JP4447968B2 - Method for producing electrophotographic photosensitive member - Google Patents
Method for producing electrophotographic photosensitive member Download PDFInfo
- Publication number
- JP4447968B2 JP4447968B2 JP2004175527A JP2004175527A JP4447968B2 JP 4447968 B2 JP4447968 B2 JP 4447968B2 JP 2004175527 A JP2004175527 A JP 2004175527A JP 2004175527 A JP2004175527 A JP 2004175527A JP 4447968 B2 JP4447968 B2 JP 4447968B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- photosensitive member
- electrophotographic photosensitive
- polishing
- layer region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
本発明は、シリコン原子を母体とする非単結晶材料で構成された光導電層を有する電子写真感光体の製造方法に関するものである。 The present invention relates to a method for producing an electrophotographic photosensitive member having a photoconductive layer made of a non-single crystal material based on silicon atoms.
電子写真感光体は、電子写真装置に搭載され、帯電工程−露光工程−現像工程−転写工程−転写残トナーのクリーニング工程という一連のプロセスを受ける。この一連のプロセス中のクリーニング工程で、感光体の表面状態は、電子写真感光体のクリーニング性を決定する重要なパラメータで、電子写真感光体の設計に際しては様々な技術開発がなされてきた。 The electrophotographic photosensitive member is mounted on an electrophotographic apparatus and is subjected to a series of processes including a charging process, an exposure process, a development process, a transfer process, and a cleaning process for residual toner. In the cleaning process in this series of processes, the surface state of the photoconductor is an important parameter for determining the cleaning property of the electrophotographic photoconductor, and various technical developments have been made in designing the electrophotographic photoconductor.
感光体の材料として、シリコン原子を母体とし、水素で欠陥補償された非単結晶材料である水素化アモルファスシリコン(以下、「アモルファスSi」とも表記する)がある。アモルファスSiを用いた感光体のクリーニング工程における課題に、帯電生成物の除去が不十分な状況で引き起こされる高温高湿環境下での画像流れがある。 As a material of the photoconductor, there is hydrogenated amorphous silicon (hereinafter also referred to as “amorphous Si”), which is a non-single crystal material having a silicon atom as a base material and defect compensation with hydrogen. A problem in the cleaning process of the photoconductor using amorphous Si is an image flow in a high-temperature and high-humidity environment caused by insufficient removal of charged products.
他の課題として、クリーニング工程で、トナー粒子或いはトナーに含まれる添加剤等が十分にクリーニングされずに感光体表面に残留、固着するといった現象がある。 Another problem is that the toner particles or additives contained in the toner remain or adhere to the surface of the photoreceptor without being sufficiently cleaned in the cleaning process.
近年電子写真装置のデジタル化が進んだことにより、プリントレングス(1回にプリントされるページ数)及びプリントボリューム(所定期間中にプリントされるページ総数)が大きく増加する傾向があり、クリーニング工程への負荷が増している。また、出力画像のカラー化は、印字比率を引き上げる傾向にあり、この点でもクリーニング工程の負荷が増大する傾向にある。 In recent years, with the progress of digitalization of electrophotographic apparatuses, the print length (number of pages printed at one time) and the print volume (total number of pages printed during a predetermined period) tend to increase greatly, and the cleaning process is started. The load is increasing. Further, the colorization of the output image tends to increase the printing ratio, and in this respect also, the load of the cleaning process tends to increase.
一方、画質向上、高精細化のため画素密度は年々高くなる傾向にある。デジタル画像は微細なドットの集合体で形成されるため、画質向上、高精細化によりドットが微細化され、従来は顕在化しなかった軽微な潜像上の不均一性や乱れが中間調の再現性や均一性、小文字の再現性の低下といった画像品位の劣化として現われる場合がある。 On the other hand, pixel density tends to increase year by year in order to improve image quality and increase definition. Since digital images are formed by a collection of fine dots, dots are miniaturized by improving image quality and high definition, and reproduction of non-uniformities and disturbances on light latent images, which did not become apparent in the past, are reproduced in halftones. May appear as degradation of image quality, such as lowering of image quality, uniformity, and lower-case reproducibility.
これらの課題を解決するものとして、アモルファスSiを含む電子写真感光体のクリーニング性に関しては、微視的な表面粗さに着目してトナー付着やクリーニング不良を防止した感光体が開示されている(例えば、特許文献1参照)。また、感光体表面を研磨する研磨手段を備えた画像形成装置が開示されている(例えば、特許文献2参照)。
このような技術を踏まえ、本発明者が感光体表面に着目してクリーニング性のさらなる改善を図るべく検討を進めた結果、次のような課題が生じてきた。 Based on such a technique, the inventors have studied to further improve the cleaning property by paying attention to the surface of the photoreceptor, and the following problems have arisen.
電子写真感光体表面の微視的な表面粗さRaが大きくなると、相対的には以下のようなクリーニング工程における課題が生じやすくなる。 When the microscopic surface roughness Ra of the surface of the electrophotographic photosensitive member is increased, the following problems in the cleaning process are more likely to occur.
すなわち、凹凸の谷の部分に帯電生成物が溜まりやすくなるため、高温高湿環境下でそれが低抵抗化し、画像流れが引き起こされる。 That is, the charged product is likely to be accumulated in the concave and convex valley portions, so that the resistance is reduced in a high-temperature and high-humidity environment, thereby causing image flow.
また、現像性、クリーニング性、転写性等の機能を向上させるためにトナーに添加される微粒子(いわゆる外添剤)は、トナー粒子に対して必ずしも強固に固着していない場合があるため、画像形成工程で脱離してクリーニングされ切れず、感光体表面の凹凸の谷部分に残留する傾向にある。 In addition, fine particles (so-called external additives) added to the toner in order to improve functions such as developability, cleaning properties, and transferability may not be firmly fixed to the toner particles. In the formation process, it is detached and cannot be completely cleaned, and tends to remain in the concave and convex valleys on the surface of the photoreceptor.
さらにこのプロセスが繰り返されると、残留した外添剤が蓄積し、感光体に到達する露光のムラを引き起こすに至る場合があることも分かった。 Further, it has been found that when this process is repeated, the remaining external additive accumulates and may cause uneven exposure reaching the photoreceptor.
アモルファスSi感光体の微視的な表面粗さは、膜を堆積させる成膜条件に大きく依存する。しかし十分な電子写真特性を得る為の制約から、成膜条件のみで所望の表面粗さにコントロールすることが難しく、その場合成膜後の表面を研磨することが考えられる。 The microscopic surface roughness of the amorphous Si photoconductor greatly depends on the film forming conditions for depositing the film. However, due to restrictions for obtaining sufficient electrophotographic characteristics, it is difficult to control to a desired surface roughness only by film formation conditions. In this case, it is conceivable to polish the surface after film formation.
しかし、研磨処理に長時間を要するため、生産性の向上が課題となる。さらに、感光体全面に渡って均一に研磨を行う為、砥粒がコーティングされた研磨シートを用いることが好適であるが、その際に砥粒が分散された結着材や分散助剤などが感光体に固着する可能性があり、処理の長時間化に伴う課題となる。 However, since the polishing process takes a long time, improvement of productivity becomes a problem. Furthermore, in order to perform polishing uniformly over the entire surface of the photoreceptor, it is preferable to use a polishing sheet coated with abrasive grains. In this case, a binder or a dispersion aid in which abrasive grains are dispersed is used. There is a possibility that it adheres to the photoconductor, which is a problem associated with a longer processing time.
一方、画像流れの要因となる付着物などを強制的に除去する手段を設けることによりクリーニング性を補完しようとする画像形成装置として、感光体表面に研磨テープを用いた摺擦手段を接触させる、現像剤に研磨剤を添加する、といった手段が提案されている。しかしながらこれらの場合、プロセス設計や機構設計が複雑になり、装置コストの増加、メンテナンス性、画像品質への影響などの課題が残されている。 On the other hand, as an image forming apparatus that attempts to supplement cleaning properties by providing a means for forcibly removing deposits that cause image flow, a rubbing means using an abrasive tape is brought into contact with the surface of the photoreceptor. Means such as adding an abrasive to the developer have been proposed. However, in these cases, process design and mechanism design become complicated, and problems such as an increase in apparatus cost, maintainability, and influence on image quality remain.
また、画像流れを抑制する他の方法として、感光体にその感光体自体を加温するためのヒーターを内蔵したり、温風送風装置により温風を感光体に送風したりして感光体表面を加温(30〜50℃)することにより相対湿度を低下させる方法がある。この方法は感光体表面に付着しているコロナ放電生成物や水分を揮発させ、感光体表面の実質的な低抵抗化を抑える処置である。 As another method for suppressing image flow, the surface of the photoconductor may be provided by incorporating a heater in the photoconductor to heat the photoconductor itself or by blowing warm air to the photoconductor by a hot air blower. There is a method of lowering the relative humidity by heating (30-50 ° C.). This method is a treatment that volatilizes corona discharge products and moisture adhering to the surface of the photosensitive member to suppress substantial reduction in resistance of the surface of the photosensitive member.
しかし、この方法は複写機本体の消費電力を増加させることになり、高速複写機においては一般のオフィスの電源事情である100V/15Aの電力内で稼働させることが難しくなる可能性がある。 However, this method increases the power consumption of the copying machine main body, and it may be difficult to operate the high-speed copying machine within the power of 100 V / 15 A, which is a general office power supply situation.
本発明の目的は、上記従来技術の課題を解決し、画像流れ等のクリーニング性に関わる画像欠陥が発生しにくく、画像形成装置側への負荷を軽減することができる生産性の高い電子写真感光体の製造方法を提供することを目的とする。 The object of the present invention is to solve the above-mentioned problems of the prior art, to prevent image defects related to cleaning properties such as image flow, and to reduce the load on the image forming apparatus side. It aims at providing the manufacturing method of a body.
本発明者は、これらの課題を解決する簡便な製造方法を検討し、電子写真感光体の最表面に低硬度の膜を形成した後に研磨加工する方法が効果的であることを見出し、本発明に至った。 The present inventor has studied a simple manufacturing method for solving these problems, and found that a method of polishing after forming a low hardness film on the outermost surface of the electrophotographic photosensitive member is effective. It came to.
本発明は、導電性基体上に、シリコン原子を母体とする非単結晶材料で構成された光導電層と、表面層と、を堆積して電子写真感光体を製造する方法において、非晶質炭化シリコンで構成されたダイナミック硬度が790〜800kgf/mm 2 である第1の層領域と、該第1の層領域よりも硬度の小さい非晶質炭化シリコンで構成されたダイナミック硬度が250〜270kgf/mm 2 である第2の層領域と、をこの順に積層して該表面層を形成した後に、電子写真感光体の最表面に該第1の層領域が部分的に露出した状態となるよう、該第2の層領域形成後の表面を、結着材に分散された材質がシリコンカーバイドであって粒径が6μmである砥粒がコーティングされた研磨シートを用いて研磨加工することを特徴とする電子写真感光体の製造方法である。 The present invention relates to a method for producing an electrophotographic photosensitive member by depositing a photoconductive layer composed of a non-single crystal material based on silicon atoms and a surface layer on a conductive substrate. A first layer region composed of silicon carbide having a dynamic hardness of 790 to 800 kgf / mm 2 , and a dynamic hardness composed of amorphous silicon carbide having a hardness smaller than that of the first layer region of 250 to 270 kgf After the second layer region having a thickness of / mm 2 is laminated in this order and the surface layer is formed, the first layer region is partially exposed on the outermost surface of the electrophotographic photosensitive member. The surface after forming the second layer region is polished using a polishing sheet coated with abrasive grains whose material dispersed in the binder is silicon carbide and the particle size is 6 μm. Electrophotographic photoreceptor It is a manufacturing method.
このような方法により、硬度の大きい表面層を直接研磨する場合に比べて適切な表面粗さを得るに至る時間を著しく短縮できる。また、適切な表面粗さを得た研磨加工後においても硬度の大きい表面層が残存しているので、硬度の小さい表面層のみを用いた場合と比べて感光体を電子写真装置に搭載した際の感光体表面の削れ量を抑制することができ、感光体の更なる長寿命化が可能となる。 即ち、本発明においては、光導電層を成膜する過程で形成されたある程度の粗さを有する表面に対し、その表面形状に沿った上記構成の表面層が形成される。この感光体の研磨を行うと短時間で硬度の小さい層領域は削り取られて、硬度の大きい層領域の凸部が露出する。この段階で硬度の大きい層領域の凹部には硬度の小さい層領域が残留しており、感光体表面全体の表面粗さは小さくなる。
さらに本発明においては、研磨加工後において、電子写真感光体の最表面を前記硬度の大きい層領域が部分的に最表面に露出した状態となるよう研磨加工することが好ましい。
By such a method, the time required to obtain an appropriate surface roughness can be remarkably shortened as compared with the case of directly polishing a hard surface layer. In addition, since a surface layer having a high hardness remains even after polishing processing with an appropriate surface roughness, the photoconductor is mounted on an electrophotographic apparatus as compared with the case of using only a surface layer having a low hardness. The amount of abrasion on the surface of the photoreceptor can be suppressed, and the life of the photoreceptor can be further extended. That is, in the present invention, a surface layer having the above-described configuration along the surface shape is formed on the surface having a certain degree of roughness formed in the process of forming the photoconductive layer. When this photoconductor is polished, the layer region having a low hardness is scraped off in a short time, and the convex portion of the layer region having a high hardness is exposed. At this stage, a layer region having a low hardness remains in the concave portion of the layer region having a high hardness, and the surface roughness of the entire surface of the photoreceptor is reduced.
Further, in the present invention, after the polishing process, it is preferable to polish the outermost surface of the electrophotographic photosensitive member so that the layer region having the high hardness is partially exposed on the outermost surface.
このように部分的にではあっても、感光体表面に硬度の大きい層領域が露出した状態とすることによって、トナーの融着抑制効果が高まる。この融着抑制効果が高まるメカニズムについては詳細はわかっていないものの、感光体表面に表面自由エネルギーの異なる領域が混在することで融着の核が成長し難い為ではないかと推察している。 Even if it is partially in this manner, the effect of suppressing toner fusion is enhanced by exposing the layer region having a high hardness on the surface of the photoreceptor. Although the details of the mechanism for increasing the effect of suppressing the fusion are not known, it is presumed that it is difficult for the fusion nucleus to grow due to the presence of regions having different surface free energies on the surface of the photoreceptor.
以上説明したように、本発明によれば、導電性基体上に、シリコン原子を母体とする非単結晶材料で構成された光導電層と、表面層と、を堆積して電子写真感光体を製造する方法において、非晶質炭化シリコンで構成されたダイナミック硬度が790〜800kgf/mm 2 である第1の層領域と、該第1の層領域よりも硬度の小さい非晶質炭化シリコンで構成されたダイナミック硬度が250〜270kgf/mm 2 である第2の層領域と、をこの順に積層して該表面層を形成した後に、電子写真感光体の最表面に該第1の層領域が部分的に露出した状態となるよう、該第2の層領域形成後の表面を、結着材に分散された材質がシリコンカーバイドであって粒径が6μmである砥粒がコーティングされた研磨シートを用いて研磨加工することにより以下の効果を得ることができた。 As described above, according to the present invention, a photoconductive layer made of a non-single crystal material having a silicon atom as a base material and a surface layer are deposited on a conductive substrate to form an electrophotographic photosensitive member. In the manufacturing method, the first layer region composed of amorphous silicon carbide and having a dynamic hardness of 790 to 800 kgf / mm 2 and the amorphous silicon carbide having a smaller hardness than the first layer region. And the second layer region having a dynamic hardness of 250 to 270 kgf / mm 2 is laminated in this order to form the surface layer, and then the first layer region is partially formed on the outermost surface of the electrophotographic photosensitive member. A polishing sheet coated with abrasive grains having a particle size of 6 μm made of silicon carbide as a material dispersed in the binder is formed on the surface after the second layer region is formed so as to be exposed to the surface. Polishing using It was possible to obtain a more or less of the effect.
まず、電子写真感光体を加熱する手段を設けずとも、高温高湿環境下での画像ボケや画像流れといった画像欠陥の発生を実用上無視できるまで抑制可能な電子写真感光体の製造が大幅な製造時間延長を伴うことなく可能となる。 First, the production of an electrophotographic photosensitive member capable of suppressing the occurrence of image defects such as image blurring and image flow in a high temperature and high humidity environment to a practically negligible level without providing a means for heating the electrophotographic photosensitive member is significant. This is possible without extending the manufacturing time.
更には、小粒径で定着性の優れたトナーを用いた場合でもクリーニング性が良く、トナーの融着を実用上無視できるまで抑制可能な電子写真感光体の製造が大幅な製造時間延長を伴うことなく可能となる。 Furthermore, even when a toner having a small particle size and excellent fixability is used, the cleaning property is good, and the production of an electrophotographic photosensitive member capable of suppressing the fusion of the toner to a practically negligible time greatly increases the production time. It becomes possible without.
以下、さらに本発明の詳細を説明する。 Details of the present invention will be described below.
本発明の電子写真感光体の製造方法は、まず、導電性基体上に少なくともシリコン原子を母体とする非単結晶材料で構成された光導電層を堆積して感光層を形成する工程を有する。 The method for producing an electrophotographic photosensitive member of the present invention first includes a step of forming a photosensitive layer by depositing a photoconductive layer made of a non-single crystal material having at least silicon atoms as a base on a conductive substrate.
更に、本発明は、硬度の小さい材料で形成された第2の層領域(「硬度の小さい第2の層領域」とも表記)は硬度の大きい材料で形成された第1の層領域(「硬度の大きい第1の層領域」とも表記)よりダイナミック硬度で50kgf/mm2以上小さい、もしくは2/3倍以下であることが好ましい。これにより、感光体最表面に露出した硬度の大きい第1の層領域が磨耗により後退する過程において、硬度の小さい第2の層領域が剥落しにくくなり、感光体最表面が常に全体が均一に磨耗していくため、感光体表面の削れ量を抑制することができ、感光体の更なる長寿命化が可能となる。 Further, according to the present invention, the second layer region (also referred to as “second layer region having low hardness”) formed of a material having low hardness is the first layer region (“hardness”) formed of material having high hardness. The dynamic hardness is preferably 50 kgf / mm 2 or more, or 2/3 times or less than the first layer region having a large. As a result, in the process in which the first layer region having a high hardness exposed on the outermost surface of the photosensitive member is retracted due to wear, the second layer region having a lower hardness is less likely to be peeled off, and the entire outermost surface of the photosensitive member is always uniform. Since it is worn out, the amount of abrasion on the surface of the photoreceptor can be suppressed, and the life of the photoreceptor can be further extended.
なお、ここで規定する、本発明におけるダイナミック硬度とは、島津製作所社製のダイナミック硬度計(型番DUH−201)を用いて測定されるものである。なお、本発明においてダイナミック硬度は円筒状アルミ基体上にセットした7059ガラス(コーニング社製)上に厚さ1μmのサンプル膜を形成し、そのサンプル膜のダイナミック硬度を測定する事により評価した。ダイナミック硬度の測定は先端の半径が0.1μmである稜間角度115°の三角錐ダイヤモンドスタイラスを用い、押し込み深さをサンプル膜厚の1/10(0.1μm)として行った。 In addition, the dynamic hardness in this invention prescribed | regulated here is measured using the Shimadzu Corporation dynamic hardness meter (model number DUH-201). In the present invention, the dynamic hardness was evaluated by forming a sample film having a thickness of 1 μm on 7059 glass (manufactured by Corning) set on a cylindrical aluminum substrate and measuring the dynamic hardness of the sample film. The dynamic hardness was measured using a triangular pyramid diamond stylus having a ridge angle of 115 ° with a tip radius of 0.1 μm and an indentation depth of 1/10 (0.1 μm) of the sample film thickness.
また、硬度の大きい第1の層領域のダイナミック硬度は790〜800kgf/mm 2 である。硬度の大きい第1の層領域のダイナミック硬度を300kgf/mm2以上、好ましくは500kgf/mm2以上、さらに好ましくは700kgf/mm2以上とすることで、使用していくうちに筋状のムラ削れが発生することを効果的に防ぐことが可能となる。また、1000kgf/mm2以下にすることで、環境条件が変化してもトナーの融着がより生じにくくすることが可能となる。
Also, dynamic hardness of greater first layer region of the hardness Ru Ah at 790 ~ 800 kgf / mm 2. The dynamic hardness of greater first layer region of
また、本発明においては、研磨加工後において、該電子写真感光体の10μm×10μm視野における中心線平均粗さ(Ra)が1.0nm〜40.0nmとなるよう研磨加工することが本発明の効果をより顕著に得る上で好ましい。 In the present invention, after the polishing process, the electrophotographic photosensitive member is polished so that the center line average roughness (Ra) in a 10 μm × 10 μm field of view is 1.0 nm to 40.0 nm. It is preferable for obtaining the effect more remarkably.
なお、本発明における中心線平均粗さとは、原子間力顕微鏡(AFMとも表記する)[Quesant社製 Q−Scope250]を用いて測定した表面粗さRaの値を指し、微視的な表面粗さを高い精度で再現性良く測定するためには、10μm×10μmの測定範囲での結果であることが望ましい。 The center line average roughness in the present invention refers to the value of the surface roughness Ra measured using an atomic force microscope (also referred to as AFM) [Q-Scope 250 manufactured by Questant Co., Ltd.]. In order to measure the thickness with high accuracy and good reproducibility, it is desirable that the result is in a measurement range of 10 μm × 10 μm.
Raを40.0nm以下とすることで、表面の微細な凹凸を抑えられるため、凹凸の谷の部分に帯電生成物が溜まりにくくなるため、高温高湿環境下での画像流れが発生しにくくなる。更に、トナーに添加される微粒子(いわゆる外添剤)が感光体表面の凹凸の谷の部分に残留することが抑制され、クリーニング性が向上する。 By setting Ra to 40.0 nm or less, fine irregularities on the surface can be suppressed, and it becomes difficult for charged products to accumulate in the valleys of the irregularities, so that image flow in high-temperature and high-humidity environments is less likely to occur. . Further, the fine particles (so-called external additives) added to the toner are suppressed from remaining in the concave and convex valley portions on the surface of the photoreceptor, and the cleaning property is improved.
また、Raを1.0nm以上として表面が過度に平滑な状態となることを抑えることで、トナー粒子や外添剤粒子等と感光体表面との接触面積の過度の増加が抑制されるので、トナー粒子や外添剤粒子等の感光体表面への付着力を適度な範囲に維持することが容易となり、クリーニング性を良好に保つことが容易となる。 In addition, by suppressing the surface from becoming excessively smooth with Ra of 1.0 nm or more, an excessive increase in the contact area between the toner particles, external additive particles, etc. and the photoreceptor surface is suppressed. It becomes easy to maintain the adhesion force of the toner particles, external additive particles, and the like to the surface of the photoreceptor in an appropriate range, and it becomes easy to maintain good cleaning properties.
また、本発明においては、研磨加工前における該電子写真感光体の硬度の小さい第2の層領域の厚さを5nm以上300nm以下とすることが本発明の効果を顕著に得る上で好ましい。300nmを超えると、硬度の大きい第1の層領域を部分的に露出させるまでに要する研磨時間がより長くなるため、本発明の効果が小さくなる場合がある。5nm未満の場合は凹部に残留する硬度の小さい第2の層領域が少なくなるため、適切な表面粗さが得られにくくなる場合がある。 In the present invention, it is preferable that the thickness of the second layer region having a low hardness of the electrophotographic photoreceptor before polishing is 5 nm or more and 300 nm or less in order to obtain the effects of the present invention remarkably. If the thickness exceeds 300 nm, the polishing time required to partially expose the first layer region having a high hardness becomes longer, and the effect of the present invention may be reduced. When the thickness is less than 5 nm, the second layer region having a small hardness remaining in the concave portion is reduced, and it may be difficult to obtain an appropriate surface roughness.
さらに、研磨加工後において、該電子写真感光体の硬度の大きい第1の層領域の凹部の厚さが200nm以上1000nm以下となるよう研磨加工することで、より大きな効果を得る事ができる。ここで凹部とは硬度の大きい第1の層領域形成後、かつ、研磨加工前における硬度の大きい第1の層領域の凹部であり、研磨加工を施した後においては光導電層と硬度の大きい第1の層領域の界面部分の凹部により位置を特定可能である。 Furthermore, after the polishing process, a larger effect can be obtained by polishing the electrophotographic photosensitive member so that the thickness of the concave portion of the first layer region having a high hardness is not less than 200 nm and not more than 1000 nm. Here, the concave portion is a concave portion of the first layer region having a high hardness after the formation of the first layer region having a high hardness and before the polishing process. After the polishing process, the concave portion has a high hardness with the photoconductive layer. The position can be specified by the recess in the interface portion of the first layer region.
また、該電子写真感光体の表面層を非晶質炭化シリコンまたは非晶質炭素で形成することが表面層の硬度を本発明の範囲に調整することが容易であるという点から好ましく、更には表面層を非晶質炭化シリコンとし、炭素原子の含有量が炭素原子の含有量とシリコン原子の含有量の和に対して95原子%未満とすることが更に好ましい。
(導電性基体)
導電性基体の基材としては、導電性でも電気絶縁性であってもよい。導電性基体としては、例えば、Al、Cr、Mo、Au、In、Nb、Te、V、Ti、Pt、Pd、Fe等の金属、およびこれらの合金、例えばステンレス等が挙げられる。また、ポリエステル、ポリエチレン、ポリカーボネート、セルロースアセテート、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリアミド等の合成樹脂のフィルムまたはシート、ガラス、セラミック等の電気絶縁性基体の少なくとも感光層を形成する側の表面を導電処理したものも導電性基体として用いることができる。
(光導電層、表面層)
光導電層はシリコン原子を母体とする非単結晶材料で構成され、例えばグロー放電法(低周波CVD法、高周波CVD法またはマイクロ波CVD法等の交流放電CVD法、または直流放電CVD法等)、スパッタリング法、真空蒸着法、イオンプレーティング法、光CVD法、熱CVD法などの数々の薄膜堆積法によって形成することができる。
In addition, it is preferable that the surface layer of the electrophotographic photosensitive member is formed of amorphous silicon carbide or amorphous carbon from the viewpoint that the hardness of the surface layer can be easily adjusted within the range of the present invention. More preferably, the surface layer is made of amorphous silicon carbide, and the carbon atom content is less than 95 atomic% with respect to the sum of the carbon atom content and the silicon atom content.
(Conductive substrate)
The substrate of the conductive substrate may be conductive or electrically insulating. Examples of the conductive substrate include metals such as Al, Cr, Mo, Au, In, Nb, Te, V, Ti, Pt, Pd, and Fe, and alloys thereof such as stainless steel. Conductive surface of at least the photosensitive layer of electrically insulating substrates such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polystyrene, polyamide, etc. The treated one can also be used as a conductive substrate.
(Photoconductive layer, surface layer)
The photoconductive layer is made of a non-single crystal material based on silicon atoms, for example, glow discharge method (low-frequency CVD method, high-frequency CVD method, microwave CVD method or other AC discharge CVD method, or direct-current discharge CVD method). It can be formed by a number of thin film deposition methods such as sputtering, vacuum deposition, ion plating, photo CVD, and thermal CVD.
この中ではRF帯、特に、VHF帯からマイクロ波帯の周波数を用いた高周波グロー放電法が好適である。 Among these, a high-frequency glow discharge method using frequencies in the RF band, in particular, the VHF band to the microwave band is preferable.
光導電層の下層には、導電性基体側からの電荷の注入を阻止する働きのある非単結晶シリコン材料で構成された下部電荷注入阻止層を必要に応じて設けても良い。下部電荷注入阻止層は、表面層が一定極性の帯電処理をその自由表面に受けた際、導電性基体側より光導電層側に電荷が注入されるのを効果的に阻止する機能を有する。 If necessary, a lower charge injection blocking layer made of a non-single-crystal silicon material that functions to block charge injection from the conductive substrate side may be provided below the photoconductive layer. The lower charge injection blocking layer has a function of effectively blocking charge injection from the conductive substrate side to the photoconductive layer side when the surface layer is subjected to charging treatment with a constant polarity on its free surface.
下部電荷注入阻止層は、周期表第13族に属する原子(第13族原子とも略記する)や周期表第15族に属する原子(第15族原子とも略記する)などの伝導性を制御する原子や、窒素や酸素や炭素等の原子を必要に応じて含有させる。これらの原子を含有した非単結晶シリコン膜から構成することで、導電性基体側からの電荷の注入を効果的に阻止し、更には光導電層および導電性基体の間の密着性を向上でき、優れた電子写真特性を実現できる。 The lower charge injection blocking layer is an atom that controls conductivity, such as an atom belonging to Group 13 of the periodic table (abbreviated as Group 13 atom) or an atom belonging to Group 15 of the periodic table (abbreviated as Group 15 atom). In addition, atoms such as nitrogen, oxygen, and carbon are included as necessary. By comprising a non-single-crystal silicon film containing these atoms, it is possible to effectively prevent charge injection from the conductive substrate side, and to improve the adhesion between the photoconductive layer and the conductive substrate. Excellent electrophotographic characteristics can be realized.
下部電荷注入阻止層の層厚は、所望の電子写真特性および経済的効果等の観点から、0.1μm以上、10μm以下が好ましい。層厚が0.1μm以上であれば基体からの電荷の注入を十分阻止でき、10μm以下であれば電子写真特性を低下させることなく電子写真感光体の作製時間を短縮でき製造コストを低減できる。 The layer thickness of the lower charge injection blocking layer is preferably 0.1 μm or more and 10 μm or less from the viewpoint of desired electrophotographic characteristics and economic effects. If the layer thickness is 0.1 μm or more, the injection of charges from the substrate can be sufficiently prevented, and if it is 10 μm or less, the production time of the electrophotographic photosensitive member can be shortened without reducing the electrophotographic characteristics, and the production cost can be reduced.
光導電層には、水素および/またはハロゲン原子が含有されることが好ましいが、これらの原子はシリコン原子の未結合手を補償し、層品質の向上、特に光導電性及び電荷保持特性を向上させる。これらの原子のうち添加されるものの総量は、シリコン原子と添加される原子との総量に対して10〜40原子%が好ましい。 The photoconductive layer preferably contains hydrogen and / or halogen atoms, but these atoms compensate for dangling bonds of silicon atoms, improving the layer quality, particularly improving photoconductivity and charge retention characteristics. Let The total amount of these atoms to be added is preferably 10 to 40 atomic% with respect to the total amount of silicon atoms and added atoms.
なお、光導電層に伝導性を制御する原子を導入することもできる。伝導性を制御する原子としては、第13族原子や第15族原子を用いることができる。これらの原子を含有することで、キャリアの走行性や生成度合い等を制御して、電子写真特性の最適化がなされる。これらの原子のうち添加されるものの総量は、シリコン原子と添加される原子との総量に対して1×10-6〜1×10-3原子%が望ましい。 In addition, atoms for controlling conductivity can be introduced into the photoconductive layer. As atoms for controlling conductivity, group 13 atoms or group 15 atoms can be used. By containing these atoms, the electrophotographic characteristics can be optimized by controlling the runnability and generation degree of carriers. The total amount of these atoms to be added is preferably 1 × 10 −6 to 1 × 10 −3 atom% with respect to the total amount of silicon atoms and added atoms.
更に、光導電層に炭素、酸素および窒素の1種以上の原子を含有させることも有効である。これらの原子を含有することで、キャリアの走行性や生成度合い等を制御して、電子写真特性の最適化がなされる。これらの原子のうち添加されるものの総量は、シリコン原子と添加される原子との総量に対して好ましくは1×10-5〜10原子%、より好ましくは1×10-4〜8原子%、最適には1×10-3〜5原子%が望ましい。 It is also effective to incorporate one or more atoms of carbon, oxygen and nitrogen into the photoconductive layer. By containing these atoms, the electrophotographic characteristics can be optimized by controlling the runnability and generation degree of carriers. The total amount of these atoms to be added is preferably 1 × 10 −5 to 10 atom%, more preferably 1 × 10 −4 to 8 atom%, based on the total amount of silicon atoms and added atoms, Optimally, 1 × 10 −3 to 5 atomic% is desirable.
光導電層の層厚は、所望の電子写真特性および経済的効果等の観点から決定され、好ましくは10〜50μm、より好ましくは23〜45μm、最適には25〜40μmとされるのが望ましい。層厚が10μm以上であれば十分な帯電能や感度等を確保でき、50μm以下であれば電子写真特性を低下させることなく電子写真感光体の作製時間を短縮でき製造コストを低減できる。 The layer thickness of the photoconductive layer is determined from the viewpoint of desired electrophotographic characteristics and economic effects, and is preferably 10 to 50 μm, more preferably 23 to 45 μm, and most preferably 25 to 40 μm. If the layer thickness is 10 μm or more, sufficient charging ability, sensitivity, etc. can be secured, and if it is 50 μm or less, the production time of the electrophotographic photosensitive member can be shortened without reducing the electrophotographic characteristics, and the production cost can be reduced.
光導電層および表面層の間には、上部電荷注入阻止層を必要に応じて設けても良い。上部電荷注入阻止層は、上部からの電荷の注入を阻止し、帯電能を向上させると共に、光キャリアが速やかに動いて電荷が不要な領域に蓄積されるのを防いで画質を向上させる役割も果たしている。 An upper charge injection blocking layer may be provided between the photoconductive layer and the surface layer as necessary. The upper charge injection blocking layer prevents the injection of charges from the upper part, improves the charging ability, and also improves the image quality by preventing the photocarriers from moving quickly and accumulating charges in unnecessary areas. Plays.
上部電荷注入阻止層の母体としては、非単結晶シリコン材料であればいずれの材質でも使用できるが、例えば、水素(H)及び/又はハロゲン(X)を含有し、更に炭素原子を含有するアモルファスシリコン(a−SiC:H,Xとも略記する)が好ましい。 As the base material of the upper charge injection blocking layer, any material can be used as long as it is a non-single crystal silicon material. For example, an amorphous material containing hydrogen (H) and / or halogen (X) and further containing carbon atoms. Silicon (a-SiC: abbreviated as H, X) is preferable.
上部電荷注入阻止層に炭素を含有させる場合は、表面層における炭素の含有量よりも少ないことが好ましく、光導電層および表面層の間での電荷の滞在が抑制され、残留電位の原因を低減できる。この結果、溜まった電荷の横流れが抑制され、画像流れ等の弊害が抑制される。 When carbon is contained in the upper charge injection blocking layer, it is preferably less than the carbon content in the surface layer, and the stay of charge between the photoconductive layer and the surface layer is suppressed, reducing the cause of residual potential. it can. As a result, the lateral flow of accumulated charges is suppressed, and adverse effects such as image flow are suppressed.
更に、上部電荷注入阻止層には伝導性を制御する原子、例えば第13族原子や第15族原子などを含有させるのが好ましく、これらの原子を含有させることにより、表面層からの電荷注入阻止や、光キャリアの蓄積防止をより効果的に行うことが出来る。 Furthermore, the upper charge injection blocking layer preferably contains atoms that control conductivity, such as Group 13 atoms or Group 15 atoms, and by containing these atoms, charge injection from the surface layer is blocked. In addition, accumulation of optical carriers can be prevented more effectively.
なお、上部電荷注入阻止層の層厚は、光導電層および表面層の層厚や、求められる電子写真特性などによって総合的に判断して決定される。表面からの電荷注入の阻止能力を十分発揮し、かつ画像品質に影響を与えない観点から、通常は0.01μm〜0.5μmで設計する。 The layer thickness of the upper charge injection blocking layer is determined by comprehensive judgment based on the layer thicknesses of the photoconductive layer and the surface layer, required electrophotographic characteristics, and the like. From the viewpoint of sufficiently exhibiting the ability to prevent charge injection from the surface and not affecting the image quality, the design is usually from 0.01 μm to 0.5 μm.
本発明においては、上記で得られた光導電層の上に、第1の層領域と、第1の層領域よりも硬度の小さい第2の層領域とをこの順に積層した表面層を形成する必要がある。
表面層は非晶質炭化シリコンで形成することが表面層の硬度を本発明の範囲に調整することが容易であるという点から好ましく、更には表面層を非晶質炭化シリコンとし、炭素原子の含有量が炭素原子の含有量とシリコン原子の含有量の和に対して95原子%未満とすることが更に好ましい。
In the present invention, on the photoconductive layer obtained above to form a first layer region, the surface layer obtained by laminating a lower second layer region hardness in the order than the first layer region There is a need.
The surface layer preferably from the viewpoint that it is easy to be formed by amorphous carbide silicon down to adjust the scope of the present invention the hardness of the surface layer, and further a surface layer with amorphous silicon carbide, carbon atoms The content of is more preferably less than 95 atomic% with respect to the sum of the carbon atom content and the silicon atom content.
表面層は、水素原子を含有していることが好ましく、更に必要に応じてハロゲン(X)を含有してもよい。 The surface layer preferably contains hydrogen atoms, and may further contain halogen (X) as necessary.
また、表面層中の水素およびハロゲンは、シリコンなどの構成原子の未結合手を補償し、層品質の向上、特に光キャリアの走行性および電荷保持特性を向上させる。この様な観点から、水素の含有量は、構成原子の総量に対して好ましくは30〜70原子%、より好ましくは35〜65原子%、更に好ましくは40〜60原子%である。また、ハロゲンとして例えば弗素の好ましい含有量は、通常は0.01〜15原子%、好適には0.1〜10原子%、最適には0.6〜4原子%である。 In addition, hydrogen and halogen in the surface layer compensate for dangling bonds of constituent atoms such as silicon, and improve the layer quality, particularly the photocarrier runnability and charge retention characteristics. From such a viewpoint, the hydrogen content is preferably 30 to 70 atomic%, more preferably 35 to 65 atomic%, and still more preferably 40 to 60 atomic% with respect to the total amount of constituent atoms. Further, the preferable content of, for example, fluorine as a halogen is usually 0.01 to 15 atomic%, preferably 0.1 to 10 atomic%, and optimally 0.6 to 4 atomic%.
また、表面層の層厚は、好ましくは0.010〜3.00μm、より好ましくは0.050〜2.00μm、特に好ましくは0.100〜1.00μmである。層厚が0.010μm以上であれば、表面層の十分な耐久性を確保でき、3.00μm以下であれば、残留電位の増加が抑制され十分な電子写真特性を実現できる。 The layer thickness of the surface layer is preferably 0.010 to 3.00 μm, more preferably 0.050 to 2.00 μm, and particularly preferably 0.10 to 1.00 μm. If the layer thickness is 0.010 μm or more, sufficient durability of the surface layer can be secured, and if it is 3.00 μm or less, an increase in residual potential is suppressed and sufficient electrophotographic characteristics can be realized.
例えば、グロー放電法によって光導電層や表面層を形成するには、それぞれの層形成に必要な原子を供給し得る原料ガス、例えば、シリコン原子(Si)を供給し得るSi供給用の原料ガスと、炭素原子(C)を供給し得るC供給用の原料ガスと、水素原子(H)を供給し得るH供給用の原料ガス等を、内部を減圧にし得る反応容器内に所望のガス状態で導入して、反応容器内にグロー放電を生起させ、導電性基体上に順次a−Si:Hやa−SiC:H、a−C:H等からなる層を形成すればよい。 For example, in order to form a photoconductive layer and a surface layer by a glow discharge method, a source gas that can supply atoms necessary for forming each layer, for example, a source gas for supplying Si that can supply silicon atoms (Si) A source gas for supplying C that can supply carbon atoms (C), a source gas for supplying H that can supply hydrogen atoms (H), etc., in a desired gas state in a reaction vessel capable of reducing the pressure inside Then, a glow discharge is generated in the reaction vessel, and a layer made of a-Si: H, a-SiC: H, aC: H, or the like is sequentially formed on the conductive substrate.
例えばシリコン(Si)供給用ガスとなり得る物質としては、SiH4、Si2H6等のガス状態の、またはガス化し得る水素化珪素(シラン類)が有効に使用されるものとして挙げられる。また、これらのSi供給用の原料ガスを、必要に応じてH2、He、Ar、Ne等のガスにより希釈して使用してもよい。 For example, as a substance that can serve as a silicon (Si) supply gas, silicon hydride (silanes) that is in a gas state such as SiH 4 or Si 2 H 6 or can be gasified can be effectively used. Further, these source gases for supplying Si may be diluted with a gas such as H 2 , He, Ar, Ne or the like as necessary.
炭素供給用ガスとなり得る物質としては、CH4、C2H2、C2H6等のガス状態の、またはガス化し得る炭化水素が有効に使用されるものとして挙げられる。また、これらのC供給用の原料ガスを、必要に応じてH2、He、Ar、Ne等のガスにより希釈して使用してもよい。 Examples of substances that can serve as a carbon supply gas include those in which gaseous hydrocarbons such as CH 4 , C 2 H 2 , C 2 H 6 , or the like that can be gasified are effectively used. Further, these source gases for supplying C may be diluted with a gas such as H 2 , He, Ar, Ne or the like as necessary.
水素供給用ガスとなり得る物質としては、水素ガスまたは水素原子を含む珪素化合物のガスや水素原子を含む炭素化合物が有効に使用されるものとして挙げられる。各ガスは単独種のみでなく、所定の混合比で複数種混合しても差し支えないものである。 Examples of the substance that can serve as a hydrogen supply gas include hydrogen gas, a silicon compound gas containing hydrogen atoms, and a carbon compound containing hydrogen atoms. Each gas is not limited to a single species but may be a mixture of a plurality of species at a predetermined mixing ratio.
ハロゲン供給用の原料ガスとして有効なものとして、例えばハロゲンガス、ハロゲン化物、ハロゲンを含むハロゲン間化合物、ハロゲンで置換されたシラン誘導体等のガス状のまたはガス化し得るハロゲン化合物が、好ましいものとして挙げられる。光導電層や表面層の形成には、シリコン原子とハロゲン原子とを混要素とするガス状のまたはガス化し得る、ハロゲン原子を含む水素化珪素化合物も有効なものとして挙げられる。好適に使用し得るハロゲン化合物としては、具体的には、弗素ガス(F2)、BrF、ClF、ClF3、BrF3、BrF5、IF3、IF7等のハロゲン間化合物を挙げることができる。ハロゲン原子を含む珪素化合物、いわゆるハロゲン原子で置換されたシラン誘導体としては、具体的には、例えばSiF4、Si2F6等の弗化珪素が好ましいものとして挙げることができる。 Preferable examples of the halogen-supplied source gas include gaseous or gasatable halogen compounds such as halogen gas, halides, halogen-containing interhalogen compounds, and halogen-substituted silane derivatives. It is done. For the formation of the photoconductive layer and the surface layer, a silicon hydride compound containing a halogen atom which is gaseous or can be gasified containing silicon atoms and halogen atoms as a mixed element is also effective. Specific examples of the halogen compound that can be preferably used include interhalogen compounds such as fluorine gas (F 2 ), BrF, ClF, ClF 3 , BrF 3 , BrF 5 , IF 3 , and IF 7. . Specific examples of silicon compounds containing halogen atoms, so-called silane derivatives substituted with halogen atoms, include silicon fluorides such as SiF 4 and Si 2 F 6 .
伝導性を制御する原子、たとえば、第13族原子としては、具体的には、硼素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)等があり、特にB、Al、Gaが好適である。 Specific examples of atoms that control conductivity, such as Group 13 atoms, include boron (B), aluminum (Al), gallium (Ga), indium (In), and thallium (Tl). B, Al, and Ga are preferable.
第13族原子を構造的に導入するには、層形成の際に、第13族原子導入用の原料物質をガス状態で反応容器中に、光導電層や表面層等を形成するための他のガスとともに導入してやればよい。第13族原子導入用の原料物質となり得るものとしては、常温常圧でガス状のまたは、少なくとも層形成条件下で容易にガス化し得るものが採用されるのが望ましい。そのような第13族原子導入用の原料物質として具体的には、硼素原子導入用としては、B2H6、B4H10等の水素化硼素、BF3、BCl3、BBr3等のハロゲン化硼素等が挙げられる。この他、AlCl3、GaCl3、Ga(CH3)3、InCl3、TlCl3等も挙げることができる。 In order to structurally introduce Group 13 atoms, other materials for forming a photoconductive layer, a surface layer, etc. in the reaction vessel in a gas state with a raw material for introducing Group 13 atoms in the layer formation. What is necessary is just to introduce with other gas. As a raw material for introducing a Group 13 atom, it is desirable to employ a material that is gaseous at normal temperature and pressure or that can be easily gasified at least under the conditions of layer formation. Specifically, as a raw material for introducing such a group 13 atom, for introducing boron atom, boron hydrides such as B 2 H 6 and B 4 H 10 , BF 3 , BCl 3 , BBr 3 and the like are used. Examples thereof include boron halide. In addition, AlCl 3 , GaCl 3 , Ga (CH 3 ) 3 , InCl 3 , TlCl 3 and the like can also be mentioned.
伝導性を制御する原子、たとえば、第15族原子としては、具体的には、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)等があり、特に、Pが好適である。 Specific examples of atoms that control conductivity, such as Group 15 atoms, include phosphorus (P), arsenic (As), antimony (Sb), and bismuth (Bi). P is particularly preferred. is there.
第15族原子を構造的に導入するには、層形成の際に、第15族原子導入用の原料物質をガス状態で反応容器中に、光導電層や表面層等を形成するための他のガスとともに導入してやればよい。第15族原子導入用の原料物質となり得るものとしては、常温常圧でガス状のまたは、少なくとも層形成条件下で容易にガス化し得るものが採用されるのが望ましい。そのような第15族原子導入用の原料物質として具体的には、リン原子導入用としては、PH3、P2H4等の水素化リン、PF3、PF5、PCl3、PCl5、PBr3、PI3等のハロゲン化リン、さらにPH4I等が挙げられる。その他、AsH3、AsF3、AsCl3、AsBr3、AsF5、SbH3、SbF3、SbF5、SbCl3、SbCl5、BiH3、BiCl3、BiBr3等も挙げることができる。 In order to structurally introduce Group 15 atoms, other materials for forming a photoconductive layer, a surface layer, or the like in the reaction vessel in a gaseous state with a raw material for introducing Group 15 atoms in the formation of the layer. What is necessary is just to introduce with other gas. As a raw material for introducing a Group 15 atom, it is desirable to employ a material that is gaseous at normal temperature and pressure or that can be easily gasified at least under the conditions of layer formation. Specifically, as the raw material for introducing the Group 15 atom, for introducing the phosphorus atom, phosphorus hydride such as PH 3 and P 2 H 4 , PF 3 , PF 5 , PCl 3 , PCl 5 , Examples thereof include phosphorus halides such as PBr 3 and PI 3 , and PH 4 I. Other examples include AsH 3 , AsF 3 , AsCl 3 , AsBr 3 , AsF 5 , SbH 3 , SbF 3 , SbF 5 , SbCl 3 , SbCl 5 , BiH 3 , BiCl 3 , BiBr 3 and the like.
また、これらの伝導性を制御する原子導入用の原料物質を必要に応じてH2及び/又はHeにより希釈して使用してもよい。 Further, the starting material for introducing an atom for controlling the conductivity may be diluted with H 2 and / or He if necessary.
H2、He、Ar、Ne等の希釈ガスを用いる場合の流量は、層設計にしたがって適宜最適範囲が選択されるが、Si供給用ガスに対し希釈ガスを、通常の場合0.3〜20倍、好ましくは0.5〜15倍、最適には1〜10倍の範囲に制御することが望ましい。 The flow rate when using a diluent gas such as H 2 , He, Ar, Ne, etc. is appropriately selected in accordance with the layer design, but the diluent gas is usually set to 0.3 to 20 for the Si supply gas. It is desirable to control within a range of double, preferably 0.5 to 15 times, and most preferably 1 to 10 times.
また、反応容器内のガス圧も同様に層設計にしたがって適宜最適範囲が選択されるが、通常の場合1.0×10-2〜1.0×103Pa、好ましくは5.0×10-2〜5.0×102Pa、最適には1.0×10-1〜1.0×102Paとするのが好ましい。 Similarly, the optimum gas pressure in the reaction vessel is appropriately selected according to the layer design, but in the normal case, 1.0 × 10 −2 to 1.0 × 10 3 Pa, preferably 5.0 × 10. −2 to 5.0 × 10 2 Pa, most preferably 1.0 × 10 −1 to 1.0 × 10 2 Pa.
更に、放電電力もまた同様に層設計にしたがって適宜最適範囲が選択されるが、例えば光導電層の場合は、Si供給用のガスの流量(ml/min(normal))に対する放電電力(W)の比を、通常の場合0.3〜30、好ましくは0.5〜15、最適には1〜10の範囲に設定することが望ましく、例えば表面層として非晶質炭化シリコンを用いる場合は、Si供給用のガスと炭素供給用のガスの総流量(ml/min(normal))に対する放電電力(W)の比を、通常の場合1〜100、好ましくは3〜30、最適には7〜20の範囲に設定することが望ましい。 Further, the discharge power is similarly selected as appropriate in accordance with the layer design. For example, in the case of a photoconductive layer, the discharge power (W) with respect to the flow rate of gas for supplying Si (ml / min (normal)). It is desirable to normally set the ratio of 0.3 to 30, preferably 0.5 to 15, and most preferably 1 to 10. For example, when amorphous silicon carbide is used as the surface layer, The ratio of the discharge power (W) to the total flow rate (ml / min (normal)) of the gas for supplying Si and the gas for supplying carbon is usually 1 to 100, preferably 3 to 30, and most preferably 7 to It is desirable to set in the range of 20.
加えて、基体の温度は、層設計にしたがって適宜最適範囲が選択されるが、通常の場合、好ましくは100〜350℃、より好ましくは150〜330℃、最適には200〜310℃とするのが望ましい。 In addition, the optimum temperature range of the substrate is appropriately selected according to the layer design. In a normal case, the temperature is preferably 100 to 350 ° C, more preferably 150 to 330 ° C, and most preferably 200 to 310 ° C. Is desirable.
光導電層や表面層等を形成するための希釈ガスの混合比、ガス圧、放電電力、基体温度の望ましい数値範囲として前記した範囲が挙げられるが、これらの層作製ファクターは通常は独立的に別々に決められるものではなく、所望の特性を有する各層を形成すべく相互的且つ有機的関連性に基づいて各層作製ファクターの最適値を決めるのが望ましい。 Although the above-mentioned ranges are mentioned as desirable numerical ranges of the dilution gas mixing ratio, gas pressure, discharge power, and substrate temperature for forming the photoconductive layer, surface layer, etc., these layer preparation factors are usually independent. Rather than being determined separately, it is desirable to determine the optimum value of each layer fabrication factor based on mutual and organic relevance to form each layer having the desired characteristics.
そして、表面層の硬度を変える手法としては、例えば、シリコン及び炭素を主成分とする表面層を用いる場合は、炭素含有量を変化させる、表面層形成時の電力を変化させる、表面層形成時のガス流量を変化させてデポレートを変化させるといった手法が好適に用いることができる。これらの適性値は用いる装置の構成によって異なり一義的に決まるものではないが、一般的には炭素含有量を増加させる方向、電力を低下させる方向、デポレートを増加させる方向が硬度を低下させる方向となる。硬度の調整はこれら条件のうち、単独の条件を調整することによって行っても良いし、あるいはいくつかの条件を組み合わせて行っても良い。更には、表面層形成時の成膜温度、圧力の調整をこれらに組み合わせても良い。 And as a method of changing the hardness of the surface layer, for example, when using a surface layer mainly composed of silicon and carbon, the carbon content is changed, the electric power at the time of forming the surface layer is changed, at the time of forming the surface layer A method of changing the deposition rate by changing the gas flow rate can be suitably used. These suitability values differ depending on the configuration of the apparatus to be used and are not uniquely determined.In general, however, the direction in which the carbon content is increased, the direction in which the power is decreased, and the direction in which the deposition rate is increased are directions in which the hardness is decreased. Become. The adjustment of hardness may be performed by adjusting a single condition among these conditions, or may be performed by combining several conditions. Furthermore, the adjustment of the film formation temperature and pressure during the surface layer formation may be combined with these.
図2は本発明に用いることができるプラズマCVD(PCVDとも表記)装置の概略断面図である。 FIG. 2 is a schematic cross-sectional view of a plasma CVD (also referred to as PCVD) apparatus that can be used in the present invention.
反応容器201の下部には排気配管209が接続され、排気配管209の他端は不図示の排気装置(例えば真空ポンプ)に接続されている。反応容器201の中心部を取り囲むように、堆積膜の形成される6本の円筒状基体205が同一円周上に等間隔で互いに平行になるように配置されている。6本の円筒状基体205は基体加熱用ヒーター207を内蔵した基体支持体206によって各々保持されている。そして、反応容器201内には不図示のガス供給装置に接続されたガス供給手段210があり、反応容器201の外には高周波電源203が接続されたマッチングボックス204を通して高周波電力分岐手段211に接続されている高周波電極202が設置されている。円筒状基体205は各々の回転機構208によって、回転可能なようになっている。
An
図2の装置における堆積膜の形成は次の手順のように行われる。 Formation of the deposited film in the apparatus of FIG. 2 is performed as follows.
まず、反応容器201内に円筒状基体205を設置し、不図示の排気装置(例えば真空ポンプ)により反応容器201内を排気する。その後、ガス供給手段210からAr、He等の不活性ガスをそれぞれ反応容器201内に導入し、所定の圧力になるように流量及び排気速度を調整する。続いて、基体加熱用ヒーター207を加熱し、円筒状基体205の温度が所定の温度になるように制御する。
First, the
その後、SiH4、H2、CH4、B2H6、PH3、等のガスをガス供給手段210から反応容器201内に導入して所望のガス成分、圧力になるように流量及び排気速度を調整する。
Thereafter, a gas such as SiH 4 , H 2 , CH 4 , B 2 H 6 , PH 3 , etc. is introduced from the gas supply means 210 into the
以上のようにして成膜の準備が完了した後、以下の手順で各層の形成を行う。 After the preparation for film formation is completed as described above, each layer is formed according to the following procedure.
例えば105MHzの高周波電源203を所望の電力に設定して、マッチングボックス204、高周波電力分岐手段211、高周波電極202を通じて反応容器201内に高周波電力を導入し、円筒状基体205をアノードとして作用させてグロー放電を生起させる。この放電エネルギーによって反応容器201内に導入されたガスが分解され、円筒状基体205上に所定の堆積膜が形成されるところとなる。所望の膜厚の形成が行われた後、高周波電力の供給を止め、反応容器201内へのガスの流入を止め、堆積膜の形成を終える。
For example, a high
同様の操作を繰返すことにより、基体上に光導電層と表面層を積層するが、導電層や表面層以外にも必要に応じて同様の操作を複数回繰り返すことによって、基体と光導電層の間や、光導電層と表面層の間に電荷注入阻止層等を積層して所望の特性の電子写真感光体を形成する。 By repeating the same operation, the photoconductive layer and the surface layer are laminated on the substrate. In addition to the conductive layer and the surface layer, the same operation is repeated a plurality of times as necessary, so that the substrate and the photoconductive layer are laminated. A charge injection blocking layer or the like is laminated between the photoconductive layer and the surface layer to form an electrophotographic photosensitive member having desired characteristics.
堆積膜形成の均一化を図るために、層形成を行っている間は、円筒状基体205を回転機構208によって所定の速度で回転させることが望ましい。
In order to achieve uniform deposition film formation, it is desirable to rotate the
さらに、上述のガス種は各々の層の作製条件にしたがって変更が加えられることは言うまでもない。
(研磨加工)
上記表面層を形成した後に研磨加工を行う。研磨方法としては均一性や効率の面から、回転する感光体に研磨テープを圧接させる方法が好ましい。研磨テープとしては、通常ラッピングシートと呼ばれるものが好ましく、砥粒としてはSiCが用いられる。
Furthermore, it goes without saying that the above gas species are changed according to the production conditions of each layer.
(Polishing)
Polishing is performed after the surface layer is formed. As a polishing method, a method in which a polishing tape is pressed against a rotating photoreceptor is preferable from the viewpoint of uniformity and efficiency. As an abrasive tape, what is normally called a lapping sheet is preferable, and SiC is used as an abrasive grain.
このような研磨装置の概要を図3に示す。 An outline of such a polishing apparatus is shown in FIG.
感光体300が保持台308上に固定された感光体支持機構307に支持され、図示しない回転機構により回転駆動される。
The
感光体300には、研磨テープ301を巻回して感光体300に押圧させる加圧弾性ローラ306が隣接して配置されている。研磨テープ301は送り出しロール302より、定量送り出しロール304とキャプスタンローラ305で定量に送り出され、感光体300と加圧弾性ローラ306の間を通って、巻き取りロール303に巻き取られる。研磨テープ301の送り速度は定量送り出しロール304の回転速度を制御することで制御される。
Adjacent to the
上記研磨加工における感光体表面の状態を感光体断面の概略図として図1に示す。図1(a)は研磨前、図1(b)は研磨後を示し、それぞれ101が導電性基体、102がアモルファスSiで形成された光導電層を含む感光層、103が表面層の第1の層領域(高硬度領域)、104が該表面層の第2の層領域(低硬度領域)を示す。 The state of the surface of the photoconductor in the polishing process is shown in FIG. 1 as a schematic diagram of the cross section of the photoconductor. FIG. 1A shows a state before polishing, FIG. 1B shows a state after polishing, 101 is a conductive substrate, 102 is a photosensitive layer including a photoconductive layer formed of amorphous Si, and 103 is a first surface layer. The layer region (high hardness region), 104 indicates the second layer region (low hardness region) of the surface layer.
図1(b)のように、研磨加工により表面層の第1の層領域(高硬度領域)が表面に露出し、且つ表面層の第2の層領域(低硬度領域)が一部残留するように研磨することが好ましい。 As shown in FIG. 1B, the first layer region (high hardness region) of the surface layer is exposed on the surface by the polishing process, and a part of the second layer region (low hardness region) of the surface layer remains. It is preferable to polish as described above.
以下、実施例により本発明の効果を具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
図2に示すアモルファスシリコン感光体成膜装置を用い、前記のような方法により外径80mm、長さ358mmのアルミニウム製導電性基体に鏡面加工を施した6本のシリンダー上に、表1に示す条件で下部電荷注入阻止層(下部阻止層とも略記する)、光導電層、表面層をこの順に形成した。なお、VHF電力は電源周波数105MHzと50MHzのVHF電源を用い、各々の電源周波数のVHF電力を1:1の割合で重畳して導入した。
Hereinafter, the effect of the present invention will be specifically described with reference to examples. The present invention is not limited to these examples.
Example 1
Using the amorphous silicon photosensitive film forming apparatus shown in FIG. 2, it is shown in Table 1 on six cylinders in which an aluminum conductive substrate having an outer diameter of 80 mm and a length of 358 mm is mirror-finished by the method described above. Under the conditions, a lower charge injection blocking layer (abbreviated as a lower blocking layer), a photoconductive layer, and a surface layer were formed in this order. The VHF power used was a VHF power supply having a power supply frequency of 105 MHz and 50 MHz, and the VHF power of each power supply frequency was introduced at a ratio of 1: 1.
このようにして作製した電子写真感光体の表面層の炭素濃度をオージェ電子分光法(Auger electron spectroscopy)により測定した結果、第1の層領域(高硬度領域)の炭素濃度(C/(Si+C))は65原子%、第2の層領域(低硬度領域)の炭素濃度(C/(Si+C))は78原子%であった。尚、第1の層領域(高硬度領域)の炭素濃度は第2の層領域(低硬度領域)を堆積しない電子写真感光体を作製して測定した。 As a result of measuring the carbon concentration of the surface layer of the electrophotographic photosensitive member thus produced by Auger electron spectroscopy, the carbon concentration (C / (Si + C) of the first layer region (high hardness region) was obtained. ) Was 65 atomic%, and the carbon concentration (C / (Si + C)) of the second layer region (low hardness region) was 78 atomic%. The carbon concentration in the first layer region (high hardness region) was measured by preparing an electrophotographic photosensitive member in which the second layer region (low hardness region) was not deposited.
また、ダイナミック硬度は第1の層領域(高硬度領域)が800kgf/mm2、第2の層領域(低硬度領域)が250kgf/mm2であった。以下、ダイナミック硬度は、円筒状アルミ基体上にセットした7059ガラス(コーニング社製)上に厚さ1μmのサンプル膜を形成し、島津製作所社製のダイナミック硬度計(型番DUH−201)で先端の半径が0.1μmである稜間角度115°の三角錐ダイヤモンドスタイラスを用い、押し込み深さをサンプル膜厚の1/10(0.1μm)の測定条件で測定を行った値としている。 Moreover, the dynamic hardness first layer region (high hardness region) 800 kgf / mm 2, the second layer region (low hardness region) was 250 kgf / mm 2. Hereinafter, the dynamic hardness is formed by forming a 1 μm-thick sample film on 7059 glass (manufactured by Corning) set on a cylindrical aluminum substrate, and using a dynamic hardness meter (model number DUH-201) manufactured by Shimadzu Corporation. A triangular pyramid diamond stylus having a radius of 0.1 μm and an angle between ridges of 115 ° is used, and the indentation depth is a value measured under measurement conditions of 1/10 (0.1 μm) of the sample film thickness.
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000:砥粒材質シリコンカーバイド、砥粒粒径6μm)を介して弾性ローラで加圧した後、テープスピードを50mm/min、感光体回転速度40rpmにて15分間研磨加工した。 Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member is elastically applied through a wrapping tape (Fuji Film C2000: abrasive grain silicon carbide, abrasive grain diameter 6 μm) which is a polishing tape having a width of 380 mm. After pressing with a roller, polishing was performed for 15 minutes at a tape speed of 50 mm / min and a photosensitive member rotation speed of 40 rpm.
このようにして得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定したところ、平均で35.3nmであった。また、電子写真感光体表面状態をEPMA(Electron Probe Micro−Analysis:X線マイクロアナリシス法)によるマッピング分析をおこなったところ炭素濃度が局所的に低い部分が局在して分布しているのが観察され、図1(b)のように硬度の大きい第1の層領域が露出している部分と硬度の小さい第2の層領域が混在していることが観察された。
(比較例1)
実施例1と同様にして、表2に示す条件で下部阻止層、光導電層、表面層からなる電子写真感光体を形成した。なお、VHF電力は電源周波数105MHzと50MHzのVHF電源を用い、各々の電源周波数のVHF電力を1:1の割合で重畳して導入した。
When the microscopic surface roughness Ra of the electrophotographic photoreceptor thus obtained in the range of 10 μm × 10 μm was measured by AFM in the axial direction from one end to one end, an average of 35. It was 3 nm. In addition, when mapping analysis was performed on the surface state of the electrophotographic photosensitive member by EPMA (Electron Probe Micro-Analysis), it was observed that the portion where the carbon concentration was locally low was localized and distributed. As shown in FIG. 1B, it was observed that a portion where the first layer region having a high hardness was exposed and a second layer region having a low hardness were mixed.
(Comparative Example 1)
In the same manner as in Example 1, an electrophotographic photosensitive member comprising a lower blocking layer, a photoconductive layer, and a surface layer was formed under the conditions shown in Table 2. The VHF power used was a VHF power supply having a power supply frequency of 105 MHz and 50 MHz, and the VHF power of each power supply frequency was introduced at a ratio of 1: 1.
このようにして作製した電子写真感光体の表面層の炭素濃度をオージェ電子分光法により測定した結果、炭素濃度(C/(Si+C))は65原子%であった。 As a result of measuring the carbon concentration of the surface layer of the electrophotographic photoreceptor thus produced by Auger electron spectroscopy, the carbon concentration (C / (Si + C)) was 65 atomic%.
また、表面層のダイナミック硬度は800kgf/mm2であった。 The dynamic hardness of the surface layer was 800 kgf / mm 2 .
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを50mm/min、感光体回転速度40rpmにて研磨加工し、電子写真感光体の軸方向端部から他方の端部までのRaの10箇所平均を35.0nmとした。所要時間は50分であった。
(比較例2)
比較例1と同様にして、表2に示す条件で下部阻止層、光導電層、表面層からなる電子写真感光体を形成し、次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを50mm/min、感光体回転速度40rpmにて15分間研磨加工した。
Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fuji Film), which is a polishing tape having a width of 380 mm, and then the tape speed was adjusted to 50 mm / The polishing process was performed at min and the photosensitive member rotation speed of 40 rpm, and the average of 10 positions of Ra from the axial end to the other end of the electrophotographic photosensitive member was set to 35.0 nm. The time required was 50 minutes.
(Comparative Example 2)
In the same manner as in Comparative Example 1, an electrophotographic photosensitive member comprising a lower blocking layer, a photoconductive layer, and a surface layer was formed under the conditions shown in Table 2, and this polishing apparatus shown in FIG. The surface was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fujifilm), which was a polishing tape having a width of 380 mm, and then polished for 15 minutes at a tape speed of 50 mm / min and a photosensitive member rotation speed of 40 rpm.
このようにして得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定したところ、平均で45.1nmであった。
(比較例3)
実施例1と同様にして、表3に示す条件で下部阻止層、光導電層、表面層からなる電子写真感光体を形成した。なお、VHF電力は電源周波数105MHzと50MHzのVHF電源を用い、各々の電源周波数のVHF電力を1:1の割合で重畳して導入した。
When the microscopic surface roughness Ra of the electrophotographic photoreceptor thus obtained in the range of 10 μm × 10 μm was measured by AFM in the axial direction from one end to one end, an average of 45. 1 nm.
(Comparative Example 3)
In the same manner as in Example 1, an electrophotographic photosensitive member comprising a lower blocking layer, a photoconductive layer, and a surface layer was formed under the conditions shown in Table 3. The VHF power used was a VHF power supply having a power supply frequency of 105 MHz and 50 MHz, and the VHF power of each power supply frequency was introduced at a ratio of 1: 1.
このようにして作製した電子写真感光体の表面層の炭素濃度をオージェ電子分光法により測定した結果、炭素濃度(C/(Si+C))は78原子%であった。 As a result of measuring the carbon concentration of the surface layer of the electrophotographic photoreceptor thus produced by Auger electron spectroscopy, the carbon concentration (C / (Si + C)) was 78 atomic%.
また、表面層のダイナミック硬度は250kgf/mm2であった。 The dynamic hardness of the surface layer was 250 kgf / mm 2 .
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを50mm/min、感光体回転速度40rpmにて研磨加工し、電子写真感光体の軸方向端部から他方の端部までのRaの10箇所平均を35.0nmとした。所要時間は9分であった。
(比較例4)
比較例3と同様にして、表3に示す条件で下部阻止層、光導電層、表面層からなる電子写真感光体を形成し、次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを50mm/min、感光体回転速度40rpmにて15分間研磨加工した。
Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fuji Film), which is a polishing tape having a width of 380 mm, and then the tape speed was adjusted to 50 mm / The polishing process was performed at min and the photosensitive member rotation speed of 40 rpm, and the average of 10 positions of Ra from the axial end to the other end of the electrophotographic photosensitive member was set to 35.0 nm. The travel time was 9 minutes.
(Comparative Example 4)
In the same manner as in Comparative Example 3, an electrophotographic photosensitive member comprising a lower blocking layer, a photoconductive layer, and a surface layer was formed under the conditions shown in Table 3, and this polishing apparatus shown in FIG. The surface was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fujifilm), which was a polishing tape having a width of 380 mm, and then polished for 15 minutes at a tape speed of 50 mm / min and a photosensitive member rotation speed of 40 rpm.
このようにして得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定したところ、平均で26.2nmであった。
このようにして作成した実施例1、比較例1、2、3、4の電子写真感光体は、次のように評価した。
When the microscopic surface roughness Ra of the electrophotographic photoreceptor thus obtained in the range of 10 μm × 10 μm was measured by AFM from one end to one end in the axial direction, an average of 26. It was 2 nm.
The electrophotographic photoreceptors of Example 1 and Comparative Examples 1, 2, 3, and 4 thus prepared were evaluated as follows.
・画像流れ
キヤノン製の電子写真装置iR−6000を実験用に改造した加速試験機に電子写真感光体を設置し、電子写真感光体の加熱なし、気温32℃、湿度80%の高温/高湿環境下において全面にいろは文字が印刷されたキヤノン製テストチャートをA4用紙で2万枚複写した。その後一旦複写機を止め、この状態で環境を気温35℃、湿度90%に変更し、5時間放置した。
・ Image flow An electrophotographic photoconductor was installed in an acceleration test machine modified from Canon's electrophotographic device iR-6000 for experiments. The electrophotographic photoconductor was not heated, and the temperature was 32 ° C and the humidity was 80%. Under the environment, 20,000 copies of a Canon test chart with Iroha characters printed on the entire surface were copied using A4 paper. Thereafter, the copying machine was once stopped, and in this state, the environment was changed to a temperature of 35 ° C. and a humidity of 90%, and left for 5 hours.
この後再び先ほどのチャートをA4用紙で2万枚複写し5時間複写機を止めるという操作を繰り返し、合計10万枚まで耐久試験を施した。 Thereafter, the operation of copying 20,000 sheets of the previous chart with A4 paper and stopping the copying machine for 5 hours was repeated, and the durability test was performed up to a total of 100,000 sheets.
このようにして得られた画像の文字輪郭の判別により画像流れを判断し、5時間休止後からコピー画像が何枚目で画像流れが回復するかを判定した。 The image flow was determined by determining the character outline of the image obtained in this way, and it was determined how many copies of the image recovered after 5 hours of rest.
評価結果を表4に示す。評価結果はA4用紙で50枚以内で回復した場合をA、51〜100枚で回復した場合をB、101〜300枚で回復した場合をC、300枚で回復しない場合をDとした。 The evaluation results are shown in Table 4. The evaluation results were A when the A4 paper was recovered within 50 sheets, A when it was recovered with 51 to 100 sheets, C when it was recovered with 101 to 300 sheets, and D when it was not recovered with 300 sheets.
・トナー融着の評価
キヤノン製の電子写真装置iR−6000のクリーニングブレードの押し当て圧を1/3倍にし、かつ、ドラムの表面温度を50℃に設定することにより、融着が発生しやすい環境を作りだした。このように改造した加速試験機に上記10万枚耐久試験後のドラムを設置し、1%原稿(A4対角線方向に幅約0.2mmの直線を引いただけの原稿)を用いてA4用紙で10万枚耐久試験を施した。
-Evaluation of toner fusion By making the pressing pressure of the cleaning blade of the Canon electrophotographic apparatus iR-6000 1/3 times and setting the surface temperature of the drum to 50 ° C., fusion is likely to occur. Created an environment. The drum after the 100,000 sheet durability test is installed on the acceleration test machine modified in this way, and 10% of A4 paper is used with a 1% original (original with only a straight line having a width of about 0.2 mm in the A4 diagonal direction). A 10,000 sheet durability test was performed.
耐久試験後、ハーフトーン画像をコピーして融着の有無を調べた。具体的には、A4のハーフトーン画像においてトナー融着による黒点の数を数えた。 After the endurance test, a halftone image was copied and examined for fusing. Specifically, the number of black spots due to toner fusion in the A4 halftone image was counted.
評価結果を表5に示す。得られた結果は比較例1で作成した電子写真感光体の値を100として相対評価を行い、90以下をA、91〜110をB、111〜130をC、131以上をDとした。 The evaluation results are shown in Table 5. The obtained results were subjected to relative evaluation with the value of the electrophotographic photosensitive member produced in Comparative Example 1 being 100, 90 or less being A, 91 to 110 being B, 111 to 130 being C, and 131 or more being D.
・磨耗量の評価
電子写真感光体の表面層の膜厚を測定した後、キヤノン製の電子写真装置iR−6000に電子写真感光体を設置し、気温23℃、湿度60%の常温/常湿環境下においてキヤノン製テストチャートを25万枚複写した。その後、電子写真感光体を電子写真装置から取り出し、電子写真感光体の表面層の膜厚を測定し、100万枚複写前の表面層膜厚との差から表面層の磨耗量を測定した。
Evaluation of wear amount After measuring the film thickness of the surface layer of the electrophotographic photosensitive member, the electrophotographic photosensitive member was installed in the Canon electrophotographic apparatus iR-6000, and the room temperature / normal humidity was 23 ° C. and 60% humidity. In the environment, 250,000 copies of Canon test charts were copied. Thereafter, the electrophotographic photosensitive member was taken out from the electrophotographic apparatus, the thickness of the surface layer of the electrophotographic photosensitive member was measured, and the wear amount of the surface layer was measured from the difference from the surface layer thickness before 1 million copies.
評価結果を表6に示す。得られた結果は比較例1で作成した電子写真感光体の値を100として相対評価を行い、50以下をA、51〜70をB、71〜100をC、101以上をDとした。 The evaluation results are shown in Table 6. The obtained results were subjected to relative evaluation with the value of the electrophotographic photosensitive member prepared in Comparative Example 1 being 100. 50 or less was A, 51 to 70 was B, 71 to 100 was C, and 101 or more was D.
表4、5、6に示したように、実施例1で作製した電子写真感光体は比較例1で作製した感光体に比べて作製時間が短く、また、画像流れが生じ難く、電子写真感光体表面の磨耗量も少ない良好なものであった。また、比較例2で作製した感光体に比べて画像流れが生じ難くい良好なものであった。更に比較例3で作製した感光体に比べて磨耗量が少ない良好なものであった。比較例4で作製した感光体に比べて融着が生じ難く、磨耗量が少ない良好なものであった。 As shown in Tables 4, 5, and 6, the electrophotographic photosensitive member produced in Example 1 was shorter in production time than the photosensitive member produced in Comparative Example 1, and image flow was less likely to occur. The amount of wear on the body surface was small and good. In addition, the image was less likely to occur as compared with the photoconductor produced in Comparative Example 2 and was good. Furthermore, it was a good one with less wear compared to the photoconductor produced in Comparative Example 3. Compared to the photoconductor produced in Comparative Example 4, fusion was less likely to occur and the amount of wear was good.
以上示したように、実施例1で作製した電子写真感光体は画像流れ、トナー融着、電子写真感光体表面の磨耗量の全ての点で良好であることが明らかとなった。また、実施例1で作製した電子写真感光体により得られた電子写真画像は何ら問題のない良好なものであった。 As described above, it was found that the electrophotographic photosensitive member produced in Example 1 was good in all aspects of image flow, toner fusion, and the amount of wear on the surface of the electrophotographic photosensitive member. Further, the electrophotographic image obtained by the electrophotographic photosensitive member produced in Example 1 was satisfactory without any problems .
(実施例3)
図2に示すアモルファスシリコン感光体成膜装置を用い、前記のような方法により外径80mm、長さ358mmのアルミニウム製導電性基体に鏡面加工を施した6本のシリンダー上に、表13に示す条件で下部阻止層、光導電層、表面層をこの順に形成した。なお、VHF電力は電源周波数90MHzと50MHzのVHF電源を用い、各々の電源周波数のVHF電力を1:1の割合で重畳して導入した。
( Example 3)
Using the amorphous silicon photosensitive film forming apparatus shown in FIG. 2, it is shown in Table 13 on six cylinders in which an aluminum conductive substrate having an outer diameter of 80 mm and a length of 358 mm is mirror-finished by the method described above. Under the conditions, a lower blocking layer, a photoconductive layer, and a surface layer were formed in this order. The VHF power used was a VHF power supply with a power supply frequency of 90 MHz and 50 MHz, and the VHF power of each power supply frequency was superimposed and introduced at a ratio of 1: 1.
このようにして作製した電子写真感光体の表面層の炭素濃度を実施例1と同様にオージェ電子分光法により測定した結果、第1の層領域(高硬度領域)の炭素濃度(C/(Si+C))は68原子%、第2の層領域(低硬度領域)の炭素濃度(C/(Si+C))は74原子%であった。 The carbon concentration of the surface layer of the electrophotographic photosensitive member thus produced was measured by Auger electron spectroscopy in the same manner as in Example 1. As a result, the carbon concentration (C / (Si + C) of the first layer region (high hardness region) was measured. )) Was 68 atomic%, and the carbon concentration (C / (Si + C)) of the second layer region (low hardness region) was 74 atomic%.
また、ダイナミック硬度は第1の層領域(高硬度領域)が790kgf/mm2、第2の層領域(低硬度領域)が270kgf/mm2であった。 Moreover, the dynamic hardness first layer region (high hardness region) 790kgf / mm 2, the second layer region (low hardness region) was 270 kgf / mm 2.
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを60mm/min、感光体回転速度60rpmにて研磨加工した。 Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fuji Film), which is a polishing tape having a width of 380 mm, and then the tape speed was changed to 60 mm / Polishing was performed at min, the photosensitive member rotation speed of 60 rpm.
研磨加工時間は、電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定した際の平均で25.0nm〜35.0nmとなり、かつ、電子写真感光体表面状態をEPMAによりマッピング分析した際に、炭素濃度が局所的に低い部分が局在して分布している状態となるまでとした。 The polishing time is an average of 25.0 nm to 10 μm × 10 μm of the electrophotographic photosensitive member when the microscopic surface roughness Ra is measured by AFM from one end to one end in the axial direction. When the surface state of the electrophotographic photosensitive member was 35.0 nm and mapping analysis was performed with EPMA, the portion where the carbon concentration was locally low was localized and distributed.
このようにして6本の電子写真感光体を研磨加工し、得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定し平均のRaを求めた。その結果、6本の電子写真感光体のRaは32.3nm〜34.5nmの範囲にあった。また、研磨時間は18分であった。
(実施例4)
表面層の高硬度領域の膜厚を0.795μm、低硬度領域の膜厚を0.005μmとする以外は実施例3と同様にして、下部阻止層、光導電層、表面層をこの順に形成した。
The six electrophotographic photosensitive members were polished in this manner, and the microscopic surface roughness Ra of the obtained electrophotographic photosensitive member in the range of 10 μm × 10 μm was measured by the AFM in the axial direction from one end to the other end. The average Ra was obtained by measuring 10 points to the part. As a result, Ra of the six electrophotographic photosensitive members was in the range of 32.3 nm to 34.5 nm. The polishing time was 18 minutes.
(Example 4)
A lower blocking layer, a photoconductive layer, and a surface layer are formed in this order in the same manner as in Example 3 except that the thickness of the high hardness region of the surface layer is 0.795 μm and the thickness of the low hardness region is 0.005 μm. did.
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを60mm/min、感光体回転速度60rpmにて研磨加工した。 Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fuji Film), which is a polishing tape having a width of 380 mm, and then the tape speed was changed to 60 mm / Polishing was performed at min, the photosensitive member rotation speed of 60 rpm.
研磨加工時間は、電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定した際の平均で25.0nm〜35.0nmとなり、かつ、電子写真感光体表面状態をEPMAによりマッピング分析した際に、炭素濃度が局所的に低い部分が局在して分布している状態となるまでとした。 The polishing time is an average of 25.0 nm to 10 μm × 10 μm of the electrophotographic photosensitive member when the microscopic surface roughness Ra is measured by AFM from one end to one end in the axial direction. When the surface state of the electrophotographic photosensitive member was 35.0 nm and mapping analysis was performed with EPMA, the portion where the carbon concentration was locally low was localized and distributed.
このようにして6本の電子写真感光体を研磨加工し、得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定し平均のRaを求めた。その結果、6本の電子写真感光体のRaは31.2nm〜32.9nmの範囲にあった。また、研磨時間は13分であった。
(実施例5)
表面層の第1の層領域(高硬度領域)の膜厚を0.500μm、第2の層領域(低硬度領域)の膜厚を0.300μmとする以外は実施例3と同様にして、下部阻止層、光導電層、表面層をこの順に形成した。
The six electrophotographic photosensitive members were polished in this manner, and the microscopic surface roughness Ra of the obtained electrophotographic photosensitive member in the range of 10 μm × 10 μm was measured by the AFM in the axial direction from one end to the other end. The average Ra was obtained by measuring 10 points to the part. As a result, the Ra of the six electrophotographic photosensitive members was in the range of 31.2 nm to 32.9 nm. The polishing time was 13 minutes.
(Example 5)
Except that the thickness of the first layer region (high hardness region) of the surface layer is 0.500 μm and the thickness of the second layer region (low hardness region) is 0.300 μm, the same as in Example 3, A lower blocking layer, a photoconductive layer, and a surface layer were formed in this order.
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを60mm/min、感光体回転速度60rpmにて研磨加工した。 Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fuji Film), which is a polishing tape having a width of 380 mm, and then the tape speed was changed to 60 mm / Polishing was performed at min, the photosensitive member rotation speed of 60 rpm.
研磨加工時間は、電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定した際の平均で25.0nm〜35.0nmとなり、かつ、電子写真感光体表面状態をEPMAによりマッピング分析した際に、炭素濃度が局所的に低い部分が局在して分布している状態となるまでとした。 The polishing time is an average of 25.0 nm to 10 μm × 10 μm of the electrophotographic photosensitive member when the microscopic surface roughness Ra is measured by AFM from one end to one end in the axial direction. When the surface state of the electrophotographic photosensitive member was 35.0 nm and mapping analysis was performed with EPMA, the portion where the carbon concentration was locally low was localized and distributed.
このようにして6本の電子写真感光体を研磨加工し、得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定し平均のRaを求めた。その結果、6本の電子写真感光体のRaは30.3nm〜31.5nmの範囲にあった。また、研磨時間は20分であった。
(実施例6)
表面層の第1の層領域(高硬度領域)の膜厚を0.797μm、第2の層領域(低硬度領域)の膜厚を0.003μmとする以外は実施例3と同様にして、下部阻止層、光導電層、表面層をこの順に形成した。
The six electrophotographic photosensitive members were polished in this manner, and the microscopic surface roughness Ra of the obtained electrophotographic photosensitive member in the range of 10 μm × 10 μm was measured by the AFM in the axial direction from one end to the other end. The average Ra was obtained by measuring 10 points to the part. As a result, Ra of the six electrophotographic photosensitive members was in the range of 30.3 nm to 31.5 nm. The polishing time was 20 minutes.
(Example 6)
Except that the film thickness of the first layer region (high hardness region) of the surface layer is 0.797 μm and the film thickness of the second layer region (low hardness region) is 0.003 μm, the same as in Example 3, A lower blocking layer, a photoconductive layer, and a surface layer were formed in this order.
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを60mm/min、感光体回転速度60rpmにて研磨加工した。 Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fuji Film), which is a polishing tape having a width of 380 mm, and then the tape speed was changed to 60 mm / Polishing was performed at min, the photosensitive member rotation speed of 60 rpm.
研磨加工時間は、電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定した際の平均で25.0nm〜35.0nmとなり、かつ、電子写真感光体表面状態をEPMAによりマッピング分析した際に、炭素濃度が局所的に低い部分が局在して分布している状態となるまでとした。 The polishing time is an average of 25.0 nm to 10 μm × 10 μm of the electrophotographic photosensitive member when the microscopic surface roughness Ra is measured by AFM from one end to one end in the axial direction. When the surface state of the electrophotographic photosensitive member was 35.0 nm and mapping analysis was performed with EPMA, the portion where the carbon concentration was locally low was localized and distributed.
このようにして6本の電子写真感光体を研磨加工し、得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定し平均のRaを求めた。その結果、6本の電子写真感光体のRaは30.5nm〜34.7nmの範囲にあった。また、研磨時間は26分であった。
(実施例7)
表面層の第1の層領域(高硬度領域)の膜厚を0.400μm、第2の層領域(低硬度領域)の膜厚を0.400μmとする以外は実施例3と同様にして、下部阻止層、光導電層、表面層をこの順に形成した。
The six electrophotographic photosensitive members were polished in this manner, and the microscopic surface roughness Ra of the obtained electrophotographic photosensitive member in the range of 10 μm × 10 μm was measured by the AFM in the axial direction from one end to the other end. The average Ra was obtained by measuring 10 points to the part. As a result, Ra of the six electrophotographic photosensitive members was in the range of 30.5 nm to 34.7 nm. The polishing time was 26 minutes.
(Example 7)
In the same manner as in Example 3 except that the thickness of the first layer region (high hardness region) of the surface layer is 0.400 μm and the thickness of the second layer region (low hardness region) is 0.400 μm, A lower blocking layer, a photoconductive layer, and a surface layer were formed in this order.
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを60mm/min、感光体回転速度60rpmにて研磨加工した。但し、弾性ローラによる加圧を実施例3、4、5、6と同じとすると、電子写真感光体の表面にむら削れが生じる場合があるため、弾性ローラによる加圧は実施例3、4、5、6に対して80%とした。 Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fuji Film), which is a polishing tape having a width of 380 mm, and then the tape speed was changed to 60 mm / Polishing was performed at min, the photosensitive member rotation speed of 60 rpm. However, if the pressure applied by the elastic roller is the same as in Examples 3, 4, 5, and 6, the surface of the electrophotographic photosensitive member may be unevenly scraped. 80% for 5 and 6.
研磨加工時間は、電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定した際の平均で25.0nm〜35.0nmとなり、かつ、電子写真感光体表面状態をEPMAによりマッピング分析した際に、炭素濃度が局所的に低い部分が局在して分布している状態となるまでとした。 The polishing time is an average of 25.0 nm to 10 μm × 10 μm of the electrophotographic photosensitive member when the microscopic surface roughness Ra is measured by AFM from one end to one end in the axial direction. When the surface state of the electrophotographic photosensitive member was 35.0 nm and mapping analysis was performed with EPMA, the portion where the carbon concentration was locally low was localized and distributed.
このようにして6本の電子写真感光体を研磨加工し、得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定し平均のRaを求めた。その結果、6本の電子写真感光体のRaは24.5nm〜25.8nmの範囲にあった。また、研磨時間は27分であった。
(比較例9)
実施例3と同様にして、表14に示す条件で下部阻止層、光導電層、表面層からなる電子写真感光体を形成した。なお、VHF電力は電源周波数90MHzと50MHzのVHF電源を用い、各々の電源周波数のVHF電力を1:1の割合で重畳して導入した。
The six electrophotographic photosensitive members were polished in this manner, and the microscopic surface roughness Ra of the obtained electrophotographic photosensitive member in the range of 10 μm × 10 μm was measured by the AFM in the axial direction from one end to the other end. The average Ra was obtained by measuring 10 points to the part. As a result, Ra of the six electrophotographic photosensitive members was in the range of 24.5 nm to 25.8 nm. The polishing time was 27 minutes.
(Comparative Example 9)
In the same manner as in Example 3, an electrophotographic photosensitive member comprising a lower blocking layer, a photoconductive layer, and a surface layer was formed under the conditions shown in Table 14. The VHF power used was a VHF power supply with a power supply frequency of 90 MHz and 50 MHz, and the VHF power of each power supply frequency was superimposed and introduced at a ratio of 1: 1.
このようにして作製した電子写真感光体の表面層の炭素濃度をオージェ電子分光法により測定した結果、炭素濃度(C/(Si+C))は68原子%であった。 As a result of measuring the carbon concentration of the surface layer of the electrophotographic photoreceptor thus produced by Auger electron spectroscopy, the carbon concentration (C / (Si + C)) was 68 atomic%.
また、表面層のダイナミック硬度は790kgf/mm2であった。 The dynamic hardness of the surface layer was 790 kgf / mm 2 .
次に図3に示す研磨装置を用い、この電子写真感光体の表面を幅380mmの研磨テープであるラッピングテープ(富士フイルム製C2000)を介して弾性ローラで加圧した後、テープスピードを60mm/min、感光体回転速度60rpmにて研磨加工した。 Next, using the polishing apparatus shown in FIG. 3, the surface of the electrophotographic photosensitive member was pressed with an elastic roller through a wrapping tape (C2000 manufactured by Fuji Film), which is a polishing tape having a width of 380 mm, and then the tape speed was changed to 60 mm / Polishing was performed at min, the photosensitive member rotation speed of 60 rpm.
研磨加工時間は、電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定した際の平均で25.0nm〜35.0nmとなるまでとした。 The polishing time is an average of 25.0 nm to 10 μm × 10 μm of the electrophotographic photosensitive member when the microscopic surface roughness Ra is measured by AFM from one end to one end in the axial direction. Until it became 35.0 nm.
このようにして6本の電子写真感光体を研磨加工し、得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定し平均のRaを求めた。その結果、6本の電子写真感光体のRaは26.5nm〜34.7nmの範囲にあった。また、研磨時間は48分であった。 The six electrophotographic photosensitive members were polished in this manner, and the microscopic surface roughness Ra of the obtained electrophotographic photosensitive member in the range of 10 μm × 10 μm was measured by the AFM in the axial direction from one end to the other end. The average Ra was obtained by measuring 10 points to the part. As a result, Ra of the six electrophotographic photosensitive members was in the range of 26.5 nm to 34.7 nm. The polishing time was 48 minutes.
このようにして作成した実施例3、4、5、6、7、比較例9の電子写真感光体は、実施例1と同様にして、画像流れ、トナー融着、磨耗量を評価した。
評価結果を表15、16、17、18に示す。なお、トナー融着、磨耗量の評価結果は比較例9の評価値を100として相対評価した。
The electrophotographic photoreceptors of Examples 3, 4, 5, 6, 7 and Comparative Example 9 thus prepared were evaluated for image flow, toner fusion, and wear amount in the same manner as in Example 1.
The evaluation results are shown in Tables 15, 16, 17, and 18. The evaluation results of the toner fusion and the amount of wear were evaluated relative to the evaluation value of Comparative Example 9 as 100.
また、研磨加工後のRaのばらつきを以下のように評価した。6本の電子写真感光体を研磨加工し、得られた電子写真感光体の10μm×10μmの範囲で微視的な表面粗さRaをAFMにより軸方向で端部から一方の端部まで10箇所測定し平均のRaを求めた。その結果から、Raのばらつき幅((Raの最大値)−(Raの最小値))を調べた。評価結果を表17に示す。得られた結果は比較例9で作成した電子写真感光体の値を100として相対評価を行い、20以下をA、21〜50をB、50〜100をC、101以上をDとした。 Further, Ra variation after polishing was evaluated as follows. Six electrophotographic photoconductors are polished, and the microscopic surface roughness Ra of the obtained electrophotographic photoconductor in the range of 10 μm × 10 μm is 10 positions from one end to one end in the axial direction by AFM. The average Ra was measured. From the results, the variation width of Ra ((maximum value of Ra) − (minimum value of Ra)) was examined. The evaluation results are shown in Table 17. The obtained results were subjected to relative evaluation with the value of the electrophotographic photosensitive member produced in Comparative Example 9 being 100, 20 or less being A, 21 to 50 being B, 50 to 100 being C, and 101 or more being D.
また、実施例3、4、5、6、7、比較例9での研磨時間を表17に示す。表中においては比較例9における研磨時間を100として相対評価を行い、50以下をA、51〜75をB、76〜100をC、101以上をDとした。 Table 17 shows the polishing time in Examples 3, 4, 5, 6, 7, and Comparative Example 9. In the table, relative evaluation was performed by setting the polishing time in Comparative Example 9 as 100, and 50 or less was A, 51 to 75 was B, 76 to 100 was C, and 101 or more was D.
以上示したように、実施例3、4、5、6、7で作製した電子写真感光体は比較例9で作製した電子写真感光体に比べて作製時間が短く、画像流れ抑制効果が高く、電子写真感光体表面の磨耗量も少ない良好なものであることが明らかとなった。特に、表面層の第2の層領域(低硬度領域)の膜厚を5nm以上300nm以下とすることで研磨時間をより短くでき、また作製された電子写真感光体表面のRaのばらつきがより小さく、本発明の効果がより顕著に現れることが明らかとなった。 As described above, the electrophotographic photoreceptors produced in Examples 3, 4, 5, 6, and 7 have a shorter production time and a high image flow suppression effect compared to the electrophotographic photoreceptor produced in Comparative Example 9, It was revealed that the electrophotographic photosensitive member surface was a good one with a small amount of wear. In particular, when the thickness of the second layer region (low hardness region) of the surface layer is 5 nm or more and 300 nm or less, the polishing time can be further shortened, and the variation of Ra on the surface of the produced electrophotographic photoreceptor is smaller. Thus, it has been clarified that the effect of the present invention appears more remarkably.
また、実施例3、4、5、6、7で作製した電子写真感光体により得られた電子写真画像は何ら問題のない良好なものであった。 Further, the electrophotographic images obtained by the electrophotographic photosensitive members produced in Examples 3, 4, 5, 6, and 7 were good without any problems.
101・・・導電性基体
102・・・感光層
103・・・表面層の第1の層領域(高硬度領域)
104・・・表面層の第2の層領域(低硬度領域)
201・・・反応容器
202・・・高周波電極
203・・・高周波電源
204・・・マッチングボックス
205・・・円筒状基体
206・・・基体支持体
207・・・基体加熱用ヒーター
208・・・回転機構
209・・・排気配管
210・・・ガス供給手段
211・・・高周波電力分岐手段
300・・・感光体
301・・・研磨テープ
302・・・送り出しロール
303・・・巻き取りロール
304・・・定量送り出しロール
305・・・キャプスタンローラー
306・・・加圧弾性ローラー
DESCRIPTION OF SYMBOLS 101 ... Conductive base |
104 ... second layer region of the surface layer (low hardness region)
DESCRIPTION OF
Claims (5)
非晶質炭化シリコンで構成されたダイナミック硬度が790〜800kgf/mm 2 である第1の層領域と、該第1の層領域よりも硬度の小さい非晶質炭化シリコンで構成されたダイナミック硬度が250〜270kgf/mm 2 である第2の層領域と、をこの順に積層して該表面層を形成した後に、電子写真感光体の最表面に該第1の層領域が部分的に露出した状態となるよう、該第2の層領域形成後の表面を、結着材に分散された材質がシリコンカーバイドであって粒径が6μmである砥粒がコーティングされた研磨シートを用いて研磨加工することを特徴とする電子写真感光体の製造方法。 In a method for producing an electrophotographic photosensitive member by depositing a photoconductive layer composed of a non-single crystal material having a silicon atom as a base material and a surface layer on a conductive substrate,
A first layer region composed of amorphous silicon carbide having a dynamic hardness of 790 to 800 kgf / mm 2 , and a dynamic hardness composed of amorphous silicon carbide having a smaller hardness than the first layer region A state in which the first layer region is partially exposed on the outermost surface of the electrophotographic photosensitive member after forming the surface layer by laminating the second layer region of 250 to 270 kgf / mm 2 in this order. The surface after the formation of the second layer region is polished using a polishing sheet coated with abrasive grains whose material dispersed in the binder is silicon carbide and the grain size is 6 μm. A method for producing an electrophotographic photosensitive member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004175527A JP4447968B2 (en) | 2004-06-14 | 2004-06-14 | Method for producing electrophotographic photosensitive member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004175527A JP4447968B2 (en) | 2004-06-14 | 2004-06-14 | Method for producing electrophotographic photosensitive member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005352374A JP2005352374A (en) | 2005-12-22 |
JP4447968B2 true JP4447968B2 (en) | 2010-04-07 |
Family
ID=35586880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004175527A Expired - Fee Related JP4447968B2 (en) | 2004-06-14 | 2004-06-14 | Method for producing electrophotographic photosensitive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4447968B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5479557B2 (en) * | 2008-07-25 | 2014-04-23 | キヤノン株式会社 | Electrophotographic photosensitive member and electrophotographic apparatus |
JP7426845B2 (en) * | 2020-02-14 | 2024-02-02 | キヤノン株式会社 | Measurement method, exposure method, article manufacturing method, program and exposure device |
-
2004
- 2004-06-14 JP JP2004175527A patent/JP4447968B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005352374A (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3155413B2 (en) | Light receiving member forming method, light receiving member and deposited film forming apparatus by the method | |
US6846600B2 (en) | Electrophotographic photosensitive member, process for its production, and electrophotographic apparatus | |
US6534228B2 (en) | Electrophotographic photosensitive member and image forming apparatus | |
JP3566621B2 (en) | Electrophotographic photoreceptor and apparatus using the same | |
JP4447968B2 (en) | Method for producing electrophotographic photosensitive member | |
US6686109B2 (en) | Electrophotographic process and apparatus | |
JP2006023453A (en) | Method for producing electrophotographic sensitive body | |
JP3782680B2 (en) | Electrophotographic photosensitive member and electrophotographic apparatus | |
JP4086391B2 (en) | Electrophotographic photoreceptor | |
JP3535664B2 (en) | Electrophotographic equipment | |
JP4448043B2 (en) | Electrophotographic photoreceptor | |
JP3789081B2 (en) | Electrophotographic photosensitive member and electrophotographic apparatus | |
JP2007052242A (en) | Electrophotographic photoreceptor and method for manufacturing the same | |
JP4110053B2 (en) | Electrophotographic photoreceptor manufacturing method, electrophotographic photoreceptor, and electrophotographic apparatus using the same | |
JP2002082463A (en) | Electrophotographic photoreceptor and electrophotographic device | |
JP2001312085A (en) | Electrophotographic photoreceptor and method for manufacturing the same | |
JP3929037B2 (en) | Photoconductor manufacturing method, electrophotographic photosensitive member, and electrophotographic apparatus using the same | |
JP2005300740A (en) | Electrophotographic photoreceptor | |
JP4143491B2 (en) | Method for producing electrophotographic photosensitive member | |
JP2005352373A (en) | Method for manufacturing electrophotographic photoreceptor | |
JP2001343772A (en) | Electrophotographic photoreceptor and apparatus | |
JP2001343771A (en) | Electrophotographic photoreceptor and apparatus | |
JP2006071779A (en) | Method for manufacturing electrophotographic photoreceptor | |
JP2004133396A (en) | Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus using the same | |
JP2006133524A (en) | Electrophotographic photoreceptor and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090304 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091014 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100121 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130129 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140129 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |