ii) is a step of polishing the surface of the electrophotographic photosensitive member using a plurality of the magnetic rollers. 基体上に非晶質材料で構成された光導電層を形成して、表面が研磨される前の電子写真感光体を作製した後、該電子写真感光体の表面の研磨処理を実施することによって、表面が研磨されている電子写真感光体を製造する方法において、
請求項1又は2に記載の研磨方法によって該研磨処理を実施することを特徴とする表面が研磨されている電子写真感光体の製造方法。
By forming a photoconductive layer composed of an amorphous material on a substrate and preparing an electrophotographic photosensitive member before the surface is polished, by polishing the surface of the electrophotographic photosensitive member In the method for producing an electrophotographic photosensitive member whose surface is polished,
A method for producing an electrophotographic photosensitive member having a polished surface, wherein the polishing treatment is carried out by the polishing method according to claim 1.
JP2004294907A 2004-10-07 2004-10-07 Method for polishing surface of electrophotographic photosensitive member and method for producing electrophotographic photosensitive member Expired - Fee Related JP4416621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294907A JP4416621B2 (en) 2004-10-07 2004-10-07 Method for polishing surface of electrophotographic photosensitive member and method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294907A JP4416621B2 (en) 2004-10-07 2004-10-07 Method for polishing surface of electrophotographic photosensitive member and method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2006106476A JP2006106476A (en) 2006-04-20
JP2006106476A5 JP2006106476A5 (en) 2007-11-22
JP4416621B2 true JP4416621B2 (en) 2010-02-17

Family

ID=36376276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294907A Expired - Fee Related JP4416621B2 (en) 2004-10-07 2004-10-07 Method for polishing surface of electrophotographic photosensitive member and method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP4416621B2 (en)

Also Published As

Publication number Publication date
JP2006106476A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP3913067B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
US6534228B2 (en) Electrophotographic photosensitive member and image forming apparatus
US6636715B2 (en) Photosensitive member and image forming apparatus having the same
JP4623651B2 (en) Electrophotographic equipment
US6122467A (en) Image forming apparatus using an amorphous silicon photosensitive member having a thin cylinder
JP4416621B2 (en) Method for polishing surface of electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP2006308743A (en) Electrophotographic photoreceptor
JP2007121533A (en) Electrophotographic image forming apparatus
JP2007108420A (en) Image forming apparatus
JP3507406B2 (en) Image forming method and photoreceptor
JP3782680B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP2008209746A (en) Electrophotographic image forming apparatus
JP3710304B2 (en) Electrophotographic equipment
JP2007121349A (en) Electrophotographic apparatus
JP3571917B2 (en) Electrophotographic equipment
JP3789081B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP2001142371A (en) Electrophotographic device
JP5311830B2 (en) Electrophotographic equipment
JP2004126217A (en) Post-processing method for electrophotographic sensitive body and grinding device
JP2002082463A (en) Electrophotographic photoreceptor and electrophotographic device
JP4448043B2 (en) Electrophotographic photoreceptor
JP2003202690A (en) Photoreceptor for electrophotography, electrophotographic device, grinding device and image forming method
JP2007052242A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2005300740A (en) Electrophotographic photoreceptor
JPH06186763A (en) Photoreceptive member, method for recycling photosensitive body and surface treatment

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees