JP2006308743A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2006308743A
JP2006308743A JP2005129407A JP2005129407A JP2006308743A JP 2006308743 A JP2006308743 A JP 2006308743A JP 2005129407 A JP2005129407 A JP 2005129407A JP 2005129407 A JP2005129407 A JP 2005129407A JP 2006308743 A JP2006308743 A JP 2006308743A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
polishing
electrophotographic
microscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005129407A
Other languages
Japanese (ja)
Other versions
JP2006308743A5 (en
Inventor
Tomohito Ozawa
智仁 小澤
Daisuke Tazawa
大介 田澤
Kunimasa Kawamura
邦正 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005129407A priority Critical patent/JP2006308743A/en
Publication of JP2006308743A publication Critical patent/JP2006308743A/en
Publication of JP2006308743A5 publication Critical patent/JP2006308743A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor, capable of preventing image defects due to toner fusion, and image deletion due to high humidity in a high humidity environment, while achieving speed up of the electrophotographic photoreceptor and the high-quality image thereof, and longer operating lifetime and energy saving of the electrophotographic photoreceptor, by reducing the effects of the local shape of the electrophotographic photoreceptor surface, and controlling the surface shape of the electrophotographic photoreceptor more strictly than before. <P>SOLUTION: In the electrophotographic photoreceptor having a photoconductive layer constituted of at least a noncrystalline material and a surface layer on a substrate, "A" and "a" satisfy all the conditions of (1) 0.01 μm≤A≤0.30 μm, (2) 0.03 μm≤a≤0.55 μm, and (3) 1.0×10<SP>-3</SP>≤A×a≤4.50×10<SP>-2</SP>, where A is the difference of the height of 5-95% in the load curve of the height using the highest point as a reference in the microscopic surface roughness in the region of 10 μm×10μm of the electrophotographic photoreceptor, and a is the difference of the height of 5-95% in the load curve of the height, by using the highest point as a reference in the macroscopic surface roughness measured set at a reference length of 0.8 mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複写機、プリンター、ファックス等の電子写真プロセスを利用した画像形成装置に適用可能な非晶質材料、特にアモルファスシリコン(以下、「a-Si」と示す)系で構成された光導電層を有する電子写真感光体に関するものである。   The present invention relates to an amorphous material applicable to an image forming apparatus utilizing an electrophotographic process such as a copying machine, a printer, a fax machine, etc., in particular, an amorphous silicon (hereinafter referred to as “a-Si”) system. The present invention relates to an electrophotographic photosensitive member having a conductive layer.

基板上に非晶質材料を感光層とした電子写真感光体は広く知られており、特に、金属等の基板上にCVD、PVD等の成膜技術により形成されたa-Siを感光層とした電子写真感光体はすでに製品化されている。   Electrophotographic photoreceptors having an amorphous material as a photosensitive layer on a substrate are widely known. In particular, a-Si formed on a substrate of metal or the like by a film forming technique such as CVD or PVD is used as a photosensitive layer. The electrophotographic photosensitive member has already been commercialized.

このa-Si電子写真感光体において、クリーニング性向上、高湿環境下での画像流れ防止及びトナー等の融着による画像欠陥防止を目的として、電子写真感光体表面の微細形状を規定した電子写真感光体については数多くの提案がなされている。   In this a-Si electrophotographic photosensitive member, an electrophotographic film which defines the fine shape of the surface of the electrophotographic photosensitive member for the purpose of improving the cleaning property, preventing image flow in a high humidity environment, and preventing image defects due to fusion of toner or the like. Numerous proposals have been made for photoreceptors.

なかでも、導電性支持体上にシリコン原子を母材とする感光層と表面層からなる光受容部材において、微視的な凹凸高さと凹凸ピッチの関係と、巨視的な凹凸高さと凹凸ピッチの関係が条件式を満たすような凹凸形状を有する電子写真感光体を形成することにより、トナー融着に対する耐久性や画像流れ等が良好となることが開示されている(例えば、特許文献1参照)。   In particular, in a light-receiving member composed of a photosensitive layer having a silicon atom as a base material and a surface layer on a conductive support, the relationship between the microscopic unevenness height and the uneven pitch, and the macroscopic unevenness height and the uneven pitch. It is disclosed that by forming an electrophotographic photosensitive member having a concavo-convex shape whose relationship satisfies a conditional expression, durability against toner fusion, image flow, and the like are improved (see, for example, Patent Document 1). .

また、a-Siを含む光導電層及び表面層を順次積層させた電子写真感光体において、10μm×10μmの範囲における最も深い点を基準とした時の凹凸高さの累積度数分布における50〜90%にあたる凹凸高さの差と、導電性基板のRa(算術平均粗さ)を規定の範囲内にすることにより、トナー融着や高湿流れが良好となることが開示されている(例えば、特許文献2、特許文献3参照)。   Further, in the electrophotographic photosensitive member in which the photoconductive layer containing a-Si and the surface layer are sequentially laminated, 50 to 90 in the cumulative frequency distribution of the uneven height with respect to the deepest point in the range of 10 μm × 10 μm. %, The toner fusion and high-humidity flow are improved by making the difference in height of the projections and depressions corresponding to the percentage of roughness and Ra (arithmetic mean roughness) of the conductive substrate within the specified range (for example, (See Patent Document 2 and Patent Document 3).

また、周方向に切削したドラム状基板外周面にa-Siからなる感光層を積層し、その表面の断面に形成された三角形状の線条溝の平均間隔、Ra及び三角形状の頂点部のなす角度を規定の範囲にすることにより、トナー付着・融着を防止し、良好な画像形成が得られることが開示されている(例えば、特許文献4参照)。更に、a-Siからなる感光層の表面にa-SiCが積層されてなる電子写真感光体において、三角形状の頂部を成す角度、隣接する三角形状の底部を成す角度及び各線条溝のピッチを規定の範囲内とすることにより、トナー付着・融着を防止し、良好な画像形成が得られることが開示されている(例えば、特許文献5参照)。
特開平10-63023号公報 特開2002-49171号公報 特開2002-40697号公報 特開2000-314974号公報 特開平10-90928号公報
In addition, a photosensitive layer made of a-Si is laminated on the outer peripheral surface of the drum-shaped substrate cut in the circumferential direction, and the average interval of the triangular linear grooves formed on the cross section of the surface, Ra, and the apex of the triangular shape. It is disclosed that toner adhesion / fusion can be prevented and good image formation can be obtained by making the angle formed within a specified range (see, for example, Patent Document 4). Further, in the electrophotographic photosensitive member in which a-SiC is laminated on the surface of the photosensitive layer made of a-Si, the angle forming the top of the triangle, the angle forming the bottom of the adjacent triangle, and the pitch of each linear groove are as follows. It has been disclosed that, when the amount is within the specified range, toner adhesion / fusion can be prevented and good image formation can be obtained (see, for example, Patent Document 5).
Japanese Patent Laid-Open No. 10-63023 Japanese Patent Laid-Open No. 2002-49171 JP 2002-40697 A JP 2000-314974 Japanese Patent Laid-Open No. 10-90928

しかしながら、近年、電子写真装置がカラー化へと進展したことにより、従来以上の高速化と高画質化への市場要求が高まっている。同時に、エコロジーへの意識の高まりからa-Si電子写真感光体を用いながらも、更なる電子写真感光体の高寿命化、省エネルギー化が求められている。   However, in recent years, with the progress of electrophotographic devices in color, there is an increasing market demand for higher speed and higher image quality than before. At the same time, the use of a-Si electrophotographic photoconductors is increasing due to the growing awareness of ecology, and further life extension and energy saving of electrophotographic photoconductors are required.

具体的には、高速化、高画質化への市場要求を満たすために、電子写真装置の高速化に対応した低融点トナーが、また高画質化に対応した小粒径トナーが開発され、この低融点+小粒径トナーが使用されるようになった。これにより、低融点化したことにより電子写真感光体表面への融着が従来トナーよりも起こりやすくなり、更に、小粒径化することにより従来トナーよりも比表面積が大きく、電子写真感光体表面への付着力が大きくなるため、残留トナーを電子写真感光体表面から除去することが従来トナーよりも困難となった。   Specifically, in order to meet market demands for higher speed and higher image quality, low melting point toners corresponding to higher speeds of electrophotographic devices and small particle size toners corresponding to higher image quality have been developed. Low melting point + small particle size toners have been used. As a result, the melting point is lowered, so that fusion to the surface of the electrophotographic photosensitive member is more likely to occur than in the conventional toner. Further, by reducing the particle size, the specific surface area is larger than that of the conventional toner, and the surface of the electrophotographic photosensitive member is Since the adhesion force to the toner increases, it becomes more difficult than conventional toners to remove residual toner from the surface of the electrophotographic photosensitive member.

そのため、低融点の小粒径トナーの場合は、電子写真感光体表面への融着が起こる可能性が高くなり、クリーニングブレードやクリーニングローラーを併用しても十分に残留トナー、あるいは融着トナーを除去することが困難になる場合があった。   Therefore, in the case of a toner having a low melting point and a small particle diameter, there is a high possibility that fusion to the surface of the electrophotographic photosensitive member will occur, and even if a cleaning blade or a cleaning roller is used in combination, sufficient residual toner or fusion toner is removed. It may be difficult to remove.

このような状態のまま、電子写真プロセスを繰り返すと、画像上に融着トナーによる「黒スジ」又は「白スジ」等の画像欠陥が発生し、初期の画質を維持することができない場合があった。   If the electrophotographic process is repeated in such a state, an image defect such as “black streaks” or “white streaks” due to the fused toner may occur on the image, and the initial image quality may not be maintained. It was.

また、長寿命化、省エネルギー化への市場要求を満たすために、電子写真プロセスによる電子写真感光体表面の磨耗の低減や、ドラムヒーターレスによる電力量の低減が要求されるようになった。これにより、従来に比べ電子写真感光体表面に付着する水分やオゾン生成物等の吸着物を十分に除去することが困難となるため、高湿環境下における画像流れ「高湿流れ」やクリーニング不良による画像濃度低下が起こる可能性が高くなった。   In addition, in order to meet market demands for longer life and energy saving, it has been required to reduce the wear of the surface of the electrophotographic photosensitive member by the electrophotographic process and to reduce the amount of electric power without using a drum heater. This makes it difficult to sufficiently remove adsorbed substances such as moisture and ozone products adhering to the surface of the electrophotographic photosensitive member as compared to the conventional method. There is a high possibility that image density will decrease due to.

更に、電子写真装置のカラー化への進展により、出力される画像が文字だけでなく、写真等の出力する機会も増加した。これにより、従来の文字出力のみの場合では確認できなかった高湿流れが写真出力時に現れ易くなってしまうため、更なる高湿流れの向上が必要となってきた。   Furthermore, with the progress of colorization of electrophotographic apparatuses, the opportunity for outputting not only characters but also photographs and the like has increased. As a result, a high-humidity flow that could not be confirmed in the case of only conventional character output tends to appear at the time of photo output, and thus further improvement of the high-humidity flow has been required.

そのため、従来技術に挙げた方法等により電子写真感光体の表面形状を制御することにより、上記課題の解決が行われてきた。しかしながら、AFM等で得られる微視的な範囲及び粗さ計で得られる巨視的な範囲においても、従来から用いられてきた表面粗さのパラメーター、特に高さ方向を表すパラメーターに関しては、局所的に高い山や深い谷の影響を受ける場合があった。その結果、数値のばらつきが大きくなり、得られた数値が同じであっても表面形状が大きく異なる場合があるため、電子写真感光体の表面形状を制御することが困難となる場合があった。特に、電子写真感光体表面に処理を施し形状を制御する、例えば研磨処理を行う、場合には、研磨面に研磨残渣が付着する、谷に研磨残渣が入り込む等により、測定位置によって大きく高さ方向のパラメーターに変化を生じる場合があった。   Therefore, the above problems have been solved by controlling the surface shape of the electrophotographic photosensitive member by the methods mentioned in the prior art. However, even in the microscopic range obtained by AFM or the like and the macroscopic range obtained by a roughness meter, the surface roughness parameters conventionally used, particularly the parameters representing the height direction, are locally In some cases, it was affected by high mountains and deep valleys. As a result, the dispersion of numerical values becomes large, and even if the obtained numerical values are the same, the surface shape may be greatly different, so it may be difficult to control the surface shape of the electrophotographic photosensitive member. In particular, the surface of the electrophotographic photosensitive member is processed to control the shape, for example, when the polishing process is performed.In the case where the polishing residue adheres to the polishing surface, the polishing residue enters the valley, etc. There could be changes in the direction parameters.

また、更なる高画質化、高速化、高寿命化、省エネルギー化を目指すためには、電子写真感光体表面の微視的及び巨視的な形状を更に制御する必要があり、そのためには、高さ方向以外のパラメーター、即ち、表面形状を形成する山や谷を、より正確に表した上で制御することが求められた。しかし、このような表面形状を形成する山や谷の形状を的確に表すパラメーターに関しては、山や谷のどの形状を制御したらよいかの方向性が正確にはつかめていなかったため、更なる表面形状を形成する山や谷の形状の制御が困難であった。   In addition, in order to achieve higher image quality, higher speed, longer life, and energy saving, it is necessary to further control the microscopic and macroscopic shape of the electrophotographic photosensitive member surface. It was required to control the parameters other than the vertical direction, that is, the peaks and valleys forming the surface shape more accurately. However, regarding the parameters that accurately represent the shape of the peaks and valleys that form such a surface shape, the direction of which shape of the peaks and valleys should be controlled was not accurately grasped. It was difficult to control the shape of peaks and valleys forming

よって、上記課題を解決するとともに、従来以上に電子写真装置の高画質化、高速化、省エネルギー化及び電子写真感光体の高寿命化を実現するためには、電子写真感光体の表面形状そのものを従来以上に厳密に制御することが必要となってきた。   Therefore, in order to solve the above problems and to realize higher image quality, higher speed, energy saving and longer life of the electrophotographic photosensitive member than in the past, the surface shape of the electrophotographic photosensitive member itself should be changed. It has become necessary to control more strictly than before.

そこで、本発明の目的としては、電子写真感光体表面の局所的な形状の影響を抑え、且つ、従来以上に厳密に電子写真感光体の表面形状を制御することにより、電子写真装置の高速化、高画質化、省エネルギー化及び電子写真感光体の高寿命化を実現し、クリーニング不良やトナー融着による画像欠陥及び高湿環境下における「高湿流れ」に対して良好な電子写真感光体を提供することにある。   Accordingly, an object of the present invention is to increase the speed of the electrophotographic apparatus by suppressing the influence of the local shape of the surface of the electrophotographic photosensitive member and controlling the surface shape of the electrophotographic photosensitive member more strictly than before. Realize high image quality, energy saving, and long life of electrophotographic photosensitive member, and provide good electrophotographic photosensitive member against image defects due to poor cleaning and toner fusion and “high humidity flow” in high humidity environment It is to provide.

上記目的を達成すべく鋭意検討を行った結果、電子写真感光体表面の微視的な表面形状及び巨視的な表面形状から得られる高さ方向のパラメーター、更には、微視的な表面形状から得られる高さ方向のパラメーターと巨視的な表面形状から得られる高さ方向のパラメーターの関係を制御することにより、画像欠陥及び高湿流れに対して大きな効果があることを見出し、本発明を完成させるに至ったものである。   As a result of diligent studies to achieve the above-mentioned object, the parameters in the height direction obtained from the microscopic surface shape and macroscopic surface shape of the electrophotographic photosensitive member surface, and further from the microscopic surface shape, By controlling the relationship between the obtained height direction parameter and the height direction parameter obtained from the macroscopic surface shape, it was found that there is a great effect on image defects and high humidity flow, and the present invention was completed. It is what led to it.

詳細に記述すると、本発明は、基体上に少なくとも非晶質材料で構成された光導電層と表面層を有する電子写真感光体において、該電子写真感光体の10μm×10μmの範囲における微視的表面粗さで最も高い点を基準とした凹凸高さの負荷曲線における5%〜95%の高さの差をA、基準長0.8mmで測定した巨視的表面粗さで最も高い点を基準とした凹凸高さの負荷曲線における5%〜95%の高さの差をaとした時、A及びaが下記(1)〜(3)の全ての条件を満たすことを特徴とする電子写真感光体に関する。
(1) 0.01μm≦A≦0.30μm
(2) 0.03μm≦a≦0.55μm
(3) 1.0×10-3μm2≦A×a≦4.5×10-2μm2
More specifically, the present invention relates to an electrophotographic photosensitive member having a photoconductive layer and a surface layer made of at least an amorphous material on a substrate, and is microscopic in a range of 10 μm × 10 μm of the electrophotographic photosensitive member. The difference in height between 5% and 95% in the load curve of the unevenness height based on the highest point in the surface roughness is A, and the highest point in the macroscopic surface roughness measured at a reference length of 0.8 mm is used as a reference. An electrophotographic photosensitive film characterized in that A and a satisfy all of the following conditions (1) to (3), where a is a height difference of 5% to 95% in the load curve of the uneven height: About the body.
(1) 0.01μm ≦ A ≦ 0.30μm
(2) 0.03μm ≦ a ≦ 0.55μm
(3) 1.0 × 10 −3 μm 2 ≦ A × a ≦ 4.5 × 10 −2 μm 2 .

上記のように、電子写真感光体の微視的及び巨視的な表面形状を制御することにより、画像欠陥及び高湿流れが良好となる原因を以下のように推察する。   As described above, by controlling the microscopic and macroscopic surface shape of the electrophotographic photosensitive member, the reason why the image defect and the high-humidity flow are improved is estimated as follows.

まず、高湿流れは、トナーに含まれるシリカ等の外添材やクリーニングブレード等のクリーニング部材による電子写真感光体表面の摺擦により、電子写真感光体表面に付着したオゾン生成物や吸着水分を充分に除去しきれない場合に発生すると推察される。この時、オゾン生成物や吸着水分を充分に除去することが難しい場所は、微視的又は巨視的な表面形状で見られる山と山の間、特に谷部である。しかし、微視的又は巨視的な表面形状における高さ方向のパラメーターを小さくすることにより谷の深さが浅くなり、同時に、山部の傾斜が緩やかになる。その結果、山と山の間、特に谷部に外添材が入り込みやすくなる、また、クリーニング部材の接触面積が増加することにより摺擦面積が上がるため、オゾン生成物や吸着水分を除去することが容易となる。その結果、高湿流れが良化するものと推察している。   First, the high-humidity flow causes ozone products and adsorbed water adhering to the surface of the electrophotographic photosensitive member by rubbing on the surface of the electrophotographic photosensitive member by an external additive such as silica contained in the toner or a cleaning member such as a cleaning blade. It is assumed that it occurs when it cannot be removed sufficiently. At this time, a place where it is difficult to sufficiently remove ozone products and adsorbed moisture is between the mountains seen in the microscopic or macroscopic surface shape, particularly in the valleys. However, by reducing the height parameter in the microscopic or macroscopic surface shape, the depth of the valley becomes shallow, and at the same time, the slope of the peak becomes gentle. As a result, it is easy for external additives to enter between the peaks, especially in the valleys, and the contact area of the cleaning member increases to increase the rubbing area, thus removing ozone products and adsorbed moisture. Becomes easy. As a result, it is presumed that the high humidity flow is improved.

しかし、微視的又は巨視的な表面形状の高さ方向のパラメーターを小さくしすぎると、微視的又は巨視的な表面形状が平坦化してしまう。そのため、クリーニング部材と電子写真感光体表面との接触面積が大きくなりすぎることにより、単位面積当たりの摺擦力が極端に低下しすぎてしまうため、逆に、オゾン生成物や吸着水分を充分に除去することができなくなり画質の低下が発生すると推察される。また、微視的又は巨視的な表面形状が平坦化されることにより、クリーニング部材が電子写真感光体表面に付着したトナー成分を除去する際に、トナーの逃げ道がなくなると同時にトナーと電子写真感光体表面の付着力が増加するため、トナーの融着が発生すると推察される。   However, if the height parameter of the microscopic or macroscopic surface shape is too small, the microscopic or macroscopic surface shape is flattened. Therefore, since the contact area between the cleaning member and the electrophotographic photosensitive member surface becomes too large, the rubbing force per unit area is extremely reduced, and conversely, ozone products and adsorbed moisture are sufficiently absorbed. It is presumed that the image quality deteriorates because it cannot be removed. Further, since the microscopic or macroscopic surface shape is flattened, when the cleaning member removes the toner component adhering to the surface of the electrophotographic photosensitive member, the toner and the electrophotographic photosensitive member are simultaneously eliminated. It is presumed that toner adhesion occurs because the adhesion force on the body surface increases.

よって、微視的な表面形状の高さ方向のパラメーターA、巨視的な表面形状の高さ方向のパラメーターaを適度に制御することにより、高湿流れ及び画像欠陥を抑制することが可能となったと推察される。   Therefore, it is possible to suppress high-humidity flows and image defects by appropriately controlling the parameter A in the height direction of the microscopic surface shape and the parameter a in the height direction of the macroscopic surface shape. It is inferred that

高湿流れ及び画像欠陥の発生は、外添材及びクリーニング部材と電子写真感光体表面の接触面積によって決まってくると考えている。このことから、微視的な表面形状と巨視的な表面形状から得られる高さ方向のパラメーターの両方によって、外添材及びクリーニング部材と電子写真感光体表面の接触面積によって決まることから、微視的な表面形状と巨視的な表面形状から得られる高さ方向のパラメーターの間にも関係性があるため、更に、これらの関係が高湿流れ及び画像欠陥に影響を与えると推察される。   It is considered that the generation of high humidity flow and image defects is determined by the contact area between the external additive and the cleaning member and the electrophotographic photosensitive member surface. Therefore, the microscopic surface shape and the height direction parameter obtained from the macroscopic surface shape are determined by the contact area between the external additive and the cleaning member and the surface of the electrophotographic photosensitive member. Since there is also a relationship between the height direction parameters obtained from the general surface shape and the macroscopic surface shape, it is presumed that these relationships also affect the high-humidity flow and image defects.

本発明による電子写真感光体によれば、従来技術に比べ、電子写真感光体の微視的な表面形状及び巨視的な表面形状から得られる高さ方向の各パラメーターと、更には、微視的な表面形状から得られる高さ方向のパラメーターと巨視的な表面形状から得られる高さ方向のパラメーターの関係を制御することにより、クリーニング不良やトナー融着等の画像欠陥及び高湿環境下での画像流れを抑えることが可能となる。   According to the electrophotographic photosensitive member of the present invention, as compared with the prior art, each parameter in the height direction obtained from the microscopic surface shape and the macroscopic surface shape of the electrophotographic photosensitive member, By controlling the relationship between the parameters in the height direction obtained from various surface shapes and the parameters in the height direction obtained from macroscopic surface shapes, image defects such as defective cleaning and toner fusing and high humidity environments It is possible to suppress the image flow.

これにより、従来の電子写真感光体における諸問題を解決することが可能となるため、高速化、高画質化、高寿命化及び省エネルギー化に対応した電子写真感光体を提供することが可能となる。   As a result, it is possible to solve various problems in the conventional electrophotographic photosensitive member, and therefore it is possible to provide an electrophotographic photosensitive member corresponding to high speed, high image quality, long life, and energy saving. .

更に、微視的な表面形状や巨視的な表面形状の山及び谷の形状自体を制御することにより、従来に比べ、更にクリーニング不良やトナー融着等の画像欠陥及び高湿環境下での高湿流れを抑えることが可能となる。   In addition, by controlling the microscopic surface shape and the macroscopic surface shape of the peaks and valleys themselves, compared with the conventional case, image defects such as poor cleaning and toner fusing, and high in a high humidity environment are achieved. It becomes possible to suppress the wet flow.

本発明の実施の形態について図面を用いて詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the drawings.

「本発明に係わる微視的な表面粗さ」
図1は、a-Si電子写真感光体を10μm×10μmの範囲におけるAFMの測定により得られた微視的形状において最も高い点を基準とした凹凸高さ(surface Height)の負荷曲線(BAC:Bearing Area Curve)の模式的な概略図を示したものであり、横軸はsurface Height、縦軸はBearing Ratioである。surface Height とは、AFMの測定により得られた微視的な表面形状における最も高い点を基準とした高さ方向の距離を示すものであり、また、Bearing Ratioとは、図14に示すように、AFMで得られる三次元観察像における最も高い点を基準として、距離xにおける三次元観察像の断面面積A(x)を計算し、このA(x)を距離Rtの断面面積A(Rt)に対する百分率として示したものである。よって、Bearing Ratioの値が小さい方が山部、大きい方が谷部を示している。
"Microscopic surface roughness according to the present invention"
FIG. 1 shows a load curve (BAC: surface height) based on the highest point in a microscopic shape obtained by AFM measurement of an a-Si electrophotographic photosensitive member in a range of 10 μm × 10 μm. A schematic diagram of (Bearing Area Curve) is shown, in which the horizontal axis represents surface height and the vertical axis represents bearing ratio. The surface height is a distance in the height direction with the highest point in the microscopic surface shape obtained by the AFM measurement as a reference, and the bearing ratio is as shown in FIG. The cross-sectional area A (x) of the three-dimensional observation image at the distance x is calculated with reference to the highest point in the three-dimensional observation image obtained by the AFM, and this A (x) is calculated as the cross-sectional area A (Rt) of the distance Rt. It is shown as a percentage. Therefore, the smaller bearing ratio value indicates the peak and the larger bearing ratio indicates the valley.

本発明において、Bearing Ratioの5%から95%に対応するsurface Heightの差をAとし、このAの値を用いた。このような値を用いた理由を図2を用いて説明する。図2には局所的に深い谷vが存在している。このように、AFMで得られる微視的な表面形状に局所的に深い谷が存在する場合には、この局所的に深い谷vの影響により最大高さRtや十点平均粗さRzJIS等の高さ方向のパラメーターが正確に測定できない場合がある。このような局所的な谷の影響を抑制するためにBearing Ratioが95%以上の領域を除去することで、測定位置による高さ方向のパラメーターへの影響を限りなく小さくすることが可能となる。同様に、AFMで得られる微視的な表面形状に局所的に高い山が存在する場合があり、特に、電子写真感光体表面を研磨した際には、更に研磨により発生した研磨残渣等が電子写真感光体の研磨面上に付着することにより局所的に大きな山となってしまう場合がある。このような局所的に高い山の影響により高さ方向のパラメーターが正確に測定できない場合がある。このような局所的な山の影響を抑制するためにBearing Ratioが5%以下の領域を除去することで、測定位置や研磨処理による高さ方向のパラメーターへの影響を限りなく小さくすることが可能となる。 In the present invention, the difference in surface height corresponding to a bearing ratio of 5% to 95% is A, and the value of A is used. The reason for using such values will be described with reference to FIG. In FIG. 2, there is a locally deep valley v. Thus, when there is a locally deep valley in the microscopic surface shape obtained by AFM, the maximum height Rt, the ten-point average roughness Rz JIS, etc. are affected by the effect of this locally deep valley v. In some cases, the parameters in the height direction cannot be measured accurately. In order to suppress the influence of such a local valley, it is possible to reduce the influence of the measurement position on the parameter in the height direction as much as possible by removing the region having a Bearing Ratio of 95% or more. Similarly, there may be locally high peaks in the microscopic surface shape obtained by AFM. In particular, when the surface of the electrophotographic photosensitive member is polished, polishing residues generated by the polishing are further removed by electrons. There is a case where a large peak is locally formed by adhering to the polished surface of the photographic photoreceptor. The parameter in the height direction may not be accurately measured due to the influence of such a locally high mountain. In order to suppress the influence of such local peaks, the area with a Bearing Ratio of 5% or less is removed, and the influence on the parameters in the height direction due to the measurement position and polishing process can be minimized. It becomes.

また、本発明では、図1に示すように、微視的な表面形状の山や谷そのものの形状を、Bearing Ratioが5%から20%に対応するsurface Heightを測定し、横軸をsurface Height、縦軸をBearing Ratioにして測定点の直線近似によって得られる傾きをB、Bearing Ratioが80%から95%に対応するsurface Heightを測定し、横軸をsurface Height、縦軸をBearing Ratioにして測定点の直線近似によって得られる傾きをCとして数値化し、測定範囲内にある山をまとめた時の傾斜と谷をまとめた時の傾斜を求めた。このように、測定範囲内にある山及び谷を合計して、山及び谷の形状を表した理由としては、測定範囲内に存在する各山及び各谷の形状は様々であり、そのため、特定の山及び谷の形状を数値化することが、測定した電子写真感光体の表面を代表する値として的確ではなく、また、正確ではない可能性も高いためである。もう一つの理由としては、画像欠陥や高湿流れは、各山及び各谷といった微小な表面面積内で観察されるものではなく、ある程度の広い表面面積内で発生するため、ある程度の広い表面面積内に存在する山及び谷に影響されるものであると考えたからである。   In the present invention, as shown in FIG. 1, the surface height corresponding to the bearing ratio of 5% to 20% is measured for the shape of the peaks and valleys of the microscopic surface shape, and the horizontal axis is the surface height. The vertical axis is Bearing Ratio, the slope obtained by linear approximation of the measurement points is B, the surface height corresponding to the bearing ratio of 80% to 95% is measured, the horizontal axis is surface height, and the vertical axis is bearing ratio. The slope obtained by linear approximation of the measurement points was quantified as C, and the slope when summarizing the peaks in the measurement range and the slope when summing the valleys were determined. As described above, the sum of the peaks and valleys in the measurement range to represent the shape of the peaks and valleys, the shapes of the peaks and valleys present in the measurement range are various. This is because quantifying the shapes of the peaks and valleys is not accurate as a representative value of the measured surface of the electrophotographic photosensitive member, and is likely not accurate. Another reason is that image defects and high-humidity flows are not observed within minute surface areas such as peaks and valleys, but occur within a certain wide surface area. It is because it thought that it would be influenced by the mountain and valley which exist in the inside.

このようにして得られたBは、測定範囲内の微視的な表面粗さにおける全ての山から得られた山の平均的な傾斜であり、同様にCも、測定範囲内の微視的な表面粗さにおける全ての谷から得られた谷の平均的な傾斜である。Bを求める際にBearing Ratioが5%より小さい範囲を、またCを求める際にBearing Ratioが95%より大きい範囲を用いなかった理由は、上記Aに記載した内容と同く、局所的な山であるBearing Ratioが5%以下の領域を、また、局所的な谷のであるBearing Ratioが95%以上の領域を除去することで、測定位置による高さ方向のパラメーターのばらつきを抑え、測定位置や研磨処理による影響を抑制することが可能となるためである。   B thus obtained is the average slope of the peaks obtained from all peaks in the microscopic surface roughness within the measurement range, and similarly C is also microscopic within the measurement range. Is the average slope of the valleys obtained from all the valleys at a good surface roughness. The reason for not using the range where the Bearing Ratio is less than 5% when calculating B and the range where the Bearing Ratio is greater than 95% when calculating C is the same as the content described in A above. By removing regions with a Bearing Ratio of 5% or less, and regions with a Bearing Ratio of 95% or more, which are local valleys, variations in height parameters due to measurement positions are suppressed, This is because the influence of the polishing process can be suppressed.

本発明では、電子写真感光体のAFMの測定範囲として、10μm×10μmの範囲で測定した。この理由として、測定範囲を広くすることで安定した測定が可能となり、より正確な測定値が得られるが、一方で、測定範囲を広くすることで巨視的な表面形状の影響、即ち、基体のうねりや加工形状の影響や、突起等の特異形状が反映されてしまう。逆に、測定範囲を狭くすることで、測定位置の選択によるばらつきが大きくなる。そのため、本発明では、より正確な測定値を得るための最適な範囲として、10μm×10μmを測定範囲としたが、以上の経緯から、本発明の発明思想は10μm×10μmの測定範囲に限定されるものではない。   In the present invention, the measurement range of 10 μm × 10 μm is used as the AFM measurement range of the electrophotographic photosensitive member. The reason for this is that stable measurement is possible by widening the measurement range, and more accurate measurement values can be obtained. On the other hand, widening the measurement range has the effect of macroscopic surface shape, that is, the substrate. The influence of waviness and processed shape, and unique shapes such as protrusions are reflected. Conversely, by narrowing the measurement range, the variation due to the selection of the measurement position increases. Therefore, in the present invention, 10 μm × 10 μm is the measurement range as the optimum range for obtaining a more accurate measurement value. However, the inventive concept of the present invention is limited to the measurement range of 10 μm × 10 μm from the above circumstances. It is not something.

「本発明に係わる巨視的な表面粗さ」
図3は、a-Si電子写真感光体を基準長さ0.8mm、評価長さ4.0mm、λc0.8mmの評価条件により表面粗さ計の粗さ曲線で測定することにより得られた最も高い点を基準とした凹凸高さの負荷曲線(BAC)の模式的な概略図を示したものであり、横軸は深さ、縦軸は負荷長さ率である。深さとは、粗さ計の測定により得られた巨視的形状における最も高い点を基準とした高さ方向の距離を示すものであり、また、負荷長さ率とは、図15に示すように、粗さ計で得られる波形における最も高い点を基準このM(y)を距離Rtにおける切断距離(評価長さ)Lに対する百分率で示したものである。として、距離yにおける粗さ計で得られた波形の切断距離の合計M(y)を計算し、よって、負荷長さ率の値が小さい方が山部、大きい方が谷部を示している。
"Macroscopic surface roughness according to the present invention"
FIG. 3 shows the highest point obtained by measuring the a-Si electrophotographic photosensitive member with a roughness curve of a surface roughness meter under the evaluation conditions of a reference length of 0.8 mm, an evaluation length of 4.0 mm, and λc of 0.8 mm. Is a schematic diagram of a load curve (BAC) of the uneven height with reference to, where the horizontal axis is the depth and the vertical axis is the load length ratio. Depth refers to the distance in the height direction based on the highest point in the macroscopic shape obtained by measuring with a roughness meter, and the load length ratio is as shown in FIG. The highest point in the waveform obtained by the roughness meter is referred to as M (y) as a percentage with respect to the cutting distance (evaluation length) L at the distance Rt. As a result, the total cutting distance M (y) of the waveform obtained by the roughness meter at the distance y is calculated. Therefore, the smaller the load length ratio value is, the larger the valley portion is, and the larger one is the valley portion. .

本発明では、断面曲線ではなく、粗さ曲線を用いて負荷長さ率の5%から95%に対応する深さをaとし、このaの値を用いた。粗さ曲線を用いた理由としては、断面曲線では測定範囲内のうねり等の影響を受ける場合があり、そのため、断面曲線により求めた負荷長さ率の5%から95%に対応する深さよりも粗さ曲線により求めた負荷長さ率の5%から95%に対応する深さの方が、電子写真感光体表面で生じるトナー融着等の画像欠陥や高湿流れとの関係性が高かったためである。また、負荷長さ率の5%から95%に対応する深さを用いた理由として、粗さ計等で得られる巨視的な表面形状においても、上記記載した微視的な表面形状と同様の理由により、測定位置によって高さ方向のパラメーターが正確に測定できない場合があるためである。その結果、このような局所的な山の影響を無くすために負荷長さ率が5%以下の領域を、また、局所的な谷の影響を無くすために負荷長さ率が95%以上の領域を除去することで、測定位置や研磨処理による影響を抑制することが可能となる。   In the present invention, a depth corresponding to 5% to 95% of the load length ratio is set as a using a roughness curve instead of a cross section curve, and the value of a is used. The reason for using the roughness curve is that the cross-section curve may be affected by undulations within the measurement range, and therefore, the depth corresponding to 5% to 95% of the load length ratio obtained from the cross-section curve is larger. The depth corresponding to 5% to 95% of the load length ratio obtained from the roughness curve was more related to image defects such as toner fusing on the surface of the electrophotographic photosensitive member and high humidity flow. It is. Further, as a reason for using a depth corresponding to 5% to 95% of the load length ratio, the macroscopic surface shape obtained by a roughness meter or the like is the same as the above-described microscopic surface shape. This is because the parameters in the height direction may not be accurately measured depending on the measurement position. As a result, an area where the load length ratio is 5% or less to eliminate the influence of such local peaks, and an area where the load length ratio is 95% or more to eliminate the influence of local valleys By removing, it is possible to suppress the influence of the measurement position and the polishing process.

また、本発明では、図3に示すように、巨視的な表面形状の山や谷そのものの形状を、負荷長さ率が5%から20%に対応する深さを測定し、横軸を深さ、縦軸を負荷長さ率にして測定点の直線近似によって得られる傾きをb、負荷長さ率が80%から95%に対応する深さを測定し、横軸を深さ、縦軸を負荷長さ率にして測定点の直線近似によって得られる傾きをcとして数値化し、測定範囲内にある山をまとめた時の傾斜と谷をまとめた時の傾斜を求めた。このように、測定範囲内にある全ての山及び全ての谷から求めた山及び谷の傾斜を用いた理由としては、電子写真感光体の巨視的な表面形状は基体の形状に大きく影響され、基体を旋盤等で切削した場合には、基体表面は規則的な表面形状が作られる。しかし、この基板上に膜を形成した後の巨視的な表面形状の山及び谷の形状は、基板表面の形状が支配的となるが、膜形成の条件等により電子写真感光体表面と基板の表面形状とは全く同じとは限らないため、特定の山及び谷の形状の数値化が測定した電子写真感光体の表面を正確に表していない可能性が高くなるためである。もう一つの理由としては、画像欠陥や高湿流れは、ある程度の範囲内の山及び谷に影響されるものであると考えたからである。   Further, in the present invention, as shown in FIG. 3, the shape of the macroscopic surface shape of the mountain or valley itself is measured by measuring the depth corresponding to the load length ratio from 5% to 20%, and the horizontal axis is the depth. The vertical axis is the load length ratio, the slope obtained by linear approximation of the measurement point is b, the depth corresponding to the load length ratio from 80% to 95% is measured, the horizontal axis is the depth, and the vertical axis The slope obtained by linear approximation of the measurement points as a load length ratio was numerically expressed as c, and the slope when the peaks in the measurement range were combined and the slope when the valleys were combined were obtained. Thus, as a reason for using the slopes of the peaks and valleys obtained from all the peaks and all the valleys in the measurement range, the macroscopic surface shape of the electrophotographic photosensitive member is greatly influenced by the shape of the substrate, When the substrate is cut with a lathe or the like, a regular surface shape is created on the surface of the substrate. However, the shape of the peaks and valleys of the macroscopic surface shape after the film is formed on this substrate is dominated by the shape of the substrate surface, but depending on the conditions of film formation, the surface of the electrophotographic photosensitive member and the substrate This is because the surface shape is not always the same, and the numerical value of the shape of specific peaks and valleys is more likely not to accurately represent the measured surface of the electrophotographic photosensitive member. Another reason is that it was considered that image defects and high-humidity flows are affected by peaks and valleys within a certain range.

このようにして得られたbは、測定範囲内の巨視的な表面粗さにおける全ての山から得られた山の平均的な傾斜であり、同様にcも、測定範囲内の巨視的な表面粗さにおける全ての谷から得られた谷の平均的な傾斜である。bを求める際に負荷長さ率が5%より小さい範囲を、またcを求める際に負荷長さ率が95%より大きい範囲を用いなかった理由は、上記aに記載した内容と同く、局所的な山である負荷長さ率が5%以下の領域を、また、局所的な谷のである負荷長さ率が95%以上の領域を除去することで、測定位置による高さ方向のパラメーターのばらつきを抑え、測定位置や研磨処理による影響を抑制することが可能となるためである。   The b obtained in this way is the average slope of the peaks obtained from all peaks in the macroscopic surface roughness within the measurement range, and similarly c is the macroscopic surface within the measurement range. The average slope of the trough obtained from all troughs in roughness. The reason why the load length ratio is less than 5% when b is obtained and the range where the load length ratio is greater than 95% is not used when c is obtained is the same as the content described in a. By removing the area where the load length ratio is 5% or less, which is a local mountain, and the area where the load length ratio is 95% or more, which is a local valley, the height direction parameter according to the measurement position is removed. This is because it is possible to suppress the variation in measurement and to suppress the influence of the measurement position and the polishing process.

本発明では、電子写真感光体の粗さ計の基準長さとして、0.8mmで測定した。この理由として、測定範囲を広くすることで基体のうねりの影響によるばらつきが大きくなる場合がある。逆に、測定範囲を狭くすることで、山や谷の数が減少することによる測定位置の選択によるばらつきが大きくなる場合がある。そのため、本発明では基準長さを0.8mmとし、より正確な測定値を得るために評価長さを4.0mmとして測定した。   In the present invention, the measurement was performed at 0.8 mm as the reference length of the roughness meter of the electrophotographic photosensitive member. The reason for this is that the variation due to the influence of the waviness of the substrate may be increased by widening the measurement range. Conversely, by narrowing the measurement range, there may be a case where the variation due to selection of the measurement position due to the decrease in the number of peaks and valleys increases. Therefore, in the present invention, the reference length was 0.8 mm, and the evaluation length was 4.0 mm in order to obtain a more accurate measurement value.

以上の経緯から、本発明の発明思想は基準長さ0.8mm、評価長さ4.0mmの測定条件に限定されるものではない。   From the above circumstances, the inventive idea of the present invention is not limited to the measurement conditions of the reference length of 0.8 mm and the evaluation length of 4.0 mm.

本発明において、電子写真感光体の微視的な表面形状から得られるAの値を0.01μm以上0.30μm以下、巨視的な表面形状から得られるaの値を0.03μm以上0.55μm以下、更にA×aを1.0×10-3μm2以上4.50×10-2μm2以下とすることにより、高湿流れ及び画像欠陥の良好な電子写真感光体が得られることを見出した。 In the present invention, the value of A obtained from the microscopic surface shape of the electrophotographic photosensitive member is 0.01 μm or more and 0.30 μm or less, the value of a obtained from the macroscopic surface shape is 0.03 μm or more and 0.55 μm or less, and A It has been found that an electrophotographic photosensitive member having a high humidity flow and good image defects can be obtained by setting xa to 1.0 × 10 −3 μm 2 or more and 4.50 × 10 −2 μm 2 or less.

Aを0.30μmより大きくすると、微視的な表面形状の凹凸形状が大きくなりすぎるため、電子写真感光体表面の凹部に付着したオゾン生成物や水分等をシリカ等のトナー成分やクリーニングブレード等のクリーニング部材により除去することが困難となる場合があり、その結果、高湿流れを生じる場合がある。また、0.01μmより小さくすると、微視的な表面形状の微細な凹凸形状が小さくなるのと同時に、山や谷の表面の更に細かな凹凸も小さくなる。その結果、クリーニング部材と電子写真感光体との接触面積が増加するため、クリーニング部材と電子写真感光体表面との接触面積における単位当たりの摺擦力が低下するためクリーニング不良を、また、電子写真感光体の微視的な凹凸が小さくなるためクリーニング部材と電子写真感光体表面の間に入り込んだトナー等の逃げ道が減少するために、トナー等の融着が生じやすくなり、その結果、画像欠陥が生じる場合がある。また、電子写真感光体の微視的な表面形状を研磨により制御する場合、研磨が進むにつれ研磨部材と電子写真感光体の接触面積の増加により研磨レートが低下していく。そのため、微視的な表面形状を0.01μmより小さくするためには、研磨に要する時間が非常の多くなるため生産の観点からも好ましくない。   When A is larger than 0.30 μm, the uneven surface shape of the microscopic surface shape becomes too large. Therefore, ozone products and moisture adhering to the recesses on the surface of the electrophotographic photosensitive member are removed from toner components such as silica, cleaning blades, etc. It may be difficult to remove by the cleaning member, resulting in a high humidity flow. On the other hand, when the thickness is smaller than 0.01 μm, the fine unevenness of the microscopic surface shape is reduced, and at the same time, the finer unevenness of the surface of the mountain or valley is also reduced. As a result, since the contact area between the cleaning member and the electrophotographic photosensitive member increases, the rubbing force per unit in the contact area between the cleaning member and the surface of the electrophotographic photosensitive member decreases, resulting in poor cleaning and electrophotography. Since the microscopic unevenness of the photosensitive member is reduced, the escape route of the toner and the like that has entered between the cleaning member and the surface of the electrophotographic photosensitive member is reduced, so that the toner and the like are likely to be fused, resulting in image defects. May occur. When the microscopic surface shape of the electrophotographic photosensitive member is controlled by polishing, the polishing rate decreases as the contact area between the polishing member and the electrophotographic photosensitive member increases as polishing progresses. Therefore, in order to make the microscopic surface shape smaller than 0.01 μm, the time required for polishing becomes very long, which is not preferable from the viewpoint of production.

また、aを0.55より大きくする、またA×aを4.50×10-2μm2よりも大きくすると、巨視的な表面形状の凹凸形状が大きくなるため、Aと同様に高湿流れを生じる場合がある。また、aを0.03μmより小さくする、また、A×aを1.0×10-3μm2よりも小さくすると、Aと同様にトナー等の融着やクリーニング不足による画像欠陥が発生する場合がある。 Also, if a is larger than 0.55 and A × a is larger than 4.50 × 10 −2 μm 2 , the macroscopic surface irregularities will increase, and as with A, high humidity flow may occur. is there. If a is smaller than 0.03 μm and A × a is smaller than 1.0 × 10 −3 μm 2 , image defects may occur due to fusing of toner or insufficient cleaning as in the case of A.

本発明において、Aを0.02μm 以上0.25μm以下、aを0.05μm以上0.45μm以下、A×aを3.0×10-3μm2以上3.50×10-2μm2以下とすることにより、クリーニング不良やトナー融着等の画像欠陥及び高湿流れに対してより好ましく、Aを0.03μm 以上0.20μm以下、aを0.07μm以上0.40μm以下、A×aを5.0×10-3μm2以上3.0×10-2μm2以下とすることが更に好ましい。 In the present invention, when A is 0.02 μm or more and 0.25 μm or less, a is 0.05 μm or more and 0.45 μm or less, and A × a is 3.0 × 10 −3 μm 2 or more and 3.50 × 10 −2 μm 2 or less, More preferable for image defects such as toner fusion and high humidity flow, A is 0.03 μm to 0.20 μm, a is 0.07 μm to 0.40 μm, A × a is 5.0 × 10 −3 μm 2 to 3.0 × 10 More preferably, it is −2 μm 2 or less.

また、本発明において、粗さ計により得られる巨視的な表面形状において、横軸を深さ(μm)、縦軸を負荷長さ率(%)とした際、負荷長さ率が5%と20%を結ぶ近似直線の傾きb、80%と95%を結ぶ近似直線の傾きをcとした際、bが250%/μm以上1000%/μm以下、cが220%/μm以上1000%/μm以下、且つc/bが0.5以上2.0以下とすることにより、更なるクリーニング不良やトナー融着等の画像欠陥及び高湿流れが良好となる。   In the present invention, in the macroscopic surface shape obtained by the roughness meter, when the horizontal axis is the depth (μm) and the vertical axis is the load length ratio (%), the load length ratio is 5%. If the slope of the approximate line connecting 20% is b and the slope of the approximate line connecting 80% and 95% is c, b is 250% / μm or more and 1000% / μm or less, and c is 220% / μm or more and 1000% / When the thickness is not more than μm and the c / b is not less than 0.5 and not more than 2.0, further defective cleaning, image defects such as toner fusion, and high humidity flow are improved.

巨視的な表面形状における山の傾きbを250%/μmより小さくすると、巨視的な山の形状が立ってくるため、外添材やクリーニング部材による山と山の間及び谷部をクリーニングすることが難しくなり、その結果、高湿流れが発生する場合がある。また、bを1000%/μmより大きくすると、微視的な山の形状がつぶれてくるため、クリーニング部材との接触面積が増加することにより、クリーニング不良による濃度低下や、クリーニング時にトナー等の逃げが減少することによるトナー等の融着が発生する場合があり、画像欠陥が発生する場合がある
巨視的な表面形状における谷の傾きcを220%/μmより小さくすると、微視的な谷の形状が立ってくるため、谷部のクリーニングが困難となり、その結果、高湿流れが発生する場合がある。また、cを1000%/μmより大きくなる場合は、巨視的な形状も小さくなっているため、クリーニング部材との接触面積が増加することによるクリーニング性の低下やトナー等の融着が発生する場合があると推察される。
If the slope b of the peak in the macroscopic surface shape is less than 250% / μm, the macroscopic peak shape will stand up, so clean the peaks and valleys with external additives and cleaning members. As a result, high humidity flow may occur. Also, if b is larger than 1000% / μm, the shape of the microscopic peak will be crushed, and the contact area with the cleaning member will increase, resulting in a decrease in density due to poor cleaning, and escape of toner etc. during cleaning. In some cases, fusing of toner or the like may occur due to the decrease in image quality, and image defects may occur. If the slope c of the valley in the macroscopic surface shape is smaller than 220% / μm, the microscopic valley Since the shape stands, it becomes difficult to clean the valleys, and as a result, a high humidity flow may occur. In addition, when c is larger than 1000% / μm, the macroscopic shape is also small. Therefore, when the contact area with the cleaning member is increased, the cleaning property is deteriorated or the toner is fused. It is assumed that there is.

更に、巨視的な山の傾きbと谷の傾きcの関係が、高湿流れ及び画像欠陥に影響を与える。例えば、高湿流れ及び画像欠陥に対して良好な巨視的な山の形状を有していても、トナー中に含まれる外添材やクリーニング部材によりクリーニングが困難な巨視的な谷の形状である場合は、高湿流れが発生してしまうからである。   Furthermore, the relationship between the macroscopic mountain slope b and the valley slope c affects the high-humidity flow and image defects. For example, it has a macroscopic valley shape that is difficult to clean with an external additive or a cleaning member contained in the toner even though it has a good macroscopic peak shape against high humidity flow and image defects. In this case, a high humidity flow is generated.

即ち、巨視的な山と谷の形状の関係c/bが0.5よりも小さい場合、又はc/bが2.0よりも大きい場合、cが高湿流れ及び画像欠陥に対して良好な傾きであっても、bが大きくなるにつれ、巨視的な山が平坦化してしまうためにクリーニング不良による濃度低下や、クリーニング時にトナー等の逃げが減少することによるトナーの融着等の画像欠陥が発生する場合がある。また、bが小さくなるにつれ、巨視的な山の形状が立ってくるため谷部のクリーニングが困難となり高湿流れが発生する場合がある。   That is, when the relationship between the macroscopic peak-to-valley shape c / b is less than 0.5, or when c / b is greater than 2.0, c is a good slope for high humidity flow and image defects. However, as b increases, the macroscopic peaks flatten, and image defects such as density reduction due to poor cleaning and toner fusing due to reduced toner escape during cleaning may occur. is there. Further, as b becomes smaller, a macroscopic mountain shape is formed, so that it becomes difficult to clean the valleys and a high humidity flow may occur.

逆に、bが高湿流れ及び画像欠陥に対して良好な傾きであっても、cが大きくなるにつれ、巨視的な谷が狭くなってしまうためにクリーニングが困難となり高湿流れが発生する場合がある。また、cが小さくなるにつれ、巨視的な形状も小さくなっているため、クリーニング部材との接触面積が増加することによるクリーニング性の低下やトナー等の融着が発生する場合がある。   On the other hand, even if b has a good inclination with respect to high-humidity flow and image defects, as c becomes larger, the macro valley becomes narrower, so cleaning becomes difficult and high-humidity flow occurs. There is. Further, as c becomes smaller, the macroscopic shape also becomes smaller, so that the cleaning area may be lowered and the toner may be fused due to an increase in the contact area with the cleaning member.

このように、巨視的な山及び谷の各々の形状が高湿流れや画像欠陥に影響を与えるため、巨視的な山及び谷の形状だけでなく、巨視的な山と谷の形状の関係をも適切に制御することで高湿流れ及び画像欠陥が更に良好となると推察される。   In this way, the shape of each of the macroscopic peaks and valleys affects the high-humidity flow and image defects, so the relationship between the macroscopic mountain and valley shapes as well as the macroscopic mountain and valley shapes In addition, it is surmised that high humidity flow and image defects are further improved by appropriately controlling the flow rate.

更に、本発明において、AFMにより得られる微視的な表面形状において、横軸をsurface Height(μm)、縦軸をBearing Ratio(%)とした際、Bearing Ratioが5%と20%を結ぶ近似直線の傾きをB、80%と95%を結ぶ近似直線の傾きをCとした際、Bが250%/μm以上3000%/μm以下、Cが200%/μm以上2000%/μm以下、且つC/Bが0.1以上1.0以下とすることが更に好ましい。   Furthermore, in the present invention, in the microscopic surface shape obtained by AFM, when the horizontal axis is surface height (μm) and the vertical axis is bearing ratio (%), the bearing ratio is an approximation connecting 5% and 20%. When the slope of the straight line is B and the slope of the approximate straight line connecting 80% and 95% is C, B is 250% / μm to 3000% / μm, C is 200% / μm to 2000% / μm, and More preferably, C / B is 0.1 or more and 1.0 or less.

微視的な表面形状における山の傾きBを250%/μmより小さくすると、微視的な山の形状が立ってくるため、山部と山部の間をクリーニングすることが難しくなり、その結果、高湿流れが発生する場合がある。また、Bを3000%/μmより大きくすると、微視的な山の形状がつぶれてくるため、クリーニング部材との接触面積が増加することにより、クリーニング不良による濃度低下や、クリーニング時にトナー等の逃げが減少することによるトナーの融着等の画像欠陥が発生する場合がある。   If the slope B of the peak in the microscopic surface shape is less than 250% / μm, the microscopic peak shape will stand up, making it difficult to clean between the peaks. High humidity flow may occur. Further, if B is larger than 3000% / μm, the shape of the microscopic peak is crushed, so that the contact area with the cleaning member increases, resulting in a decrease in density due to poor cleaning, and escape of toner and the like during cleaning. In some cases, image defects such as toner fusion due to a decrease in toner may occur.

また、微視的な表面形状における谷の傾きCを200%/μmより小さくすると、微視的な谷の形状が立ってくるため、谷部のクリーニングが困難となり、その結果、高湿流れが発生する場合がある。また、Cを2000%/μmより大きくなる場合は、微視的な形状も小さくなっているため、クリーニング部材との接触面積が増加することによるクリーニング性の低下やトナーの融着等の画像欠陥が発生する場合がある。   Also, if the slope C of the valley in the microscopic surface shape is smaller than 200% / μm, the microscopic valley shape will stand up, making it difficult to clean the valley, resulting in high humidity flow. May occur. In addition, when C is larger than 2000% / μm, the microscopic shape is also small, so that an image defect such as a decrease in cleaning property due to an increase in the contact area with the cleaning member or toner fusion. May occur.

更に、微視的な山の傾きBと谷の傾きCの関係も高湿流れ及び画像欠陥に影響を与える。例えば、高湿流れ及び画像欠陥に対して良好な微視的な山の形状を有していても、トナー中に含まれる外添材やクリーニング部材によりクリーニングが困難な微視的な谷の形状である場合は、高湿流れが発生してしまうからである。   Further, the relationship between the microscopic mountain slope B and the valley slope C also affects the high-humidity flow and image defects. For example, a microscopic valley shape that is difficult to clean with an external additive or a cleaning member contained in the toner even though it has a good microscopic peak shape against high humidity flow and image defects This is because a high humidity flow is generated.

即ち、微視的な山と谷の形状の関係C/Bが0.1よりも小さい場合、又はC/Bが1.0よりも大きい場合、Cが高湿流れ及び画像欠陥に対して良好な傾きであっても、Bが大きくなるにつれ、微視的な山が平坦化してしまうためにクリーニング不良による濃度低下や、クリーニング時にトナー等の逃げが減少することによるトナーの融着等の画像欠陥が発生する場合がある。また、Bが小さくなるにつれ、巨視的な山の形状が立ってくるため谷部のクリーニングが困難となり高湿流れが発生する場合がある。   That is, when the relationship between the microscopic peak-valley shapes C / B is smaller than 0.1, or when C / B is larger than 1.0, C has a good inclination with respect to high-humidity flow and image defects. However, as B becomes larger, the microscopic peaks flatten, so that density defects due to poor cleaning and image defects such as toner fusing due to reduced escape of toner during cleaning occur. There is a case. In addition, as B becomes smaller, a macroscopic mountain shape is formed, so that it becomes difficult to clean the valley and a high humidity flow may occur.

逆に、Bが高湿流れ及び画像欠陥に対して良好な傾きであっても、Cが大きくなるにつれ、微視的な谷が狭くなってしまうためにクリーニングが困難となり高湿流れが発生する場合がある。また、Cが小さくなるにつれ、微視的な形状も小さくなっているため、クリーニング部材との接触面積が増加することによるクリーニング性の低下やトナー等の融着が発生する場合がある。   On the contrary, even if B has a good inclination with respect to the high-humidity flow and the image defect, as C becomes larger, the microscopic valley becomes narrower, so that cleaning becomes difficult and a high-humidity flow occurs. There is a case. Further, as C becomes smaller, the microscopic shape also becomes smaller. Therefore, there is a case where the cleaning property is deteriorated and the toner or the like is fused due to an increase in the contact area with the cleaning member.

このように、微視的な山及び谷の各々の形状が高湿流れや画像欠陥に影響を与えるため、微視的な山及び谷の形状だけでなく、微視的な山と谷の形状の関係をも適切に制御することで高湿流れ及び画像欠陥が更に良好となると推察される。   In this way, since the shape of each of the microscopic peaks and valleys affects the high-humidity flow and the image defect, not only the microscopic peak and valley shapes but also the microscopic peak and valley shapes It is presumed that high humidity flow and image defects are further improved by appropriately controlling the above relationship.

上記微視的及び巨視的な表面形状を制御する手段としては、特に限定されるものではないが、微視的及び巨視的な表面形状の山や谷の形、高さを任意に変えることが可能であることから、電子写真感光体表面を研磨することが好ましい。   The means for controlling the microscopic and macroscopic surface shapes is not particularly limited, but the shape and height of the peaks and valleys of the microscopic and macroscopic surface shapes can be arbitrarily changed. Since it is possible, it is preferable to polish the electrophotographic photoreceptor surface.

研磨手段としては、研磨テープ、磁性粉体、バフ研磨等の研磨方法やこれらの組合せによる研磨等、特に制限されるものではなく、目的の表面形状に制御するために適宜選択して使用することが好ましい。   The polishing means is not particularly limited, such as a polishing method such as polishing tape, magnetic powder, buffing, or a combination thereof, and is appropriately selected and used to control the target surface shape. Is preferred.

研磨テープ等の研磨砥粒が固定されているものを用いると、微視的及び巨視的な表面形状の山の頂点のみが選択的に研磨される。その結果、山部が平坦化されるためB及びbのみが大きく変化し、逆に、谷部はほぼ変化しないためC及びcの変化は少ない。また、磁性粉体やバフ研磨等の研磨砥粒が固定されておらず、流動性を有するものを用いると、微視的及び巨視的な表面形状に関らず全体的に研磨される。この結果、B、b、C、cともに大きくなり、微視的及び巨視的な表面形状の山は丸みを有する形状となる。   When the abrasive grains such as the abrasive tape are fixed, only the tops of the peaks having the microscopic and macroscopic surface shapes are selectively polished. As a result, since the peak portion is flattened, only B and b change greatly, and conversely, since the valley portion does not substantially change, the change of C and c is small. In addition, when abrasive grains such as magnetic powder and buffing are not fixed and those having fluidity are used, the entire surface is polished regardless of the microscopic and macroscopic surface shapes. As a result, B, b, C, and c all increase, and the microscopic and macroscopic surface shape peaks are rounded.

また、研磨に使用する砥粒の粒径は、目的の微視的及び巨視的な表面形状により適宜選択する必要があるが、砥粒の粒径は、特に微視的な表面形状の制御に効果的である。微視的な表面形状における山と山の間隔よりも大きい粒径の砥粒を用いると、谷部には砥粒が入り込めないため山部のみを選択的に研磨する。反対に、山と山の間隔よりも小さい粒径の砥粒を用いると、山、谷ともに研磨することができる。よって、電子写真感光体の研磨前の表面形状、研磨後に目標とする表面形状等によって磁性粉体の粒径を適宜選択する必要があるが、研磨による電子写真感光体の加工ダメージの点から、粒径が100μm以下の研磨砥粒を用いることが好ましい。   In addition, the grain size of the abrasive grains used for polishing must be appropriately selected according to the desired microscopic and macroscopic surface shapes, but the grain size of the abrasive grains is particularly useful for controlling the microscopic surface shape. It is effective. When abrasive grains having a grain size larger than the crest-to-crest interval in the microscopic surface shape are used, only the crests are selectively polished because the abrasive grains cannot enter the troughs. On the other hand, if abrasive grains having a particle size smaller than the interval between peaks are used, both peaks and valleys can be polished. Therefore, it is necessary to appropriately select the particle size of the magnetic powder according to the surface shape before polishing of the electrophotographic photosensitive member, the target surface shape after polishing, etc., but from the point of processing damage of the electrophotographic photosensitive member due to polishing, It is preferable to use abrasive grains having a particle size of 100 μm or less.

図4は、本発明で電子写真感光体の微視的及び巨視的な表面形状を制御するために用いた電子写真感光体表面を磁性粉体より研磨する研磨装置の一例を示した模式的な概略断面図である。ここで、図4-1は装置全体の概略断面図であり、図4-2は、図4-1の要部の詳細を示す模式的な概略断面図である。   FIG. 4 is a schematic view showing an example of a polishing apparatus for polishing the surface of the electrophotographic photosensitive member used for controlling the microscopic and macroscopic surface shape of the electrophotographic photosensitive member with magnetic powder according to the present invention. It is a schematic sectional drawing. Here, FIG. 4-1 is a schematic cross-sectional view of the entire apparatus, and FIG. 4-2 is a schematic cross-sectional view showing details of the main part of FIG. 4-1.

図4-1に示す研磨装置は、マグネットローラー容器404内に内部に磁性体を有するマグネットローラー402が収容されており、前記マグネットローラー402表面は磁性粉体403によって覆われている。電子写真感光体401及びマグネットローラー402は不図示の回転機構と接続されており、それぞれ回転可能になっている。マグネットローラー容器404は可動台407に固定されており、移動機構408によって電子写真感光体401へと磁性粉体403が接する位置まで移動し、これにより、電子写真感光体401表面を磁性粉体で研磨する構成となっている。   In the polishing apparatus shown in FIG. 4A, a magnet roller 402 having a magnetic body is accommodated in a magnet roller container 404, and the surface of the magnet roller 402 is covered with magnetic powder 403. The electrophotographic photosensitive member 401 and the magnet roller 402 are connected to a rotation mechanism (not shown) and can rotate. The magnet roller container 404 is fixed to the movable base 407, and is moved to a position where the magnetic powder 403 contacts the electrophotographic photosensitive member 401 by the moving mechanism 408, whereby the surface of the electrophotographic photosensitive member 401 is made of magnetic powder. It is configured to polish.

マグネットローラー402内部の磁性体により磁性粉体がブラシ状に形成され、電子写真感光体401の表面をマグネットローラー402上に形成されたブラシ状の磁性粉体により研磨することで、研磨時に発生した研磨残渣及び研磨前、研磨中に付着したダスト等を研磨面から除去することにより、研磨傷を抑制することが可能となる。   Magnetic powder is formed in a brush shape by the magnetic material inside the magnet roller 402, and the surface of the electrophotographic photosensitive member 401 is polished by the brush-shaped magnetic powder formed on the magnet roller 402, which occurs during polishing. By removing the polishing residue and dust attached during polishing before and after polishing from the polishing surface, polishing scratches can be suppressed.

マグネットローラー402内部の磁性体により磁性粉体がブラシ状に形成され、電子写真感光体401の表面をマグネットローラー402上に形成されたブラシ状の磁性粉体により研磨することで、研磨時に発生した研磨残渣及び研磨前、研磨中に付着したダスト等を研磨面から除去することにより、研磨傷を抑制することが可能となる。   Magnetic powder is formed in a brush shape by the magnetic material inside the magnet roller 402, and the surface of the electrophotographic photosensitive member 401 is polished by the brush-shaped magnetic powder formed on the magnet roller 402, which occurs during polishing. By removing the polishing residue and dust attached during polishing before and after polishing from the polishing surface, polishing scratches can be suppressed.

マグネットローラー402内部の磁性体は、通常のフェライト磁石等の金属や、プラスティックマグネット等の磁性体を用いて円筒状に形成したもので、マグネットローラー上に良好なブラシ状の磁性粉体を形成するためには、多極磁性体を用いることが好ましい。   The magnetic body inside the magnet roller 402 is formed into a cylindrical shape using a metal such as a normal ferrite magnet or a magnetic body such as a plastic magnet, and forms a good brush-like magnetic powder on the magnet roller. Therefore, it is preferable to use a multipolar magnetic material.

また、磁性体の磁束線密度が低いものを用いた場合、マグネットローラー102表面で生じる磁性粉体の穂立ち部の流動性が高くなるため、電子写真感光体表面の微細な形状の凹部へと選択的に入り易くなり、研磨後の微細な形状は丸みを有する形状となる。逆に、磁性体の磁束線密度が高いものを用いた場合、穂立ち部の流動性が低下するために微細な形状の中で高い凸部が研磨されやすくなり、研磨後の微細な形状は凸部が平坦化された形状となる。よって、磁性体の磁束線密度は、電子写真感光体表面の形状等によって適宜選択する必要があるが、磁束線密度が低くすぎる場合には磁性粉体をマグネットローラー402表面に維持できなくなることから、マグネットローラー402表面で30mT(=300G)以上となるような磁性体を使用することが好ましい。   In addition, when a magnetic material having a low magnetic flux line density is used, the flowability of the spikes of the magnetic powder generated on the surface of the magnet roller 102 is increased, so that the finely shaped recesses on the surface of the electrophotographic photosensitive member are formed. It becomes easy to selectively enter, and the fine shape after polishing becomes a rounded shape. On the other hand, when a magnetic material with a high magnetic flux line density is used, the fluidity of the head portion is reduced, so that the high convex portion is easily polished in the fine shape, and the fine shape after polishing is The convex portion has a flattened shape. Therefore, the magnetic flux line density of the magnetic material needs to be appropriately selected depending on the shape of the electrophotographic photosensitive member surface, etc., but if the magnetic flux line density is too low, the magnetic powder cannot be maintained on the surface of the magnet roller 402. It is preferable to use a magnetic material having a surface of 30 mT (= 300 G) or more on the surface of the magnet roller 402.

図4-2に示すように、マグネットローラー402表面を覆う磁性粉体403の層厚は、マグネットローラー402と板状の磁性体規制ブレード405との間隔(SB距離)により制御される。磁性粉体層の電子写真感光体401上におけるニップ幅(電子写真感光体と磁性粉体の接触部における周方向の幅)は、研磨レート、研磨後の形状に影響を与えるため、ニップ幅を安定して制御することにより安定性及び再現性の高い研磨が可能となる。ニップ幅の制御手段として、図4の研磨装置では上記SB距離及び電子写真感光体401とマグネットローラー402との間隔であるSD距離を制御することで容易に実現できる。SD距離は、図4に示す研磨装置においては、マグネットローラー容器404に接続されたマイクロメーター406により容易に調整が可能である。ニップ幅は、広げると研磨レートが上がり、狭めると下がることから、SB距離及びSD距離は適宜選択する必要があるが、マグネットローラー402と電子写真感光体への接触を防ぐ点から、SB距離及びSD距離は400μm以上に、また、ニップ幅を広げていくと研磨レートが飽和することからSB距離は1500μm以下にすることが好ましい。   As shown in FIG. 4B, the layer thickness of the magnetic powder 403 covering the surface of the magnet roller 402 is controlled by the interval (SB distance) between the magnet roller 402 and the plate-like magnetic body regulating blade 405. The nip width of the magnetic powder layer on the electrophotographic photosensitive member 401 (the circumferential width at the contact portion between the electrophotographic photosensitive member and the magnetic powder) affects the polishing rate and the shape after polishing. By controlling stably, polishing with high stability and reproducibility becomes possible. 4 can be easily realized by controlling the SB distance and the SD distance which is the distance between the electrophotographic photosensitive member 401 and the magnet roller 402 as the nip width control means. In the polishing apparatus shown in FIG. 4, the SD distance can be easily adjusted by a micrometer 406 connected to the magnet roller container 404. Since the polishing rate increases when the nip width is widened and decreases when the nip width is narrowed, the SB distance and the SD distance must be appropriately selected. However, from the viewpoint of preventing contact between the magnet roller 402 and the electrophotographic photosensitive member, the SB distance and The SD distance is preferably 400 μm or more, and the polishing rate is saturated when the nip width is widened. Therefore, the SB distance is preferably 1500 μm or less.

マグネットローラー402の外周は、磁力により吸引された磁性粉体403により覆われている。この磁性粉体としては、一般にフェライト、マグネタイト等の磁性粉体、周知の磁性トナーのキャリアを使用することが可能である。磁性粉体表面が樹脂膜等でコーティングされていると、電子写真感光体と磁性粉体との摩擦が低下し、研磨レートが低下するため磁性粉体表面がコーティングされていない磁性粉体を使用することが好ましい。   The outer periphery of the magnet roller 402 is covered with magnetic powder 403 attracted by magnetic force. As this magnetic powder, it is generally possible to use magnetic powders such as ferrite and magnetite, and well-known magnetic toner carriers. If the surface of the magnetic powder is coated with a resin film, etc., the friction between the electrophotographic photosensitive member and the magnetic powder will decrease, and the polishing rate will decrease, so the magnetic powder that is not coated is used. It is preferable to do.

また、磁性粉体の形状は、焼結体等の球形の磁性粉体と焼結体を粉砕したもの等の不定形の磁性粉体とに大きく分けられる。球形の磁性粉体よりも不定形の磁性粉体の方が電子写真感光体表面と磁性粉体との摩擦抵抗が大きくなるため研磨レートが高くなる。このことから、磁性粉体の形状は研磨レート等によって適宜選択する必要がある。   The shape of the magnetic powder is roughly divided into a spherical magnetic powder such as a sintered body and an irregular magnetic powder such as a pulverized sintered body. The amorphous magnetic powder has a higher polishing rate because the frictional resistance between the surface of the electrophotographic photosensitive member and the magnetic powder is larger than the spherical magnetic powder. Therefore, the shape of the magnetic powder needs to be appropriately selected depending on the polishing rate and the like.

磁性粉体403による研磨の際、電子写真感光体401を回転させて、電子写真感光体表面を研磨することにより、電子写真感光体外周を均一に研磨することが可能となる。電子写真感光体の回転数は、目的の微視的及び巨視的な表面形状により適宜選択する必要があるが、研磨時の回転数は、特に巨視的な表面形状の制御に効果的である。回転数を下げると電子写真感光体表面の巨視的な表面形状の山が選択的に研磨され、且つ研磨レートも低下する傾向が見られ、逆に、回転数を上げていくと巨視的な表面形状の谷が選択的に研磨され、且つ研磨レートも向上する傾向が見られるため、研磨後の電子写真感光体表面の形状、研磨レート及び研磨量によって適宜選択する必要があるが、安定した研磨を行うためには、10〜500rpmで回転させることが好ましい。   When polishing with the magnetic powder 403, the outer periphery of the electrophotographic photosensitive member can be uniformly polished by rotating the electrophotographic photosensitive member 401 and polishing the surface of the electrophotographic photosensitive member. The rotational speed of the electrophotographic photoreceptor needs to be appropriately selected depending on the desired microscopic and macroscopic surface shapes, but the rotational speed during polishing is particularly effective for controlling the macroscopic surface shape. When the rotational speed is decreased, the macroscopic surface shape of the electrophotographic photosensitive member surface is selectively polished, and the polishing rate tends to decrease. Conversely, when the rotational speed is increased, the macroscopic surface is observed. Since the troughs of the shape are selectively polished and the polishing rate tends to improve, it is necessary to select appropriately depending on the shape, polishing rate and polishing amount of the electrophotographic photoreceptor surface after polishing, but stable polishing In order to carry out, it is preferable to rotate at 10 to 500 rpm.

また、電子写真感光体表面を研磨する際に、マグネットローラー402に吸引されている磁性粉体403を常に入れ替えることにより、安定した研磨を行うことが可能となるため、マグネットローラー402も回転させることが好ましい。このとき、マグネットローラー402の回転方向は、電子写真感光体表面と磁性粉体が接する位置で電子写真感光体401の回転方向とマグネットローラー402の回転方向が同一方向よりも逆方向の方が、研磨レートが向上することからマグネットローラー402の回転方向を図4に示すように逆方向にする方が研磨時間短縮の点から好ましい。   Also, when polishing the surface of the electrophotographic photosensitive member, it is possible to perform stable polishing by always replacing the magnetic powder 403 attracted to the magnet roller 402, so the magnet roller 402 can also be rotated. Is preferred. At this time, the rotation direction of the magnet roller 402 is such that the rotation direction of the electrophotographic photosensitive member 401 and the rotation direction of the magnet roller 402 are opposite to each other at the position where the surface of the electrophotographic photosensitive member is in contact with the magnetic powder. Since the polishing rate is improved, it is preferable from the viewpoint of shortening the polishing time that the rotation direction of the magnet roller 402 is reversed as shown in FIG.

図5は、本発明で電子写真感光体の微視的及び巨視的な表面形状を制御するために用いた電子写真感光体表面を研磨テープより研磨する研磨装置の一例を示した模式的な概略断面図である。加圧弾性ローラー容器507内に加圧弾性ローラー503が接続されている。不図示の回転機構に接続された定量送り出しローラー510とキャプスタンローラー509によって研磨テープ502は送り出し量が制御されており、送り出しロール504から送り出された研磨テープは、搬送経路支持棒511を経由して巻き取りロール505によって巻き取られる構成となっている。加圧弾性ローラー容器507は、移動機構506によって電子写真感光体501方向へと移動することによって、電子写真感光体501表面に研磨テープ502を押し当てて研磨を行う構成となっている。   FIG. 5 is a schematic outline showing an example of a polishing apparatus for polishing the surface of the electrophotographic photosensitive member used for controlling the microscopic and macroscopic surface shape of the electrophotographic photosensitive member with the polishing tape according to the present invention. It is sectional drawing. A pressure elastic roller 503 is connected in the pressure elastic roller container 507. The feed amount of the polishing tape 502 is controlled by a fixed delivery roller 510 and a capstan roller 509 connected to a rotation mechanism (not shown), and the polishing tape sent from the delivery roll 504 passes through the transport path support bar 511. Thus, the take-up roll 505 is wound up. The pressure elastic roller container 507 is configured to perform polishing by pressing the polishing tape 502 against the surface of the electrophotographic photosensitive member 501 by moving in the direction of the electrophotographic photosensitive member 501 by the moving mechanism 506.

研磨テープ502は、通常ラッピングテープと呼ばれるものが好ましく、砥粒としては炭化珪素(SiC)、酸化アルミ(Al23)、α酸化鉄(Fe23)、酸化クロム(Cr23)、ダイヤモンド(C)、シリカ(SiO2)、炭酸バリウム(BaCO3)等が用いられる。また、砥粒の粒径は、細かすぎると研磨レートが低下し、粗すぎると電子写真感光体表面への加工ダメージが大きくなることから、0.1〜100μm、更には1〜40μmが好適である。 The polishing tape 502 is preferably a so-called lapping tape, and the abrasive grains are silicon carbide (SiC), aluminum oxide (Al 2 O 3 ), α iron oxide (Fe 2 O 3 ), chromium oxide (Cr 2 O 3). ), Diamond (C), silica (SiO 2 ), barium carbonate (BaCO 3 ), and the like. The abrasive grain size is preferably 0.1-100 μm, more preferably 1-40 μm, since the polishing rate decreases if it is too fine, and if it is too coarse, the processing damage to the electrophotographic photoreceptor surface increases.

研磨テープ502は、一般によく知られた塗布方法、例えばドクターブレード(ナイフエッジ)コート法、デップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法等により塗布することが可能である。   The polishing tape 502 is a generally well-known coating method, such as a doctor blade (knife edge) coating method, a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, an extrusion coating method, etc. It is possible to apply by.

研磨テープの送り速度は、研磨レート、研磨傷、処理コスト、摩擦による発熱等を考慮しながら適宜決定すれば良いが、1〜300mm/min、更には10〜100mm/minにすることが好ましい。   The polishing tape feed speed may be appropriately determined in consideration of the polishing rate, polishing scratches, processing cost, heat generated by friction, etc., but is preferably 1 to 300 mm / min, more preferably 10 to 100 mm / min.

加圧弾性ローラー503は、芯金上に可撓性部材としてのゴムを形成することにより作成される。ゴムはネオプレン(登録商標)ゴム、シリコンゴム等の材質が上げられる。JISゴム硬度が高くなると研磨レートは向上するが徐々に飽和していくため、JISゴム硬度が20〜90程度のものを用いるのが好ましい。   The pressure elastic roller 503 is created by forming rubber as a flexible member on a cored bar. The rubber is made of a material such as neoprene (registered trademark) rubber or silicon rubber. As the JIS rubber hardness increases, the polishing rate improves but gradually saturates. Therefore, it is preferable to use a JIS rubber hardness of about 20 to 90.

また、加圧弾性ローラー503の形状は、感光体母線方向に均一な処理を行うために、中央部の直径が両端部より太いものが好ましく、直径差が0.01〜0.6mm、さらには0.02〜0.4mmが好適である。   Further, the shape of the pressure elastic roller 503 is preferably such that the diameter of the central portion is thicker than both ends in order to perform uniform processing in the direction of the photoreceptor bus, and the difference in diameter is 0.01 to 0.6 mm, and further 0.02 to 0.4. mm is preferred.

更に、電子写真感光体501を研磨する際に、加圧弾性ローラー503から回転する電子写真感光体301への押し当て圧力を9.8×103〜1.96×106N/m2にすることが好ましく、4.9×104〜9.8×105N/m2にすることがより好ましい。押し当て圧力が低すぎると研磨レートの低下につながり、逆に、高すぎると研磨面での発熱により研磨テープの樹脂成分が多量に電子写真感光体表面へと転写されてしまう。 Further, when polishing the electrophotographic photosensitive member 501, it is preferable that the pressure applied to the rotating electrophotographic photosensitive member 301 from the pressure elastic roller 503 is 9.8 × 10 3 to 1.96 × 10 6 N / m 2. 4.9 × 10 4 to 9.8 × 10 5 N / m 2 is more preferable. If the pressing pressure is too low, the polishing rate is reduced. Conversely, if the pressing pressure is too high, a large amount of the resin component of the polishing tape is transferred to the surface of the electrophotographic photosensitive member due to heat generated on the polishing surface.

電子写真感光体501と研磨テープ502が接する研磨面において、摩擦熱による前記樹脂成分の電子写真感光体への転写及び研磨テープからの砥粒の脱落等を防ぐために、研磨面を水冷、冷風等で冷却した方が好ましい。研磨面の冷却方法としては、研磨面を直接冷却しても良いし、加圧弾性ローラー表面に冷却手段を接触させても良いし、電子写真感光体内部を冷却しても良い。   In the polishing surface where the electrophotographic photosensitive member 501 and the polishing tape 502 are in contact, the polishing surface is cooled with water, cold air, etc. to prevent transfer of the resin component to the electrophotographic photosensitive member due to frictional heat and dropping off of abrasive grains from the polishing tape. It is preferable to cool with As a method for cooling the polishing surface, the polishing surface may be directly cooled, a cooling means may be brought into contact with the surface of the pressure elastic roller, or the inside of the electrophotographic photosensitive member may be cooled.

本発明において、電子写真感光体の巨視的な表面形状は、膜を形成する基板の表面形状に影響される。そのため、電子写真感光体の巨視的な表面形状を制御する手段として、基板の表面形状を制御することが好ましい。基板の表面形状を制御する手段としては、特に限定は無いが、基板の表面形状を厳密に制御する観点から、基板を旋盤等で切削加工することが好ましい。   In the present invention, the macroscopic surface shape of the electrophotographic photosensitive member is affected by the surface shape of the substrate on which the film is formed. Therefore, it is preferable to control the surface shape of the substrate as means for controlling the macroscopic surface shape of the electrophotographic photosensitive member. The means for controlling the surface shape of the substrate is not particularly limited, but it is preferable to cut the substrate with a lathe or the like from the viewpoint of strictly controlling the surface shape of the substrate.

「本発明に係わる電子写真感光体」
本発明は、基体上に少なくとも非晶質材料で構成された光導電層を有する電子写真感光体を用いることを特徴としている。図8に本発明に好適な電子写真感光体の一例として、a-Si電子写真感光体の模式的な概略断面図を示す。
"Electrophotographic photoreceptor according to the present invention"
The present invention is characterized in that an electrophotographic photoreceptor having a photoconductive layer composed of at least an amorphous material on a substrate is used. FIG. 8 shows a schematic cross-sectional view of an a-Si electrophotographic photosensitive member as an example of an electrophotographic photosensitive member suitable for the present invention.

図8(a)に示す電子写真用感光体は、円筒状基体801の上に、水素原子またはハロゲン原子を構成要素として含むアモルファスシリコン(以下「a-Si:H,X」と表記する。)を有する光導電性を有する光導電層802が設けられている。   The electrophotographic photoreceptor shown in FIG. 8 (a) is amorphous silicon containing a hydrogen atom or a halogen atom as a constituent element on a cylindrical substrate 801 (hereinafter referred to as “a-Si: H, X”). A photoconductive layer 802 having photoconductivity is provided.

図8(b)に示す電子写真用感光体は、円筒状基体801の上に、a-Si:H,Xからなり光導電性を有する光導電層802と、アモルファスシリコン系(又はアモルファス炭素系)表面層803が設けられて構成されている。   The photoconductor for electrophotography shown in FIG. 8B has a photoconductive layer 802 made of a-Si: H, X and having photoconductivity on a cylindrical substrate 801, and amorphous silicon (or amorphous carbon). ) A surface layer 803 is provided.

図8(c)に示す電子写真用感光体は、円筒状基体801の上に、アモルファスシリコン系電荷注入阻止層804と、a-Si:H,Xからなり光導電性を有する光導電層802と、アモルファスシリコン系(又はアモルファス炭素系)表面層803が設けられて構成されている。光導電層802と表面層803の界面に関しては、連続的に変化させ界面反射を抑制する界面制御を施しても良い。   An electrophotographic photoreceptor shown in FIG. 8C has an amorphous silicon based charge injection blocking layer 804 and a photoconductive layer 802 made of a-Si: H, X and having photoconductivity on a cylindrical substrate 801. And an amorphous silicon-based (or amorphous carbon-based) surface layer 803. The interface between the photoconductive layer 802 and the surface layer 803 may be subjected to interface control that continuously changes and suppresses interface reflection.

図8(d)に示す電子写真用感光体は、円筒状基体801の上に、光導電層802が設けられている。この光導電層はa-Si:H,Xからなる電荷発生層805及び電荷輸送層806とからなり、その上にアモルファスシリコン系(又はアモルファス炭素系)表面層803が設けられている。電荷発生層805と表面層803の界面に関しては、連続的に変化させ界面反射を抑制する界面制御を施しても良い。   In the electrophotographic photoreceptor shown in FIG. 8D, a photoconductive layer 802 is provided on a cylindrical substrate 801. This photoconductive layer includes a charge generation layer 805 and a charge transport layer 806 made of a-Si: H, X, and an amorphous silicon (or amorphous carbon) surface layer 803 is provided thereon. The interface between the charge generation layer 805 and the surface layer 803 may be continuously changed to perform interface control that suppresses interface reflection.

本発明における電子写真感光体表面の研磨は、図8(b)、図8(c)、図8(d)のような表面層まで形成した後に行っても良いし、図8(a)のような光導電層802まで形成した後に研磨を行い、研磨後に表面層803を形成しても良い。   The surface of the electrophotographic photosensitive member in the present invention may be polished after the surface layer as shown in FIGS. 8B, 8C, and 8D is formed, or as shown in FIG. Such a photoconductive layer 802 may be formed and then polished, and the surface layer 803 may be formed after polishing.

「本発明に係わる電子写真感光体製造装置」
上記a-Si電子写真感光体の作製方法は、一般的に知られている真空蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、光CVD法、プラズマCVD法等の成膜方法により、基体上に図8に示すa-Si電子写真感光体を形成すればよく、なかでも、プラズマCVD法、すなわち、原料ガスにRF帯やVHF帯の高周波電力を印加してグロー放電により分解し、基体上に堆積膜を形成する方法によりa-Si電子写真感光体を作製することが好ましい。
"Electrophotographic photoreceptor manufacturing apparatus according to the present invention"
The a-Si electrophotographic photosensitive member is produced by a generally known film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, a thermal CVD method, a photo CVD method, a plasma CVD method, The a-Si electrophotographic photosensitive member shown in FIG. 8 may be formed on the substrate, and in particular, plasma CVD, that is, decomposition by glow discharge by applying high-frequency power in the RF band or VHF band to the source gas, It is preferable to produce an a-Si electrophotographic photosensitive member by a method of forming a deposited film on a substrate.

図6は、電源周波数としてVHF帯を用いた高周波プラズマCVD法によるa-Si電子写真感光体製造装置の一例を示す模式的な概略構成図であり、図7は、異なる2つの高周波電力を出力可能な高周波プラズマCVD法によるa-Si電子写真感光体製造装置の一例を示す模式的な概略構成図である。図6のa-Si電子写真感光体製造装置は、少なくとも、円筒状基体601を内包できる減圧可能な反応容器602、反応容器602内に原料ガスを供給するための原料ガス導入管609及び原料ガスを分解するための電力を導入するカソード607からなる堆積装置、反応容器602内に原料ガスを供給する原料ガス供給装置604、反応容器602内を排気するための不図示の排気装置及びカソード607に電力を供給する電力供給装置からなる。   FIG. 6 is a schematic schematic diagram showing an example of an a-Si electrophotographic photosensitive member manufacturing apparatus using a high-frequency plasma CVD method using a VHF band as a power supply frequency, and FIG. 7 outputs two different high-frequency powers. It is a typical schematic block diagram which shows an example of the a-Si electrophotographic photoreceptor manufacturing apparatus by the possible high frequency plasma CVD method. The a-Si electrophotographic photoreceptor manufacturing apparatus in FIG. 6 includes at least a reaction vessel 602 capable of containing a cylindrical substrate 601 and a source gas introduction pipe 609 for supplying a source gas into the reaction vessel 602 and a source gas. A deposition apparatus comprising a cathode 607 for introducing power for decomposing the gas, a source gas supply apparatus 604 for supplying a source gas into the reaction container 602, an exhaust apparatus (not shown) for exhausting the reaction container 602, and the cathode 607 It consists of a power supply device that supplies power.

まず、反応容器602内に円筒状基体601を設置し、不図示の排気装置による排気口1012を介して反応容器602内を排気した後、不活性ガスを反応容器602内に供給する。そして、反応容器602の内圧が所望の圧力に設定した後に、ヒーター608によって円筒状基体601を所望の温度まで加熱を行う。   First, the cylindrical substrate 601 is installed in the reaction vessel 602, the inside of the reaction vessel 602 is exhausted through an exhaust port 1012 by an exhaust device (not shown), and then an inert gas is supplied into the reaction vessel 602. After the internal pressure of the reaction vessel 602 is set to a desired pressure, the cylindrical substrate 601 is heated to a desired temperature by the heater 608.

以上の手順により加熱工程が終了した後、続いて堆積層形成工程を行う。反応容器602内の不活性ガスを不図示の排気装置により排気した後、反応容器602内に原料ガス供給装置604から原料ガス導入管609を介して原料ガスを供給する。反応容器602の内圧が安定したところで、高周波電力源605からカソード607にマッチングボックス606を介して高周波電力の供給を行い、反応容器602内にグロー放電を生起させる。この放電エネルギーによって、反応容器602内の原料ガスが分解され、円筒状基体601上に所定の堆積層が形成される。なお、堆積層の基体周方向の均一性を向上させるために、堆積層形成中、駆動部610を介してモーター611によって基体601を所定の速度で回転させる方法が有効である。こうして、堆積層が所望の膜厚に到達したら高周波電力の供給を停止し、原料ガス供給装置604からの原料ガスの供給を停止することで堆積層の形成を終える。同様の作業を複数回続けて行うことによって多層構造を持つ堆積層を形成することが可能になる。   After the heating step is completed by the above procedure, a deposited layer forming step is subsequently performed. After the inert gas in the reaction vessel 602 is exhausted by an exhaust device (not shown), the source gas is supplied into the reaction vessel 602 from the source gas supply device 604 through the source gas introduction pipe 609. When the internal pressure of the reaction vessel 602 is stabilized, high-frequency power is supplied from the high-frequency power source 605 to the cathode 607 via the matching box 606 to cause glow discharge in the reaction vessel 602. With this discharge energy, the source gas in the reaction vessel 602 is decomposed, and a predetermined deposition layer is formed on the cylindrical substrate 601. In order to improve the uniformity of the deposited layer in the circumferential direction of the substrate, it is effective to rotate the substrate 601 at a predetermined speed by the motor 611 via the driving unit 610 during the formation of the deposited layer. Thus, when the deposited layer reaches a desired film thickness, the supply of high-frequency power is stopped, and the supply of the source gas from the source gas supply device 604 is stopped to finish the formation of the deposited layer. By repeating the same operation a plurality of times, it becomes possible to form a deposited layer having a multilayer structure.

[電子写真装置]
本発明により作製された電子写真感光体が用いられる電子写真装置の一実施形態を図9に示す。なお、本例の電子写真装置は、円筒状の電子写真感光体が用いられる場合に好適なものである。
[Electrophotographic equipment]
FIG. 9 shows an embodiment of an electrophotographic apparatus in which the electrophotographic photosensitive member produced by the present invention is used. The electrophotographic apparatus of this example is suitable when a cylindrical electrophotographic photosensitive member is used.

図9において、電子写真感光体901の周囲に、電子写真感光体901に静電潜像形成のための帯電を行う一次帯電器902と、静電潜像の形成された電子写真感光体901に現像剤(トナー)を供給するための現像器904と、電子写真感光体表面のトナーを紙などの転写材513に移行させるための転写帯電器905と、電子写真感光体表面のクリーニングするためのクリーナー906とが配設されている。また、電子写真感光体901の内部には、不図示の感光体ヒーターが配設されており、この感光体ヒーターによって電子写真感光体901を加熱できる構成となっている。本例は感光体表面の均一にクリーニングを行うため、弾性ローラー907とクリーニングブレード908を用いて電子写真感光体表面のクリーニングを行っているが、いずれか一方のみでも差し支えない。また、クリーナー906と一次帯電器902の間には、次回の複写動作に備えて電子写真感光体表面の除電を行うための除電ランプ909が配設されており、また転写材904は送りローラー910により送られる。露光Aの光源には、ハロゲン光源、あるいは単一波長を主とする光源を用いる。   In FIG. 9, a primary charger 902 that charges the electrophotographic photosensitive member 901 for forming an electrostatic latent image around the electrophotographic photosensitive member 901, and an electrophotographic photosensitive member 901 on which the electrostatic latent image is formed. Developer 904 for supplying developer (toner), transfer charger 905 for transferring toner on the surface of the electrophotographic photosensitive member to a transfer material 513 such as paper, and cleaning for the surface of the electrophotographic photosensitive member A cleaner 906 is provided. In addition, a photoconductor heater (not shown) is disposed inside the electrophotographic photoconductor 901, and the electrophotographic photoconductor 901 can be heated by this photoconductor heater. In this example, the surface of the electrophotographic photosensitive member is cleaned using the elastic roller 907 and the cleaning blade 908 in order to clean the surface of the photosensitive member uniformly, but only one of them may be used. Further, between the cleaner 906 and the primary charger 902, a neutralizing lamp 909 is provided for neutralizing the surface of the electrophotographic photosensitive member in preparation for the next copying operation, and the transfer material 904 is a feed roller 910. Sent by. As a light source for exposure A, a halogen light source or a light source mainly having a single wavelength is used.

このような電子写真装置を用いた複写画像の形成は、例えば以下のように行なわれる。まず、電子写真感光体901を所定の速度で矢印の方向へ回転させ、一次帯電器902を用いて電子写真感光体901の表面を一様に帯電させる。次に、帯電された電子写真感光体901の表面に画像の露光Aを行い、該画像の静電潜像を電子写真感光体901の表面に形成させる。そして電子写真感光体901表面に静電潜像の形成された静電潜像部が現像器903の設置部を通過する際に、現像器903によってトナーが電子写真感光体901の表面に供給され、静電潜像がトナー911による画像として顕像化(現像)され、更にこのトナー画像は感光体901の回転とともに転写帯電器905の設置部に到達し、ここで送りローラー910によって送られてくる転写材904に転写される。   Formation of a copy image using such an electrophotographic apparatus is performed as follows, for example. First, the electrophotographic photoreceptor 901 is rotated at a predetermined speed in the direction of the arrow, and the surface of the electrophotographic photoreceptor 901 is uniformly charged using the primary charger 902. Next, image exposure A is performed on the surface of the charged electrophotographic photoreceptor 901, and an electrostatic latent image of the image is formed on the surface of the electrophotographic photoreceptor 901. Then, when the electrostatic latent image portion on which the electrostatic latent image is formed on the surface of the electrophotographic photosensitive member 901 passes through the installation portion of the developing device 903, toner is supplied to the surface of the electrophotographic photosensitive member 901 by the developing device 903. The electrostatic latent image is visualized (developed) as an image by the toner 911, and this toner image reaches the installation portion of the transfer charger 905 as the photosensitive member 901 rotates, and is sent by the feed roller 910 here. It is transferred to the coming transfer material 904.

転写終了後、分離帯電器により転写材を電子写真感光体から静電気力を利用して分離させる。分離はベルト、爪などを用いて機械的に分離しても良い。次の複写工程に備えるために電子写真感光体901の表面から残留トナーがクリーナー906によって除去され、更に電子写真感光体901表面の電位がゼロ若しくは殆どゼロとなるように除電ランプ909により除電され、1回の複写工程を終了する。   After the transfer is completed, the transfer material is separated from the electrophotographic photosensitive member by a separation charger using electrostatic force. The separation may be performed mechanically using a belt, a claw, or the like. In order to prepare for the next copying process, residual toner is removed from the surface of the electrophotographic photosensitive member 901 by the cleaner 906, and further, the electric charge is removed by the static eliminating lamp 909 so that the potential of the surface of the electrophotographic photosensitive member 901 becomes zero or almost zero. One copy process is completed.

以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらにより何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited at all by these.

<電子写真感光体作製例1>
アルミニウム製の円筒状基体(直径80mm、長さ358mm)をダイヤモンドミラクルバイトにより鏡面加工し、その円筒状基体の巨視的な表面形状が、表面粗さ計で下記に示す測定方法により切断レベル差δc[5%〜95%](負荷長さ率(mr)の5%〜95%までの距離)が0.16±0.1μm、顕微鏡観察により山と山の間隔が120±10μmとなるように加工した。次に、図6に示すプラズマ処理装置を用いて、上記円筒状基体上に表1に示す条件で、電荷注入阻止層、光導電層、表面層の順に成膜を行い、正帯電a-Si電子写真感光体を作製した。このとき、105MHzの高周波電力を出力可能な高周波電源を用いた。また、表1に示す製造条件中の「180→20」はガス流量を180ml/min(normal)から20ml/min(normal)まで連続的に変化させることを表す。
<Electrophotographic photoconductor preparation example 1>
A cylindrical substrate made of aluminum (diameter 80 mm, length 358 mm) is mirror-finished with a diamond miracle bite, and the macroscopic surface shape of the cylindrical substrate is determined by a surface roughness meter according to the measurement method shown below. [5% to 95%] (the distance from 5% to 95% of the load length ratio (mr)) was 0.16 ± 0.1 μm, and the interval between the peaks was 120 ± 10 μm by microscopic observation. Next, using the plasma processing apparatus shown in FIG. 6, a charge injection blocking layer, a photoconductive layer, and a surface layer are formed in this order on the cylindrical substrate under the conditions shown in Table 1, and positively charged a-Si An electrophotographic photosensitive member was produced. At this time, a high frequency power source capable of outputting high frequency power of 105 MHz was used. Further, “180 → 20” in the production conditions shown in Table 1 indicates that the gas flow rate is continuously changed from 180 ml / min (normal) to 20 ml / min (normal).

Figure 2006308743
Figure 2006308743

<表面粗さ計による測定方法>
測定位置は、電子写真感光体の任意の円周方向を0°とした時の0°位置と180°位置における電子写真感光体の長手方向における中心位置と中心位置から±100mm位置の3×2ヶ所、計6ヶ所を、表面粗さ計(Mitutoyo製:SV-C4000)により測定し、Dualtrace PackのSurfpakを用いて解析した。
<Measurement method with surface roughness meter>
The measurement position is a center position in the longitudinal direction of the electrophotographic photosensitive member at a 0 ° position and a 180 ° position when an arbitrary circumferential direction of the electrophotographic photosensitive member is 0 °, and 3 × 2 of ± 100 mm from the central position. A total of six locations were measured with a surface roughness meter (manufactured by Mitutoyo: SV-C4000) and analyzed using a Dualtrace Pack Surfpak.

表面粗さ計の測定条件は、先端半径5μmの標準スタイラス(12AAB403)及び標準ノーズピース(12AAC753)を取り付け、速度0.1mm/S、ピッチ0.5μm、4mN用検出器でとした。また、評価条件は、R曲線(断面曲線)、規格をOLDMIXとし、基準長さ0.8mm、区間数5、評価長さ4.0mm、助走及び後走0.4mm、カットオフ(λc)0.8、とした。   The measurement conditions of the surface roughness meter were a standard stylus (12AAB403) and a standard nosepiece (12AAC753) with a tip radius of 5 μm, a speed of 0.1 mm / S, a pitch of 0.5 μm, and a detector for 4 mN. The evaluation conditions were an R curve (cross-section curve), standard OLDMIX, standard length 0.8 mm, number of sections 5, evaluation length 4.0 mm, running and rear running 0.4 mm, cutoff (λc) 0.8. .

これにより得られた表面形状の波形から、図10に示すように切断レベル差δcの基準線を負荷長さ率5%、切断線を負荷長さ率95%に設定してδc[5%〜95%]を求めた。このようにして各測定位置で求めたδc[5%〜95%]の平均値をaとした。   As shown in FIG. 10, the reference line of the cutting level difference δc is set to a load length ratio of 5%, and the cutting line is set to a load length ratio of 95%, as shown in FIG. 95%]. The average value of δc [5% to 95%] obtained at each measurement position in this way was defined as a.

次に、得られた表面形状の波形から、図11に示すようにplateau率の基準線を負荷長さ率0%とし、切断線を負荷長さ率が5%、10%、15%及び20%に設定して各負荷長さ率における最高点からの距離を求めた。得られた測定データを横軸に最高点からの距離(μm)、縦軸に負荷長さ率(%)として直線近似し、直線の傾きを求めた。各測定位置で求めた近似直線の傾きの平均値をbとした。   Next, from the obtained surface shape waveform, as shown in FIG. 11, the plateau rate reference line is set to a load length rate of 0%, and the cut lines are set to a load length rate of 5%, 10%, 15% and 20%. The distance from the highest point in each load length ratio was obtained by setting the percentage. The obtained measurement data was linearly approximated with the distance from the highest point (μm) on the horizontal axis and the load length ratio (%) on the vertical axis, and the slope of the straight line was obtained. The average value of the slope of the approximate straight line obtained at each measurement position was defined as b.

更に、plateau率の基準線を負荷長さ率0%とし、切断線を負荷長さ率が80%、85%、90%及び95%に設定して各負荷長さ率における最高点からの距離を求めた。得られた測定データを横軸に最高点からの距離(μm)、縦軸に負荷長さ率(%)として直線近似し、直線の傾きを求めた。各測定位置で求めた近似直線の傾きの平均値をcとした。   In addition, the plateau rate reference line is set to 0% load length rate, and the cutting line is set to 80%, 85%, 90% and 95% load length rate, and the distance from the highest point at each load length rate. Asked. The obtained measurement data was linearly approximated with the distance from the highest point (μm) on the horizontal axis and the load length ratio (%) on the vertical axis, and the slope of the straight line was obtained. The average value of the slope of the approximate straight line obtained at each measurement position was defined as c.

《実施例1》
電子写真感光体製造例1で作製した電子写真感光体を下記に示す研磨条件1により研磨時間をそれぞれ変えて研磨処理を実施した。電子写真感光体の微視的な表面形状を下記のAFMによる測定方法により評価し、Aの値(μm)が表2に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後の電子写真感光体の微視的な表面形状A、B、Cを下記に示すAFMによる測定方法により求め、巨視的な表面形状a、b、cを前述した表面粗さ計による測定方法により求めた。測定結果は表4に示す。
Example 1
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 1 was subjected to a polishing treatment under the following polishing conditions 1 while changing the polishing time. The microscopic surface shape of the electrophotographic photosensitive member was evaluated by the following AFM measurement method, and a polishing time was calculated such that the value of A (μm) took the values shown in Table 2. Further, the microscopic surface shapes A, B, and C of the electrophotographic photosensitive member after performing the polishing treatment with the polishing time satisfying such conditions are determined by a measurement method using AFM shown below, and the macroscopic surface shape a, b and c were determined by the measurement method using the surface roughness meter described above. The measurement results are shown in Table 4.

Figure 2006308743
Figure 2006308743

上記の電子写真感光体1から7について、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を下記の条件により評価した。評価結果は表4に示す。   For the electrophotographic photoreceptors 1 to 7, the high humidity flow (characters), the high humidity flow (halftone), black streaks, and poor cleaning were evaluated under the following conditions. The evaluation results are shown in Table 4.

<研磨条件1>
図4の研磨装置を用いて、電子写真感光体401の回転数を90rpm、マグネットローラー402の回転数を240rpm、マグネットローラー402の磁力を900G、SD距離を0.4mm、SB距離を1.0mmに調整し、磁性粉体403は、同和鉄粉工業株式会社製Cu-Znフィライト(DFC450)を3.0μm以下を取り除いたものを用いた。
<Polishing condition 1>
Using the polishing apparatus shown in FIG. 4, the rotation speed of the electrophotographic photosensitive member 401 is adjusted to 90 rpm, the rotation speed of the magnet roller 402 is 240 rpm, the magnetic force of the magnet roller 402 is 900 G, the SD distance is 0.4 mm, and the SB distance is 1.0 mm. The magnetic powder 403 was obtained by removing 3.0 μm or less of Cu-Zn phyllite (DFC450) manufactured by Dowa Iron Powder Industry Co., Ltd.

<AFMによる測定方法>
測定位置は、表面粗さ計の測定位置と同じ位置を測定した。AFMは、Quesant社製 Q-SCOPE250(Version3.181)、ヘッドTape10、プローブNSC16を用い、10μm×10μmの範囲をSCAN RATE 4Hzで測定したAFM観察像をQuesant社製 Q-SCOPE250のTilt RemovalのParabolic Line by line補正を行った後に得られる三次元形状から成るAFM観察像を、Histogram AnalysisのBearing Ratioによりグラフ化させた。
<Measurement method by AFM>
The measurement position was the same as the measurement position of the surface roughness meter. AFM uses Quesant's Q-SCOPE250 (Version 3.181), head Tape10, and probe NSC16, and an AFM observation image measured with SCAN RATE 4Hz in the range of 10μm × 10μm Parabolic of Q-SCOPE250's Tilt Removal manufactured by Quesant An AFM observation image consisting of a three-dimensional shape obtained after performing Line by line correction was graphed using a Bearing Ratio of Histogram Analysis.

このグラフのBearing Ratio5%から95%に対応するsurface heightをsurface height[5%〜95%]を求め、各測定位置で求めたsurface height[5%〜95%]の平均値をAとした。   In this graph, surface height [5% to 95%] corresponding to a bearing ratio of 5% to 95% was obtained, and an average value of surface height [5% to 95%] obtained at each measurement position was defined as A.

また、上記グラフからBearing Ratioが5%、10%、15%及び20%位置での各surface heightを求めた。得られた測定データを横軸surface height(μm)、縦軸Bearing Ratio(%)として直線近似して直線の傾きを求めた。各測定位置で求めた近似直線の傾きの平均値をBとした。   Moreover, each surface height was calculated | required in Bearing Ratio 5%, 10%, 15%, and 20% position from the said graph. The obtained measurement data was linearly approximated with the horizontal axis surface height (μm) and the vertical axis Bearing Ratio (%) to determine the slope of the straight line. The average value of the inclination of the approximate straight line obtained at each measurement position was B.

更に、上記グラフからBearing Ratioが80%、85%、90%及び95%位置での各surface heightを求めた。得られた測定データを横軸が深さ(μm)、縦軸がmr(%)として直線近似して直線の傾きを求めた。各測定位置で求めた近似直線の傾きの平均値をCとした。   Furthermore, each surface height at the bearing ratio of 80%, 85%, 90% and 95% was obtained from the above graph. The obtained measurement data was linearly approximated with depth (μm) on the horizontal axis and mr (%) on the vertical axis, and the slope of the straight line was obtained. The average value of the slope of the approximate straight line obtained at each measurement position was C.

<電子写真装置を用いた評価方法>
評価に使用した電子写真装置は、キヤノン製デジタル電子写真装置iR-6000(前露光660nm LEDアレイ、画像露光655nmレーザー、プロセススピード265mm/sec)を用いた。
<Evaluation method using electrophotographic apparatus>
The electrophotographic apparatus used for the evaluation was a Canon digital electrophotographic apparatus iR-6000 (pre-exposure 660 nm LED array, image exposure 655 nm laser, process speed 265 mm / sec).

高湿流れ及び画像欠陥の評価は、電子写真感光体を30℃、80%の高温高湿環境下に設置し、昼間電子写真感光体を稼働して耐久を実施している間は感光体ヒーターをONにして感光体表面温度を約40℃に維持し、夜間電子写真装置を停止している間は感光体ヒーターをOFFにするシーケンスで耐久評価により実施した。   Evaluation of high-humidity flow and image defects is based on the fact that an electrophotographic photosensitive member is placed in a high-temperature, high-humidity environment of 30 ° C and 80%, and the photosensitive drum heater is used while the electrophotographic photosensitive member is running for the daytime. The surface temperature of the photoconductor was maintained at about 40 ° C. while the electrophotographic apparatus was stopped, and the durability was evaluated by a sequence in which the photoconductor heater was turned off while the nighttime electrophotographic apparatus was stopped.

<高湿流れの評価>
高湿流れの評価は、印字率1%と通常より印字率を下げたテストパターンを用いて、A4コピー用紙を一日当り2万枚の連続通紙耐久を5日間実施して10万枚までの通紙耐久を行った後、環境条件を35℃/85%に変更し、一昼夜放置し、次の朝一番に画像出しを行い高湿流れの評価を行った。画像は、6ポイントから8ポイントの「電」文字が一行に繰り返し印刷された文字テストチャートとキヤノン製中間調チャートを原稿台におき、コピーをした時に得られたコピー画像を使用した。
<Evaluation of high humidity flow>
Evaluation of high-humidity flow uses a test pattern with a printing rate of 1% and a lower printing rate than usual. A4 copy paper has a continuous paper durability of 20,000 sheets per day for 5 days, up to 100,000 sheets. After the endurance of paper passing, the environmental condition was changed to 35 ° C / 85%, and it was left for a day and night, and the next morning was imaged to evaluate the high humidity flow. The image used was a copy image obtained when a character test chart in which 6 to 8 point “electric” characters were repeatedly printed on one line and a halftone chart made by Canon were placed on the platen and copied.

文字チャートにより得られたコピー画像を観察し、どのポイントの文字までが読み取れるのかを評価した。但し、この時、画像上でムラがある場合には、全画像領域で評価し最も悪い部分の結果を示した。評価基準は次の通りである。

◎ ‥ 6ポイントの文字まで読むことができる。
○ ‥ 7ポイントの文字まで読むことができる。
△ ‥ 8ポイントの文字まで読むことができる。
× ‥ 8ポイントの文字の一部が読むことができない。
The copy image obtained by the character chart was observed, and up to which point the character could be read was evaluated. However, at this time, when there was unevenness on the image, the evaluation was made in the entire image region and the result of the worst part was shown. The evaluation criteria are as follows.

◎ ... Can read up to 6 characters.
○ ・ ・ ・ Can read up to 7 characters.
△ ・ ・ ・ Can read up to 8 point characters.
× …… Some of the 8-point characters cannot be read.

また、中間調チャートより得られたコピー画像の画像濃度を測定した。測定位置は、図12に示すように、A3のコピー画像における電子写真感光体の長手方向に対応するコピー画像方向の中心を電子写真感光体回転方向に1cm角の範囲に分割して各範囲の画像濃度を測定し、反射濃度の最大値に対する最小値の比率(反射濃度の最小値/反射濃度の最大値)を求めて比較した。画像濃度の測定は、画像濃度計(MacbethRD914)を用いて測定した。評価基準は次の通りである。

◎ ‥ 最も濃度の低い範囲の画像濃度が最も濃度の高い範囲の画像濃度に対して
90%以上100%以下で非常に良好。
○ ‥ 最も濃度の低い範囲の画像濃度が最も濃度の高い範囲の画像濃度に対して
85%以上90%未満で良好。
△ ‥ 最も濃度の低い範囲の画像濃度が最も濃度の高い範囲の画像濃度に対して
80%以上85%未満で実用上問題無し。
× ‥ 最も濃度の低い範囲の画像濃度が最も濃度の高い範囲の画像濃度に対して
80%未満で、目視で濃度差が確認できる。
Further, the image density of the copy image obtained from the halftone chart was measured. As shown in FIG. 12, the measurement position is obtained by dividing the center of the copy image direction corresponding to the longitudinal direction of the electrophotographic photosensitive member in the A3 copy image into 1 cm square ranges in the rotation direction of the electrophotographic photosensitive member. The image density was measured, and the ratio of the minimum value to the maximum value of the reflection density (minimum value of reflection density / maximum value of reflection density) was determined and compared. The image density was measured using an image densitometer (Macbeth RD914). The evaluation criteria are as follows.

◎ ...... Image density in the lowest density range is higher than image density in the highest density range
Very good at 90% to 100%.
○ …… The image density in the lowest density range is compared to the image density in the highest density range.
Good at 85% or more and less than 90%.
△ ... The image density in the lowest density range is compared to the image density in the highest density range.
There is no practical problem at 80% or more and less than 85%.
× ...... The image density in the lowest density range is compared to the image density in the highest density range.
Less than 80%, density difference can be confirmed visually.

<画像欠陥の評価方法>
画像欠陥は、高湿流れ評価と同様の連続通紙耐久を行った後、以下に示す方法で実施した。黒スジの評価は、全白チャートとしてキヤノン製カラーレーザーコピア用紙(TKCL A3)を原稿台におき、コピーをした時に得られたコピー画像を観察し、また、クリーニング不良の評価は、図13に示すA3のテストチャートを原稿台におき、コピーをした時に得られたコピー画像を使用した。
<Image defect evaluation method>
The image defect was carried out by the following method after performing continuous paper passing durability similar to the high-humidity flow evaluation. The black streak was evaluated by placing a Canon color laser copier paper (TKCL A3) on the platen as an all-white chart and observing the copy image obtained during copying. The A3 test chart shown was placed on the platen and the copy image obtained when copying was used.

黒スジの評価は、全白チャートにより得られたコピー画像を観察し、画像上に長さ1mm以上の黒スジが確認できるかを評価した。評価基準は次の通りである。

◎ ‥ 全く確認できない。
○ ‥ 1mm未満の黒スジが僅かに確認できる。
△ ‥ 1mm以上の黒スジが僅かに確認できる。
× ‥ 1mm以上の黒スジが容易に確認できる。
The black streak was evaluated by observing a copy image obtained with an all-white chart and checking whether a black streak having a length of 1 mm or more could be confirmed on the image. The evaluation criteria are as follows.

◎ ...... Cannot confirm at all.
○ A black streak of less than 1 mm can be confirmed slightly.
Δ: Black stripes of 1 mm or more can be confirmed slightly.
× ... Black stripes of 1 mm or more can be easily confirmed.

クリーニング不良の評価は、図13に示すような反射濃度が1.5である直径10mmの黒円がA3用紙の中央に10mm間隔で合計20個印刷してあるテストチャートを原稿台におき、コピーをした時に得られたコピー画像の画像濃度を測定し、最も濃度が濃い黒円から順に選んだ10個の平均値を求めた。画像濃度の測定は、画像濃度計(MacbethRD914)を用いて測定した。評価基準は次の通りである。

◎ ‥ 測定した反射濃度が1.4以上。
○ ‥ 測定した反射濃度が1.3以上1.4未満。
△ ‥ 測定した反射濃度が1.2以上1.3未満。
× ‥ 測定した反射濃度が1.2未満。
Evaluation of poor cleaning was performed by placing a test chart on which a total of 20 black circles with a reflection density of 1.5 and a diameter of 10 mm printed at 10 mm intervals were printed on the platen as shown in FIG. The image density of the copy image obtained at times was measured, and the average value of 10 images selected in order from the black circle with the highest density was obtained. The image density was measured using an image densitometer (Macbeth RD914). The evaluation criteria are as follows.

◎ …… The measured reflection density is 1.4 or more.
○ …… The measured reflection density is 1.3 or more and less than 1.4.
Δ: The measured reflection density is 1.2 or more and less than 1.3.
× …… The measured reflection density is less than 1.2.

《比較例1》
電子写真感光体製造例1で作製した電子写真感光体を研磨せずに、上記のAFMによる測定方法によりA、B、Cを、また、上記の表面粗さ計による測定方法によりa、b、cを求めた。更に、電子写真感光体製造例1で作製した電子写真感光体の高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表4に示す。但し、比較例1で用いた電子写真感光体の番号は(1)とする。
<< Comparative Example 1 >>
Without polishing the electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 1, A, B, and C were measured by the measurement method using the AFM, and a, b, and C were measured by the measurement method using the surface roughness meter. c was determined. Further, the high-humidity flow (characters), high-humidity flow (halftone), black stripes, and poor cleaning of the electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 1 were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4. However, the number of the electrophotographic photosensitive member used in Comparative Example 1 is (1).

《比較例2》
電子写真感光体製造例1で作製した電子写真感光体を実施例1と同様の研磨条件1により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表3に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後の電子写真感光体の微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを実施例1と同様に求めた。測定結果は表4に示す。更に、電子写真感光体製造例1で作製した電子写真感光体の高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表4に示す。
<< Comparative Example 2 >>
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 1 was subjected to a polishing process under the same polishing conditions 1 as in Example 1 while changing the polishing time, and the value A obtained by the same method as in Example 1 was obtained. The polishing time was determined such that (μm) takes the values shown in Table 3. Further, the microscopic surface shapes A, B, and C and the macroscopic surface shapes a, b, and c of the electrophotographic photosensitive member after the polishing process is performed with a polishing time that satisfies such conditions are the same as in the first embodiment. Asked. The measurement results are shown in Table 4. Further, the high-humidity flow (characters), high-humidity flow (halftone), black stripes, and poor cleaning of the electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 1 were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4.

Figure 2006308743
Figure 2006308743

実施例1及び比較例1、2により求めたA、B、C、a、b、c、A×a、C/B、c/bの測定結果及び高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良の評価結果を表4に示す。   Measurement results of A, B, C, a, b, c, A × a, C / B, c / b obtained by Example 1 and Comparative Examples 1 and 2, high humidity flow (character), high humidity flow ( Table 4 shows the evaluation results of halftone), black streaks, and poor cleaning.

Figure 2006308743
Figure 2006308743

表4の結果より、電子写真感光体の微視的及び巨視的な表面形状を、Aが0.02μm以上0.25μm以下、aが0.09μm以上0.18μm以下、A×aが1.8×10-3μm2以上4.5×10-2μm2に制御することで高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良が良好となった。また、Aが0.03μm以上0.20μm以下、aが0.10μm以上0.15μm以下、A×aが3.0×10-3μm2以上3.0×10-2μm2に制御することで、より良好となった。更に、Aが0.05μm以上0.20μm以下、aが0.10μm以上0.15μm以下、A×aが5.0×10-3μm2以上3.0×10-2μm2に制御することで更にクリーニング不良が良好となり、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。 From the results of Table 4, the microscopic and macroscopic surface shapes of the electrophotographic photosensitive member are as follows. A is 0.02 μm or more and 0.25 μm or less, a is 0.09 μm or more and 0.18 μm or less, and A × a is 1.8 × 10 −3 μm. High humidity flow (letters), high humidity flow (halftone), black streaks, and poor cleaning were controlled by controlling to 2 or more and 4.5 × 10 -2 μm 2 . In addition, it was improved by controlling A to 0.03 μm to 0.20 μm, a to 0.10 μm to 0.15 μm, and A × a to 3.0 × 10 −3 μm 2 to 3.0 × 10 −2 μm 2 . . In addition, A is controlled from 0.05 μm to 0.20 μm, a is from 0.10 μm to 0.15 μm, and A × a is controlled from 5.0 × 10 −3 μm 2 to 3.0 × 10 −2 μm 2 to further improve the cleaning failure. Especially, high humidity flow (letters), high humidity flow (halftone), black streaks and poor cleaning.

<電子写真感光体作製例2>
電子写真感光体作製例1に示す条件により電子写真感光体を作製した。但し、電子写真感光体作製例2では、巨視的な表面形状が、表面粗さ計で求められるδc[5%〜95%]が0.30±0.1となるように加工した円筒状基体を用いて電子写真感光体を作製した。
<Electrophotographic photoconductor preparation example 2>
An electrophotographic photoreceptor was produced under the conditions shown in Electrophotographic photoreceptor preparation example 1. However, in the electrophotographic photosensitive member production example 2, a macroscopic surface shape is obtained by using a cylindrical substrate processed so that δc [5% to 95%] obtained by a surface roughness meter is 0.30 ± 0.1. A photographic photoreceptor was prepared.

《実施例2》
電子写真感光体製造例2で作製した電子写真感光体を実施例1と同様の研磨条件1により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表5に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後の微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを実施例1と同様に求めた。測定結果は表7に示す。
Example 2
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 2 was subjected to polishing treatment under the same polishing conditions 1 as in Example 1 while changing the polishing time, and the value A obtained by the same method as in Example 1 was obtained. The polishing time was determined such that (μm) takes the values shown in Table 5. Further, the microscopic surface shapes A, B, and C and the macroscopic surface shapes a, b, and c after performing the polishing process with the polishing time satisfying such conditions were obtained in the same manner as in Example 1. The measurement results are shown in Table 7.

Figure 2006308743
Figure 2006308743

上記の電子写真感光体8〜13について、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表7に示す。   The electrophotographic photoreceptors 8 to 13 were evaluated in the same manner as in Example 1 for high humidity flow (characters), high humidity flow (halftone), black streaks, and poor cleaning. The evaluation results are shown in Table 7.

《比較例3》
電子写真感光体製造例2で作製した電子写真感光体を研磨せずに、実施例1と同様にA、B、C及びa、b、cを求めた。更に、実施例1と同様に高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を評価した。評価結果は表7に示す。但し、比較例3で用いた電子写真感光体の番号は(5)とする。
<< Comparative Example 3 >>
A, B, C and a, b, c were determined in the same manner as in Example 1 without polishing the electrophotographic photosensitive member produced in Electrophotographic photosensitive member production example 2. Further, as in Example 1, high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning were evaluated. The evaluation results are shown in Table 7. However, the number of the electrophotographic photosensitive member used in Comparative Example 3 is (5).

《比較例4》
電子写真感光体製造例2で作製した電子写真感光体を実施例1と同様の研磨条件1により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表6に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後のA、B、C及びa、b、cを実施例1と同様に求めた。更に、実施例1と同様に高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を評価した。評価結果は表7に示す。
<< Comparative Example 4 >>
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 2 was subjected to polishing treatment under the same polishing conditions 1 as in Example 1 while changing the polishing time, and the value A obtained by the same method as in Example 1 was obtained. The polishing time was determined such that (μm) takes the values shown in Table 6. Further, A, B, C, and a, b, c after performing the polishing treatment with the polishing time satisfying such conditions were obtained in the same manner as in Example 1. Further, as in Example 1, high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning were evaluated. The evaluation results are shown in Table 7.

Figure 2006308743
Figure 2006308743

実施例2及び比較例3、4により求めたA、B、C、a、b、c、A×a、C/B、c/bの測定結果及び高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良の評価結果を表7に示す。   Measurement results of A, B, C, a, b, c, A × a, C / B, c / b obtained by Example 2 and Comparative Examples 3, 4 and high humidity flow (character), high humidity flow ( Table 7 shows the evaluation results of halftone), black streaks, and poor cleaning.

Figure 2006308743
Figure 2006308743

表7の結果より、電子写真感光体の微視的及び巨視的な表面形状を、Aが0.01μm以上0.15μm以下、aが0.14μm以上0.25μm以下、A×aが1.4×10-3μm2以上3.8×10-2μm2に制御することで高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良が良好となった。また、Aが0.02μm以上0.15μm以下、aが0.15μm以上0.25μm以下、A×aが3.0×10-3μm2以上3.8×10-2μm2に制御することで、黒スジ及びクリーニング不良がより良好となった。更に、Aが0.03μm以上0.15μm以下、aが0.16μm以上0.25μm以下、A×aが4.8×10-3μm2以上3.8×10-2μm2に制御することで、更に黒スジ及びクリーニング不良が良好となり、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。 From the results shown in Table 7, the microscopic and macroscopic surface shapes of the electrophotographic photosensitive member are as follows: A is 0.01 μm or more and 0.15 μm or less, a is 0.14 μm or more and 0.25 μm or less, and A × a is 1.4 × 10 −3 μm. High humidity flow (letters), high humidity flow (halftone), black streaks and poor cleaning were controlled by controlling to 2 or more and 3.8 × 10 -2 μm 2 . In addition, black streaks and poor cleaning can be achieved by controlling A to 0.02 to 0.15 μm, a to 0.15 to 0.25 μm, and A × a to 3.0 × 10 −3 μm 2 to 3.8 × 10 −2 μm 2. Became better. Furthermore, by controlling A to be 0.03 to 0.15 μm, a to be 0.16 to 0.25 μm, and A × a to be 4.8 × 10 −3 μm 2 to 3.8 × 10 −2 μm 2 The defect was good, and particularly good for high-humidity flow (characters), high-humidity flow (halftone), black streaks, and poor cleaning.

<電子写真感光体作製例3>
電子写真感光体作製例1に示す条件により電子写真感光体を作製した。但し、電子写真感光体作製例3では、巨視的な表面形状が、表面粗さ計で求められるδc[5%〜95%]が0.08±0.1となるように加工した円筒状基体を用いて電子写真感光体を作製した。
<Electrophotographic photoconductor preparation example 3>
An electrophotographic photoreceptor was produced under the conditions shown in Electrophotographic photoreceptor preparation example 1. However, in the electrophotographic photosensitive member production example 3, the macroscopic surface shape is obtained by using a cylindrical substrate processed so that δc [5% to 95%] obtained by a surface roughness meter is 0.08 ± 0.1. A photographic photoreceptor was prepared.

《実施例3》
電子写真感光体製造例3で作製した電子写真感光体を実施例1と同様の研磨条件1により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表8に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後の微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを実施例1と同様に求めた。測定結果は表10に示す。
Example 3
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 3 was subjected to a polishing treatment under the same polishing conditions 1 as in Example 1 while changing the polishing time, and the value A obtained by the same method as in Example 1 was obtained. The polishing time was determined such that (μm) takes the values shown in Table 8. Further, the microscopic surface shapes A, B, and C and the macroscopic surface shapes a, b, and c after performing the polishing process with the polishing time satisfying such conditions were obtained in the same manner as in Example 1. The measurement results are shown in Table 10.

Figure 2006308743
Figure 2006308743

上記の電子写真感光体14〜21について、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表10に示す。   The electrophotographic photoreceptors 14 to 21 were evaluated in the same manner as in Example 1 for high humidity flow (characters), high humidity flow (halftone), black streaks, and poor cleaning. The evaluation results are shown in Table 10.

《比較例5》
電子写真感光体製造例3で作製した電子写真感光体を研磨せずに、実施例1と同様にA、B、C及びa、b、cを求めた。更に、実施例1と同様に高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を評価した。評価結果は表10に示す。但し、比較例5で用いた電子写真感光体の番号は(10)とする。
<< Comparative Example 5 >>
A, B, C, and a, b, and c were determined in the same manner as in Example 1 without polishing the electrophotographic photoreceptor produced in Electrophotographic photoreceptor production example 3. Further, as in Example 1, high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning were evaluated. The evaluation results are shown in Table 10. However, the number of the electrophotographic photosensitive member used in Comparative Example 5 is (10).

《比較例6》
電子写真感光体製造例3で作製した電子写真感光体を実施例1と同様の研磨条件1により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表9に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後のA、B、C及びa、b、cを実施例1と同様に求めた。更に、実施例1と同様に高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を評価した。評価結果は表10に示す。
<< Comparative Example 6 >>
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 3 was subjected to a polishing treatment under the same polishing conditions 1 as in Example 1 while changing the polishing time, and the value A obtained by the same method as in Example 1 was obtained. The polishing time was determined such that (μm) takes the values shown in Table 9. Further, A, B, C, and a, b, c after performing the polishing treatment with the polishing time satisfying such conditions were obtained in the same manner as in Example 1. Further, as in Example 1, high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning were evaluated. The evaluation results are shown in Table 10.

Figure 2006308743
Figure 2006308743

実施例3及び比較例5、6により求めたA、B、C、a、b、c、A×a、C/B、c/bの測定結果及び高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良の評価結果を表10に示す。   Measurement results of A, B, C, a, b, c, A × a, C / B, c / b obtained by Example 3 and Comparative Examples 5 and 6, high humidity flow (characters), high humidity flow ( Table 10 shows the evaluation results of halftone), black streaks, and poor cleaning.

Figure 2006308743
Figure 2006308743

表10の結果より、電子写真感光体の微視的及び巨視的な表面形状を、Aが0.02μm以上0.30μm以下、aが0.05μm以上0.10μm以下、A×aが1.0×10-3μm2以上3.0×10-2μm2に制御することで高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良が良好となった。また、Aが0.05μm以上0.25μm以下、aが0.06μm以上0.09μm以下、A×aが3.0×10-3μm2以上2.3×10-2μm2に制御することで、より良好となった。そして、bが1000%/μm以下、cが1000%/μm以下に制御することで黒スジ及びクリーニング不良が更に良好となり、Aが0.15μm以上0.20μm以下、aが0.07μm以上0.08μm以下、A×aが1.1×10-3μm2以上1.6×10-2μm2に制御することで、高湿流れ(中間調)が更に良好となり、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。 From the results of Table 10, the microscopic and macroscopic surface shapes of the electrophotographic photosensitive member are as follows. A is 0.02 μm or more and 0.30 μm or less, a is 0.05 μm or more and 0.10 μm or less, and A × a is 1.0 × 10 −3 μm. High humidity flow (letters), high humidity flow (halftone), black streaks, and poor cleaning were controlled by controlling to 2 or more and 3.0 × 10 -2 μm 2 . In addition, it was improved by controlling A to 0.05 μm to 0.25 μm, a to 0.06 μm to 0.09 μm, and A × a to 3.0 × 10 −3 μm 2 to 2.3 × 10 −2 μm 2 . . By controlling b to 1000% / μm or less and c to 1000% / μm or less, black streaks and poor cleaning are further improved, A is 0.15 μm to 0.20 μm, a is 0.07 μm to 0.08 μm, By controlling A × a to 1.1 × 10 −3 μm 2 or more and 1.6 × 10 −2 μm 2 , high-humidity flow (halftone) becomes even better, and high-humidity flow (character), high-humidity flow (halftone) ), Particularly good for black streaks and poor cleaning.

<電子写真感光体作製例4>
アルミニウム製の円筒状基体(直径80mm、長さ358mm)をダイヤモンドミラクルバイトにより鏡面加工し、その円筒状基体の巨視的な表面形状の切断レベル差δc[5%〜95%]が表11に示すように加工した。次に、図7に示すプラズマ処理装置を用いて、上記円筒状基体上に表12に示す条件で、電荷注入阻止層、光導電層、表面層の順に成膜を行い、正帯電a-Si電子写真感光体を作製した。作製したa-Si電子写真感光体表面を上記条件によりAFMで微視的な表面形状を測定したところ、円筒状基体の巨視的な表面形状の影響をほぼ受けず、Aが0.20±0.01μmであった。
<Electrophotographic photosensitive member production example 4>
An aluminum cylindrical substrate (diameter 80 mm, length 358 mm) is mirror-finished with a diamond miracle bite, and the cutting level difference δc [5% to 95%] of the macroscopic surface shape of the cylindrical substrate is shown in Table 11. Was processed as follows. Next, using the plasma processing apparatus shown in FIG. 7, a charge injection blocking layer, a photoconductive layer, and a surface layer are formed in this order on the cylindrical substrate under the conditions shown in Table 12, and positively charged a-Si An electrophotographic photosensitive member was produced. When the microscopic surface shape of the produced a-Si electrophotographic photosensitive member was measured by AFM under the above conditions, it was almost unaffected by the macroscopic surface shape of the cylindrical substrate, and A was 0.20 ± 0.01 μm. there were.

このとき、105MHz及び60MHzの高周波電力を出力可能な高周波電源を用いた。また、表12に示す製造条件中の「200→20」はガス流量を200ml/min(normal)から20ml/min(normal)まで連続的に変化させることを表す。   At this time, a high frequency power source capable of outputting high frequency power of 105 MHz and 60 MHz was used. Further, “200 → 20” in the manufacturing conditions shown in Table 12 represents that the gas flow rate is continuously changed from 200 ml / min (normal) to 20 ml / min (normal).

Figure 2006308743
Figure 2006308743

Figure 2006308743
Figure 2006308743

《実施例4》
電子写真感光体製造例4で作製した電子写真感光体を実施例1と同様の研磨条件1により電子写真感光体の微視的な表面形状Aが0.10μmになるまで研磨処理を実施した。電子写真感光体の研磨が終了した後、実施例1と同様に微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを求めた。測定結果は表13に示す。但し、基板番号〔2〕〜〔10〕の各基板上に形成された研磨後の電子写真感光体の感光体番号を各々18〜26とする。
Example 4
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 4 was polished under the same polishing conditions 1 as in Example 1 until the microscopic surface shape A of the electrophotographic photosensitive member became 0.10 μm. After polishing of the electrophotographic photosensitive member, microscopic surface shapes A, B, and C and macroscopic surface shapes a, b, and c were obtained in the same manner as in Example 1. The measurement results are shown in Table 13. However, the photoreceptor numbers of the electrophotographic photoreceptor after polishing formed on the substrates of the substrate numbers [2] to [10] are 18 to 26, respectively.

上記の電子写真感光体18〜26について、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表13に示す。   The electrophotographic photoreceptors 18 to 26 were evaluated in the same manner as in Example 1 for high humidity flow (characters), high humidity flow (halftone), black streaks, and poor cleaning. The evaluation results are shown in Table 13.

《比較例7》
電子写真感光体製造例4で作製した電子写真感光体を実施例4と同様に電子写真感光体の微視的な表面形状Aが0.10μmになるまで研磨処理を実施した。電子写真感光体の研磨が終了した後、実施例1と同様に微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを求めた。測定結果は表13に示す。但し、基板番号〔1〕、〔11〕〜〔14〕の各基板上に形成された研磨後の電子写真感光体の感光体番号を各々(17)、(18)〜(21)とする。
<< Comparative Example 7 >>
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 4 was polished in the same manner as in Example 4 until the microscopic surface shape A of the electrophotographic photosensitive member became 0.10 μm. After polishing of the electrophotographic photosensitive member, microscopic surface shapes A, B, and C and macroscopic surface shapes a, b, and c were obtained in the same manner as in Example 1. The measurement results are shown in Table 13. However, the photoreceptor numbers of the electrophotographic photoreceptor after polishing formed on the substrates [1], [11] to [14] are (17) and (18) to (21), respectively.

実施例4及び比較例7により求めたA、B、C、a、b、c、A×a、C/B、c/bの測定結果及び高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良の評価結果を表13に示す。   Measurement results of A, B, C, a, b, c, A × a, C / B, c / b obtained by Example 4 and Comparative Example 7, high humidity flow (character), high humidity flow (halftone ), Black streaks and poor cleaning evaluation results are shown in Table 13.

Figure 2006308743
Figure 2006308743

表13の結果より、電子写真感光体の微視的及び巨視的な表面形状をAが0.10μmとなるように研磨した場合、aが0.03μm以上0.45μm以下、A×aが3.0×10-3μm2以上4.5×10-2μm2に制御することで高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良が良好となった。また、aが0.05μm以上0.35μm以下、A×aが5.0×10-3μm2以上3.5×10-2μm2に制御することで、高湿流れ(文字)、高湿流れ(中間調)、及びクリーニング不良がより良好となった。そして、bが250%/μm以上、cが220%/μm以上にすることで更に高湿流れ(文字)が良好となり、aが0.07μm以上0.30μm以下、A×aが7.0×10-3μm2以上3.0×10-2μm2に制御することで、高湿流れ(中間調)、黒スジ及びクリーニング不良が更に良好となり、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。 From the results shown in Table 13, when the microscopic and macroscopic surface shape of the electrophotographic photosensitive member is polished so that A is 0.10 μm, a is 0.03 μm or more and 0.45 μm or less, and A × a is 3.0 × 10 −. High humidity flow (letters), high humidity flow (halftone), black streaks and poor cleaning were controlled by controlling to 3 × m 2 or more and 4.5 × 10 −2 μm 2 . Also, by controlling a from 0.05μm to 0.35μm and A × a from 5.0 × 10 −3 μm 2 to 3.5 × 10 −2 μm 2 , high humidity flow (character), high humidity flow (halftone) And poor cleaning. When b is 250% / μm or more and c is 220% / μm or more, the high-humidity flow (character) is further improved, a is 0.07 μm or more and 0.30 μm or less, and A × a is 7.0 × 10 −3. By controlling to μm 2 or more and 3.0 × 10 -2 μm 2 , high-humidity flow (halftone), black streaks and poor cleaning are further improved, high-humidity flow (character), high-humidity flow (halftone), black Especially good for streaks and poor cleaning.

《実施例5》
電子写真感光体製造例4で作製した電子写真感光体を実施例1と同様の研磨条件1により、電子写真感光体の微視的な表面形状Aが0.07μmになるまで研磨処理を実施した。電子写真感光体の研磨が終了した後、実施例1と同様に微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを求めた。測定結果は表14に示す。但し、基板番号〔3〕〜〔13〕の各基板上に形成された研磨後の電子写真感光体の感光体番号を各々27〜37とする。
Example 5
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 4 was polished under the same polishing conditions 1 as in Example 1 until the microscopic surface shape A of the electrophotographic photosensitive member became 0.07 μm. After polishing of the electrophotographic photosensitive member, microscopic surface shapes A, B, and C and macroscopic surface shapes a, b, and c were obtained in the same manner as in Example 1. The measurement results are shown in Table 14. However, the photoreceptor numbers of the electrophotographic photoreceptor after polishing formed on the substrates of the substrate numbers [3] to [13] are 27 to 37, respectively.

上記の電子写真感光体27〜37について、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表15に示す。   For the electrophotographic photoreceptors 27 to 37, high humidity flow (characters), high humidity flow (halftone), black streaks, and poor cleaning were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 15.

《比較例8》
電子写真感光体製造例4で作製した電子写真感光体を実施例5と同様に電子写真感光体の微視的な表面形状Aが0.07μmになるまで研磨処理を実施した。電子写真感光体の研磨が終了した後、実施例1と同様に微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを求めた。測定結果は表14に示す。但し、基板番号〔1〕〜〔2〕、〔14〕の各基板上に形成された研磨後の電子写真感光体の感光体番号を各々(22)〜(23)、(24)とする。
<< Comparative Example 8 >>
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 4 was polished in the same manner as in Example 5 until the microscopic surface shape A of the electrophotographic photosensitive member became 0.07 μm. After polishing of the electrophotographic photosensitive member, microscopic surface shapes A, B, and C and macroscopic surface shapes a, b, and c were obtained in the same manner as in Example 1. The measurement results are shown in Table 14. However, the photoreceptor numbers of the electrophotographic photoreceptor after polishing formed on the substrates [1] to [2] and [14] are (22) to (23) and (24), respectively.

実施例5及び比較例8により求めたA、B、C、a、b、c、A×a、C/B、c/bの測定結果及び高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良の評価結果を表14に示す。   Measurement results of A, B, C, a, b, c, A × a, C / B, c / b obtained by Example 5 and Comparative Example 8, high humidity flow (character), high humidity flow (halftone ), Black streaks and poor cleaning evaluation results are shown in Table 14.

Figure 2006308743
Figure 2006308743

表14の結果より、電子写真感光体の微視的及び巨視的な表面形状をAが0.07μmとなるように研磨した場合、aが0.03μm以上0.55μm以下、A×aが2.1×10-3μm2以上3.9×10-2μm2に制御することで高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良が良好となった。また、aが0.05μm以上0.45μm以下、A×aが3.5×10-3μm2以上3.2×10-2μm2に制御することで、より良好となった。そして、bが870%/μm以下、cが840%/μm以下にすることで黒スジ及びクリーニング不良が更に良好となり、aが0.07μm以上0.40μm以下、A×aが1.2×10-2μm2以上2.8×10-2μm2に制御することで、高湿流れ(中間調)が更に良好となり、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。 From the results in Table 14, when the microscopic and macroscopic surface shape of the electrophotographic photosensitive member is polished so that A is 0.07 μm, a is 0.03 μm or more and 0.55 μm or less, and A × a is 2.1 × 10 −. By controlling to 3 μm 2 or more and 3.9 × 10 −2 μm 2 , high humidity flow (letters), high humidity flow (halftone), black streaks and poor cleaning were obtained. Further, it was improved by controlling a to 0.05 μm or more and 0.45 μm or less and A × a to 3.5 × 10 −3 μm 2 or more and 3.2 × 10 −2 μm 2 . When b is 870% / μm or less and c is 840% / μm or less, black streaks and poor cleaning are further improved, a is 0.07 μm or more and 0.40 μm or less, and A × a is 1.2 × 10 −2 μm. By controlling to 2 or more 2.8 × 10 -2 μm 2 , the high humidity flow (halftone) becomes even better, against high humidity flow (letters), high humidity flow (halftone), black streaks and poor cleaning. Especially good.

《実施例6》
電子写真感光体製造例2で作製した電子写真感光体を下記に示す研磨条件2により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表15に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後の電子写真感光体の微視的な表面形状A、B、Cを前述したAFMによる測定方法により求め、巨視的な表面形状a、b、cを前述した表面粗さ計による測定方法により求めた。測定結果は表17に示す。
Example 6
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 2 was subjected to polishing treatment under different polishing conditions 2 shown below, and the polishing process was carried out. A value (μm) obtained by the same method as in Example 1 The polishing time was determined so as to take the values shown in Table 15. Further, the microscopic surface shapes A, B, and C of the electrophotographic photosensitive member after the polishing process is performed with the polishing time satisfying such conditions are obtained by the measurement method using the AFM described above, and the macroscopic surface shapes a and b are determined. , C were determined by the measurement method using the surface roughness meter described above. The measurement results are shown in Table 17.

Figure 2006308743
Figure 2006308743

<研磨条件2>
図5に示す研磨装置を用いて、電子写真感光体501の回転数を90rpm、研磨テープの送り速度を30mm/min、加圧弾性ローラー503から電子写真感光体501への圧力を4.9×105N/m2、加圧弾性ローラーの材質はJISゴム硬度50のネオプレン(登録商標)ゴムを、また、は中央部の直径が両端部より0.1mm太いものを用い、研磨テープ502は富士写真フィルム社製ラッピングテープLT-C2000(砥粒:炭化珪素(SiC)、粒径:6μm、塗布方法:ドクターブレード(ナイフエッジ)コート法)を用い、研磨テープの冷却は行わなかった。
<Polishing condition 2>
Using the polishing apparatus shown in FIG. 5, the rotational speed of the electrophotographic photosensitive member 501 is 90 rpm, the polishing tape feed speed is 30 mm / min, and the pressure from the pressure elastic roller 503 to the electrophotographic photosensitive member 501 is 4.9 × 10 5. N / m 2 , the material of the pressure elastic roller is neoprene (registered trademark) rubber with JIS rubber hardness 50, or the diameter of the central part is 0.1mm thicker than both ends, and the polishing tape 502 is Fuji Photo Film The wrapping tape LT-C2000 (Abrasive grain: silicon carbide (SiC), particle diameter: 6 μm, coating method: doctor blade (knife edge) coating method) was used, and the polishing tape was not cooled.

上記の電子写真感光体38〜46について、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表17に示す。   The electrophotographic photoreceptors 38 to 46 were evaluated in the same manner as in Example 1 for high humidity flow (characters), high humidity flow (halftone), black streaks, and poor cleaning. The evaluation results are shown in Table 17.

《比較例9》
電子写真感光体製造例2で作製した電子写真感光体を実施例6と同様の研磨条件2により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表16に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後の電子写真感光体の微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを実施例1と同様に求めた。更に、実施例1と同様に高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を評価した。評価結果は表17に示す。
<< Comparative Example 9 >>
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 2 was subjected to a polishing treatment under the same polishing conditions 2 as in Example 6 while changing the polishing time, and the value of A obtained by the same method as in Example 1 The polishing time was calculated such that (μm) took the values shown in Table 16. Further, the microscopic surface shapes A, B, and C and the macroscopic surface shapes a, b, and c of the electrophotographic photosensitive member after the polishing process is performed with a polishing time that satisfies such conditions are the same as in the first embodiment. Asked. Further, as in Example 1, high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning were evaluated. The evaluation results are shown in Table 17.

Figure 2006308743
Figure 2006308743

実施例6及び比較例3、9により求めたA、B、C、a、b、c、A×a、C/B、c/bの測定結果及び高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良の評価結果を表17に示す。   Measurement results of A, B, C, a, b, c, A × a, C / B, c / b obtained by Example 6 and Comparative Examples 3 and 9, high humidity flow (characters), high humidity flow ( Table 17 shows the evaluation results of halftone), black streaks, and poor cleaning.

Figure 2006308743
Figure 2006308743

表17の結果より、電子写真感光体の微視的及び巨視的な表面形状を、Aが0.01μm以上0.17μm以下、aが0.11μm以上0.25μm以下、A×aが1.1×10-3μm2以上4.3×10-2μm2に制御することで高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良が良好となった。また、Aが0.03μm以上0.15μm以下、aが0.12μm以上0.23μm以下、A×aが3.6×10-3μm2以上3.5×10-2μm2に制御することで、より良好となった。そして、c/bが0.50以上にすることで黒スジ更に良好となり、Bが3000%/μm以下、Cが200%/μm以上、C/Bが0.10以上にすることで、高湿流れ(中間調)及びクリーニング不良が良好となり、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。 From the results of Table 17, the microscopic and macroscopic surface shapes of the electrophotographic photosensitive member are as follows: A is 0.01 μm or more and 0.17 μm or less, a is 0.11 μm or more and 0.25 μm or less, and A × a is 1.1 × 10 −3 μm. High humidity flow (letters), high humidity flow (halftone), black streaks, and poor cleaning were controlled by controlling to 2 or more and 4.3 × 10 -2 μm 2 . In addition, it was improved by controlling A to 0.03 μm to 0.15 μm, a to 0.12 μm to 0.23 μm, and A × a to 3.6 × 10 −3 μm 2 to 3.5 × 10 −2 μm 2 . . And when c / b is 0.50 or more, black streaks are further improved, B is 3000% / μm or less, C is 200% / μm or more, and C / B is 0.10 or more. Tone) and poor cleaning, and particularly good for high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning.

<電子写真感光体作製例5>
アルミニウム製の円筒状基体(直径80mm、長さ358mm)を先端径5mmのダイヤモンドバイトにより加工し、その円筒状基体の巨視的な表面形状が、表面粗さ計で下記に示す測定方法により切断レベル差δc[5%〜95%](負荷長さ率(mr)の5%〜95%までの距離)が0.12±0.1となるように加工した。次に、図7に示すプラズマ処理装置を用いて、上記円筒状基体上に上記表13に示す条件で、電荷注入阻止層、光導電層、表面層の順に成膜を行い、正帯電a-Si電子写真感光体を作製した。
<Electrophotographic photoreceptor preparation example 5>
An aluminum cylindrical substrate (diameter 80 mm, length 358 mm) is processed with a diamond tool having a tip diameter of 5 mm, and the macroscopic surface shape of the cylindrical substrate is cut by a surface roughness meter according to the measurement method shown below. Processing was performed so that the difference δc [5% to 95%] (the distance from 5% to 95% of the load length ratio (mr)) was 0.12 ± 0.1. Next, using the plasma processing apparatus shown in FIG. 7, a charge injection blocking layer, a photoconductive layer, and a surface layer are formed in this order on the cylindrical substrate under the conditions shown in Table 13 above. A Si electrophotographic photosensitive member was produced.

このとき、105MHz及び60MHzの高周波電力を出力可能な高周波電源を用いた。また、表13に示す製造条件中の「200→20」はガス流量を200ml/min(normal)から20ml/min(normal)まで連続的に変化させることを表す。   At this time, a high frequency power source capable of outputting high frequency power of 105 MHz and 60 MHz was used. Further, “200 → 20” in the manufacturing conditions shown in Table 13 indicates that the gas flow rate is continuously changed from 200 ml / min (normal) to 20 ml / min (normal).

《実施例7》
電子写真感光体製造例5で作製した電子写真感光体を研磨せずに、実施例1と同様にA、B、C及びa、b、cを求めた。更に、実施例1と同様に高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を評価した。評価結果は表19に示す。但し、実施例7で用いた電子写真感光体の番号は47とする。
Example 7
A, B, C, and a, b, and c were determined in the same manner as in Example 1 without polishing the electrophotographic photoreceptor produced in Electrophotographic photoreceptor production example 5. Further, as in Example 1, high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning were evaluated. The evaluation results are shown in Table 19. However, the number of the electrophotographic photosensitive member used in Example 7 is 47.

《実施例8》
電子写真感光体製造例5で作製した電子写真感光体を下記に示す研磨条件3により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表18に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後の電子写真感光体の微視的な表面形状A、B、Cを前述したAFMによる測定方法により求め、巨視的な表面形状a、b、cを前述した表面粗さ計による測定方法により求めた。測定結果は表19に示す。
Example 8
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 5 was subjected to polishing treatment under the polishing conditions 3 shown below while changing the polishing time, and the value A (μm) obtained by the same method as in the first example. The polishing time was determined so as to take the values shown in Table 18. Further, the microscopic surface shapes A, B, and C of the electrophotographic photosensitive member after the polishing process is performed with the polishing time satisfying such conditions are obtained by the measurement method using the AFM described above, and the macroscopic surface shapes a and b are determined. , C were determined by the measurement method using the surface roughness meter described above. The measurement results are shown in Table 19.

Figure 2006308743
Figure 2006308743

<研磨条件3>
図4に示す研磨装置を用いて、電子写真感光体401の回転数を90rpm、マグネットローラー402の回転数を240rpm、マグネットローラー402の磁力を900G、SD距離を0.4mm、SB距離を1.0mmに調整し、磁性粉体403は、同和鉄粉工業株式会社製Cu-Znフィライト(DFC450)を用いた。
<Polishing condition 3>
Using the polishing apparatus shown in FIG. 4, the rotation speed of the electrophotographic photosensitive member 401 is 90 rpm, the rotation speed of the magnet roller 402 is 240 rpm, the magnetic force of the magnet roller 402 is 900 G, the SD distance is 0.4 mm, and the SB distance is 1.0 mm. As a magnetic powder 403, Cu-Zn Philite (DFC450) manufactured by Dowa Iron Powder Industry Co., Ltd. was used.

上記の電子写真感光体47〜56について、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表19に示す。   For the electrophotographic photoreceptors 47 to 56, high humidity flow (characters), high humidity flow (halftone), black streaks, and poor cleaning were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 19.

実施例7、8により求めたA、B、C、a、b、c、A×a、C/B、c/bの測定結果及び高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良の評価結果を表19に示す。   Measurement results of A, B, C, a, b, c, A × a, C / B, c / b obtained in Examples 7 and 8, high humidity flow (characters), high humidity flow (halftone), Table 19 shows the evaluation results of black stripes and poor cleaning.

Figure 2006308743
Figure 2006308743

表19の結果より、どの電子写真感光体においてもで高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良は良好であったが、bが450%/μm以上、cが900%/μm以上、c/bが2.0以下に制御することで、より高湿流れ(文字)及び高湿流れ(中間調)が良好となった。また、Bが2260%/μm以下、Cが2000%/μm以下、C/Bが0.78以下にすることで、クリーニング不良が更に良好となり、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。   From the results in Table 19, the high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning were good in any electrophotographic photosensitive member, but b was 450% / μm or more, c Was controlled to 900% / μm or more and c / b to 2.0 or less, the higher humidity flow (characters) and higher humidity flow (halftone) became better. Also, by setting B to 2260% / μm or less, C to 2000% / μm or less, and C / B to 0.78 or less, the cleaning failure becomes even better, high humidity flow (letters), high humidity flow (halftone) In particular, it was excellent against black streaks and poor cleaning.

<電子写真感光体作製例6>
アルミニウム製の円筒状基体(直径80mm、長さ358mm)をダイヤモンドミラクルバイトにより鏡面加工し、その円筒状基体の巨視的な表面形状が、表面粗さ計で下記に示す測定方法により切断レベル差δc[5%〜95%](負荷長さ率(mr)の5%〜95%までの距離)が0.07±0.1となるように加工した。次に、図7に示すプラズマ処理装置を用いて、上記円筒状基体上に表20に示す条件で、電荷注入阻止層、光導電層、表面層の順に成膜を行い、正帯電a-Si電子写真感光体を作製した。
<Electrophotographic photoconductor preparation example 6>
A cylindrical substrate made of aluminum (diameter 80 mm, length 358 mm) is mirror-finished with a diamond miracle bite, and the macroscopic surface shape of the cylindrical substrate is determined by a surface roughness meter according to the measurement method shown below. [5% to 95%] (the distance from 5% to 95% of the load length ratio (mr)) was processed to be 0.07 ± 0.1. Next, using the plasma processing apparatus shown in FIG. 7, a charge injection blocking layer, a photoconductive layer, and a surface layer are formed in this order on the cylindrical substrate under the conditions shown in Table 20, and positively charged a-Si An electrophotographic photosensitive member was produced.

このとき、105MHz及び60MHzの高周波電力を出力可能な高周波電源を用いた。また、表13に示す製造条件中の「200→20」はガス流量を200ml/min(normal)から20ml/min(normal)まで連続的に変化させることを表す。   At this time, a high frequency power source capable of outputting high frequency power of 105 MHz and 60 MHz was used. Further, “200 → 20” in the manufacturing conditions shown in Table 13 indicates that the gas flow rate is continuously changed from 200 ml / min (normal) to 20 ml / min (normal).

Figure 2006308743
Figure 2006308743

《実施例9》
電子写真感光体製造例6で作製した電子写真感光体を研磨せずに、実施例1と同様にA、B、C及びa、b、cを求めた。更に、実施例1と同様に高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を評価した。評価結果は表22に示す。但し、実施例9で用いた電子写真感光体の番号は57とする。
Example 9
A, B, C and a, b, c were determined in the same manner as in Example 1 without polishing the electrophotographic photoreceptor produced in Electrophotographic photoreceptor production example 6. Further, as in Example 1, high humidity flow (characters), high humidity flow (halftone), black streaks and poor cleaning were evaluated. The evaluation results are shown in Table 22. However, the number of the electrophotographic photosensitive member used in Example 9 is 57.

《実施例10》
電子写真感光体製造例6で作製した電子写真感光体を実施例1と同様の研磨条件1により研磨時間をそれぞれ変えて研磨処理を実施し、実施例1と同様の方法で求められるAの値(μm)が表21に示す値をとるような研磨時間を割り出した。さらに、かかる条件を満たす研磨時間で研磨処理を実施した後の微視的な表面形状A、B、C及び巨視的な表面形状a、b、cを実施例1と同様に求めた。測定結果は表22に示す。
Example 10
The electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 6 was subjected to polishing treatment under the same polishing conditions 1 as in Example 1 while changing the polishing time, and the value A obtained by the same method as in Example 1 was obtained. The polishing time was determined such that (μm) took the values shown in Table 21. Further, the microscopic surface shapes A, B, and C and the macroscopic surface shapes a, b, and c after performing the polishing process with the polishing time satisfying such conditions were obtained in the same manner as in Example 1. The measurement results are shown in Table 22.

Figure 2006308743
Figure 2006308743

上記の電子写真感光体57〜61について、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良を実施例1と同様に評価した。評価結果は表22に示す。   The electrophotographic photosensitive members 57 to 61 were evaluated in the same manner as in Example 1 for high humidity flow (characters), high humidity flow (halftone), black streaks, and poor cleaning. The evaluation results are shown in Table 22.

実施例9、10により求めたA、B、C、a、b、c、A×a、C/B、c/bの測定結果及び高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良の評価結果を表22に示す。   Measurement results of A, B, C, a, b, c, A × a, C / B, c / b obtained in Examples 9 and 10, high humidity flow (characters), high humidity flow (halftone), Table 22 shows the evaluation results of black stripes and poor cleaning.

Figure 2006308743
Figure 2006308743

表22の結果より、どの電子写真感光体においても高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良は良好であったが、Bが250%/μm以上、Cが250%/μm以上、C/Bが1.00以下に制御することで高湿流れ(中間調)が良好となり、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。   From the results in Table 22, the high humidity flow (letters), high humidity flow (halftone), black streaks and poor cleaning were good in any electrophotographic photosensitive member, but B was 250% / μm or more, and C was By controlling 250% / μm or more and C / B to 1.00 or less, high-humidity flow (halftone) is improved, against high-humidity flow (letters), high-humidity flow (halftone), black streaks, and poor cleaning. Particularly good.

以上、実施例1から9及び比較例1から7の結果より、Aが0.01μm以上0.30μm以下、aが0.03μm以上0.55μm以下、A×aが1.0×10-3μm2以上4.5×10-2μm2に制御することで、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良が良好となり、その中でも、Aが0.02μm以上0.25μm以下、aが0.05μm以上0.45μm以下、A×aが3.0×10-3μm2以上3.5×10-2μm2に制御することで、より良好となった。そして、bが250%/μm以上1000%/μm以下、cが220%/μm以上1000%/μm以下、c/bが0.5以上2.0以下に制御することで、更に良好となった。更に、Bが250%/μm以上3000%/μm以下、Cが200%/μm以上2000%/μm以下、C/Bが0.1以上1.0以下に制御することにより、更に良好となった。この中でも、Aが0.03μm以上0.20μm以下、aが0.07μm以上0.40μm以下、A×aが5.0×10-3μm2以上3.0×10-2μm2に制御することで、高湿流れ(文字)、高湿流れ(中間調)、黒スジ及びクリーニング不良に対して特に良好となった。 As described above, from the results of Examples 1 to 9 and Comparative Examples 1 to 7, A is 0.01 μm or more and 0.30 μm or less, a is 0.03 μm or more and 0.55 μm or less, and A × a is 1.0 × 10 −3 μm 2 or more and 4.5 × 10. By controlling to -2 μm 2 , high-humidity flow (letters), high-humidity flow (halftone), black streaks, and poor cleaning are obtained. Among them, A is 0.02 μm or more and 0.25 μm or less, and a is 0.05 μm. By controlling to 0.45 μm or less and A × a to 3.0 × 10 −3 μm 2 or more and 3.5 × 10 −2 μm 2 , it was improved. Further, it was further improved by controlling b to 250% / μm to 1000% / μm, c to 220% / μm to 1000% / μm, and c / b to 0.5 to 2.0. Furthermore, B was further improved by controlling it from 250% / μm to 3000% / μm, C from 200% / μm to 2000% / μm, and C / B from 0.1 to 1.0. Among these, by controlling A to be 0.03 μm to 0.20 μm, a to be 0.07 μm to 0.40 μm, and A × a to be 5.0 × 10 −3 μm 2 to 3.0 × 10 −2 μm 2 , high humidity flow ( Character), high humidity flow (halftone), black streaks and poor cleaning.

(図1-1)a-Si電子写真感光体を10μm×10μmの範囲におけるAFM測定より得られた最も高い点を基準とした凹凸高さの負荷曲線の模式的な概略図である。 (図1-2)図1-1の要部の詳細を示す模式的な概略断面図である。(FIG. 1-1) FIG. 1-1 is a schematic diagram of a load curve of unevenness height based on the highest point obtained by AFM measurement in the range of 10 μm × 10 μm of an a-Si electrophotographic photosensitive member. (FIG. 1-2) It is a typical schematic sectional drawing which shows the detail of the principal part of FIG. 1-1. a-Si電子写真感光体表面の10μm×10μmの範囲におけるAFM三次元観察像である。It is an AFM three-dimensional observation image in the range of 10 μm × 10 μm on the surface of an a-Si electrophotographic photosensitive member. a-Si電子写真感光体を基準長さ0.8mm、評価長さ4.0mm、λc0.8mmの評価条件により表面粗さ計の粗さ曲線で測定することにより得られた最も高い点を基準とした凹凸高さの負荷曲線(BAC)の模式的な概略図である。The highest point obtained by measuring the a-Si electrophotographic photosensitive member with a roughness curve of a surface roughness meter under the evaluation conditions of a reference length of 0.8 mm, an evaluation length of 4.0 mm, and λc of 0.8 mm was used as a reference. It is a typical schematic diagram of a load curve (BAC) of unevenness height. (図4-1)電子写真感光体の微視的及び巨視的な表面形状を制御するための磁性粉体を用いた研磨装置の模式的な概略断面図である。 (図4-2)図4-1の要部の詳細を示す模式的な概略断面図である。FIG. 4-1 is a schematic cross-sectional view of a polishing apparatus using magnetic powder for controlling the microscopic and macroscopic surface shapes of an electrophotographic photosensitive member. FIG. 4-2 is a schematic schematic cross-sectional view showing details of a main part of FIG. 4-1. 電子写真感光体の微視的及び巨視的な表面形状を制御するための研磨テープを用いた研磨装置の模式的な概略断面図である。1 is a schematic cross-sectional view of a polishing apparatus using a polishing tape for controlling the microscopic and macroscopic surface shapes of an electrophotographic photosensitive member. VHF帯を用いた高周波プラズマCVD法によるa-Si電子写真感光体製造装置の一例を示す模式的な概略構成図である。It is a typical schematic block diagram which shows an example of the a-Si electrophotographic photoreceptor manufacturing apparatus by the high frequency plasma CVD method using a VHF band. VHF帯を用いた高周波プラズマCVD法によるa-Si電子写真感光体製造装置の別の一例を示す模式的な概略構成図である。It is a typical schematic block diagram which shows another example of the a-Si electrophotographic photoreceptor manufacturing apparatus by the high frequency plasma CVD method using a VHF band. 本発明に係わる電子写真感光体の層構成を模式的に示す概略断面図である。1 is a schematic cross-sectional view schematically showing a layer configuration of an electrophotographic photosensitive member according to the present invention. 本発明に係わる電子写真装置の一実施形態を示す模式的断面図である1 is a schematic cross-sectional view showing an embodiment of an electrophotographic apparatus according to the present invention. aを求める際に用いた切断レベル差δc[5%〜95%]を説明するためのBACの模式図である。It is a schematic diagram of BAC for demonstrating cutting | disconnection level difference (delta) c [5%-95%] used when calculating | requiring a. b及びcを求める際に用いた切断レベル差δc(plateau率)を説明するためのBACの模式図である。It is a schematic diagram of BAC for demonstrating the cutting | disconnection level difference (delta) c (plateau rate) used when calculating | requiring b and c. 中間調チャートによる高湿流れの評価時の測定位置を示す概略図である。It is the schematic which shows the measurement position at the time of evaluation of the high-humidity flow by a halftone chart. クリーニング不良の評価に用いたテストチャートの概略図である。It is the schematic of the test chart used for evaluation of cleaning defect. AFMの測定により求められるBearing Ratioを説明するための微視的な表面及び負荷曲線の説明図である。It is explanatory drawing of the microscopic surface and load curve for demonstrating Bearing Ratio calculated | required by the measurement of AFM. 粗さ計の測定により求められる負荷長さ率を説明するための巨視的な表面及び負荷曲線の説明図である。It is explanatory drawing of the macroscopic surface and load curve for demonstrating the load length rate calculated | required by the measurement of a roughness meter.

符号の説明Explanation of symbols

401、501 ‥‥‥‥‥‥‥電子写真感光体
402‥‥‥‥‥‥‥‥‥‥マグネットローラー
403‥‥‥‥‥‥‥‥‥‥磁性体
404‥‥‥‥‥‥‥‥‥‥マグネットローラー容器
405‥‥‥‥‥‥‥‥‥‥磁性体規制ブレード
406‥‥‥‥‥‥‥‥‥‥マイクロメーター
407‥‥‥‥‥‥‥‥‥‥可動台
408、506 ‥‥‥‥‥‥‥移動機構
409、508 ‥‥‥‥‥‥‥ベース台
502‥‥‥‥‥‥‥‥‥‥研磨テープ
503‥‥‥‥‥‥‥‥‥‥加圧弾性ローラー
504‥‥‥‥‥‥‥‥‥‥送り出しロール
505‥‥‥‥‥‥‥‥‥‥巻き取りロール
507‥‥‥‥‥‥‥‥‥‥加圧弾性ローラー容器
509‥‥‥‥‥‥‥‥‥‥キャプスタンローラー
510‥‥‥‥‥‥‥‥‥‥定量送り出しローラー
511‥‥‥‥‥‥‥‥‥‥搬送経路支持棒
601、701 ‥‥‥‥‥‥‥円筒状基体
602、702 ‥‥‥‥‥‥‥反応容器
603、703 ‥‥‥‥‥‥‥シールド
604、704 ‥‥‥‥‥‥‥原料ガス供給装置
605、705 ‥‥‥‥‥‥‥高周波電源
606、706 ‥‥‥‥‥‥‥マッチングボックス
607、707 ‥‥‥‥‥‥‥カソード
608、708 ‥‥‥‥‥‥‥ヒーター
609、709 ‥‥‥‥‥‥‥原料ガス導入管
610、710 ‥‥‥‥‥‥‥駆動部
611、711 ‥‥‥‥‥‥‥モーター
612、712 ‥‥‥‥‥‥‥排気口
800‥‥‥‥‥‥‥‥‥‥電子写真感光体
801‥‥‥‥‥‥‥‥‥‥円筒状基体
802‥‥‥‥‥‥‥‥‥‥光導電層
803‥‥‥‥‥‥‥‥‥‥表面層
804‥‥‥‥‥‥‥‥‥‥電荷注入阻止層
805‥‥‥‥‥‥‥‥‥‥電荷発生層
806‥‥‥‥‥‥‥‥‥‥電荷輸送層
901‥‥‥‥‥‥‥‥‥‥電子写真感光体
902‥‥‥‥‥‥‥‥‥‥一次帯電器
903‥‥‥‥‥‥‥‥‥‥現像器
904‥‥‥‥‥‥‥‥‥‥転写材
905‥‥‥‥‥‥‥‥‥‥転写帯電器
906‥‥‥‥‥‥‥‥‥‥クリーナー
907‥‥‥‥‥‥‥‥‥‥弾性ローラー
908‥‥‥‥‥‥‥‥‥‥クリーニングブレード
909‥‥‥‥‥‥‥‥‥‥除電ランプ
910‥‥‥‥‥‥‥‥‥‥送りローラー
911‥‥‥‥‥‥‥‥‥‥トナー
401, 501 ……………………………… Electrophotographic photoreceptor
402 ……………………………………………… Magnet roller
403 ‥‥‥‥‥‥‥‥‥‥ Magnet
404 …………………………………………………………………… Magnet roller container
405 ……………………………………………………………………………………………
406 ‥‥‥‥‥‥‥‥‥‥ Micrometer
407 ‥‥‥‥‥‥‥‥‥‥ Movable stand
408, 506 ....................... Movement mechanism
409, 508 ……………………………… Base base
502 ………………………………………… Abrasive tape
503 ……………………………………………………………………………………………….
504 ‥‥‥‥‥‥‥‥‥‥ Sending Roll
505 ……………………………………………… Take-up roll
507 ‥‥‥‥‥‥‥‥‥‥ Pressure elastic roller container
509 ……………………………………………… Capstan Roller
510 ……………………………………………………………………………….
511 ‥‥‥‥‥‥‥‥‥‥ Transport path support rod
601、701 ……………………………… Cylindrical substrate
602, 702 ..... Reaction vessel
603, 703 ……………………………… Shield
604, 704 ... Raw material gas supply equipment
605, 705 ... High frequency power supply
606, 706 ……………………………… Matching box
607, 707 ……………………………… Cathode
608, 708 ..... Heater
609, 709 ... Raw material gas introduction pipe
610, 710 ..... Drive unit
611, 711 ……………………………… Motor
612, 712 ……………………………….
800 ……………………………………………… Electrophotographic photoreceptor
801 ………………………………………… Cylindrical substrate
802 …………………………………………… Photoconductive layer
803 ……………………………………………….
804 ……………………………………………………………………………….
805 ………………………………………………………………………….
806 ……………………………………………………………………………………………………………………………………………….
901 ……………………………………………… Electrophotographic photoreceptor
902 ……………………………………………… Primary charger
903 …………………………………………… Developer
904 · · · · · · · · · · · · · · · · Transfer material
905 ······················· Transcription charger
906 ……………………………………………… Cleaner
907 …………………………………………………………………… Elastic roller
908 ………………………………………………………… Cleaning blade
909 …………………………………………………………………….
910 …………………………………………………………………… Feed roller
911 ……………………………………………… Toner

Claims (5)

基体上に少なくとも非晶質材料で構成された光導電層と表面層を有する電子写真感光体において、該電子写真感光体の10μm×10μmの範囲における微視的表面粗さで最も高い点を基準とした凹凸高さの負荷曲線における5%〜95%の高さの差をA、基準長さ0.8mmで測定した巨視的表面粗さで最も高い点を基準とした凹凸高さの負荷曲線における5%〜95%の高さの差をaとした時、A及びaが下記(1)〜(3)の全ての条件を満たすことを特徴とする電子写真感光体。
(1) 0.01μm≦A≦0.30μm
(2) 0.03μm≦a≦0.55μm
(3) 1.0×10-3μm2≦A×a≦4.5×10-2μm2
In an electrophotographic photosensitive member having a photoconductive layer composed of at least an amorphous material on the substrate and a surface layer, the standard is based on the highest microscopic surface roughness in the range of 10 μm × 10 μm of the electrophotographic photosensitive member. The difference in height between 5% and 95% in the uneven height load curve is A, and in the uneven height load curve based on the highest point of macroscopic surface roughness measured at a reference length of 0.8 mm. An electrophotographic photoreceptor, wherein A and a satisfy all of the following conditions (1) to (3), where a is a height difference of 5% to 95%.
(1) 0.01μm ≦ A ≦ 0.30μm
(2) 0.03μm ≦ a ≦ 0.55μm
(3) 1.0 × 10 −3 μm 2 ≦ A × a ≦ 4.5 × 10 −2 μm 2
前記A及びaが下記(4)から(6)の全ての条件を満たすことを特徴とする請求項1に記載の電子写真感光体。
(4) 0.02μm ≦ A ≦ 0.25μm
(5) 0.05μm ≦ a ≦ 0.45μm
(6) 3.0×10-3μm2 ≦A×a ≦ 3.5×10-2μm2
2. The electrophotographic photosensitive member according to claim 1, wherein A and a satisfy all of the following conditions (4) to (6).
(4) 0.02μm ≦ A ≦ 0.25μm
(5) 0.05μm ≦ a ≦ 0.45μm
(6) 3.0 × 10 −3 μm 2 ≦ A × a ≦ 3.5 × 10 −2 μm 2
前記巨視的表面粗さの前記負荷曲線における5%〜20%の傾きb、80%〜95%の傾きをcとしたとき、b及びcが下記(7)〜(9)の全ての条件を満たすことを特徴とする請求項1または2に記載の電子写真感光体。
(7) 250(%/μm)≦b≦1000(%/μm)
(8) 220(%/μm)≦c≦1000(%/μm)
(9) 0.5 ≦ c/b ≦ 2.0
When the slope b of 5% to 20% and the slope of 80% to 95% in the load curve of the macroscopic surface roughness is c, b and c are all the following conditions (7) to (9): The electrophotographic photosensitive member according to claim 1, wherein the electrophotographic photosensitive member is satisfied.
(7) 250 (% / μm) ≦ b ≦ 1000 (% / μm)
(8) 220 (% / μm) ≦ c ≦ 1000 (% / μm)
(9) 0.5 ≤ c / b ≤ 2.0
前記微視的表面粗さの前記負荷曲線おける5%〜20%の傾きをB、80%〜95%の傾きをCとしたとき、B及びCが下記(10)〜(12)の全ての条件を満たすことを特徴とする請求項1〜3のいずれか1項に記載の電子写真感光体。
(10) 250(%/μm)≦B≦ 3000(%/μm)
(11) 200(%/μm)≦C≦ 2000(%/μm)
(12) 0.1 ≦ C/B ≦ 1.0
When the slope of 5% to 20% in the load curve of the microscopic surface roughness is B and the slope of 80% to 95% is C, B and C are all the following (10) to (12): The electrophotographic photosensitive member according to claim 1, wherein the condition is satisfied.
(10) 250 (% / μm) ≦ B ≦ 3000 (% / μm)
(11) 200 (% / μm) ≦ C ≦ 2000 (% / μm)
(12) 0.1 ≤ C / B ≤ 1.0
前記A及びaが下記(13)〜(15)の全ての条件を満たすことを特徴とする請求項1〜4のいずれか1項に記載の電子写真感光体。
(13) 0.03μm ≦ A ≦ 0.20μm
(14) 0.07μm ≦ a ≦ 0.40μm
(15) 5.0×10-3μm2 ≦ A×a ≦ 3.0×10-2μm2
The electrophotographic photosensitive member according to any one of claims 1 to 4, wherein A and a satisfy all of the following conditions (13) to (15).
(13) 0.03μm ≦ A ≦ 0.20μm
(14) 0.07μm ≦ a ≦ 0.40μm
(15) 5.0 × 10 -3 μm 2 ≦ A × a ≦ 3.0 × 10 -2 μm 2
JP2005129407A 2005-04-27 2005-04-27 Electrophotographic photoreceptor Pending JP2006308743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129407A JP2006308743A (en) 2005-04-27 2005-04-27 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129407A JP2006308743A (en) 2005-04-27 2005-04-27 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2006308743A true JP2006308743A (en) 2006-11-09
JP2006308743A5 JP2006308743A5 (en) 2008-06-19

Family

ID=37475725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129407A Pending JP2006308743A (en) 2005-04-27 2005-04-27 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2006308743A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079230A (en) * 2005-09-15 2007-03-29 Canon Inc Electrophotographic apparatus
US8293439B2 (en) 2009-03-13 2012-10-23 Ricoh Company, Ltd. Electrophotographic photorecptor, method of manufacturing electrophotographic photorecptor, image forming apparatus, and process cartridge
US8795935B2 (en) 2009-03-17 2014-08-05 Ricoh Company, Ltd. Electrophotographic photoconductor, production method of the same, image forming apparatus, and process cartridge
US11366402B2 (en) 2019-10-18 2022-06-21 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079230A (en) * 2005-09-15 2007-03-29 Canon Inc Electrophotographic apparatus
JP4623651B2 (en) * 2005-09-15 2011-02-02 キヤノン株式会社 Electrophotographic equipment
US8293439B2 (en) 2009-03-13 2012-10-23 Ricoh Company, Ltd. Electrophotographic photorecptor, method of manufacturing electrophotographic photorecptor, image forming apparatus, and process cartridge
US8795935B2 (en) 2009-03-17 2014-08-05 Ricoh Company, Ltd. Electrophotographic photoconductor, production method of the same, image forming apparatus, and process cartridge
US11366402B2 (en) 2019-10-18 2022-06-21 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus using the same

Similar Documents

Publication Publication Date Title
JP4499785B2 (en) Electrophotographic photoreceptor and image forming apparatus provided with the same
JP5675292B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP4623651B2 (en) Electrophotographic equipment
US6895209B2 (en) Cleaning device and image forming apparatus using the same
JP2006308743A (en) Electrophotographic photoreceptor
US6534228B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP2008033224A (en) Electrophotographic photosensitive member and image forming apparatus equipped with the same
US6636715B2 (en) Photosensitive member and image forming apparatus having the same
JP2008122915A (en) Charging device and image forming apparatus
EP0957413B1 (en) Cleaning method of an electrophotographic apparatus and electrophotographic process comprising the cleaning method
JP3566621B2 (en) Electrophotographic photoreceptor and apparatus using the same
JP4936539B2 (en) Image forming apparatus
JP2007121533A (en) Electrophotographic image forming apparatus
JP2009003029A (en) Rolling device, manufacturing method of developing roller, developing roller, developing device and image forming apparatus
JP2007108420A (en) Image forming apparatus
JP2008209746A (en) Electrophotographic image forming apparatus
JP2007121349A (en) Electrophotographic apparatus
JP3782680B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP4447968B2 (en) Method for producing electrophotographic photosensitive member
JP3789081B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP3279923B2 (en) Electrophotographic equipment
JP4416621B2 (en) Method for polishing surface of electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP3571917B2 (en) Electrophotographic equipment
JP2011138033A (en) Electrophotographic photoreceptor
JP2002082463A (en) Electrophotographic photoreceptor and electrophotographic device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100804