JP4410291B2 - Material for organic electroluminescence device and organic electroluminescence device using the same - Google Patents

Material for organic electroluminescence device and organic electroluminescence device using the same Download PDF

Info

Publication number
JP4410291B2
JP4410291B2 JP2008196470A JP2008196470A JP4410291B2 JP 4410291 B2 JP4410291 B2 JP 4410291B2 JP 2008196470 A JP2008196470 A JP 2008196470A JP 2008196470 A JP2008196470 A JP 2008196470A JP 4410291 B2 JP4410291 B2 JP 4410291B2
Authority
JP
Japan
Prior art keywords
organic
light emitting
compound
mmol
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008196470A
Other languages
Japanese (ja)
Other versions
JP2009024175A (en
Inventor
地潮 細川
正和 舟橋
久幸 川村
宏昌 新井
英俊 古賀
秀嗣 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2008196470A priority Critical patent/JP4410291B2/en
Publication of JP2009024175A publication Critical patent/JP2009024175A/en
Application granted granted Critical
Publication of JP4410291B2 publication Critical patent/JP4410291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/148Stilbene dyes containing the moiety -C6H5-CH=CH-C6H5
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/14Perylene derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/78Other dyes in which the anthracene nucleus is condensed with one or more carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B6/00Anthracene dyes not provided for above

Description

本発明は壁掛テレビの平面発光体やディスプレイのバックライト等の光源として使用され、発光効率が高く、耐熱性が高く、寿命が長い有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子に関するものである。   The present invention relates to a material for an organic electroluminescence device that is used as a light source for a flat light emitter of a wall-mounted television or a backlight of a display, has high luminous efficiency, high heat resistance, and a long lifetime, and an organic electroluminescence device using the same. Is.

有機物質を使用した有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般にEL素子は、発光層および該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象である。
従来の有機EL素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近の有機EL素子は徐々に改良されているものの、未だ充分な発光効率、耐熱性、寿命を有していなかった。例えば、特許文献1にはEL素子に使用できるフェニルアントラセン誘導体が開示されているが、この化合物を利用した有機EL素子は発光効率が2〜4cd/A程度しかなく、より高い効率が求められていた。また、特許文献2には、発光層にアミンまたはジアミン誘導体からなる蛍光性ドーパントを含有するEL素子が開示されている。しかしながら、このEL素子は発光効率が4〜6cd/Aであるものの、寿命が初期輝度300cd/m2で700時間しかなく、より長寿命が求められていた。さらに、特許文献3にはフェニルアントラセン基を有するEL素子用材料が開示されているが、高温で長時間使用すると発光輝度の低下が大きく耐熱性が不充分であった。これらの素子は、橙色〜赤色の発光をせず、赤色発光はEL素子のフルカラー化に不可欠であるため橙色〜赤色の発光する素子が望まれていた。
特開平8-12600号公報 特開平8-199162号公報 特開平9-268284号公報
An organic electroluminescence (EL) element using an organic substance is expected to be used as an inexpensive large-area full-color display element of a solid light emitting type and has been developed in many ways. In general, an EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Furthermore, this is a phenomenon in which electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
Conventional organic EL elements have a higher driving voltage and lower light emission luminance and light emission efficiency than inorganic light-emitting diodes. Further, the characteristic deterioration has been remarkably not put into practical use. Although recent organic EL devices have been gradually improved, they still do not have sufficient luminous efficiency, heat resistance and lifetime. For example, Patent Document 1 discloses a phenylanthracene derivative that can be used in an EL element, but an organic EL element using this compound has a luminous efficiency of only about 2 to 4 cd / A, and higher efficiency is required. It was. Patent Document 2 discloses an EL element containing a fluorescent dopant made of an amine or a diamine derivative in a light emitting layer. However, although this EL device has a luminous efficiency of 4 to 6 cd / A, the lifetime is only 700 hours at an initial luminance of 300 cd / m 2 , and a longer lifetime is required. Furthermore, Patent Document 3 discloses a material for an EL element having a phenylanthracene group. However, when used for a long time at a high temperature, the emission luminance is greatly reduced and the heat resistance is insufficient. These elements do not emit orange to red light, and red light emission is indispensable for full colorization of EL elements. Therefore, an element emitting orange to red light has been desired.
JP-A-8-12600 Japanese Patent Application Laid-Open No. 8-1991162 JP-A-9-268284

本発明は、前記の課題を解決するためになされたもので、発光効率が高く、寿命が長いのみならず、耐熱性も高い有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子を提供することを目的とするものである。   The present invention has been made to solve the above-mentioned problems, and provides a material for an organic electroluminescence device that has not only high luminous efficiency, long life but also high heat resistance, and an organic electroluminescence device using the same. It is intended to do.

本発明者らは、前記の好ましい性質を有する有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子を開発すべく鋭意研究を重ねた結果、下記一般式〔1〕で示される化合物を利用することによりその目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to develop an organic electroluminescence device material having the above-mentioned preferable properties and an organic electroluminescence device using the same, the present inventors have used a compound represented by the following general formula [1]. It has been found that the purpose can be achieved. The present invention has been completed based on such findings.

すなわち、本発明の有機エレクトロルミネッセンス素子用材料(以下、有機EL素子用材料)は、下記一般式〔1〕で示される化合物である。
一般式〔1〕

Figure 0004410291
〔式中、Aは置換もしくは未置換の炭素原子数22〜60のアリーレン基を表す。X1〜X4は、それぞれ独立に、置換もしくは未置換の炭素原子数6〜30のアリーレン基を表す。Y1〜Y4は、それぞれ独立に、下記一般式〔2〕で示される有機基を表す。a〜dは0〜2の整数を表す。ただし、Aの炭素原子数26以下の場合にはa+b+c+d>0であり、A中に2以上のアントラセン核は含まれない。
一般式〔2〕
Figure 0004410291
(式中、R1〜R4は、それぞれ独立に、水素原子、置換もしくは未置換の炭素原子数1〜20のアルキル基、置換もしくは未置換の炭素原子数6〜20のアリール基、シアノ基を表すか、R1とR2またはR3とR4が結合した三重結合を表す。Zは置換もしくは未置換の炭素原子数6〜20のアリール基を表す。nは0もしくは1を表す。)〕 That is, the organic electroluminescent element material (hereinafter referred to as organic EL element material) of the present invention is a compound represented by the following general formula [1].
General formula [1]
Figure 0004410291
[Wherein, A represents a substituted or unsubstituted arylene group having 22 to 60 carbon atoms. X 1 to X 4 each independently represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms. Y 1 to Y 4 each independently represents an organic group represented by the following general formula [2]. a to d represent an integer of 0 to 2; However, when A has 26 or less carbon atoms, a + b + c + d> 0, and A does not contain two or more anthracene nuclei.
General formula [2]
Figure 0004410291
Wherein R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a cyano group. Or a triple bond in which R 1 and R 2 or R 3 and R 4 are bonded together, Z represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and n represents 0 or 1. )]

本発明の有機EL素子用材料は、下記一般式〔3〕で示される化合物であってもよい。
一般式〔3〕

Figure 0004410291
〔式中、Bは置換もしくは未置換の炭素原子数6〜60のアリーレン基を表す。X1〜X4は、それぞれ独立に、置換もしくは未置換の炭素原子数6〜30のアリーレン基を表す。Y1〜Y4は、それぞれ独立に、上記一般式〔2〕で示される有機基を表す。a〜dは0〜2の整数を表す。ただし、B、X1、X2、X3及びX4の中の少なくとも1つはクリセン核を含有する。〕 The organic EL device material of the present invention may be a compound represented by the following general formula [3].
General formula [3]
Figure 0004410291
[Wherein, B represents a substituted or unsubstituted arylene group having 6 to 60 carbon atoms. X 1 to X 4 each independently represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms. Y 1 to Y 4 each independently represents an organic group represented by the general formula [2]. a to d represent an integer of 0 to 2; However, at least one of B, X 1 , X 2 , X 3 and X 4 contains a chrysene nucleus. ]

上記一般式〔3〕は、下記一般式〔4〕,〔5〕又は〔6〕であることが好ましい。
一般式〔4〕

Figure 0004410291
〔式中、X1〜X4、Y1〜Y4及びa〜dは、それぞれ独立に、上記一般式〔3〕と同一である。〕 The general formula [3] is preferably the following general formula [4], [5] or [6].
General formula [4]
Figure 0004410291
[Wherein, X 1 to X 4 , Y 1 to Y 4 and a to d are independently the same as those in the general formula [3]. ]

一般式〔5〕

Figure 0004410291
〔式中、B、X1〜X2、Y1〜Y2及びa〜bは、それぞれ独立に、上記一般式〔3〕と同一である。〕 General formula [5]
Figure 0004410291
[Wherein, B, X 1 to X 2 , Y 1 to Y 2, and a to b are independently the same as the above general formula [3]. ]

一般式〔6〕

Figure 0004410291
〔式中、B、X1〜X2、Y1〜Y2及びa〜bは、それぞれ独立に、上記一般式〔3〕と同一である。〕 General formula [6]
Figure 0004410291
[Wherein, B, X 1 to X 2 , Y 1 to Y 2, and a to b are independently the same as the above general formula [3]. ]

本発明の有機EL素子用材料は、下記一般式〔7〕で示される化合物であってもよい。
一般式〔7〕

Figure 0004410291
〔式中、Dはテトラセン核もしくはペンタセン核を含有する2価の基を表す。X1〜X4は、それぞれ独立に、置換もしくは未置換の炭素原子数6〜30のアリーレン基を表し、X1とX2、X4とX3は互いに連結していてもよい。Y1〜Y4は、それぞれ独立に、上記一般式〔2〕で示される有機基を表す。a〜dは0〜2の整数を表す。〕 The organic EL device material of the present invention may be a compound represented by the following general formula [7].
General formula [7]
Figure 0004410291
[Wherein, D represents a divalent group containing a tetracene nucleus or a pentacene nucleus. X 1 to X 4 each independently represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and X 1 and X 2 , X 4 and X 3 may be linked to each other. Y 1 to Y 4 each independently represents an organic group represented by the general formula [2]. a to d represent an integer of 0 to 2; ]

上記一般式〔7〕は、下記一般式〔8〕であることが好ましい。

Figure 0004410291
一般式〔8〕
〔式中、X1〜X4、Y1〜Y4及びa〜dは、それぞれ独立に、上記一般式〔7〕と同一である。R51〜R60は、それぞれ独立に、水素原子、置換もしくは未置換の炭素原子数1〜20のアルキル基、置換もしくは未置換の炭素原子数6〜20のアリール基、シアノ基を表す。隣接するR51〜R60は、互いに連結して飽和もしくは不飽和の炭素環を形成していても良い。〕 The general formula [7] is preferably the following general formula [8].
Figure 0004410291
General formula [8]
[Wherein, X 1 to X 4 , Y 1 to Y 4, and a to d are independently the same as those in the general formula [7]. R 51 to R 60 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a cyano group. Adjacent R 51 to R 60 may be connected to each other to form a saturated or unsaturated carbocycle. ]

本発明の有機EL素子用材料は、下記一般式〔9〕で示される化合物であってもよい。
一般式〔9〕

Figure 0004410291
〔式中、Eはアリール基置換もしくは未置換のアントラセン核からなる2価の基を表す。X5〜X8は、それぞれ独立に、置換もしくは未置換の炭素原子数6〜20のアリーレン基を表し、X5とX6、X7とX8は互いに連結していても良い。Y1〜Y4は、それぞれ独立に、上記一般式〔2〕で示される有機基を表す。a〜dは0〜2の整数を表す。ただし、Eが未置換の
Figure 0004410291
である時は、X5〜X8の少なくとも2つは置換もしくは未置換の
Figure 0004410291
を含む。〕 The organic EL device material of the present invention may be a compound represented by the following general formula [9].
General formula [9]
Figure 0004410291
[Wherein, E represents a divalent group consisting of an aryl group-substituted or unsubstituted anthracene nucleus. X 5 to X 8 each independently represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and X 5 and X 6 , X 7 and X 8 may be linked to each other. Y 1 to Y 4 each independently represents an organic group represented by the general formula [2]. a to d represent an integer of 0 to 2; However, E is not substituted
Figure 0004410291
When at least two of X 5 to X 8 are substituted or unsubstituted
Figure 0004410291
including. ]

本発明の有機EL素子用材料は、下記一般式〔10〕で示される化合物であってもよい。
一般式〔10〕

Figure 0004410291
〔式中、Ar1とAr3は、それぞれ独立に、置換もしくは未置換のフェニレン、置換もしくは未置換の1,3ナフタレン、置換もしくは未置換の1,8ナフタレン、置換もしくは未置換のフルオレン又は置換もしくは未置換のビフェニルからなる2価の基を表し、Ar2は、置換もしくは未置換のアントラセン核、置換もしくは未置換のピレン核、置換もしくは未置換のフェナントレン核、置換もしくは未置換のクリセン核、置換もしくは未置換のペンタセン核、置換もしくは未置換のナフタセン核又は置換もしくは未置換のフルオレン核からなる2価の基を表す。X5〜X8は、それぞれ独立に、置換もしくは未置換の炭素原子数6〜20のアリーレン基を表し、X5とX6、X7とX8は互いに連結していても良い。Y1〜Y4は、それぞれ独立に、上記一般式〔2〕で示される有機基を表す。a〜dは0〜2の整数を表し、a+b+c+d≦2である。eは0もしくは1、fは1もしくは2を表す。ただし、Ar2がアントラセン核の場合は、a=b=c=dで、かつAr1とAr3が共にp−フェニレン基の場合を除く。〕 The organic EL device material of the present invention may be a compound represented by the following general formula [10].
General formula [10]
Figure 0004410291
[Wherein Ar 1 and Ar 3 are each independently substituted or unsubstituted phenylene, substituted or unsubstituted 1,3 naphthalene, substituted or unsubstituted 1,8 naphthalene, substituted or unsubstituted fluorene or substituted Alternatively, it represents a divalent group consisting of unsubstituted biphenyl, and Ar 2 represents a substituted or unsubstituted anthracene nucleus, a substituted or unsubstituted pyrene nucleus, a substituted or unsubstituted phenanthrene nucleus, a substituted or unsubstituted chrysene nucleus, It represents a divalent group consisting of a substituted or unsubstituted pentacene nucleus, a substituted or unsubstituted naphthacene nucleus or a substituted or unsubstituted fluorene nucleus. X 5 to X 8 each independently represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and X 5 and X 6 , X 7 and X 8 may be linked to each other. Y 1 to Y 4 each independently represents an organic group represented by the general formula [2]. a to d represent an integer of 0 to 2, and a + b + c + d ≦ 2. e represents 0 or 1, and f represents 1 or 2. However, when Ar 2 is an anthracene nucleus, a = b = c = d, and Ar 1 and Ar 3 are both p-phenylene groups. ]

上記一般式〔1〕、〔3〕〜〔10〕で示される有機EL素子用材料は、有機エレクトロルミネッセンス素子用発光材料としても使用できる。
本発明の有機エレクトロルミネッセンス素子(以下、有機EL素子)は、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、少なくとも一層が上記一般式〔1〕、〔3〕〜〔10〕で示される有機EL素子用材料を含有する層である。
上記有機EL素子は、上記一般式〔1〕、〔3〕〜〔10〕で示される有機EL素子用材料を正孔注入材料、正孔輸送材料及びドーピング材料の中から選ばれる少なくとも一種類の材料として含有する層を、該電極間に形成していることが好ましい。
上記有機EL素子は、上記一般式〔1〕、〔3〕〜〔10〕で示される有機EL素子用材料を発光層に0.1〜20重量%含有することが好ましい。
上記有機EL素子は、正孔注入材料、正孔輸送材料及びドーピング材料の中から選ばれる少なくとも一種類の材料に、上記一般式〔1〕、〔3〕〜〔10〕で示される有機EL素子用材料を、それぞれ独立に0.1〜20重量%含有することが好ましい。
上記発光層は、スチルベン誘導体及び上記一般式〔1〕、〔3〕〜〔10〕で示される有機EL素子用材料を含有する層であることが好ましい。
上記有機EL素子は、芳香族三級アミン誘導体および/またはフタロシアニン誘導体を含有する層を、発光層と陽極との間に形成していてもよい。
The organic EL device material represented by the general formulas [1] and [3] to [10] can be used as a light emitting material for an organic electroluminescence device.
The organic electroluminescence device of the present invention (hereinafter referred to as organic EL device) is an organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes. It is a layer containing a material for an organic EL device represented by the formulas [1] and [3] to [10].
The organic EL element includes at least one kind of organic EL element material represented by the general formulas [1] and [3] to [10] selected from a hole injection material, a hole transport material, and a doping material. It is preferable that a layer contained as a material is formed between the electrodes.
The organic EL element preferably contains 0.1 to 20% by weight of the organic EL element material represented by the general formulas [1] and [3] to [10] in the light emitting layer.
The organic EL element is an organic EL element represented by the above general formulas [1] and [3] to [10] in at least one material selected from a hole injection material, a hole transport material, and a doping material. It is preferable to contain 0.1 to 20% by weight of the materials for use independently.
The light emitting layer is preferably a layer containing a stilbene derivative and an organic EL device material represented by the general formulas [1] and [3] to [10].
In the organic EL device, a layer containing an aromatic tertiary amine derivative and / or a phthalocyanine derivative may be formed between the light emitting layer and the anode.

本発明の上記一般式〔1〕、〔3〕〜〔6〕及び〔9〕〜〔10〕で表される有機EL素子材料を発光材料、正孔注入材料、正孔輸送材料又はドーピング材料として使用した有機EL素子は、低い印加電圧で実用上充分な発光輝度が得られ、発光効率が高く、長時間使用しても性能が劣化しずらく寿命が長く、耐熱性にも優れ高温の環境下でも性能が低下することが無い。
また、上記一般式〔7〕及び〔8〕で表される有機EL素子材料を発光材料、正孔注入材料、正孔輸送材料又はドーピング材料として使用した有機EL素子は、黄色、橙色〜赤色の領域において、低い印加電圧で実用上充分な発光輝度が得られ、発光効率が高く、長時間使用しても性能が劣化しずらく寿命が長い。
The organic EL device material represented by the above general formulas [1], [3] to [6] and [9] to [10] of the present invention is used as a light emitting material, a hole injection material, a hole transport material or a doping material. The organic EL device used has practically sufficient emission brightness at a low applied voltage, has high luminous efficiency, has a long life that does not easily deteriorate even when used for a long time, has excellent heat resistance, and has a high temperature environment. Under performance does not deteriorate.
The organic EL device using the organic EL device material represented by the general formulas [7] and [8] as a light emitting material, a hole injecting material, a hole transporting material, or a doping material is yellow, orange to red. In a region, a practically sufficient light emission luminance can be obtained with a low applied voltage, the light emission efficiency is high, and the performance hardly deteriorates even when used for a long time, and the life is long.

本発明における一般式〔1〕で示される化合物のAは、置換もしくは未置換の炭素原子数22〜60のアリーレン基を表し、具体例としてビフェニル、ターフェニル、ナフタレン、アントラセン、フェナントレン、ピレン、フルオレン、チオフェン、コロネン、フルオランテンなどから形成されるか又はこれらを互いに複数連結し形成される2価の基などが挙げられる。また一般式〔1〕で示される化合物のX1〜X4は、それぞれ独立に、置換もしくは未置換の炭素原子数6〜30のアリーレン基を表し、具体例としてフェニレン、ビフェニル、ターフェニル、ナフタレン、アントラセン、フェナントレン、ピレン、フルオレン、チオフェン、コロネン、クリセン骨格を含有する1価又は2価の基が挙げられる。また、X1とX2、X3とX4は互いに連結していてもよい。
1〜X4に置換する基としては、それぞれ独立に、炭素原子数1〜20のアルキル基、炭素原子数1〜20のアルコキシ基、炭素原子数6〜20のアリール基を示すが、置換基としてアリールオキシ基、アリールチオ基、アリールアルキル基及びアリールケトン基等は除外する。これらの除外する置換基を含有する化合物は、蒸着の際に熱分解し易く、発光素子の寿命も劣るからである。
一般式〔1〕において、a〜dは0〜2の整数を表す。ただし、Aの炭素原子数26以下の場合にはa+b+c+d>0であり、A中に2以上のアントラセン核は含まれない。
A of the compound represented by the general formula [1] in the present invention represents a substituted or unsubstituted arylene group having 22 to 60 carbon atoms, and specific examples thereof include biphenyl, terphenyl, naphthalene, anthracene, phenanthrene, pyrene, and fluorene. , Divalent groups formed from thiophene, coronene, fluoranthene, or the like, or a plurality of these linked together. X 1 to X 4 in the compound represented by the general formula [1] each independently represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms. Specific examples include phenylene, biphenyl, terphenyl, and naphthalene. , Anthracene, phenanthrene, pyrene, fluorene, thiophene, coronene, and a monovalent or divalent group containing a chrysene skeleton. X 1 and X 2 , X 3 and X 4 may be connected to each other.
The groups substituted for X 1 to X 4 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. As the group, an aryloxy group, an arylthio group, an arylalkyl group, an arylketone group and the like are excluded. This is because the compounds containing the substituents to be excluded are easily decomposed during vapor deposition, and the lifetime of the light-emitting element is also inferior.
In the general formula [1], a to d represent an integer of 0 to 2. However, when A has 26 or less carbon atoms, a + b + c + d> 0, and A does not contain two or more anthracene nuclei.

本発明における一般式〔2〕で示される有機基のR1〜R4は、それぞれ独立に、水素原子、置換もしくは未置換の炭素原子数1〜20のアルキル基、置換もしくは未置換の炭素原子数6〜20のアリール基もしくはシアノ基を表す。R1〜R4の具体例は、置換もしくは未置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、2−フェニルイソプロピル基、トリクロロメチル基、トリフルオロメチル基、ベンジル基、α−フェノキシベンジル基、α,α−ジメチルベンジル基、α,α−メチルフェニルベンジル基、α,α−ジトリフルオロメチルベンジル基、トリフェニルメチル基、α−ベンジルオキシベンジル基等がある。置換もしくは未置換のアリール基としては、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−エチルフェニル基、ビフェニル基、4−メチルビフェニル基、4−エチルビフェニル基、4−シクロヘキシルビフェニル基、ターフェニル基、3,5−ジクロロフェニル基、ナフチル基、5−メチルナフチル基、アントリル基、ピレニル基等が挙げられる。 R 1 to R 4 of the organic group represented by the general formula [2] in the present invention are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon atom. The aryl group or cyano group of several 6-20 is represented. Specific examples of R 1 to R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a heptyl group as a substituted or unsubstituted alkyl group. Octyl group, stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, α-phenoxybenzyl group, α, α-dimethylbenzyl group, α, α-methylphenylbenzyl group, α, There are α-ditrifluoromethylbenzyl group, triphenylmethyl group, α-benzyloxybenzyl group and the like. Examples of substituted or unsubstituted aryl groups include phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-ethylphenyl, biphenyl, 4-methylbiphenyl, 4-ethylbiphenyl. Group, 4-cyclohexylbiphenyl group, terphenyl group, 3,5-dichlorophenyl group, naphthyl group, 5-methylnaphthyl group, anthryl group, pyrenyl group and the like.

本発明における一般式〔2〕で示される有機基のZは、置換もしくは未置換の炭素原子数6〜20のアリール基を表す。Zの具体例は、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、チオフェン基等のアリール基であり、上記アリール基は置換基を有していても良い。置換基の具体例は、R1〜R4で記述したアルキル基およびアリール基に加えて、アルコキシ基、アミノ基、シアノ基、水酸基、カルボン酸基、エーテル基、エステル基等がある。一般式〔2〕のnは0もしくは1を表す。
このように、本発明における一般式〔1〕で示される化合物は、中心にジアミン構造を有し末端にスチリルアミン構造を有することにより、イオン化エネルギーが5.6eV以下となり正孔が注入しやすく、正孔移動度が10-42/V・s以上となり、正孔注入材料、正孔輸送材料として優れている。また、中心に有するポリフェニル構造により電子親和力が2.5eV以上となり、電子が注入しやすい。
さらに、上記A構造の炭素原子数が22以上であるため、容易に非晶質の薄膜を形成でき、ガラス転移温度が100℃以上となり耐熱性に優れる。A構造中に2以上のアントラセン核を含むと、化合物〔1〕が熱分解してしまう可能性がある。
尚、X1とX2、X3とX4が単結合又は炭素環結合などで連結した化合物は、ガラス転移温度が向上し耐熱性が優れる。
Z in the organic group represented by the general formula [2] in the present invention represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. Specific examples of Z are aryl groups such as a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a fluorenyl group, a pyrenyl group, and a thiophene group, and the aryl group has a substituent. May be. Specific examples of the substituent include an alkoxy group, an amino group, a cyano group, a hydroxyl group, a carboxylic acid group, an ether group, and an ester group in addition to the alkyl group and aryl group described in R 1 to R 4 . In the general formula [2], n represents 0 or 1.
Thus, the compound represented by the general formula [1] in the present invention has a diamine structure at the center and a styrylamine structure at the end, so that the ionization energy becomes 5.6 eV or less and holes can be easily injected, The hole mobility is 10 −4 m 2 / V · s or more, which is excellent as a hole injection material and a hole transport material. Further, the electron affinity is 2.5 eV or more due to the polyphenyl structure at the center, and electrons are easily injected.
Furthermore, since the number of carbon atoms in the A structure is 22 or more, an amorphous thin film can be easily formed, and the glass transition temperature is 100 ° C. or more, which is excellent in heat resistance. If the A structure contains two or more anthracene nuclei, the compound [1] may be thermally decomposed.
A compound in which X 1 and X 2 , X 3 and X 4 are connected by a single bond or a carbocyclic bond has an improved glass transition temperature and excellent heat resistance.

本発明における一般式〔3〕〜〔6〕で示される化合物のBは、置換もしくは未置換の炭素原子数6〜60のアリーレン基を表し、具体例としてビフェニル、ターフェニル、ナフタレン、アントラセン、フェナントレン、ピレン、フルオレン、チオフェン、コロネン、フルオランテンなどから形成されるか又はこれらを互いに複数連結し形成される2価の基などが挙げられる。また、X1〜X4、Y1〜Y4及びa〜dは、上記一般式〔1〕と同様である。ただし、B、X1、X2、X3又はX4 のいずれか1つはクリセン核を含有する。 B in the compounds represented by the general formulas [3] to [6] in the present invention represents a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, and specific examples thereof include biphenyl, terphenyl, naphthalene, anthracene, and phenanthrene. , Pyrene, fluorene, thiophene, coronene, fluoranthene, and the like, or a divalent group formed by connecting a plurality of these together. X 1 to X 4 , Y 1 to Y 4, and a to d are the same as those in the general formula [1]. However, any one of B, X 1 , X 2 , X 3 or X 4 contains a chrysene nucleus.

このように、本発明における一般式〔3〕〜〔6〕で示される化合物は、中心にジアミン構造を有し末端にスチリルアミン構造を有することにより、イオン化エネルギーが5.6eV以下となり正孔が注入しやすく、正孔移動度が10-42/V・s以上となり、正孔注入材料、正孔輸送材料として優れている。また、B、X1、X2、X3又はX4のいずれか1つに含まれるクリセン核により、耐久性、耐熱性が向上する。これにより、長時間の駆動が可能で、さらに高温下で保存又は駆動できる有機EL素子が得られる。
さらに、一般式〔3〕〜〔6〕の化合物をドーピング材料として使用すると、有機EL素子の寿命が伸び、発光層の材料として使用すると、発光効率が向上する。
As described above, the compounds represented by the general formulas [3] to [6] in the present invention have a diamine structure at the center and a styrylamine structure at the terminal, so that the ionization energy is 5.6 eV or less and holes are not generated. It is easy to inject and has a hole mobility of 10 −4 m 2 / V · s or more, and is excellent as a hole injection material and a hole transport material. Further, durability and heat resistance are improved by the chrysene nucleus contained in any one of B, X 1 , X 2 , X 3 or X 4 . Thereby, the organic EL element which can be driven for a long time and can be stored or driven at a high temperature is obtained.
Furthermore, when the compounds of the general formulas [3] to [6] are used as the doping material, the lifetime of the organic EL element is extended, and when the compound is used as the material for the light emitting layer, the light emission efficiency is improved.

本発明における一般式〔7〕で示される化合物のDは、置換もしくは未置換のテトラセン核もしくはペンタセン核を含有する2価の基を表し、具体例としてビフェニル、ナフタレン、アントラセン、フェナントレン、フルオレン及びチオフェンの中から選ばれる少なくとも一種類とテトラセン核もしくはペンタセン核を複数連結し形成される2価の基などが挙げられる。また、X1〜X4、Y1〜Y4及びa〜dは、上記一般式〔1〕と同様である。ただし、X1とX2、X4とX3は互いに連結していてもよい。 D of the compound represented by the general formula [7] in the present invention represents a divalent group containing a substituted or unsubstituted tetracene nucleus or pentacene nucleus, and specific examples include biphenyl, naphthalene, anthracene, phenanthrene, fluorene and thiophene. And a divalent group formed by linking at least one selected from among a plurality of tetracene nuclei or pentacene nuclei. X 1 to X 4 , Y 1 to Y 4, and a to d are the same as those in the general formula [1]. However, X 1 and X 2 , X 4 and X 3 may be connected to each other.

本発明における一般式〔8〕で示される化合物のX1〜X4、Y1〜Y4及びa〜dは、それぞれ独立に、上記一般式〔1〕と同様である。R51〜R60は、それぞれ独立に、水素原子、置換もしくは未置換の炭素原子数1〜20のアルキル基、置換もしくは未置換の炭素原子数1〜20のアルコキシ基、置換もしくは未置換の炭素原子数6〜20のアリール基、シアノ基を表す。隣接するR51〜R60は、互いに連結して飽和もしくは不飽和で置換もしくは未置換の炭素環を形成していてもよい。
一般式〔7〕又は〔8〕における上記置換に用いる基としては、それぞれ独立に、炭素原子数1〜20のアルキル基、炭素原子数1〜20のアルコキシ基、炭素原子数6〜20のアリール基を示すが、置換基としてアリールオキシ基、アリールチオ基、アリールアルキル基及びアリールケトン基等は除外する。これらの置換基を含有する化合物は、蒸着の際に熱分解し易く、発光素子の寿命も劣るからである。
In the present invention, X 1 to X 4 , Y 1 to Y 4 and a to d of the compound represented by the general formula [8] are each independently the same as the above general formula [1]. R 51 to R 60 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon. An aryl group having 6 to 20 atoms and a cyano group are represented. Adjacent R 51 to R 60 may be linked to each other to form a saturated or unsaturated substituted or unsubstituted carbocycle.
As group used for the said substitution in general formula [7] or [8], it is each independently a C1-C20 alkyl group, a C1-C20 alkoxy group, and a C6-C20 aryl. A group, but an aryloxy group, an arylthio group, an arylalkyl group, an arylketone group and the like are excluded as a substituent. This is because the compounds containing these substituents are easily pyrolyzed during vapor deposition, and the lifetime of the light-emitting element is also inferior.

このように、本発明における一般式〔7〕で示される化合物は、テトラセンもしくはペンタセン構造を有することにより、橙色〜赤色領域に強い蛍光性を有する。また、ジアミン構造を有することにより正孔が注入されやすく、発光層中にこの化合物を含有すると、正孔が捕捉されやすく、電子と正孔が再結合しやすい。このため、高効率の黄色、橙色又は赤色の発光素子が得られる。
特に、一般式〔7〕で示される化合物は、ドーピング材料として用いたときに発光素子が長寿命であり、従来にない安定性が得られる。
Thus, the compound represented by the general formula [7] in the present invention has a strong fluorescence in the orange to red region by having a tetracene or pentacene structure. Moreover, holes are easily injected by having a diamine structure, and when this compound is contained in the light emitting layer, holes are easily captured and electrons and holes are easily recombined. For this reason, a highly efficient yellow, orange, or red light emitting element is obtained.
In particular, when the compound represented by the general formula [7] is used as a doping material, the light emitting device has a long lifetime, and unprecedented stability can be obtained.

本発明における一般式〔9〕で示される化合物のEは、アリール基置換もしくは未置換のアントラセン核からなる2価の基を表す。X5〜X8は、それぞれ独立に、置換もしくは未置換の炭素原子数6〜20のアリーレン基を表し、具体例としてフェニレン、ビフェニル、ターフェニル、ナフタレン、アントラセン、フェナントレン、フルオレン、チオフェン骨格を含有する1価又は2価の基が挙げられる。また、X5とX6、X7とX8は互いに連結していても良い。Y1〜Y4及びa〜dは、上記一般式〔1〕と同様である。
ただし、Eが未置換の

Figure 0004410291
である時は、X5〜X8の少なくとも2つは置換もしくは未置換の
Figure 0004410291
を含む。 E in the compound represented by the general formula [9] in the present invention represents a divalent group consisting of an aryl group-substituted or unsubstituted anthracene nucleus. X 5 to X 8 each independently represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and specific examples include phenylene, biphenyl, terphenyl, naphthalene, anthracene, phenanthrene, fluorene, and thiophene skeleton. And monovalent or divalent groups. X 5 and X 6 , X 7 and X 8 may be connected to each other. Y 1 to Y 4 and a to d are the same as those in the general formula [1].
However, E is not substituted
Figure 0004410291
When at least two of X 5 to X 8 are substituted or unsubstituted
Figure 0004410291
including.

このように、本発明における一般式〔9〕で示される化合物は、ジアミン構造を有することによりイオン化エネルギーが5.6eV以下となり正孔が注入しやすく、正孔移動度が10-42/V・s以上となり、正孔注入材料、正孔輸送材料として優れている。また、中心に置換もしくは未置換のアントラセン核を有することにより、電子が注入しやすい。
さらに、中心のアントラセン核Eが未置換である場合には、ガラス転移温度が100℃以下と低くなるので、上記したように少なくとも2つのアリール基置換、好ましくは2〜4置換を行うことによりガラス転移温度が向上する。また、このような特定のビフェニル構造は、一般式〔9〕で示される化合物の可溶度を上げ、精製を容易にする。上記構造以外のパラ位にフェニル基がある場合には精製が困難で不純物が増加し、得られる有機EL素子の特性が悪化する。また、このようなアリール基置換により、分子同士の会合対形成が抑制され、蛍光量子効率が向上し、有機EL素子の発光効率が向上する。
Thus, the compound represented by the general formula [9] in the present invention has a diamine structure, so that the ionization energy becomes 5.6 eV or less and holes are easily injected, and the hole mobility is 10 −4 m 2 /. V.s or more, which is excellent as a hole injection material and a hole transport material. Further, since it has a substituted or unsubstituted anthracene nucleus at the center, electrons are easily injected.
Further, when the central anthracene nucleus E is unsubstituted, the glass transition temperature is as low as 100 ° C. or lower, so that at least two aryl group substitutions, preferably 2 to 4 substitutions are performed as described above. The transition temperature is improved. Moreover, such a specific biphenyl structure increases the solubility of the compound represented by the general formula [9] and facilitates purification. When there is a phenyl group at a para position other than the above structure, purification is difficult and impurities increase, and the characteristics of the obtained organic EL device deteriorate. Moreover, such aryl group substitution suppresses the formation of association pairs between molecules, improves the fluorescence quantum efficiency, and improves the light emission efficiency of the organic EL element.

本発明における一般式〔10〕で示される化合物のAr1とAr3は、それぞれ独立に、置換もしくは未置換のフェニレン、置換もしくは未置換の1,3ナフタレン、置換もしくは未置換の1,8ナフタレン、置換もしくは未置換のフルオレン又は置換もしくは未置換のビフェニルからなる2価の基を表し、Ar2 は、置換もしくは未置換のアントラセン核、置換もしくは未置換のピレン核、置換もしくは未置換のフェナントレン核、置換もしくは未置換のクリセン核、置換もしくは未置換のペンタセン核、置換もしくは未置換のナフタセン核又は置換もしくは未置換のフルオレン核からなる2価の基を表す。具体例として、 Ar 1 and Ar 3 in the compound represented by the general formula [10] in the present invention are each independently substituted or unsubstituted phenylene, substituted or unsubstituted 1,3 naphthalene, substituted or unsubstituted 1,8 naphthalene. Represents a divalent group consisting of substituted or unsubstituted fluorene or substituted or unsubstituted biphenyl, and Ar 2 represents a substituted or unsubstituted anthracene nucleus, a substituted or unsubstituted pyrene nucleus, a substituted or unsubstituted phenanthrene nucleus Represents a divalent group consisting of a substituted or unsubstituted chrysene nucleus, a substituted or unsubstituted pentacene nucleus, a substituted or unsubstituted naphthacene nucleus or a substituted or unsubstituted fluorene nucleus. As a specific example,

Figure 0004410291
Figure 0004410291

Figure 0004410291
が挙げられる。
Figure 0004410291
Is mentioned.

また、X5〜X8及びY1〜Y4は、それぞれ独立に、上記一般式〔9〕と同様である。a〜dは0〜2の整数を表し、a+b+c+d≦2である。eは0もしくは1、fは1もしくは2を表す。ただし、Ar2がアントラセン核の場合は、a=b=c=dで、かつAr1とAr3が共にp−フェニレン基の場合を除く。 X 5 to X 8 and Y 1 to Y 4 are each independently the same as in the general formula [9]. a to d represent an integer of 0 to 2, and a + b + c + d ≦ 2. e represents 0 or 1, and f represents 1 or 2. However, when Ar 2 is an anthracene nucleus, a = b = c = d, and Ar 1 and Ar 3 are both p-phenylene groups.

このように、本発明における一般式〔10〕で示される化合物は、ジアミン構造を有することによりイオン化エネルギーが5.6eV以下となり正孔が注入しやすく、正孔移動度が10-42/V・s以上となり、正孔注入材料、正孔輸送材料、特に発光材料として優れている。また、中心に縮合環を含むポリフェニル構造により、電子が注入しやすい。
また、ポリフェニル構造とジアミン構造を併せ持つことにより、非晶質の安定な薄膜が形成でき、ガラス転移温度が100℃以上であり耐熱性に優れる。さらに、一般式〔2〕の構造を2つ以上含む場合には、薄膜形成の際に蒸着により熱分解するため、a+b+c+d≦2とする必要がある。Ar2がアントラセン核の場合は、Ar1とAr3を上記のような特定構造とすることにより、化合物の熱分解や蒸着時の酸化が避けられる。
As described above, the compound represented by the general formula [10] in the present invention has a diamine structure, so that the ionization energy is 5.6 eV or less and holes are easily injected, and the hole mobility is 10 −4 m 2 /. V · s or more, which is excellent as a hole injection material, a hole transport material, particularly a light emitting material. Also, electrons are easily injected due to the polyphenyl structure containing a condensed ring at the center.
Further, by having both a polyphenyl structure and a diamine structure, an amorphous stable thin film can be formed, and the glass transition temperature is 100 ° C. or more, and the heat resistance is excellent. Furthermore, when two or more structures of the general formula [2] are included, a + b + c + d ≦ 2 needs to be satisfied because they are thermally decomposed by vapor deposition when forming a thin film. When Ar 2 is an anthracene nucleus, Ar 1 and Ar 3 have a specific structure as described above, so that thermal decomposition of the compound and oxidation during vapor deposition can be avoided.

以下に、本発明の一般式〔1〕の化合物の代表例(1)〜(28)、一般式〔3〕〜〔6〕の化合物の代表例(29)〜(56)、一般式〔7〕の化合物の代表例(57)〜(74)、一般式〔8〕の化合物の代表例(75)〜(86)、一般式〔9〕の化合物の代表例(87)〜(104)、一般式〔10〕の化合物の代表例(105)〜(126)を例示するが、本発明はこの代表例に限定されるものではない。    The following are representative examples (1) to (28) of the compound of the general formula [1] of the present invention, representative examples (29) to (56) of the compounds of the general formula [3] to [6], and the general formula [7]. ] Representative examples (57) to (74) of compounds of general formula (8), representative examples (75) to (86) of compounds of general formula [8], representative examples (87) to (104) of compounds of general formula [9], Representative examples (105) to (126) of the compound of the general formula [10] are illustrated, but the present invention is not limited to these representative examples.

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

Figure 0004410291
Figure 0004410291

本発明の一般式〔1〕、〔3〕〜〔10〕で示される化合物は、中心A又はBのポリフェニル構造とアミン構造が連結していることにより、固体状態で強い蛍光性を持ち、電場発光性にも優れ、蛍光量子効率が0.3以上である。また、一般式〔7〕及び〔8〕で示される化合物は、テトラセン核もしくはペンタセン核含有構造とアミン構造が連結していることにより、黄色、橙色又は赤色の蛍光領域において、固体状態又は分散状態で強い蛍光性を持ち、電場発光性にも優れている。
また、本発明の一般式〔1〕、〔3〕〜〔10〕で示される化合物は、金属電極もしくは有機薄膜層からの優れた正孔注入性および正孔輸送性、金属電極もしくは有機薄膜層からの優れた電子注入性および電子輸送性を併せて持ち合わせているので、発光材料として有効に使用することができ、更には、正孔輸送性材料、電子輸送性材料もしくはドーピング材料を使用してもさしつかえない。特に一般式〔7〕及び〔8〕で示される化合物は、ドーピング材料として用いると、電子と正孔の再結合中心となるため、赤系統の高効率の発光が得られる。
特に、一般式〔8〕で示される化合物は、特定の結合位にてアリールアミンとテトラセンが結合しているため高性能である。
The compounds represented by the general formulas [1] and [3] to [10] of the present invention have strong fluorescence in the solid state because the polyphenyl structure at the center A or B and the amine structure are linked. It is excellent in electroluminescence, and the fluorescence quantum efficiency is 0.3 or more. In addition, the compound represented by the general formulas [7] and [8] has a solid state or a dispersed state in a yellow, orange, or red fluorescent region by connecting a tetracene nucleus or pentacene nucleus containing structure and an amine structure. It has strong fluorescence and excellent electroluminescence.
The compounds represented by the general formulas [1] and [3] to [10] of the present invention are excellent in hole injecting and transporting properties from a metal electrode or an organic thin film layer, a metal electrode or an organic thin film layer. In combination with excellent electron injecting and electron transporting properties, it can be used effectively as a light-emitting material, and further using a hole transporting material, an electron transporting material or a doping material. No problem. In particular, when the compounds represented by the general formulas [7] and [8] are used as a doping material, they become recombination centers of electrons and holes, and thus red light emission with high efficiency can be obtained.
In particular, the compound represented by the general formula [8] has high performance because arylamine and tetracene are bonded at a specific bonding position.

本発明の有機EL素子は、陽極と陰極間に一層もしくは多層の有機薄膜を形成した素子である。一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔、もしくは陰極から注入した電子を発光材料まで輸送させるために、正孔注入材料もしくは電子注入材料を含有しても良い。しかしながら、本発明の発光材料は、極めて高い蛍光量子効率、高い正孔輸送能力および電子輸送能力を併せ持ち、均一な薄膜を形成することができるので、本発明の発光材料のみで発光層を形成することも可能である。多層型の有機EL素子は、(陽極/正孔注入層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/陰極)の多層構成で積層したものがある。一般式〔1〕及び〔3〕〜〔8〕の化合物は、高い発光特性を持ち、優れた正孔注入性、正孔輸送特性および電子注入性、電子輸送特性を有しているので、発光材料として発光層に使用することができる。   The organic EL device of the present invention is a device in which a single-layer or multilayer organic thin film is formed between an anode and a cathode. In the case of the single layer type, a light emitting layer is provided between the anode and the cathode. The light-emitting layer contains a light-emitting material, and may further contain a hole-injecting material or an electron-injecting material in order to transport holes injected from the anode or electrons injected from the cathode to the light-emitting material. However, since the light emitting material of the present invention has extremely high fluorescence quantum efficiency, high hole transport ability and electron transport ability and can form a uniform thin film, the light emitting layer is formed only with the light emitting material of the present invention. It is also possible. Multi-layer type organic EL elements are (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / hole injection layer / light emitting layer / electron injection layer / There is a laminated structure of a cathode). The compounds of the general formulas [1] and [3] to [8] have high emission characteristics and have excellent hole injection properties, hole transport properties, electron injection properties, and electron transport properties. It can be used for a light emitting layer as a material.

発光層には、必要に応じて、本発明の一般式〔1〕及び〔3〕〜〔10〕の化合物に加えてさらなる公知の発光材料、ドーピング材料、正孔注入材料や電子注入材料を使用することもできる。有機EL素子は、多層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング材料、正孔注入材料や電子注入材料を組み合わせて使用することができる。また、ドーピング材料により、発光輝度や発光効率の向上、赤色や青色の発光を得ることもできる。また、正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成により形成されても良い。その際には、正孔注入層の場合、電極から正孔を注入する層を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電子注入層の場合、電極から電子を注入する層を電子注入層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、材料のエネルギー準位、耐熱性、有機層もしくは金属電極との密着性等の各要因により選択されて使用される。   If necessary, in addition to the compounds of the general formulas [1] and [3] to [10] of the present invention, further known light emitting materials, doping materials, hole injection materials and electron injection materials are used for the light emitting layer. You can also By making the organic EL element have a multi-layer structure, it is possible to prevent a decrease in luminance and lifetime due to quenching. If necessary, a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination. Further, by using a doping material, it is possible to improve light emission luminance and light emission efficiency and to obtain red and blue light emission. Further, the hole injection layer, the light emitting layer, and the electron injection layer may each be formed with a layer configuration of two or more layers. In that case, in the case of a hole injection layer, the layer that injects holes from the electrode is a hole injection layer, and the layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer. Call. Similarly, in the case of an electron injection layer, a layer that injects electrons from an electrode is referred to as an electron injection layer, and a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer is referred to as an electron transport layer. Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.

一般式〔1〕及び〔3〕〜〔10〕の化合物と共に発光層に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン、スチルベン系誘導体及び蛍光色素等が挙げられるが、これらに限定されるものではない。
特に、化合物〔7〕及び〔8〕と共に発光層に使用できる発光材料またはドーピング材料としては、キノリン金属錯体及びスチルベン系誘導体である。
Examples of the light emitting material or doping material that can be used in the light emitting layer together with the compounds of the general formulas [1] and [3] to [10] include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, and naphthaloperylene. , Perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, Diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole chelating oxinoid compounds, Nakuridon, rubrene, but stilbene derivatives and fluorescent dyes, and the like, but is not limited thereto.
In particular, luminescent materials or doping materials that can be used in the light emitting layer together with the compounds [7] and [8] are quinoline metal complexes and stilbene derivatives.

正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層または発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層または電子注入材料への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、およびポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料が挙げられるが、これらに限定されるものではない。   As a hole injection material, it has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and excitons generated in the light emitting layer. A compound that prevents movement to the electron injection layer or the electron injection material and has an excellent thin film forming ability is preferable. Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acyl hydrazone, polyaryl Examples include alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, and their derivatives, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymers. However, it is not limited to these.

本発明の有機EL素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、芳香族三級アミン誘導体もしくはフタロシアニン誘導体である。
芳香族三級アミン誘導体の具体例は、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N,N’,N’−(4−メチルフェニル)−1,1’−フェニル−4,4’−ジアミン、N,N,N’,N’−(4−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ジナフチル−1,1’−ビフェニル−4,4’−ジアミン、N,N’−(メチルフェニル)−N,N’−(4−n−ブチルフェニル)−フェナントレン−9,10−ジアミン、N,N−ビス(4−ジ−4−トリルアミノフェニル)−4−フェニル−シクロヘキサン等、もしくはこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマーであるが、これらに限定されるものではない。
フタロシアニン(Pc)誘導体の具体例は、H2Pc、CuPc、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2 SiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc−O−GaPc等のフタロシアニン誘導体およびナフタロシアニン誘導体でがあるが、これらに限定されるものではない。
Among the hole injection materials that can be used in the organic EL device of the present invention, a more effective hole injection material is an aromatic tertiary amine derivative or a phthalocyanine derivative.
Specific examples of the aromatic tertiary amine derivative are triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4 '-Diamine, N, N, N', N '-(4-methylphenyl) -1,1'-phenyl-4,4'-diamine, N, N, N', N '-(4-methylphenyl) ) -1,1′-biphenyl-4,4′-diamine, N, N′-diphenyl-N, N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N, N ′-( Methylphenyl) -N, N ′-(4-n-butylphenyl) -phenanthrene-9,10-diamine, N, N-bis (4-di-4-tolylaminophenyl) -4-phenyl-cyclohexane, etc. Or these oligomers having an aromatic tertiary amine skeleton Properly is a polymer, but is not limited thereto.
Specific examples of phthalocyanine (Pc) derivatives are H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl2SiPc, (HO) AlPc, (HO) GaPc, VOPc , Phthalocyanine derivatives such as TiOPc, MoOPc, GaPc-O-GaPc, and naphthalocyanine derivatives, but are not limited thereto.

電子注入材料としては、電子を輸送する能力を持ち、陰極からの電子注入効果、発光層または発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体が挙げられるが、これらに限定されるものではない。また、正孔注入材料に電子受容物質を、電子注入材料に電子供与性物質を添加することにより電子注入性を向上させることもできる。   As an electron injection material, it has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect for the light emitting layer or light emitting material, and a hole injection layer of excitons generated in the light emitting layer The compound which prevents the movement to and is excellent in thin film forming ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone and their derivatives However, it is not limited to these. Further, the electron injecting property can be improved by adding an electron accepting material to the hole injecting material and an electron donating material to the electron injecting material.

本発明の有機EL素子において、さらに効果的な電子注入材料は、金属錯体化合物もしくは含窒素五員環誘導体である。
金属錯体化合物の具体例は、8−ヒドロキシキノリナートリチウム、ビス(8−ヒドロキシキノリナート)亜鉛、ビス(8−ヒドロキシキノリナート)銅、ビス(8−ヒドロキシキノリナート)マンガン、トリス(8−ヒドロキシキノリナート)アルミニウム、トリス(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(8−ヒドロキシキノリナート)ガリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2−メチル−8−キノリナート)クロロガリウム、ビス(2−メチル−8−キノリナート)(o−クレゾラート)ガリウム、ビス(2−メチル−8−キノリナート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−キノリナート)(2−ナフトラート)ガリウム等が挙げられるが、これらに限定されるものではない。
In the organic EL device of the present invention, a more effective electron injection material is a metal complex compound or a nitrogen-containing five-membered ring derivative.
Specific examples of the metal complex compound include 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, tris ( 8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium, bis ( 10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (o-cresolate) gallium, bis (2-methyl-8-quinolinato) ) (1-Naphtholate) aluminum, bis (2-methyl-8-) Norinato) (2-naphtholato) gallium and the like, but not limited thereto.

また、含窒素五員誘導体は、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5−ビス(1−フェニル)−1,3,4−オキサゾール、ジメチルPOPOP、2,5−ビス(1−フェニル)−1,3,4−チアゾール、2,5−ビス(1−フェニル)−1,3,4−オキサジアゾール、2−(4’−tert−ブチルフェニル)−5−( 4”−ビフェニル) 1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、1,4−ビス[2−( 5−フェニルオキサジアゾリル) ]ベンゼン、1,4−ビス[2−( 5−フェニルオキサジアゾリル) −4−tert−ブチルベンゼン]、2−(4’−tert−ブチルフェニル)−5−( 4”−ビフェニル) −1,3,4−チアジアゾール、2,5−ビス(1−ナフチル)−1,3,4−チアジアゾール、1,4−ビス[2−( 5−フェニルチアジアゾリル) ]ベンゼン、2−(4’−tert−ブチルフェニル)−5−( 4”−ビフェニル) −1,3,4−トリアゾール、2,5−ビス(1−ナフチル)−1,3,4−トリアゾール、1,4−ビス[2−( 5−フェニルトリアゾリル) ]ベンゼン等が挙げられるが、これらに限定されるものではない。   The nitrogen-containing five-membered derivative is preferably an oxazole, thiazole, oxadiazole, thiadiazole or triazole derivative. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, dimethyl POPOP, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5- Bis (1-phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) 1,3,4-oxadiazole, 2,5 -Bis (1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxa) Diazolyl) -4-tert-butylbenzene], 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-thiadiazole, 2,5-bis (1-naphthyl) ) -1,3,4-thiadiazole, 1,4-bis [2- (5-phenylthiadiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl) Examples include, but are not limited to, -1,3,4-triazole, 1,4-bis [2- (5-phenyltriazolyl)] benzene and the like.

本発明の有機EL素子においては、発光層中に、一般式〔1〕及び〔3〕〜〔8〕の化合物の他に、発光材料、ドーピング材料、正孔注入材料および電子注入材料の少なくとも1種が同一層に含有されてもよい。また、本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。   In the organic EL device of the present invention, in the light emitting layer, in addition to the compounds of the general formulas [1] and [3] to [8], at least one of a light emitting material, a doping material, a hole injecting material, and an electron injecting material. The seed may be contained in the same layer. In order to improve the stability of the organic EL device obtained by the present invention with respect to temperature, humidity, atmosphere, etc., a protective layer is provided on the surface of the device, or the entire device is protected by silicon oil, resin, etc. Is also possible.

有機EL素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム等およびそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。陽極および陰極は、必要があれば二層以上の層構成により形成されていても良い。   As a conductive material used for an anode of an organic EL element, a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, etc. Further, metal oxides such as tin oxide and indium oxide used for alloys thereof, ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used. As the conductive material used for the cathode, those having a work function smaller than 4 eV are suitable, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, and alloys thereof are used. However, it is not limited to these. Examples of alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.

有機EL素子では、効率良く発光させるために、少なくとも一方の面は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、ガラス基板および透明性樹脂フィルムがある。透明性樹脂フィルムとしては、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。   In an organic EL element, in order to emit light efficiently, it is desirable that at least one surface is sufficiently transparent in the light emission wavelength region of the element. The substrate is also preferably transparent. The transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering. The electrode on the light emitting surface preferably has a light transmittance of 10% or more. The substrate is not limited as long as it has mechanical and thermal strength and has transparency, and includes a glass substrate and a transparent resin film. Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is.

本発明に係わる有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nmから10μmの範囲が適しているが、10nmから0.2μmの範囲がさらに好ましい。   For the formation of each layer of the organic EL device according to the present invention, any of dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc. and wet film forming methods such as spin coating, dipping, and flow coating is applied. be able to. The film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.

湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解または分散させて薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂およびそれらの共重合体、ポリ−N−ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げられる。   In the case of the wet film-forming method, the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used. In any organic thin film layer, an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film. Usable resins include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.

以上のように、有機EL素子の発光層に本発明の化合物を用いることにより、低い印加電圧で実用上充分な発光輝度が得られるため、発光効率が高く、劣化しずらいため寿命も長く、さらには耐熱性にも優れた有機EL素子を得ることができる。   As described above, by using the compound of the present invention in the light emitting layer of the organic EL element, a practically sufficient light emission luminance can be obtained with a low applied voltage, so that the light emission efficiency is high and the life is long because it is difficult to deteriorate. Can obtain an organic EL device having excellent heat resistance.

本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。
本発明の材料は、有機EL素子だけでなく、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。
The organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
The material of the present invention can be used not only in an organic EL device but also in fields such as an electrophotographic photosensitive member, a photoelectric conversion device, a solar cell, and an image sensor.

以下、本発明を実施例に基づいてさらに詳細に説明する。
参考例1
洗浄したITO電極付きガラス板上に、発光材料として上記化合物(2)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、ポリカーボネート樹脂(帝人化成:パンライトK−1300)を5:3:2の重量比でテトラヒドロフランに溶解させ、スピンコーティング法により膜厚100nmの発光層を得た。その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚150nmの電極を形成して有機EL素子を得た。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度200(cd/m2)、最高輝度14000(cd/m2)、発光効率2.1(lm/W)の発光が得られた。
Hereinafter, the present invention will be described in more detail based on examples.
Reference example 1
On the washed glass plate with ITO electrode, the above compound (2), 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, polycarbonate resin (Teijin Chemicals: Panlite K-) 1300) was dissolved in tetrahydrofuran at a weight ratio of 5: 3: 2, and a light emitting layer having a thickness of 100 nm was obtained by a spin coating method. On top of that, an electrode having a thickness of 150 nm was formed from an alloy in which aluminum and lithium were mixed at a ratio of 3% by weight of lithium to obtain an organic EL device. As for the light emission characteristics of this device, light emission with an emission luminance of 200 (cd / m 2 ), a maximum luminance of 14000 (cd / m 2 ), and an emission efficiency of 2.1 (lm / W) was obtained at an applied voltage of DC voltage 5V. .

参考例2
洗浄したITO電極付きガラス板上に、発光材料として上記化合物(9)を真空蒸着して膜厚100nmの発光層を作成し、その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。発光層は10-6Torrの真空中で、基板温度が室温の条件下で蒸着した。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度110(cd/m2)、最高輝度20000(cd/m2)、発光効率2.1(lm/W)の発光が得られた。
Reference example 2
On the washed glass plate with an ITO electrode, the above compound (9) was vacuum deposited as a light emitting material to form a light emitting layer having a film thickness of 100 nm, and aluminum and lithium were mixed at a ratio of 3% by weight of lithium thereon. An electrode having a film thickness of 100 nm was formed from an alloy to obtain an organic EL device. The light emitting layer was deposited in a vacuum of 10 −6 Torr and the substrate temperature was room temperature. With respect to the light emission characteristics of this device, light emission with an emission luminance of 110 (cd / m 2 ), a maximum luminance of 20000 (cd / m 2 ), and an emission efficiency of 2.1 (lm / W) was obtained at an applied voltage of DC voltage 5V. .

参考例3
洗浄したITO電極付きガラス板上に、発光材料として上記化合物(2)を真空蒸着して膜厚50nmの発光層を形成した。次いで、下記化合物(Alq)

Figure 0004410291
を真空蒸着して膜厚10nmの電子注入層を作成し、その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。発光層および電子注入層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度約600(cd/m2)、最高輝度30000(cd/m2)、発光効率3.0(lm/W)の青緑色発光が得られた。さらに初期発光輝度600(cd/m2)で、定電流駆動したところ半減寿命は2000時間と長かった。 Reference example 3
On the washed glass plate with an ITO electrode, the compound (2) as a light emitting material was vacuum-deposited to form a light emitting layer having a thickness of 50 nm. Next, the following compound (Alq)
Figure 0004410291
Was deposited by vacuum evaporation to form an electron injection layer having a thickness of 10 nm, and an electrode having a thickness of 100 nm was formed thereon using an alloy in which aluminum and lithium were mixed at a ratio of 3% by weight of lithium to obtain an organic EL device. . The light emitting layer and the electron injection layer were deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this element are blue-green light emission with a light emission luminance of about 600 (cd / m 2 ), a maximum luminance of 30000 (cd / m 2 ), and a light emission efficiency of 3.0 (lm / W) at an applied voltage of DC voltage 5V. Obtained. Furthermore, when the device was driven at a constant current at an initial light emission luminance of 600 (cd / m 2 ), the half life was as long as 2000 hours.

参考例4〜16
洗浄したITO電極付きガラス板上に、第1表に示す発光材料を真空蒸着して膜厚80nmの発光層を得た。さらに、電子注入材料として上記化合物(Alq)を真空蒸着して膜厚20nmの電子注入層を作成し、その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚150nmの膜厚の電極を形成して有機EL素子を得た。各層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性を第1表に示す。また本参考例の有機EL素子は、全て最高輝度10000(cd/m2)以上の高輝度特性を有していた。
Reference Examples 4-16
On the washed glass plate with an ITO electrode, the light emitting material shown in Table 1 was vacuum deposited to obtain a light emitting layer having a thickness of 80 nm. Further, the compound (Alq) is vacuum-deposited as an electron injecting material to form an electron injecting layer having a thickness of 20 nm, and an alloy in which aluminum and lithium are mixed at a ratio of 3% by weight of aluminum is formed thereon with a thickness of 150 nm. An electrode having a film thickness was formed to obtain an organic EL element. Each layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this device are shown in Table 1. The organic EL elements of this reference example all had high luminance characteristics with a maximum luminance of 10,000 (cd / m 2 ) or more.

Figure 0004410291
Figure 0004410291

参考例17
洗浄したITO電極付きガラス板上に、正孔注入材として下記化合物(TPD74)を膜厚60nmに真空蒸着した。

Figure 0004410291
次に、正孔輸送材として下記化合物(NPD)を膜厚20nmに真空蒸着した。
Figure 0004410291
次に、発光材料として4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(DPVBi)および上記化合物(3)を、化合物(3)の割合が5重量%、膜厚40nmとなるように同時蒸着した。尚、化合物(3)は蛍光性のドーパントとして機能する。次に、電荷注入材として上記化合物(Alq)を膜厚20nmで蒸着し、さらにLiFを膜厚0.5nmで蒸着後アルミニウムを膜厚100nm蒸着し電極を形成して有機EL素子を得た。各層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度750(cd/m2)と高輝度であった。さらに初期発光輝度400(cd/m2)で、定電流駆動したところ半減寿命は3000時間と長寿命であった。 Reference Example 17
On the washed glass plate with an ITO electrode, the following compound (TPD74) as a hole injecting material was vacuum deposited to a film thickness of 60 nm.
Figure 0004410291
Next, the following compound (NPD) was vacuum deposited as a hole transporting material to a film thickness of 20 nm.
Figure 0004410291
Next, 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVBi) and the above compound (3) are used as the light emitting material so that the ratio of the compound (3) is 5% by weight and the film thickness is 40 nm. Co-deposited. The compound (3) functions as a fluorescent dopant. Next, the compound (Alq) was deposited as a charge injection material in a thickness of 20 nm, LiF was deposited in a thickness of 0.5 nm, and then aluminum was deposited in a thickness of 100 nm to form an electrode to obtain an organic EL device. Each layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristic of this device was as high as 750 (cd / m 2 ) in luminance with an applied voltage of 5 V DC. Further, when the device was driven at a constant current at an initial light emission luminance of 400 (cd / m 2 ), the half life was as long as 3000 hours.

比較例1
発光材料として下記化合物(比較例1)を使用したことを除き、参考例1と同様にして有機EL素子を作製した。

Figure 0004410291
得られた素子の発光特性は、直流電圧5Vの印加電圧で発光輝度60(cd/m2)、発光効率0.34(lm/W)と充分な性能が得られなかった。 Comparative Example 1
An organic EL device was produced in the same manner as in Reference Example 1 except that the following compound (Comparative Example 1) was used as the light emitting material.
Figure 0004410291
With respect to the light emission characteristics of the obtained device, sufficient performance was not obtained with a light emission luminance of 60 (cd / m 2 ) and a light emission efficiency of 0.34 (lm / W) at an applied voltage of DC voltage of 5V.

比較例2
発光材料として下記化合物(比較例2)を使用したことを除き、参考例3と同様にして有機EL素子を作製した。

Figure 0004410291
得られた素子の発光特性は、直流電圧5Vの印加電圧で発光輝度200(cd/m2)、発光効率1.2(lm/W)であったが、初期発光輝度400(cd/m2)で定電流駆動したところ半減寿命は600時間と寿命が短かった。 Comparative Example 2
An organic EL device was produced in the same manner as in Reference Example 3 except that the following compound (Comparative Example 2) was used as the light emitting material.
Figure 0004410291
The light emitting characteristics of the obtained device were an emission luminance of 200 (cd / m 2 ) and an emission efficiency of 1.2 (lm / W) at an applied voltage of DC voltage of 5 V, but an initial emission luminance of 400 (cd / m 2). ) Was driven at a constant current, the half-life was 600 hours, which was short.

耐熱性試験
参考例2、参考例3、比較例1及び比較例2で作製した有機EL素子を、発光輝度を測定してから100℃の恒温槽内に入れ、一定の電流値で500時間経過後に再度発光輝度を測定し槽内に入れる前の発光輝度と比較して輝度保持率を算出した。
その結果、参考例2、参考例3、比較例1及び比較例2の有機EL素子の輝度保持率は、それぞれ85%、90%、25%、30%であった。このように、比較例1及び比較例2で使用した発光材料の化合物はガラス転移温度が100℃以下であるため輝度を保持することができなかった。これに対し、参考例2及び参考例3で使用した発光材料の化合物はガラス転移温度が110℃以上であるため耐熱性が高く、長時間に渡り充分輝度を保持することができる。
Heat resistance test
The organic EL devices produced in Reference Example 2, Reference Example 3 , Comparative Example 1 and Comparative Example 2 were measured for emission luminance and then placed in a thermostatic chamber at 100 ° C., and light was emitted again after a lapse of 500 hours at a constant current value. Luminance retention was calculated by measuring the luminance and comparing it with the emission luminance before being placed in the tank.
As a result, the luminance retentions of the organic EL elements of Reference Example 2, Reference Example 3 , Comparative Example 1, and Comparative Example 2 were 85%, 90%, 25%, and 30%, respectively. Thus, since the compound of the luminescent material used in Comparative Example 1 and Comparative Example 2 had a glass transition temperature of 100 ° C. or lower, the luminance could not be maintained. On the other hand, the compounds of the light emitting materials used in Reference Example 2 and Reference Example 3 have high heat resistance because they have a glass transition temperature of 110 ° C. or higher, and can maintain sufficient luminance for a long time.

合成例1(化合物(2))
中間体Aの合成
200ミリリットル丸底フラスコに、4−ブロモベンズアルデヒド0.38g(2.04mmol)、ベンジルホスホン酸エチルエステル0.98g(4.29mmol)、DMSO40ミリリットルを入れ、tBuOK0.5g(4.49mmol)を室温で少しずつ添加し反応させた。18時間反応させて得られた反応液を、水500ミリリットル中に注入し、析出した粗結晶0.5gを濾過により採取した。
100ミリリットル丸底フラスコに、上記粗結晶、KI2.00g(12.0mmol)、CuI1.14g(6.0mmol)、HMPA10ミリリットルを入れ、150℃で6時間加熱攪拌した。反応終了後、1N−塩酸水10ミリリットルを加え、トルエンで有機層を抽出した。濃縮後にジエチルエーテル/メタノールで再結晶させて精製し、下記中間体A0.28g(収率45%)を得た。

Figure 0004410291
Synthesis Example 1 (Compound (2))
Synthesis of Intermediate A A 200 ml round bottom flask was charged with 0.38 g (2.04 mmol) of 4-bromobenzaldehyde, 0.98 g (4.29 mmol) of benzylphosphonic acid ethyl ester and 40 ml of DMSO, and 0.5 g of tBuOK (4. 49 mmol) was added little by little at room temperature to react. The reaction solution obtained by reacting for 18 hours was poured into 500 ml of water, and 0.5 g of precipitated crude crystals were collected by filtration.
The crude crystal, KI 2.00 g (12.0 mmol), CuI 1.14 g (6.0 mmol), and HMPA 10 ml were placed in a 100 ml round bottom flask, and the mixture was heated and stirred at 150 ° C. for 6 hours. After completion of the reaction, 10 ml of 1N hydrochloric acid water was added, and the organic layer was extracted with toluene. After concentration, the residue was purified by recrystallization from diethyl ether / methanol to obtain 0.28 g (45% yield) of the following intermediate A.
Figure 0004410291

中間体Bの合成
50ミリリットル丸底フラスコ中でp−ブロモアニリン3g(17.4mmol)を6N−塩酸水10ミリリットルに懸濁し冷却した。内温4℃にて亜硫酸ナトリウム 1.25g(18.1mmol)/水5.3ミリリットルをゆっくりと滴下し、同温にて1時間攪拌してジアゾニウム水溶液を得た。
別途、100ミリリットル丸底フラスコ中でアントラセン0.3g(1.7mmol)をアセトン5ミリリットルに溶解した後、塩化第二銅2水和物0.46g/水5.7ミリリットルを加え、4℃まで冷却した。冷却後、上記ジアゾニウム水溶液を同温にて添加し、室温で一晩反応させた。反応後析出晶を濾取してメタノールで洗浄後乾燥し、下記中間体B0.2g(収率24%)を得た。

Figure 0004410291
Synthesis of Intermediate B In a 50 ml round bottom flask, 3 g (17.4 mmol) of p-bromoaniline was suspended in 10 ml of 6N hydrochloric acid and cooled. Sodium sulfite (1.25 g, 18.1 mmol) / water (5.3 ml) was slowly added dropwise at an internal temperature of 4 ° C., and stirred at the same temperature for 1 hour to obtain a diazonium aqueous solution.
Separately, 0.3 g (1.7 mmol) of anthracene was dissolved in 5 ml of acetone in a 100 ml round bottom flask, and then 0.46 g of cupric chloride dihydrate / 5.7 ml of water was added up to 4 ° C. Cooled down. After cooling, the diazonium aqueous solution was added at the same temperature and allowed to react overnight at room temperature. After the reaction, the precipitated crystals were collected by filtration, washed with methanol and dried to obtain 0.2 g of the following intermediate B (yield 24%).
Figure 0004410291

化合物(2)の合成
100ミリリットル丸底フラスコ中でアニリン0.018g(0.2mmol)を塩化メチレン5ミリリットルに溶解し、無水酢酸0.05g(0.5mmol)を加え、室温にて1時間反応させた。その後、反応溶媒を留去してオイル状の化合物を得た。この化合物に、中間体A0.56g(1.8mmol)、炭酸カリウム5g、銅粉0.3g及びニトロベンゼン20ミリリットルを加え、210℃で2日間加熱攪拌した。その後、溶媒を留去し得られた残さに、ジエチレングリコール10ミリリットルと水酸化カリウム3g/水10ミリリットルを加え、110℃で一晩反応させた。反応終了後、酢酸エチル/水を加えて分液し、溶媒留去後、粗結晶を得た。
続いて100ミリリットル丸底フラスコ中で上記粗結晶、中間体B0.05g(0.1mmol)、炭酸カリウム5g、銅粉0.3g及びニトロベンゼン20ミリリットルを加え、220℃で2日間加熱攪拌した。反応後析出晶を濾取してメタノールで洗浄後乾燥し、カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/1)で精製し、黄色粉末0.017gを得た。この粉末は、NMR、IR及びFD−MS(フィールドディソプーションマススペクトル)の測定により、化合物(2)と同定された(収率20%)。
Synthesis of Compound (2) 0.018 g (0.2 mmol) of aniline was dissolved in 5 ml of methylene chloride in a 100 ml round bottom flask, 0.05 g (0.5 mmol) of acetic anhydride was added, and the reaction was performed at room temperature for 1 hour. I let you. Thereafter, the reaction solvent was distilled off to obtain an oily compound. To this compound, 0.56 g (1.8 mmol) of intermediate A, 5 g of potassium carbonate, 0.3 g of copper powder and 20 ml of nitrobenzene were added, and the mixture was heated and stirred at 210 ° C. for 2 days. Thereafter, 10 ml of diethylene glycol and 3 g of potassium hydroxide / 10 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After completion of the reaction, ethyl acetate / water was added for liquid separation, and the solvent was distilled off to obtain crude crystals.
Subsequently, the above crude crystal, 0.05 g (0.1 mmol) of the intermediate B, 5 g of potassium carbonate, 0.3 g of copper powder and 20 ml of nitrobenzene were added in a 100 ml round bottom flask, and the mixture was heated and stirred at 220 ° C. for 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol, dried, and purified by column chromatography (silica gel, hexane / toluene = 1/1) to obtain 0.017 g of a yellow powder. This powder was identified as compound (2) by measurement of NMR, IR and FD-MS (field desorption mass spectrum) (yield 20%).

合成例2(化合物(9))
中間体Cの合成
200ミリリットル丸底フラスコ中でジフェニルアミン51.2g(0.3mol)、1,4−ジブロモベンゼン71.4g(0.3mol)、tBuOK34.6g(0.36mol)、PdCl2(PPh3)24.2g(5.9mmol)及びキシレン1.2リットルを混合し、130℃で一晩攪拌した。
反応終了後、有機層を濃縮し褐色結晶約100gを得た。この結晶をカラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=10/1)で精製し、下記中間体C28g(収率29%)を得た。

Figure 0004410291
Synthesis Example 2 (Compound (9))
Synthesis of Intermediate C 51.2 g (0.3 mol) of diphenylamine, 71.4 g (0.3 mol) of 1,4-dibromobenzene, 34.6 g (0.36 mol) of tBuOK, PdCl 2 (PPh) in a 200 ml round bottom flask. 3 ) 4.2 g (5.9 mmol) of 2 and 1.2 liters of xylene were mixed and stirred at 130 ° C. overnight.
After completion of the reaction, the organic layer was concentrated to obtain about 100 g of brown crystals. The crystals were purified by column chromatography (silica gel, hexane / toluene = 10/1) to obtain 28 g of the following intermediate C (yield 29%).
Figure 0004410291

化合物(9)の合成
100ミリリットル丸底フラスコ中で中間体B0.48g(1mmol)にジエチルエーテル10ミリリットルを加え、−78℃に冷却した。そこへn−ブチルリチウム2ミリリットル(1.5M,3mmol)を加え、1時間攪拌した。次にほう酸トリメチル0.3g(3mmol)/ジエチルエーテル5ミリリットルを滴下した。滴下終了後、−78℃にて1時間攪拌し、室温にて1N−塩酸水10ミリリットルを加えた。有機層を分液後、溶媒を留去して粗結晶を得た。100ミリリットル丸底フラスコ中で、上記粗結晶、中間体C 0.97g(3mmol)、Pd(PPh3)412mg、リン酸カリウム0.32g(1.5mmol)及びDMF10ミリリットルを加え、100℃で4時間攪拌した。有機層を分液後、溶媒を留去して粗結晶を得た。この粗結晶をカラムクロマトグラフ(シリカゲル、ベンゼン/酢酸エチル=50/1)で精製し、黄色粉末0.13gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(9)と同定された(収率14%)。
Synthesis of Compound (9) In a 100 ml round bottom flask, 10 ml of diethyl ether was added to 0.48 g (1 mmol) of Intermediate B and cooled to -78 ° C. Thereto was added 2 ml (1.5 M, 3 mmol) of n-butyllithium, followed by stirring for 1 hour. Next, 0.3 g (3 mmol) of trimethyl borate / 5 ml of diethyl ether was added dropwise. After completion of the dropwise addition, the mixture was stirred at -78 ° C for 1 hour, and 10 ml of 1N hydrochloric acid water was added at room temperature. After separating the organic layer, the solvent was distilled off to obtain crude crystals. In a 100 ml round bottom flask, add the above crude crystals, intermediate C 0.97 g (3 mmol), Pd (PPh 3 ) 4 12 mg, potassium phosphate 0.32 g (1.5 mmol) and DMF 10 ml, at 100 ° C. Stir for 4 hours. After separating the organic layer, the solvent was distilled off to obtain crude crystals. The crude crystals were purified by column chromatography (silica gel, benzene / ethyl acetate = 50/1) to obtain 0.13 g of a yellow powder. This powder was identified as Compound (9) by NMR, IR and FD-MS measurements (yield 14%).

合成例3(化合物(18))
中間体Dの合成
1,4−ジブロモベンゼン0.48g(2.0mmol)に、Mg及びジエチルエーテルを加えてGrignard試薬を調製した。別途、100ミリリットル丸底フラスコ中に、1,4−ジブロモナフタレン5.7g(20.0mmol)、NiCl2(dppp)10mg及びジエチルエーテル20ミリリットルを加え、氷欲で冷却した。そこへ上記Grignard試薬を加え、6時間加熱還流した。反応終了後、1N−塩酸水10ミリリットルを加えた。有機層を分液後、溶媒を留去して下記中間体D0.30(収率30%)を得た。

Figure 0004410291
Synthesis Example 3 (Compound (18))
Synthesis of Intermediate D Grignard reagent was prepared by adding Mg and diethyl ether to 0.48 g (2.0 mmol) of 1,4-dibromobenzene. Separately, 5.7 g (20.0 mmol) of 1,4-dibromonaphthalene, 10 mg of NiCl 2 (dppp) and 20 ml of diethyl ether were added to a 100 ml round bottom flask and cooled with ice greed. The said Grignard reagent was added there, and it heated and refluxed for 6 hours. After completion of the reaction, 10 ml of 1N hydrochloric acid water was added. After separating the organic layer, the solvent was distilled off to obtain the following intermediate D0.30 (yield 30%).
Figure 0004410291

化合物(18)の合成
100ミリリットル丸底フラスコ中でアニリン0.09g(1.0mmol)を塩化メチレン5ミリリットルに溶解し、無水酢酸 0.25g(2.5mmol)を加え、室温にて1時間反応させた。その後、反応溶媒を留去してオイル状の化合物を得た。この化合物に、中間体A0.4g(4.5mmol)、炭酸カリウム5g、銅粉0.3g及びニトロベンゼ20ミリリットルを加え、210℃で2日間加熱攪拌した。その後、溶媒を留去し得られた残さに、ジエチレングリコール10ミリリットルと水酸化カリウム3g/水10ミリリットルを加え、110℃で一晩反応させた。反応終了後、酢酸エチル/水を加えて分液し、溶媒留去後、粗結晶を得た。
続いて100ミリリットル丸底フラスコ中で、上記粗結晶、中間体D0.5g(1.0mmol)、炭酸カリウム5g、銅粉0.3g及びニトロベンゼン20ミリリットルを加え、220℃で2日間加熱攪拌した。反応後析出晶を濾取してメタノールで洗浄後乾燥し、カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/1)で精製し、黄色粉末0.1gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(18)と同定された(収率10%)。
Synthesis of Compound (18) 0.09 g (1.0 mmol) of aniline was dissolved in 5 ml of methylene chloride in a 100 ml round bottom flask, and 0.25 g (2.5 mmol) of acetic anhydride was added and reacted at room temperature for 1 hour. I let you. Thereafter, the reaction solvent was distilled off to obtain an oily compound. To this compound, 0.4 g (4.5 mmol) of Intermediate A, 5 g of potassium carbonate, 0.3 g of copper powder, and 20 ml of nitrobenzene were added and heated and stirred at 210 ° C. for 2 days. Thereafter, 10 ml of diethylene glycol and 3 g of potassium hydroxide / 10 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After completion of the reaction, ethyl acetate / water was added for liquid separation, and the solvent was distilled off to obtain crude crystals.
Subsequently, in the 100 ml round bottom flask, the above crude crystals, intermediate D 0.5 g (1.0 mmol), potassium carbonate 5 g, copper powder 0.3 g and nitrobenzene 20 ml were added, and the mixture was heated and stirred at 220 ° C. for 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol, dried, and purified by column chromatography (silica gel, hexane / toluene = 1/1) to obtain 0.1 g of a yellow powder. This powder was identified as the compound (18) by NMR, IR and FD-MS measurements (yield 10%).

参考例18
洗浄したITO電極付きガラス板上に、発光材料として上記化合物(30)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、ポリカーボネート樹脂(帝人化成:パンライトK−1300)を5:3:2の重量比でテトラヒドロフランに溶解させ、スピンコーティング法により膜厚100nmの発光層を得た。その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚150nmの電極を形成して有機EL素子を得た。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度320(cd/m2)、最高輝度14000(cd/m2)、発光効率2.5(lm/W)の発光が得られた。
Reference Example 18
On the washed glass plate with the ITO electrode, the above compound (30), 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, polycarbonate resin (Teijin Chemicals: Panlite K-) as the luminescent material. 1300) was dissolved in tetrahydrofuran at a weight ratio of 5: 3: 2, and a light emitting layer having a thickness of 100 nm was obtained by a spin coating method. On top of that, an electrode having a thickness of 150 nm was formed from an alloy in which aluminum and lithium were mixed at a ratio of 3% by weight of lithium to obtain an organic EL device. As for the light emission characteristics of this device, light emission with an emission luminance of 320 (cd / m 2 ), a maximum luminance of 14000 (cd / m 2 ), and an emission efficiency of 2.5 (lm / W) was obtained at an applied voltage of DC voltage 5V. .

参考例19
洗浄したITO電極付きガラス板上に、発光材料として上記化合物(37)を真空蒸着して膜厚100nmの発光層を作成し、その上に、フッ化リチウムで膜厚0.3nmの無機電子注入層を形成し、さらにアルミニウムで膜厚100nmの電極を形成して有機EL素子を得た。発光層は10-6Torrの真空中で、基板温度が室温の条件下で蒸着した。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度110(cd/m2)、最高輝度20000(cd/m2)、発光効率1.2(lm/W)の発光が得られた。
Reference Example 19
The compound (37) is vacuum-deposited as a luminescent material on a cleaned glass plate with an ITO electrode to form a luminescent layer with a film thickness of 100 nm, and an inorganic electron injection with a film thickness of 0.3 nm is formed thereon with lithium fluoride. A layer was formed, and an electrode having a film thickness of 100 nm was further formed from aluminum to obtain an organic EL element. The light emitting layer was deposited in a vacuum of 10 −6 Torr and the substrate temperature was room temperature. With respect to the light emission characteristics of this device, light emission with an emission luminance of 110 (cd / m 2 ), a maximum luminance of 20000 (cd / m 2 ), and an emission efficiency of 1.2 (lm / W) was obtained at an applied voltage of DC voltage 5V. .

参考例20
洗浄したITO電極付きガラス板上に、正孔注入材としてCuPcを真空蒸着して膜厚40nmの正孔注入層を形成した。次に正孔輸送材として上記化合物(47)を膜厚20nmの正孔輸送層を、さらに上記化合物(Alq)真空蒸着して膜厚60nmの発光層を形成し、発光層にルブレンを濃度4重量%となるように添加し、その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。各層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度約700(cd/m2)、最高輝度80000(cd/m2)、発光効率6.0(lm/W)の緑色発光が得られた。さらに初期発光輝度600(cd/m2)で、定電流駆動したところ半減寿命は4000時間と長かった。
Reference Example 20
On the cleaned glass plate with an ITO electrode, CuPc was vacuum deposited as a hole injecting material to form a 40 nm thick hole injecting layer. Next, as a hole transporting material, the compound (47) is vapor-deposited with a 20 nm-thick hole transport layer and the compound (Alq) is vacuum-deposited to form a 60-nm-thick light-emitting layer. An electrode having a thickness of 100 nm was formed from an alloy in which aluminum and lithium were mixed at a ratio of 3% by weight of lithium to obtain an organic EL device. Each layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this element are green light emission with an emission voltage of about 700 (cd / m 2 ), a maximum luminance of 80000 (cd / m 2 ), and a light emission efficiency of 6.0 (lm / W) at an applied voltage of DC 5V. It was. Further, when the device was driven at a constant current at an initial light emission luminance of 600 (cd / m 2 ), the half life was as long as 4000 hours.

実施例1〜3および参考例21〜30
洗浄したITO電極付きガラス板上に、第2表に示す正孔輸送材料を真空蒸着して膜厚20nmの正孔輸送層を得た。さらに、発光材料として上記化合物(Alq)を真空蒸着して膜厚60nmの発光層を作成し、発光層にルブレンを濃度4重量%となるように添加し、その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚150nmの膜厚の電極を形成して有機EL素子を得た。各層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性を第2表に示す。また本実施例の有機EL素子は、全て最高輝度10000(cd/m2)以上の高輝度特性を有していた。
Examples 1-3 and Reference Examples 21-30
On the washed glass plate with an ITO electrode, the hole transport material shown in Table 2 was vacuum-deposited to obtain a 20 nm-thick hole transport layer. Further, the above compound (Alq) is vacuum-deposited as a light emitting material to prepare a light emitting layer having a film thickness of 60 nm, and rubrene is added to the light emitting layer so as to have a concentration of 4% by weight. An electrode having a thickness of 150 nm was formed from an alloy mixed at a ratio of 3% by weight to obtain an organic EL element. Each layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this device are shown in Table 2. In addition, all the organic EL elements of this example had high luminance characteristics with a maximum luminance of 10,000 (cd / m 2 ) or more.

Figure 0004410291
Figure 0004410291

実施例4
洗浄したITO電極付きガラス板上に、正孔注入材として上記化合物(TPD74)を膜厚60nmに真空蒸着した。次に、正孔輸送材として上記化合物(NPD)を膜厚20nmに真空蒸着した。
次に、発光材料として4,4’−ビス(2,2−ジフェニルビニル)フェニルアントラセン(DPVDPAN)およびドーパントとして上記化合物(36)を、化合物(36)の割合が2重量%、膜厚40nmとなるように同時蒸着した。次に、電荷注入材として上記化合物(Alq)を膜厚20nmで蒸着し、さらにLiFを膜厚0.5nmで蒸着後アルミニウムを膜厚100nm蒸着し電極を形成して有機EL素子を得た。各層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性は、直流電圧8Vの印加電圧で発光輝度500(cd/m2)と高輝度で、色純度の優れた青色発光であった。さらに初期発光輝度100(cd/m2)で、定電流駆動したところ半減寿命は7000時間と長寿命であった。
尚、この素子の発光スペクトルを測定したところ、DPVBiと同一であった。すなわち、化合物(36)は発光には影響しないが、素子に長寿命を与える効果がある。
Example 4
On the cleaned glass plate with an ITO electrode, the above compound (TPD74) was vacuum deposited as a hole injecting material to a film thickness of 60 nm. Next, the compound (NPD) was vacuum-deposited to a thickness of 20 nm as a hole transport material.
Next, 4,4′-bis (2,2-diphenylvinyl) phenylanthracene (DPVDPAN) as a light emitting material and the compound (36) as a dopant, the ratio of the compound (36) is 2% by weight, and the film thickness is 40 nm. Co-deposited so that Next, the compound (Alq) was deposited as a charge injection material in a thickness of 20 nm, LiF was deposited in a thickness of 0.5 nm, and then aluminum was deposited in a thickness of 100 nm to form an electrode to obtain an organic EL device. Each layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this device were blue light emission with an emission luminance of 500 (cd / m 2 ) and a high luminance with an applied voltage of DC voltage of 8 V and excellent color purity. Further, when the device was driven at a constant current at an initial light emission luminance of 100 (cd / m 2 ), the half-life was 7000 hours, which was a long life.
The emission spectrum of this device was measured and found to be the same as DPVBi. That is, the compound (36) does not affect the light emission, but has an effect of giving the device a long life.

比較例3
ドーパントとして上記化合物(36)を添加しないことを除き、実施例4と同様にして有機EL素子を作製した。この素子について、初期発光輝度100(cd/m2)で、定電流駆動したところ半減寿命は4000時間と実施例4に比べ短かった。
Comparative Example 3
An organic EL device was produced in the same manner as in Example 4 except that the compound (36) was not added as a dopant. When this element was driven at a constant current at an initial light emission luminance of 100 (cd / m 2 ), the half-life was 4000 hours, which was shorter than that of Example 4 .

比較例4
正孔輸送材料として上記化合物(比較例2)を使用したことを除き、参考例20と同様にして有機EL素子を作製した。
得られた素子の発光特性は、直流電圧5Vの印加電圧で発光輝度300(cd/m2)、発光効率4.2(lm/W)であったが、初期発光輝度400(cd/m2)で定電流駆動したところ半減寿命は300時間と寿命が短かった。
Comparative Example 4
An organic EL device was produced in the same manner as in Reference Example 20 , except that the above compound (Comparative Example 2) was used as the hole transport material.
The light emission characteristics of the obtained device were a light emission luminance of 300 (cd / m 2 ) and a light emission efficiency of 4.2 (lm / W) at an applied voltage of DC voltage 5 V, but an initial light emission luminance of 400 (cd / m 2). ) Was driven at a constant current, the half-life was 300 hours, which was short.

耐熱性試験
参考例20、参考例24及び比較例4で作製した有機EL素子を、発光輝度を測定してから105℃の恒温槽内に入れ、一定の電流値で500時間経過後に再度発光輝度を測定し槽内に入れる前の発光輝度と比較して輝度保持率を算出した。
その結果、参考例20、参考例24、比較例4の有機EL素子の輝度保持率は、それぞれ87%、90%、25%であった。このように、比較例4で使用した発光材料の化合物はガラス転移温度が105℃以下であるため輝度を保持することができなかった。これに対し、参考例20、参考例24で使用した発光材料の化合物はガラス転移温度が110℃以上であるため耐熱性が高く、長時間に渡り充分輝度を保持することができる。
Heat resistance test
The organic EL elements prepared in Reference Example 20, Reference Example 24 and Comparative Example 4 were measured for emission luminance and then placed in a thermostatic chamber at 105 ° C., and the emission luminance was measured again after 500 hours at a constant current value. The luminance retention was calculated by comparison with the emission luminance before entering the tank.
As a result, the luminance retentions of the organic EL elements of Reference Example 20, Reference Example 24 , and Comparative Example 4 were 87%, 90%, and 25%, respectively. Thus, since the compound of the luminescent material used in Comparative Example 4 has a glass transition temperature of 105 ° C. or lower, the luminance could not be maintained. On the other hand, the compounds of the light emitting materials used in Reference Example 20 and Reference Example 24 have high heat resistance because the glass transition temperature is 110 ° C. or higher, and can maintain sufficient luminance for a long time.

合成例4(化合物(30))
中間体E(6,12−ジヨードクリセン)の合成
300ミリリットル丸底フラスコに、クリセン5g(22mmol)、四塩化炭素100ミリリットルを入れ、ヨウ素/四塩化炭素16g(64mmol/100ミリリットル)を室温で少しずつ滴下し反応させた。反応液を5時間加熱攪拌した後、析出した結晶を濾取し、四塩化炭素100ミリリットルで洗浄した。得られた粗結晶をトルエン200ミリリットルで再結晶させ、中間体E(収率35%)を得た。
Synthesis Example 4 (Compound (30))
Synthesis of Intermediate E (6,12-diiodochrysene) In a 300 ml round bottom flask, 5 g (22 mmol) of chrysene and 100 ml of carbon tetrachloride were placed, and 16 g of iodine / carbon tetrachloride (64 mmol / 100 ml) was added at room temperature. The reaction was carried out dropwise. After the reaction solution was heated and stirred for 5 hours, the precipitated crystals were collected by filtration and washed with 100 ml of carbon tetrachloride. The obtained crude crystals were recrystallized with 200 ml of toluene to obtain an intermediate E (yield 35%).

化合物(30)の合成
100ミリリットル二口フラスコ中で、4−アミノスチルベン2g(10mmol)を塩化メチレン20ミリリットルに溶解し、無水酢酸2.5g(25mmol)を加え、室温にて1時間反応させた。その後、反応溶媒を留去してオイル状の化合物を得た。300ミリリットル二口フラスコ中で、この化合物に、ヨードベンゼン4.1g(20mmol)、炭酸カリウム3g(30mmol)、銅粉0.06g(1mmol)及びニトロベンゼン100ミリリットルを加え、220℃で2日間加熱攪拌した。その後、溶媒を留去し得られた残さに、ジエチレングリコール10ミリリットルと水酸化カリウム 30g/水100ミリリットルを加え、110℃で一晩反応させた。反応終了後、酢酸エチル/水を加えて分液し、溶媒留去後、粗結晶を得た。
300ミリリットル二口フラスコ中で、得られた粗結晶と中間体E2.4g(5mmol)、炭酸カリウム3g(20mmol)、銅粉0.06g(1mmol)及びニトロベンゼン100ミリリットルを加え、230℃で2日間加熱攪拌した。反応後析出晶を濾取してメタノールで洗浄後乾燥し、カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/1)で精製し、黄色粉末
1.0gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(30)と同定された(収率25%)。
Synthesis of Compound (30) In a 100 ml two-necked flask, 2 g (10 mmol) of 4-aminostilbene was dissolved in 20 ml of methylene chloride, 2.5 g (25 mmol) of acetic anhydride was added and reacted at room temperature for 1 hour. . Thereafter, the reaction solvent was distilled off to obtain an oily compound. In a 300 ml two-necked flask, 4.1 g (20 mmol) of iodobenzene, 3 g (30 mmol) of potassium carbonate, 0.06 g (1 mmol) of copper powder and 100 ml of nitrobenzene were added to this compound, and the mixture was heated and stirred at 220 ° C. for 2 days. did. Thereafter, 10 ml of diethylene glycol and 30 g of potassium hydroxide / 100 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After completion of the reaction, ethyl acetate / water was added for liquid separation, and the solvent was distilled off to obtain crude crystals.
In a 300 ml two-necked flask, 2.4 g (5 mmol) of the obtained crude crystal, intermediate E 3 g (20 mmol), potassium carbonate 3 g (20 mmol), copper powder 0.06 g (1 mmol) and nitrobenzene 100 ml were added, and 230 ° C. for 2 days. Stir with heating. After the reaction, the precipitated crystals were collected by filtration, washed with methanol, dried, and purified by column chromatography (silica gel, hexane / toluene = 1/1) to obtain 1.0 g of a yellow powder. This powder was identified as Compound (30) by NMR, IR, and FD-MS measurements (yield 25%).

合成例5(化合物(36))
化合物(36)の合成
100ミリリットル丸底フラスコ中でジフェニルアミン3.4g(20mmol)、中間体E4.8g(10mmol)、炭酸カリウム3g(30mmol)、銅粉0.06g(1mmol)及びニトロベンゼン100ミリリットルを加え、210℃で2日間加熱攪拌した。反応後析出晶を濾取してメタノールで洗浄後乾燥し、カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/1)で精製し、黄色粉末2.8gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(36)と同定された(収率50%)。
Synthesis Example 5 (Compound (36))
Synthesis of Compound (36) In a 100 ml round bottom flask was added 3.4 g (20 mmol) of diphenylamine, 4.8 g (10 mmol) of intermediate E, 3 g (30 mmol) of potassium carbonate, 0.06 g (1 mmol) of copper powder and 100 ml of nitrobenzene. In addition, the mixture was stirred at 210 ° C. for 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol, dried, and purified by column chromatography (silica gel, hexane / toluene = 1/1) to obtain 2.8 g of a yellow powder. This powder was identified as Compound (36) by NMR, IR, and FD-MS measurements (yield 50%).

合成例6(化合物(38))
化合物(38)の合成
アルゴン気流下100ミリリットル四口フラスコに、マグネシウム1.0g(41mmol)、THF1ミリリットル、ヨウ素の小片を入れ、4−ブロモトリフェニルアミン9.7g(30mmol)/THF100ミリリットルを室温で少しずつ滴下し、滴下終了後60℃で1時間加熱攪拌しGrignard試薬を調製した。
アルゴン気流下300ミリリットル四口フラスコに、中間体E4.8g(10mmol)、THF50ミリリットル、PdCl2(PPh3)20.28g(0.4mmol)及びAlH(iso−Bu)2/1.0Mトルエン溶液1.0ミリリットル(1mmol)を入れ、上記Grignard試薬を室温で滴下した後、昇温して一晩還流させた。反応終了後、反応液を氷水冷却して析出晶を濾取し、アセトンで洗浄した。得られた粗結晶をアセトン100ミリリットルで再結晶させ、黄色粉末4.3gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(38)と同定された(収率60%)。
Synthesis Example 6 (Compound (38))
Synthesis of Compound (38) 1.0 g (41 mmol) of magnesium, 1 ml of THF, and a small piece of iodine were placed in a 100 ml four-necked flask under an argon stream, and 9.7 g (30 mmol) of 4-bromotriphenylamine / 100 ml of THF was added at room temperature. After the dropwise addition, the mixture was heated and stirred at 60 ° C. for 1 hour to prepare a Grignard reagent.
In a 300 ml four-necked flask under an argon stream, Intermediate E 4.8 g (10 mmol), THF 50 ml, PdCl 2 (PPh 3 ) 2 0.28 g (0.4 mmol) and AlH (iso-Bu) 2 /1.0 M toluene 1.0 ml (1 mmol) of the solution was added, and the above Grignard reagent was added dropwise at room temperature, followed by heating to reflux overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with acetone. The obtained crude crystals were recrystallized with 100 ml of acetone to obtain 4.3 g of yellow powder. This powder was identified as Compound (38) by NMR, IR and FD-MS measurements (yield 60%).

合成例7(化合物(47))
化合物(47)の合成
100ミリリットル二口フラスコ中で、6−アミノクリセン2.4g(10mmol)を塩化メチレン 20ミリリットルに溶解し、無水酢酸2.5g(25mmol)を加え、室温にて1時間反応させた。その後、反応溶媒を留去してオイル状の化合物を得た。300ミリリットル二口フラスコ中で、この化合物に、ヨードベンゼン4.1g(20mmol)、炭酸カリウム3g(30mmol)、銅粉 0.06g(1mmol)及びニトロベンゼン100ミリリットルを加え、220℃で2日間加熱攪拌した。その後、溶媒を留去し得られた残さに、ジエチレングリコール10ミリリットルと水酸化カリウム30g/水100ミリリットルを加え、110℃で一晩反応させた。反応終了後、酢酸エチル/水を加えて分液し、溶媒留去後、粗結晶を得た。
300ミリリットル二口フラスコ中で、得られた粗結晶と4,4’−ジヨードビフェニル2g(5mmol)、炭酸カリウム3g(30mmol)、銅粉0.06g(1mmol)及びニトロベンゼン100ミリリットルを加え、230℃で2日間加熱攪拌した。反応後析出晶を濾取してメタノールで洗浄後乾燥し、カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/3)で精製し、黄色粉末 0.8gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(47)と同定された(収率30%)。
Synthesis Example 7 (Compound (47))
Synthesis of Compound (47) In a 100 ml two-necked flask, 2.4 g (10 mmol) of 6-aminochrysene was dissolved in 20 ml of methylene chloride, 2.5 g (25 mmol) of acetic anhydride was added, and the reaction was performed at room temperature for 1 hour. I let you. Thereafter, the reaction solvent was distilled off to obtain an oily compound. In a 300 ml two-necked flask, 4.1 g (20 mmol) of iodobenzene, 3 g (30 mmol) of potassium carbonate, 0.06 g (1 mmol) of copper powder and 100 ml of nitrobenzene were added to this compound, and the mixture was heated and stirred at 220 ° C. for 2 days. did. Thereafter, 10 ml of diethylene glycol and 30 ml of potassium hydroxide / 100 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After completion of the reaction, ethyl acetate / water was added for liquid separation, and the solvent was distilled off to obtain crude crystals.
In a 300 ml two-necked flask, the obtained crude crystals, 2,4′-diiodobiphenyl 2 g (5 mmol), potassium carbonate 3 g (30 mmol), copper powder 0.06 g (1 mmol) and nitrobenzene 100 ml were added. The mixture was stirred at 2 ° C. for 2 days. After the reaction, the precipitated crystals were collected by filtration, washed with methanol, dried, and purified by column chromatography (silica gel, hexane / toluene = 1/3) to obtain 0.8 g of a yellow powder. This powder was identified as Compound (47) by NMR, IR and FD-MS measurements (yield 30%).

参考例31
洗浄したITO電極付きガラス板上に、発光材料として上記化合物(58)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、ポリカーボネート樹脂(帝人化成:パンライトK−1300)を5:2:2の重量比でテトラヒドロフランに溶解させ、スピンコーティング法により膜厚100nmの発光層を得た。その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚150nmの電極を形成して有機EL素子を得た。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度130(cd/m2)、最高輝度14000(cd/m2)、発光効率1.2(lm/W)の黄橙色発光が得られた。
Reference Example 31
On the washed glass plate with an ITO electrode, the above compound (58), 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, polycarbonate resin (Teijin Chemicals: Panlite K-) 1300) was dissolved in tetrahydrofuran at a weight ratio of 5: 2: 2, and a light emitting layer having a thickness of 100 nm was obtained by a spin coating method. On top of that, an electrode having a thickness of 150 nm was formed from an alloy in which aluminum and lithium were mixed at a ratio of 3% by weight of lithium to obtain an organic EL device. The light emission characteristics of this element are yellow-orange light emission with a light emission luminance of 130 (cd / m 2 ), a maximum luminance of 14000 (cd / m 2 ), and a light emission efficiency of 1.2 (lm / W) at a DC voltage of 5V. It was.

参考例32
洗浄したITO電極付きガラス板上に、発光材料として上記化合物(71)を真空蒸着して膜厚100nmの発光層を作成し、その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。発光層は10-6Torrの真空中で、基板温度が室温の条件下で蒸着した。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度120(cd/m2)、最高輝度1800(cd/m2)、発光効率0.3(lm/W)の橙色発光が得られた。
Reference Example 32
On the washed glass plate with an ITO electrode, the compound (71) as a luminescent material was vacuum-deposited to form a luminescent layer having a thickness of 100 nm, and aluminum and lithium were mixed at a ratio of 3% by weight of lithium thereon. An electrode having a film thickness of 100 nm was formed from an alloy to obtain an organic EL device. The light emitting layer was deposited in a vacuum of 10 −6 Torr and the substrate temperature was room temperature. The light emission characteristic of this element is that an orange light emission having an emission luminance of 120 (cd / m 2 ), a maximum luminance of 1800 (cd / m 2 ), and an emission efficiency of 0.3 (lm / W) can be obtained at an applied voltage of DC voltage of 5V. It was.

参考例33
洗浄したITO電極付きガラス板上に、発光材料として上記化合物(71)を真空蒸着して膜厚50nmの発光層を形成した。次いで、上記化合物(Alq)を真空蒸着して膜厚10nmの電子注入層を作成し、その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。発光層および電子注入層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度約200(cd/m2)、最高輝度12000(cd/m2)、発光効率1.0(lm/W)の橙色発光が得られた。
Reference Example 33
On the washed glass plate with an ITO electrode, the compound (71) as a luminescent material was vacuum-deposited to form a luminescent layer having a thickness of 50 nm. Next, the compound (Alq) is vacuum-deposited to form an electron injection layer having a thickness of 10 nm, and an electrode having a thickness of 100 nm is formed thereon using an alloy in which aluminum and lithium are mixed at a ratio of 3% by weight of lithium. Thus, an organic EL element was obtained. The light emitting layer and the electron injection layer were deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this element are orange light emission with an emission voltage of about 200 (cd / m 2 ), a maximum luminance of 12000 (cd / m 2 ), and a light emission efficiency of 1.0 (lm / W) at a DC voltage of 5V. It was.

参考例34〜42
洗浄したITO電極付きガラス板上に、第3表に示す発光材料を真空蒸着して膜厚80nmの発光層を得た。さらに、電子注入材料として上記化合物(Alq)を真空蒸着して膜厚20nmの電子注入層を作成し、その上に、アルミニウムとリチウムをリチウム3重量%の割合で混合した合金で膜厚150nmの膜厚の電極を形成して有機EL素子を得た。各層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性を第3表に示す。また本参考例の有機EL素子は、全て最高輝度5000(cd/m2)以上の高輝度特性を有していた。
Reference Examples 34-42
On the washed glass plate with an ITO electrode, the light emitting material shown in Table 3 was vacuum-deposited to obtain a light emitting layer having a thickness of 80 nm. Further, the compound (Alq) is vacuum-deposited as an electron injecting material to form an electron injecting layer having a thickness of 20 nm, and an alloy in which aluminum and lithium are mixed at a ratio of 3% by weight of aluminum is formed thereon with a thickness of 150 nm. An electrode having a film thickness was formed to obtain an organic EL element. Each layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this device are shown in Table 3. The organic EL elements of this reference example all had high luminance characteristics with a maximum luminance of 5000 (cd / m 2 ) or more.

Figure 0004410291
Figure 0004410291

参考例43
洗浄したITO電極付きガラス板上に、正孔注入材として上記化合物(TPD74)を膜厚60nmに真空蒸着した。次に、正孔輸送材として下記化合物(NPD)を膜厚20nmに真空蒸着した。
Reference Example 43
On the cleaned glass plate with an ITO electrode, the above compound (TPD74) was vacuum deposited as a hole injecting material to a film thickness of 60 nm. Next, the following compound (NPD) was vacuum deposited as a hole transporting material to a film thickness of 20 nm.

次に、発光材料として4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(DPVBi)および上記化合物(58)を、化合物(58)の割合が5重量%、膜厚40nmとなるように同時蒸着した。尚、化合物(58)は蛍光性のドーパントとして機能する。次に、電荷注入材として上記化合物(Alq)を膜厚20nmで蒸着し、さらにLiFを膜厚0.5nmで蒸着後アルミニウムを膜厚100nm蒸着し電極を形成して有機EL素子を得た。各層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性は、直流電圧5Vの印加電圧で黄色発光輝度600(cd/m2)と高輝度であった。さらに初期発光輝度400(cd/m2)で、定電流駆動したところ半減寿命は2800時間と長寿命であった。 Next, 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVBi) and the above compound (58) are used as the light emitting material so that the ratio of the compound (58) is 5% by weight and the film thickness is 40 nm. Co-deposited. Compound (58) functions as a fluorescent dopant. Next, the compound (Alq) was deposited as a charge injection material in a thickness of 20 nm, LiF was deposited in a thickness of 0.5 nm, and then aluminum was deposited in a thickness of 100 nm to form an electrode to obtain an organic EL device. Each layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this device were as high as yellow light emission luminance 600 (cd / m 2 ) at an applied voltage of DC voltage 5V. Further, when the device was driven at a constant current at an initial light emission luminance of 400 (cd / m 2 ), the half life was as long as 2800 hours.

参考例44
発光材料として上記化合物(Alq)およびドーパントとして上記化合物(61)を、化合物(61)の割合が5重量%となるように同時蒸着して発光層を形成したことを除き、参考例43と同様にして有機EL素子を作製した。この素子の発光特性は、直流電圧5Vの印加電圧で発光輝度240(cd/m2)の赤色発光が得られ。さらに初期発光輝度400(cd/m2)で、定電流駆動したところ半減寿命は3200時間と長寿命であった。
Reference Example 44
The same as Reference Example 43 , except that the above compound (Alq) as a luminescent material and the above compound (61) as a dopant were co-evaporated so that the proportion of the compound (61) was 5% by weight to form a luminescent layer. Thus, an organic EL element was produced. The light emission characteristic of this element is that red light emission having a light emission luminance of 240 (cd / m 2 ) can be obtained at an applied voltage of DC voltage 5V. Further, when the device was driven at a constant current at an initial light emission luminance of 400 (cd / m 2 ), the half life was as long as 3200 hours.

比較例5
発光材料として上記化合物(比較例1)を使用したことを除き、参考例31と同様にして有機EL素子を作製した。
得られた素子の発光特性は、直流電圧5Vの印加電圧で発光輝度60(cd/m2)、発光効率0.34(lm/W)と充分な性能が得られなかった。また、発光色は青色であった。
Comparative Example 5
An organic EL device was produced in the same manner as in Reference Example 31 except that the above compound (Comparative Example 1) was used as the light emitting material.
With respect to the light emission characteristics of the obtained device, sufficient performance was not obtained with a light emission luminance of 60 (cd / m 2 ) and a light emission efficiency of 0.34 (lm / W) at an applied voltage of DC voltage of 5V. The emission color was blue.

比較例6
発光材料として上記化合物(比較例2)を使用したことを除き、参考例33と同様にして有機EL素子を作製した。
得られた素子の発光特性は、直流電圧5Vの印加電圧で発光輝度200(cd/m2)、発光効率1.2(lm/W)であったが、初期発光輝度400(cd/m2)で定電流駆動したところ半減寿命は600時間と寿命が短かった。また、発光色は青色であった。
Comparative Example 6
An organic EL device was produced in the same manner as in Reference Example 33 except that the above compound (Comparative Example 2) was used as the light emitting material.
The light emitting characteristics of the obtained device were an emission luminance of 200 (cd / m 2 ) and an emission efficiency of 1.2 (lm / W) at an applied voltage of DC voltage of 5 V, but an initial emission luminance of 400 (cd / m 2). ) Was driven at a constant current, the half-life was 600 hours, which was short. The emission color was blue.

比較例7
発光材料の上記化合物(58)の代わりに、上記化合物(比較例1)を使用したことを除き、参考例43と同様にして有機EL素子を作製した。
得られた素子の発光特性は、直流電圧5Vの印加電圧で発光輝度200(cd/m2)であったが、初期発光輝度400(cd/m2)で定電流駆動したところ半減寿命は700時間と寿命が短く、発光色は青色であった。
Comparative Example 7
An organic EL device was produced in the same manner as in Reference Example 43 except that the above compound (Comparative Example 1) was used instead of the above compound (58) of the light emitting material.
The light emitting characteristics of the obtained device were a light emission luminance of 200 (cd / m 2 ) at an applied voltage of DC voltage of 5V, but when driven at a constant current with an initial light emission luminance of 400 (cd / m 2 ), the half life was 700. The time and life were short and the emission color was blue.

合成例8(化合物(58))
中間体F(5,11−ジブロモナフタセン)の合成
2リットル丸底フラスコに、5,12−ナフタセンキノン 50g(0.19mmol)、塩化第二錫108g(0.57mmol)、酢酸 500ミリリットル、濃塩酸200ミリリットルを入れ、2時間加熱攪拌し反応させた。反応終了後、析出した結晶を濾取し、水洗浄した後、減圧乾燥機にて一晩乾燥し、粗結晶48gを得た。
アルゴン気流下2リットル四口フラスコに、得られた粗結晶、トリフェニルフォスフィン50g(0.19mmol)、DMF300ミリリットルを入れ、臭素64g(0.4mmol)/DMF200ミリリットルを室温で少しずつ滴下し反応させた。滴下終了後、200℃で一晩加熱攪拌した。反応終了後、減圧蒸留でDMFを留去し、残さに水200ミリリットルを加えた。有機層をトルエン抽出し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで減圧濃縮し、オイル状の化合物を得た。カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/1)で精製し、黄色粉末30gを得た。この粉末は、NMR、IR及びFD−MSの測定により、中間体Fと同定された(収率40%)。
Synthesis Example 8 (Compound (58))
Synthesis of intermediate F (5,11-dibromonaphthacene) In a 2 liter round bottom flask, 50 g (0.19 mmol) of 5,12-naphthacenequinone, 108 g (0.57 mmol) of stannic chloride, 500 ml of acetic acid, concentrated hydrochloric acid 200 milliliters was added, and the reaction was conducted by heating and stirring for 2 hours. After completion of the reaction, the precipitated crystals were collected by filtration, washed with water, and dried overnight in a vacuum dryer to obtain 48 g of crude crystals.
The obtained crude crystals, 50 g (0.19 mmol) of triphenylphosphine and 300 ml of DMF were placed in a 2 liter four-necked flask under an argon stream, and 64 g (0.4 mmol) of bromine / 200 ml of DMF were added dropwise at room temperature. I let you. After completion of dropping, the mixture was stirred with heating at 200 ° C. overnight. After completion of the reaction, DMF was removed by distillation under reduced pressure, and 200 ml of water was added to the residue. The organic layer was extracted with toluene, dried over magnesium sulfate, and concentrated under reduced pressure using a rotary evaporator to obtain an oily compound. Purification by column chromatography (silica gel, hexane / toluene = 1/1) gave 30 g of yellow powder. This powder was identified as Intermediate F (yield 40%) by NMR, IR and FD-MS measurements.

化合物(58)の合成
100ミリリットル二口フラスコ中で、4−アミノスチルベン2g(10mmol)を塩化メチレン20ミリリットルに溶解し、無水酢酸2.5g(25mmol)を加え、室温にて1時間反応させた。その後、反応溶媒を留去してオイル状の化合物を得た。300ミリリットル二口フラスコ中で、この化合物に、ヨードベンゼン4.1g(20mmol)、炭酸カリウム3g(30mmol)、銅粉0.06g(1mmol)及びニトロベンゼン100ミリリットルを加え、220℃で2日間加熱攪拌した。その後、溶媒を留去し得られた残さに、ジエチレングリコール10ミリリットルと水酸化カリウム30g/水100ミリリットルを加え、110℃で一晩反応させた。反応終了後、酢酸エチル/水を加えて分液し、溶媒留去後、粗結晶を得た。
アルゴン気流下100ミリリットル二口フラスコ中で、得られた粗結晶、中間体F1.9g(5mmol)、tBuOK1.3g(12mmol)、PdCl2(PPh3)240mg(5mol%)及びキシレン30ミリリットルを混合し、130℃で一晩攪拌し反応させた。反応終了後、析出晶を濾取し、メタノールで洗浄した。カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/1)で精製し、黄色粉末0.9gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(58)と同定された(収率25%)。
Synthesis of Compound (58) In a 100 ml two-necked flask, 2 g (10 mmol) of 4-aminostilbene was dissolved in 20 ml of methylene chloride, 2.5 g (25 mmol) of acetic anhydride was added and reacted at room temperature for 1 hour. . Thereafter, the reaction solvent was distilled off to obtain an oily compound. In a 300 ml two-necked flask, 4.1 g (20 mmol) of iodobenzene, 3 g (30 mmol) of potassium carbonate, 0.06 g (1 mmol) of copper powder and 100 ml of nitrobenzene were added to this compound, and the mixture was heated and stirred at 220 ° C. for 2 days. did. Thereafter, 10 ml of diethylene glycol and 30 ml of potassium hydroxide / 100 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After completion of the reaction, ethyl acetate / water was added for liquid separation, and the solvent was distilled off to obtain crude crystals.
In a 100 ml two-necked flask under an argon stream, the obtained crude crystals, intermediate F 1.9 g (5 mmol), tBuOK 1.3 g (12 mmol), PdCl 2 (PPh 3 ) 2 40 mg (5 mol%) and xylene 30 ml were added. The mixture was stirred and reacted at 130 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration and washed with methanol. Purification by column chromatography (silica gel, hexane / toluene = 1/1) gave 0.9 g of a yellow powder. This powder was identified as the compound (58) by NMR, IR and FD-MS measurements (yield 25%).

合成例9(化合物(59))
化合物(59)の合成
アルゴン気流下300ミリリットル四口フラスコに、4−ヒドロキシスチルベン2g(10mmol)、トリフェニルフォスフィン5.2g(20mmol)、DMF50ミリリットルを入れ、ヨウ素 5g(20mmol)/DMF50ミリリットルを室温で少しずつ滴下し反応させた。滴下終了後、200℃で一晩攪拌した。反応終了後、減圧蒸留でDMFを留去し、残さに水 200ミリリットルを加えた。有機層をトルエンで抽出し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで減圧濃縮し、オイル状の化合物を得た。カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/1)で精製し、黄色粉末2.5gを得た。
別途、100ミリリットル二口フラスコ中で、4−アミノスチルベン2g(10mmol)を塩化メチレン 20ミリリットルに溶解し、無水酢酸2.5g(25mmol)を加え、室温にて1時間反応させた。その後、反応溶媒を留去してオイル状の化合物を得た。
300ミリリットル二口フラスコ中で、この化合物に、上記黄色粉末2.5g、炭酸カリウム3g(30mmol)、銅粉0.06g(1mmol)及びニトロベンゼン100ミリリットルを加え、220℃で2日間加熱攪拌した。その後、溶媒を留去し得られた残さに、ジエチレングリコール10ミリリットルと水酸化カリウム30g/水100ミリリットルを加え、110℃で一晩反応させた。反応終了後、酢酸エチル/水を加えて分液し、溶媒留去後、粗結晶を得た。
300ミリリットル二口フラスコ中で、上記粗結晶、中間体F2.4g(5mmol)、tBuOK1.3g(12mmol)、PdCl2(PPh3)240mg(5mol%)及びキシレン30ミリリットルを混合し、130℃で一晩攪拌し反応させた。反応終了後、析出晶を濾取し、メタノールで洗浄、乾燥した。カラムクロマトグラフ(シリカゲル、ヘキサン/トルエン=1/1)で精製し、黄色粉末0.2gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(59)と同定された(収率5%)。
Synthesis Example 9 (Compound (59))
Synthesis of Compound (59) 4-hydroxystilbene 2 g (10 mmol), triphenylphosphine 5.2 g (20 mmol), and DMF 50 ml were placed in a 300 ml four-necked flask under an argon stream, and iodine 5 g (20 mmol) / DMF 50 ml was added. The reaction was carried out dropwise at room temperature. After completion of dropping, the mixture was stirred overnight at 200 ° C. After completion of the reaction, DMF was removed by distillation under reduced pressure, and 200 ml of water was added to the residue. The organic layer was extracted with toluene, dried over magnesium sulfate, and concentrated under reduced pressure using a rotary evaporator to obtain an oily compound. Purification by column chromatography (silica gel, hexane / toluene = 1/1) gave 2.5 g of yellow powder.
Separately, in a 100 ml two-necked flask, 2 g (10 mmol) of 4-aminostilbene was dissolved in 20 ml of methylene chloride, 2.5 g (25 mmol) of acetic anhydride was added, and reacted at room temperature for 1 hour. Thereafter, the reaction solvent was distilled off to obtain an oily compound.
In a 300 ml two-necked flask, 2.5 g of the above yellow powder, 3 g (30 mmol) of potassium carbonate, 0.06 g (1 mmol) of copper powder and 100 ml of nitrobenzene were added to this compound, and the mixture was heated and stirred at 220 ° C. for 2 days. Thereafter, 10 ml of diethylene glycol and 30 ml of potassium hydroxide / 100 ml of water were added to the residue obtained by distilling off the solvent, and the mixture was reacted at 110 ° C. overnight. After completion of the reaction, ethyl acetate / water was added for liquid separation, and the solvent was distilled off to obtain crude crystals.
In a 300 ml two-necked flask, the above crude crystals, 2.4 g (5 mmol) of intermediate F, 1.3 g (12 mmol) of tBuOK, 40 mg (5 mol%) of PdCl 2 (PPh 3 ) 2 and 30 ml of xylene were mixed, and 130 ° C. And reacted overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with methanol and dried. Purification by column chromatography (silica gel, hexane / toluene = 1/1) gave 0.2 g of yellow powder. This powder was identified as Compound (59) by NMR, IR, and FD-MS measurements (yield 5%).

合成例10(化合物(61))
化合物(61)の合成
アルゴン気流下300ミリリットル四口フラスコに、4−ブロモトリフェニルアミン9.7g(30mmol)、トルエン50ミリリットル及びジエチルエーテル50ミリリットルを入れ、氷水で冷却し、n−ブチルリチウム/ヘキサン22ミリリットル(1.52mol/リットル、33mmol)/THF100ミリリットルを室温で少しずつ滴下し反応させた。滴下終了後、同温で一晩攪拌した。反応終了後、水50ミリリットルを加え、有機層をジエチルエーテルで抽出し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで減圧濃縮し、オイル状の化合物7.4gを得た。
300ミリリットル四口フラスコに、上記化合物、ヨウ化カリウム6.6g(40mmol)及び酢酸100ミリリットルを入れ、一時間加熱還流させた。反応終了後、室温まで冷却して析出晶を濾取した。得られた結晶を水とアセトンで洗浄して橙色固体2.7gを得た。この橙色固体は、NMR、IR及びFD−MSの測定により、化合物(61)と同定された(収率35%)。
Synthesis Example 10 (Compound (61))
Synthesis of Compound (61) In a 300 ml four-necked flask under an argon stream, 9.7 g (30 mmol) of 4-bromotriphenylamine, 50 ml of toluene, and 50 ml of diethyl ether were cooled with ice water, and n-butyllithium / Hexane 22 ml (1.52 mol / liter, 33 mmol) / THF 100 ml was added dropwise at room temperature to cause the reaction. After completion of dropping, the mixture was stirred overnight at the same temperature. After completion of the reaction, 50 ml of water was added, and the organic layer was extracted with diethyl ether, dried over magnesium sulfate, and concentrated under reduced pressure using a rotary evaporator to obtain 7.4 g of an oily compound.
In a 300 ml four-necked flask, the above compound, 6.6 g (40 mmol) of potassium iodide and 100 ml of acetic acid were placed and heated to reflux for 1 hour. After completion of the reaction, the mixture was cooled to room temperature and the precipitated crystals were collected by filtration. The obtained crystals were washed with water and acetone to obtain 2.7 g of an orange solid. This orange solid was identified as Compound (61) by NMR, IR and FD-MS measurements (yield 35%).

合成例11(化合物(62))
中間体G(5,11−ジヨードナフタセン)の合成
500ミリリットル丸底フラスコに、ナフタセン 50g(0.22mmol)、テトラクロロエタン 200ミリリットルを入れ、ヨウ素/四塩化炭素 160g(0.64mol/200ミリリットル)を室温で少しずつ滴下し反応させた。反応液を5時間加熱攪拌した後、析出した結晶を濾取し、メタノール 500ミリリットルで洗浄した。得られた粗結晶をトルエン200ミリリットルで再結晶させ、中間体G34gを得た(収率40%)。
Synthesis Example 11 (Compound (62))
Synthesis of Intermediate G (5,11-diiodonaphthacene) A 500 ml round bottom flask was charged with 50 g (0.22 mmol) of naphthacene and 200 ml of tetrachloroethane, and 160 g of iodine / carbon tetrachloride (0.64 mol / 200 ml). ) Was added dropwise little by little at room temperature. After the reaction solution was heated and stirred for 5 hours, the precipitated crystals were collected by filtration and washed with 500 ml of methanol. The obtained crude crystals were recrystallized with 200 ml of toluene to obtain 34 g of intermediate G (yield 40%).

化合物(62)の合成
アルゴン気流下100ミリリットル四口フラスコに、マグネシウム1.0g(41mmol)、THF1ミリリットル、ヨウ素の小片を入れ、4−ブロモトリフェニルアミン9.7g(30mmol)/THF100ミリリットルを室温で少しずつ滴下し、滴下終了後60℃で1時間加熱攪拌しGrignard試薬を調製した。
アルゴン気流下300ミリリットル四口フラスコに、中間体G4.8g(10mmol)、THF50ミリリットル、PdCl2(PPh3)20.28g(0.4mmol)及びAlH(iso−Bu)2/1.0Mトルエン溶液1.0ミリリットル(1mmol)を入れ、上記Grignard試薬を室温で滴下した後、昇温して一晩還流させた。反応終了後、反応液を氷水冷却して析出晶を濾取し、アセトンで洗浄した。得られた粗結晶をアセトン100ミリリットルで再結晶させ、黄色粉末3.6gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(62)と同定された(収率50%)。
Synthesis of Compound (62) 1.0 g (41 mmol) of magnesium, 1 ml of THF and a small piece of iodine were placed in a 100 ml four-necked flask under an argon stream, and 9.7 g (30 mmol) of 4-bromotriphenylamine / 100 ml of THF was added at room temperature. After the dropwise addition, the mixture was heated and stirred at 60 ° C. for 1 hour to prepare a Grignard reagent.
In a 300 ml four-necked flask under an argon stream, intermediate G 4.8 g (10 mmol), THF 50 ml, PdCl 2 (PPh 3 ) 2 0.28 g (0.4 mmol) and AlH (iso-Bu) 2 /1.0 M toluene 1.0 ml (1 mmol) of the solution was added, and the above Grignard reagent was added dropwise at room temperature, followed by heating to reflux overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with acetone. The obtained crude crystals were recrystallized with 100 ml of acetone to obtain 3.6 g of yellow powder. This powder was identified as Compound (62) by NMR, IR, and FD-MS measurements (yield 50%).

参考例45
洗浄したITO電極付きガラス板上に、正孔注入材として上記化合物(TPD74)を膜厚60nmに真空蒸着した。次に、正孔輸送材として上記化合物(NPD)を膜厚20nmに真空蒸着した。
次に、発光材料として上記化合物(Alq)およびドーパントとして上記化合物(75)を、化合物(75)の割合が2重量%、膜厚40nmとなるように同時蒸着した。次に、電子注入材として上記化合物(Alq)を膜厚20nmで蒸着し、さらにLiFを膜厚0.5nmで蒸着後アルミニウムを膜厚100nm蒸着し電極を形成して有機EL素子を得た。各層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子の発光特性は、直流電圧8Vの印加電圧で発光輝度500(cd/m2)と高輝度で、橙色発光であった。さらに初期発光輝度500(cd/m2)で、定電流駆動したところ半減寿命は2000時間を越え特に長寿命であった。
Reference Example 45
On the cleaned glass plate with an ITO electrode, the above compound (TPD74) was vacuum deposited as a hole injecting material to a film thickness of 60 nm. Next, the compound (NPD) was vacuum-deposited to a thickness of 20 nm as a hole transport material.
Next, the compound (Alq) as a light emitting material and the compound (75) as a dopant were co-evaporated so that the ratio of the compound (75) was 2 wt% and the film thickness was 40 nm. Next, the compound (Alq) as an electron injecting material was vapor-deposited with a thickness of 20 nm, LiF was vapor-deposited with a thickness of 0.5 nm, and aluminum was vapor-deposited with a thickness of 100 nm to form an electrode to obtain an organic EL device. Each layer was deposited in a vacuum of 10 −6 Torr at a substrate temperature of room temperature. The light emission characteristics of this device were as follows: an emission luminance of 500 (cd / m 2 ) and an orange emission at an applied voltage of DC voltage of 8V. Furthermore, when the device was driven at a constant current at an initial light emission luminance of 500 (cd / m 2 ), the half-life exceeded 2000 hours and was particularly long.

参考例46
ドーパントとして上記化合物(75)に代えて上記化合物(86)を添加したことを除き、参考例45と同様にして有機EL素子を作製した。この素子について、初期発光輝度500(cd/m2)で、定電流駆動したところ半減寿命は2000時間と長寿命であった。発光色は朱色であった。
Reference Example 46
An organic EL device was produced in the same manner as in Reference Example 45 except that the compound (86) was added instead of the compound (75) as a dopant. When this element was driven at a constant current at an initial light emission luminance of 500 (cd / m 2 ), the half-life was 2000 hours and a long life. The emission color was vermilion.

参考例47
ドーパントとして上記化合物(75)に代えて上記化合物(82)を添加したことを除き、参考例45と同様にして有機EL素子を作製した。この素子について、初期発光輝度500(cd/m2)で、定電流駆動したところ半減寿命は2800時間以上と長寿命であった。発光色は赤色であった。
Reference Example 47
An organic EL device was produced in the same manner as in Reference Example 45 except that the compound (82) was added instead of the compound (75) as a dopant. When this element was driven at a constant current at an initial light emission luminance of 500 (cd / m 2 ), the half-life was as long as 2800 hours or longer. The emission color was red.

合成例12(化合物(75))
化合物(75)の合成
アルゴン気流下200ミリリットル三口フラスコ中で、6,12−ジブロモナフタセン(40577−78−4 2.16g(5.6mmol)、Pd(OAc)20.06g(0.3mmol)、P(tBu)3 0.23g(1.1mmol)、NaOtBu1.51g(15.7mmol)、Ph2NH1.89g(11.2mmol)及びトルエン25mlを加え、120℃で7時間加熱攪拌し反応させた。反応終了後放冷し、赤色結晶を濾取した後、トルエンと水で洗浄、減圧乾燥して赤色粉末3.02gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(75)と同定された(収率96%)。
NMR(CDC13、TMS)において、6.8〜7.0(m、2H)、7.0〜7.4(m、10H)、7.8〜7.9(m、1H)、8.0〜8.1(m、1H)、8.85(s、1H)であった。
Synthesis Example 12 (Compound (75))
Synthesis of Compound (75) In a 200 ml three-necked flask under an argon stream, 6,12-dibromonaphthacene (40577-78-4 2.16 g (5.6 mmol), Pd (OAc) 2 0.06 g (0.3 mmol) ), 0.23 g (1.1 mmol) of P (tBu) 3 , 1.51 g (15.7 mmol) of NaOtBu, 1.89 g (11.2 mmol) of Ph 2 NH and 25 ml of toluene, and the mixture is heated and stirred at 120 ° C. for 7 hours. After completion of the reaction, the reaction mixture was allowed to cool, and red crystals were collected by filtration, washed with toluene and water, and dried under reduced pressure to obtain 3.02 g of a red powder, which was measured by NMR, IR, and FD-MS. Was identified as Compound (75) (yield 96%).
In NMR (CDC13, TMS), 6.8-7.0 (m, 2H), 7.0-7.4 (m, 10H), 7.8-7.9 (m, 1H), 8.0 -8.1 (m, 1H), 8.85 (s, 1H).

参考例48
25mm×75mm×1.1mmの大きさのガラス基板上に、膜厚100nmインジウム・スズ酸化物膜の透明性アノードを設け、紫外線とオゾンを併用して10分間洗浄した。
このガラス基板を真空茶着装置(日本真空技術(株))を入れ、約10-4Paに減圧した。その後、上記TPD74を、蒸着速度0.2nm/秒で60nmの厚さに蒸着した。次いで、下記構造のTPD78を、蒸着速度0.2nm/秒で20nmの厚さに蒸着した。
次に、下記構造のDPVDPAN及び発光材料として上記化合物(100)を同時蒸着して40nmの厚さの発光層を形成した。この時のDPVDPANの蒸着速度は0.4nm/秒、化合物(100)の蒸着速度は0.01nm/秒であった。さらに、上記Alqを蒸着速度0.2nm/秒で蒸着し、最後にアルミニウムとリチウムとを同時蒸着することにより、陰極を150nmの厚さで形成して有機EL素子を得た。この時の、アルミニウムの蒸着速度は1nm/秒であり、リチウムの蒸着速度は0.004nm/秒であった。

Figure 0004410291
得られた有機EL素子について性能を評価した。第4表に示す電圧における発光輝度を測定し、発光効率を算出し、発光色を観察した。さらに、窒素気流下で初期発光輝度500(cd/m2)で定電流駆動し、発光輝度250(cd/m2)となる半減寿命を測定した。これらの結果を第4表に示す。 Reference Example 48
A transparent anode having an indium tin oxide film thickness of 100 nm was provided on a glass substrate having a size of 25 mm × 75 mm × 1.1 mm, and was washed for 10 minutes using both ultraviolet rays and ozone.
This glass substrate was put into a vacuum tea ceremony apparatus (Nippon Vacuum Technology Co., Ltd.) and decompressed to about 10 −4 Pa. Thereafter, the TPD74 was deposited to a thickness of 60 nm at a deposition rate of 0.2 nm / second. Next, TPD78 having the following structure was deposited to a thickness of 20 nm at a deposition rate of 0.2 nm / second.
Next, DPVDPAN having the following structure and the compound (100) as a light emitting material were co-evaporated to form a light emitting layer having a thickness of 40 nm. At this time, the deposition rate of DPVDPAN was 0.4 nm / second, and the deposition rate of compound (100) was 0.01 nm / second. Furthermore, the Alq was vapor-deposited at a vapor deposition rate of 0.2 nm / second, and finally aluminum and lithium were vapor-deposited simultaneously to form a cathode with a thickness of 150 nm to obtain an organic EL device. At this time, the deposition rate of aluminum was 1 nm / second, and the deposition rate of lithium was 0.004 nm / second.
Figure 0004410291
The performance was evaluated about the obtained organic EL element. The light emission luminance at the voltage shown in Table 4 was measured, the light emission efficiency was calculated, and the light emission color was observed. Further, a half-life at which the emission luminance was 250 (cd / m 2 ) was measured by driving at a constant current with an initial emission luminance of 500 (cd / m 2 ) under a nitrogen stream. These results are shown in Table 4.

参考例49〜58
参考例48において、化合物(100)の代わりに、発光材料として第4表に示した化合物を使用した以外は同様にして有機EL素子を作製し、評価した。それらの結果を第4表に示す。
Reference Examples 49-58
In Reference Example 48 , an organic EL device was prepared and evaluated in the same manner except that the compound shown in Table 4 was used as the light emitting material instead of the compound (100). The results are shown in Table 4.

比較例8
参考例48において、化合物(100)の代わりに、発光材料として下記ジアミン化合物

Figure 0004410291
を使用した以外は同様にして有機EL素子を作製し、評価した。それらの結果を第4表に示す。 Comparative Example 8
In Reference Example 48 , the following diamine compound was used as the light emitting material instead of the compound (100).
Figure 0004410291
An organic EL device was prepared and evaluated in the same manner except that was used. The results are shown in Table 4.

Figure 0004410291
Figure 0004410291

第4表に示したように、本発明の一般式〔9〕及び〔10〕の化合物を発光材料又は正孔輸送材料として使用した参考例48〜58の有機EL素子は、上記比較例8のジアミン化合物を使用した有機EL素子に比べ発光輝度、発光効率及び寿命共に優れていた。 As shown in Table 4, the organic EL devices of Reference Examples 48 to 58 using the compounds of the general formulas [9] and [10] of the present invention as the light emitting material or the hole transporting material are those of Comparative Example 8 described above. Compared with the organic EL device using a diamine compound, the light emission luminance, the light emission efficiency, and the lifetime were excellent.

合成例13(化合物(100))
中間体Hの合成
アルゴン気流下、冷却管付き1リットル三口フラスコ中に、4 −ブロモフタル酸無水物22.7g(0.1mol) 、炭酸ナトリウム42.4g(0.4mol)、水300ミリリットルを加え、60℃まで加熱し溶解させた。溶解後室温まで冷却し、フェニルボロン酸18.3g(0.15mol) と酢酸パラジウム0.7g(3mol%)を加え、室温で一晩攪拌した。反応終了後、水を加えて析出晶を溶解させ、触媒を濾過にて除去後濃塩酸にて酸析し、析出晶を濾取水洗した。得られた結晶を酢酸エチルに溶解させ、有機層を抽出した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで減圧濃縮し、目的とする中間体H23.7g(収率98%)を得た。
Synthesis Example 13 (Compound (100))
Synthesis of Intermediate H Under a stream of argon, 22.7 g (0.1 mol) of 4-bromophthalic anhydride, 42.4 g (0.4 mol) of sodium carbonate, and 300 ml of water were added to a 1-liter three-necked flask with a condenser. , Heated to 60 ° C. to dissolve. After dissolution, the mixture was cooled to room temperature, 18.3 g (0.15 mol) of phenylboronic acid and 0.7 g (3 mol%) of palladium acetate were added, and the mixture was stirred overnight at room temperature. After completion of the reaction, water was added to dissolve the precipitated crystals, the catalyst was removed by filtration, acidified with concentrated hydrochloric acid, and the precipitated crystals were collected by filtration and washed with water. The obtained crystals were dissolved in ethyl acetate, and the organic layer was extracted. After drying with magnesium sulfate, the mixture was concentrated under reduced pressure using a rotary evaporator to obtain 23.7 g (yield 98%) of the target intermediate H.

中間体Iの合成
冷却管付き500ミリリットルナスフラスコ中に、中間体H23.7g(98mmol)と無水酢酸200ミリリットルを加え、80℃にて3時間攪拌した。反応終了後、過剰な無水酢酸を留去し、目的とする中間体I22g(収率10%)を得た。
中間体Jの合成
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、ビフェニル7.7g(50mmol)、無水塩化アルミニウム13.4g(0.1mol)、1,2−ジクロロエタン200ミリリットルを加え、0℃まで冷却した。次に中間体I22g(98mmol)を徐々に添加し、40℃にて2時間攪拌した。反応終了後に氷水を加え、クロロホルムで分液抽出した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで減圧濃縮し、目的とする中間体J19.0g(収率100%)を得た。
Synthesis of Intermediate I Intermediate H 23.7 g (98 mmol) and acetic anhydride 200 ml were added to a 500 ml eggplant flask equipped with a condenser, and stirred at 80 ° C. for 3 hours. After completion of the reaction, excess acetic anhydride was distilled off to obtain 22 g of the intended intermediate I (yield 10%).
Synthesis of Intermediate J Under a stream of argon, 7.7 g (50 mmol) of biphenyl, 13.4 g (0.1 mol) of anhydrous aluminum chloride and 200 ml of 1,2-dichloroethane were added to a 500 ml three-necked flask equipped with a cooling tube. Cooled to ° C. Next, 22 g (98 mmol) of Intermediate I was gradually added and stirred at 40 ° C. for 2 hours. Ice water was added after completion | finish of reaction, and liquid separation extraction was carried out with chloroform. After drying over magnesium sulfate, the mixture was concentrated under reduced pressure using a rotary evaporator to obtain the desired intermediate J19.0 g (yield 100%).

中間体Kの合成
冷却管付き500ミリリットルナスフラスコ中に、ポリリン酸200ミリリットルを入れ、150℃に加熱した。次に、中間体J19g(50mmol)を少量ずつ添加し、同温にて3時間撹絆した。反応終了後に氷水を加え、クロロホルムで分液抽出した。硫酸マグネシウムで乾燥後、ロータリーエバポレーターで減圧濃縮した。得られた粗結晶を、カラムクロマトグラフ(シリカゲル、クロロホルム/メタノール=99/1)で精製し、目的とする中間体K19g(収率55%)を得た。
中間体Lの合成
アルゴン気流下、冷却管付き500ミリリットルナスフラスコ中に、中間体K19.0g(28mmol)、塩化スズ0.19g(1mmol)、酢酸100ミリリットル、濃塩酸 50ミリリットルを加え、2時間加熱還流した。反応終了後、反応液を氷水冷却して析出晶を濾取し、水で洗浄し目的とする中間体L19g(収率100%)を得た。
Synthesis of Intermediate K 200 ml of polyphosphoric acid was placed in a 500 ml eggplant flask equipped with a cooling tube and heated to 150 ° C. Next, 19 g (50 mmol) of the intermediate J was added little by little and stirred at the same temperature for 3 hours. Ice water was added after completion | finish of reaction, and liquid separation extraction was carried out with chloroform. After drying over magnesium sulfate, the mixture was concentrated under reduced pressure using a rotary evaporator. The resulting crude crystals were purified by column chromatography (silica gel, chloroform / methanol = 99/1) to obtain 19 g of the intended intermediate K (yield 55%).
Synthesis of Intermediate L In a 500 ml eggplant flask with a condenser under an argon stream, 19.0 g (28 mmol) of intermediate K, 0.19 g (1 mmol) of tin chloride, 100 ml of acetic acid and 50 ml of concentrated hydrochloric acid were added for 2 hours. Heated to reflux. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with water to obtain 19 g of the intended intermediate L (yield 100%).

中間体Mの合成
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、中間体L 19.0g(28mmol)、トリフェニルホスフィン16g(60mmol)、DMF200ミリリットルを加えた。続いて、臭素9.6g(60mmol)/DMF50ミリリットルを徐々に滴下した後、200℃で8時間加熱撹枠した。反応終了後、反応液を氷水冷却して析出晶を濾取し、水、メタノールで洗浄し目的とする中間体M6.7g(収率50%)を得た。
化合物(100)の合成
アルゴン気流下、冷却管付き200ミリリットル三口フラスコ中に、中間体M4.9g(10mmol)、ジフェニルアミン5.1g(30mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.14g(1.5mol%)、トリ−o−トルイルホスフィン0.91g(3mol%)、t−ブトキシナトリウム2.9g(30mmol)、乾燥トルエン50ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し、黄色粉末4.0gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(100)と同定された(収率60%)。
Synthesis of Intermediate M Under a stream of argon, 19.0 g (28 mmol) of intermediate L, 16 g (60 mmol) of triphenylphosphine, and 200 ml of DMF were added to a 500 ml three-necked flask with a condenser. Subsequently, 9.6 g (60 mmol) of bromine / 50 ml of DMF was gradually added dropwise, and the mixture was heated and stirred at 200 ° C. for 8 hours. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with water and methanol to obtain 6.7 g of the intended intermediate M (yield 50%).
Synthesis of Compound (100) In a 200 ml three-necked flask with a condenser tube under an argon stream, intermediate M4.9 g (10 mmol), diphenylamine 5.1 g (30 mmol), tris (dibenzylidacetone) divaladium 0.14 g ( 1.5 mol%), 0.91 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of t-butoxy sodium, and 50 ml of dry toluene were added, followed by heating and stirring at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol to obtain 4.0 g of yellow powder. This powder was identified as the compound (100) by NMR, IR and FD-MS measurements (yield 60%).

上記中間体の構造式及び化合物(100)の反応経路を以下に示す。

Figure 0004410291
The structural formula of the above intermediate and the reaction route of the compound (100) are shown below.
Figure 0004410291

合成例14(化合物(101))
中間体Nの合成
アルゴン気流下で、冷却管付き500ミリリットルナスフラスコ中に、2,6−ジヒドロキシーアントラキノン12g(50mmol)、沃化メチル 42.5g(0.3mol)、水酸化カリウム17g(0.3mol)、DMSO200ミリリットルを加え、室温で2時間攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し目的とする中間体N10.7g(収率80%)を得た。
中間体Oの合成
アルゴン気流下で. 500ミリリットル三口フラスコ中に、中間体N10.7(40mmol)、乾燥THF200ミリリットルを加え−40℃に冷却後、1.5Mフェニルリチウム/ヘキサン溶液53ミリリットル(80mmol)を徐々に滴下した。滴下終了後、室温にて一晩攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルに続きアセトン100ミリリットルにて洗浄した。得られたジオ一ル体粗結晶はそれ以上精製せず、次の反応に用いた。
冷却管付き500ミリリットルナスフラスコ中に、上記粗結晶、57%沃化水素水 100ミリリットル、酢酸200ミリリットルを加え、3時間加熱還流した。室温まで冷却後、少量の次亜リン酸を加え、過剰な沃化水素をクエンチした。析出した結晶を濾取し、水100ミリリットル、メタノール100ミリリットル、アセトン100ミリリットルの順番で洗浄し目的とする中間体O10.1g(収率70%)を得た。・
Synthesis Example 14 (Compound (101))
Synthesis of Intermediate N Under argon flow, 2,6-dihydroxy-anthraquinone 12 g (50 mmol), methyl iodide 42.5 g (0.3 mol), potassium hydroxide 17 g (0 3 mol) and DMSO (200 ml) were added, and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol to obtain 10.7 g (yield 80%) of the target intermediate N.
Synthesis of intermediate O Under argon stream. In a 500 ml three-necked flask, intermediate N10.7 (40 mmol) and dry THF 200 ml were added and cooled to −40 ° C., and then 1.5 ml phenyl lithium / hexane solution 53 ml (80 mmol). ) Was gradually added dropwise. After completion of dropping, the mixture was stirred overnight at room temperature. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol followed by 100 ml of acetone. The obtained geol crude crystals were used for the next reaction without further purification.
The above-mentioned crude crystals, 100 ml of 57% hydrogen iodide water, and 200 ml of acetic acid were added to a 500 ml eggplant flask equipped with a cooling tube, and the mixture was heated to reflux for 3 hours. After cooling to room temperature, a small amount of hypophosphorous acid was added to quench excess hydrogen iodide. The precipitated crystals were collected by filtration and washed with 100 ml of water, 100 ml of methanol, and 100 ml of acetone in this order to obtain 10.1 g (yield 70%) of the desired intermediate O.・

中間体Pの合成
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、中間体O10.1g(28mmol)、トリフェニルホスフィン7.9g(30mmol)、DMF200ミリリットルを加えた。続いて、臭素4.8g(30mmol)/DMF50ミリリットルを徐々に滴下した後、200℃で8時間加熱撹枠した。反応終了後、反応液を氷水冷却して析出晶を濾取し、水、メタノールで洗浄し目的とする中間体P8.2g(収率60%)を得た。
化合物(101)の合成
アルゴン気流下、冷却管付き200ミリリットル三口フラスコ中に、中間体P4.9g(30mmol)、ジフェニルアミン5.1g(30mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.14g(1.5mol%)、トリ−o−トルイルホスフィン0.91g(3mol%)、t−ブトキシナトリウム2.9g(30mmol)、乾燥トルエン50ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し、黄色粉末4.0gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(101)と同定された(収率6%)。
Synthesis of Intermediate P Under a stream of argon, 10.1 g (28 mmol) of intermediate O, 7.9 g (30 mmol) of triphenylphosphine and 200 ml of DMF were added to a 500 ml three-necked flask with a condenser. Subsequently, 4.8 g (30 mmol) of bromine / 50 ml of DMF were gradually added dropwise, and the mixture was heated and stirred at 200 ° C. for 8 hours. After completion of the reaction, the reaction solution was cooled with ice water and the precipitated crystals were collected by filtration and washed with water and methanol to obtain 8.2 g of the intended intermediate P (yield 60%).
Synthesis of Compound (101) In a 200 ml three-necked flask equipped with a cooling tube under an argon stream, intermediate P4.9 g (30 mmol), diphenylamine 5.1 g (30 mmol), tris (dibenzylidacetone) divaladium 0.14 g ( 1.5 mol%), 0.91 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of t-butoxy sodium, and 50 ml of dry toluene were added, followed by heating and stirring at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol to obtain 4.0 g of yellow powder. This powder was identified as the compound (101) by NMR, IR and FD-MS measurements (yield 6%).

上記中間体の構造式及び化合物(101)の反応経路を以下に示す。

Figure 0004410291
The structural formula of the above intermediate and the reaction route of the compound (101) are shown below.
Figure 0004410291

合成例15(化合物(102))
中間体Qの合成
アルゴン気流下、冷却管付き300ミリリットル三口フラスコ中に、2−ブロモビフェニル11.7g(50mmol)、アニリン19g(0.2mol)、トリス(ジベンジリデシアセトン) ジバラジウム0.69g(1.5mol%)、トリ−o−トルイルホスフィン0.46g(3mol%)、t−ブトキシナトリウム7.2g(75mmol)、乾燥トルエン100ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄して得られた粗結晶を酢酸エチル50ミリリットルにて再結晶し、目的とする中間体Q9.8g(収率80%)を得た。
化合物(102)の合成
アルゴン気流下、冷却管付き200ミリリットル三口フラスコ中に、9,10−ジブロモアントラセン2.4g(10mmol)、中間体Q7.4g(30mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.14g(1.5mol%)、トリ−o−トルイルホスフィン0.91g(3mol%)、t−ブトキシナトリウム2.9g(30mmol)、乾燥トルエ 50ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し、黄色粉末4.3gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(102)と同定された(収率65%)。
Synthesis Example 15 (Compound (102))
Synthesis of Intermediate Q Under a stream of argon, in a 300 ml three-necked flask with a condenser tube, 11.7 g (50 mmol) of 2-bromobiphenyl, 19 g (0.2 mol) of aniline, 0.69 g of tris (dibenzylidacetone) dibaradium (1.5 mol%), 0.46 g (3 mol%) of tri-o-toluylphosphine, 7.2 g (75 mmol) of t-butoxy sodium, and 100 ml of dry toluene were added, followed by heating and stirring at 100 ° C. overnight. . After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol and recrystallized from 50 ml of ethyl acetate to obtain the desired intermediate Q9.8 g (yield 80%). Got.
Synthesis of Compound (102) Under a stream of argon, 2.4 g (10 mmol) of 9,10-dibromoanthracene, 7.4 g (30 mmol) of intermediate Q, tris (dibenzylidacetone) in a 200 ml three-necked flask with a condenser tube After adding 0.14 g (1.5 mol%) of divaladium, 0.91 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of t-butoxy sodium, and 50 ml of dry toluene, the mixture was added at 100 ° C. The mixture was stirred overnight. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol to obtain 4.3 g of a yellow powder. This powder was identified as Compound (102) by NMR, IR, and FD-MS measurements (yield 65%).

上記中間体の構造式及び化合物(102)の反応経路を以下に示す。

Figure 0004410291
The structural formula of the above intermediate and the reaction route of the compound (102) are shown below.
Figure 0004410291

合成例16(化合物(103))
中間体Rの合成
アルゴン気流下、冷却管付き1リットル三口フラスコ中に、3−フェニルフエノール34g(0.2mol)、トリフェニルホスフィン58g(0.22mmol)、DMF300ミリリットルを加えた。続いて、臭素35g(0.22mmol)/DMF100ミリリットルを徐々に滴下した後、200℃で8時間加熱撹枠した。反応終了後、反応液を氷水冷却して析出晶を濾取し、水、メタノールで洗浄し目的とする中間体R37g(収率80%)を得た。
中間体Sの合成
アルゴン気流下、冷却管付き300ミリリットル三口フラスコ中に、アニリン19g(0.2mmol)、トリス(ジベンジリデシアセトン) ジバラジウム 0.69g(1.5mol%)、トリ−o−トルイルホスフィン0.46g(3mol%)、t−ブトキシナトリウム7.2g(75mmol)、乾燥トルエン100ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄して得られた粗結晶を酢酸エチル50ミリリットルにて再結晶し、目的とする中間体Q9.8g(収率80%)を得た。
化合物(103)の合成
アルゴン気流下、冷却管付き200ミリリットル三口フラスコ中に、9,10−ジブロモアントラセン2.4g(10mmol)、中間体S7.4g(30mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.14g(1.5mol%)、トリ−o−トルイルホスフィン0.91g(3mol%)、t−ブトキシナトリウム2.9g(30mmol)、乾燥トルエン50ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し、黄色粉末4.2gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(103)と同定された(収率70%)。
Synthesis Example 16 (Compound (103))
Synthesis of Intermediate R Under a stream of argon, 34 g (0.2 mol) of 3-phenylphenol, 58 g (0.22 mmol) of triphenylphosphine, and 300 ml of DMF were added to a 1-liter three-neck flask with a condenser. Subsequently, 35 g (0.22 mmol) of bromine / 100 ml of DMF were gradually added dropwise, and then the mixture was heated and stirred at 200 ° C. for 8 hours. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with water and methanol to obtain the desired intermediate R37g (yield 80%).
Synthesis of Intermediate S In a 300 ml three-necked flask with a condenser tube under an argon stream, 19 g (0.2 mmol) of aniline, 0.69 g (1.5 mol%) of tris (dibenzylidacetone) divaladium, tri-o- Toluylphosphine 0.46 g (3 mol%), t-butoxy sodium 7.2 g (75 mmol), and dry toluene 100 ml were added, and the mixture was heated and stirred at 100 ° C. overnight. After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol and recrystallized from 50 ml of ethyl acetate to obtain the desired intermediate Q9.8 g (yield 80%). Got.
Synthesis of Compound (103) In a 200 ml three-necked flask with a condenser tube under an argon stream, 2.4 g (10 mmol) of 9,10-dibromoanthracene, 7.4 g (30 mmol) of intermediate S, tris (dibenzylidacetone) After adding 0.14 g (1.5 mol%) of divaladium, 0.91 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of sodium t-butoxy, and 50 ml of dry toluene, the mixture was added at 100 ° C. The mixture was stirred overnight. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol to obtain 4.2 g of a yellow powder. This powder was identified as Compound (103) by NMR, IR, and FD-MS measurements (yield 70%).

上記中間体の構造式及び化合物(103)の反応経路を以下に示す。

Figure 0004410291
The structural formula of the above intermediate and the reaction route of the compound (103) are shown below.
Figure 0004410291

合成例17(化合物(104))
中間体Tの合成
アルゴン気流下、冷却管付き300ミリリットル三口フラスコ中に、4−ブロモビフェニル23g(0.1mol)、アミノスチルベン9.8g(50mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.69g(1.5mol%)、トリ−o−トルイルホスフィン0.46g(3mol%)、t−ブトキシナトリウム7.2g(75mmol)、乾燥トルエン100ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄して得られた粗結晶を酢酸エチル50ミリリットルにて再結晶し、目的とする中間体T13.9g(収率80%)を得た。
化合物(104)の合成
アルゴン気流下、冷却管付き200ミリリットル三口フラスコ中に、9,10−ジブロモアントラセン2.4g(10mmol)、中間体T7.4g(30mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.14g(1.5mol%)、トリ−o−トルイルホスフィン0.91g(3mol%)、t−ブトキシナトリウム2.9g(30mmol)、乾燥トルエン50ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し、黄色粉末4.5gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(104)と同定された(収率70%)。
Synthesis Example 17 (Compound (104))
Synthesis of Intermediate T In a 300 ml three-necked flask with a condenser tube under an argon stream, 23 g (0.1 mol) of 4-bromobiphenyl, 9.8 g (50 mmol) of aminostilbene, tris (dibenzylidacetone) dibaradium 69 g (1.5 mol%), tri-o-toluylphosphine 0.46 g (3 mol%), t-butoxy sodium 7.2 g (75 mmol), and dry toluene 100 ml were added, followed by heating and stirring at 100 ° C. overnight. did. After completion of the reaction, the precipitated crystals were collected by filtration, washed with 100 ml of methanol and recrystallized from 50 ml of ethyl acetate to obtain the desired intermediate T 13.9 g (yield 80%). Got.
Synthesis of Compound (104) In a 200 ml three-necked flask with a condenser tube under an argon stream, 2.4 g (10 mmol) of 9,10-dibromoanthracene, 7.4 g (30 mmol) of intermediate T, tris (dibenzylidacetone) After adding 0.14 g (1.5 mol%) of divaladium, 0.91 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of sodium t-butoxy, and 50 ml of dry toluene, the mixture was added at 100 ° C. The mixture was stirred overnight. After completion of the reaction, the precipitated crystals were collected by filtration and washed with 100 ml of methanol to obtain 4.5 g of a yellow powder. This powder was identified as Compound (104) by NMR, IR and FD-MS measurements (yield 70%).

上記中間体の構造式及び化合物(104)の反応経路を以下に示す。

Figure 0004410291
The structural formula of the above intermediate and the reaction route of the compound (104) are shown below.
Figure 0004410291

合成例18(化合物(121))
中間体Uの合成
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、トリフェニルアミン25g(0.1mol)、N−ブロモスクシンイミド18g(0.1mol)、2,2’−アゾビスイソブチロニトリル0.82g(5mol%)、DMF200ミリリットルを加え、110℃で4時間加熱撹枠した。反応終了後、不純物をろ別し、ろ液をロータリーエバポレーターで減圧濃縮した。得られた粗結晶を、カラムクロマトグラフ(シリカゲル、塩化メチレン)で精製し、目的とする中間体U19g(収率60%)を得た。
中間体Vの合成
アルゴン気流下、冷却管付き1リットル三口フラスコ中に、マグネシウム 1.6g(66mmol)、ヨウ素の小片、THF100ミリリットルを入れ、室温で30分間攪拌後、中間体U19g(60mol)/THF300ミリリットル溶液を滴下した。滴下終了後、60℃で1時間加熱攪拌しGrignard試薬を調製した。
アルゴン気流下、冷却管付き1リットル三口フラスコ中に、1,3ジブロモベンゼン42g(0.18mmol)、ジクロロビス(トリフェニルホスフィン) パラジウム2.1(5mol%)、ジイソブチルアルミニウムヒドリド/トルエン溶液6ミリリットル(1M,6mmol)、THF200ミリリットルを加えた。ここに上記Grignard試薬を室温で滴下した後、昇温して一晩加熱攪拌した。反応終了後、反応液を氷水冷却して析出晶を濾取し、アセトンで洗浄し目的とする中間体V14g(収率60%)を得た。
Synthesis Example 18 (Compound (121))
Synthesis of Intermediate U In a 500 ml three-necked flask with a condenser tube under an argon stream, 25 g (0.1 mol) of triphenylamine, 18 g (0.1 mol) of N-bromosuccinimide, 2,2′-azobisisobutyro Nitrile 0.82 g (5 mol%) and DMF 200 ml were added and the mixture was heated and stirred at 110 ° C. for 4 hours. After completion of the reaction, impurities were filtered off, and the filtrate was concentrated under reduced pressure using a rotary evaporator. The resulting crude crystals were purified by column chromatography (silica gel, methylene chloride) to obtain 19 g of the intended intermediate U (yield 60%).
Synthesis of Intermediate V Under a stream of argon, 1.6 g (66 mmol) of magnesium, a small piece of iodine, and 100 ml of THF were placed in a 1-liter three-necked flask equipped with a cooling tube. After stirring for 30 minutes at room temperature, Intermediate U19 g (60 mol) / A 300 ml THF solution was added dropwise. After completion of dropping, the mixture was heated and stirred at 60 ° C. for 1 hour to prepare a Grignard reagent.
Under a stream of argon, in a 1-liter three-necked flask with a condenser tube, 42 g (0.18 mmol) of 1,3 dibromobenzene, 2.1 (5 mol%) of dichlorobis (triphenylphosphine) palladium, 6 ml of diisobutylaluminum hydride / toluene solution ( 1M, 6 mmol) and 200 milliliters of THF were added. The above Grignard reagent was added dropwise at room temperature, and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water and the precipitated crystals were collected by filtration and washed with acetone to obtain 14 g of the intended intermediate V (yield 60%).

化合物(121)の合成
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、マグネシウム0.8g(33mmol)、ヨウ素の小片、THF50ミリリットルを入れ、室温で30分間攪拌後、中間体V12g(30mmol)/THF100ミリリットル溶液を滴下した。滴下終了後、60℃で1時間攪拌しGrignard試薬を調製した。
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、9,10−ジブロモアントラセン3.4g(10mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム0.4g(5mol%)、ジイソブチルアルミニウムヒドリド/トルエン溶液1ミリリットル(1M,1mmol)、THF100ミリリットルを加えた。ここに上記Grignard試薬を室温で滴下した後、昇温して一晩加熱攪拌した。反応終了後、反応液を氷水冷却して析出晶を濾取し、メタノール50ミリリットル、アセトン50ミリリットルの順で洗浄し、黄色粉末 4.1gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(121)と同定された(収率50%)。
Synthesis of Compound (121) In a 500 ml three-necked flask with a condenser tube under an argon stream, 0.8 g (33 mmol) of magnesium, a small piece of iodine, and 50 ml of THF were stirred at room temperature for 30 minutes, and then intermediate V12 g (30 mmol). / THF 100 ml solution was added dropwise. After completion of dropping, the mixture was stirred at 60 ° C. for 1 hour to prepare a Grignard reagent.
Under a stream of argon, in a 500 ml three-necked flask with a condenser tube, 3.4 g (10 mmol) of 9,10-dibromoanthracene, 0.4 g (5 mol%) of dichlorobis (triphenylphosphine) palladium, 1 ml of diisobutylaluminum hydride / toluene solution (1M, 1 mmol), 100 mL of THF was added. The above Grignard reagent was added dropwise at room temperature, and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water and the precipitated crystals were collected by filtration and washed with methanol (50 ml) and acetone (50 ml) in this order to obtain 4.1 g of a yellow powder. This powder was identified as the compound (121) by NMR, IR and FD-MS measurements (yield 50%).

上記中間体の構造式及び化合物(121)の反応経路を以下に示す。

Figure 0004410291
The structural formula of the above intermediate and the reaction route of the compound (121) are shown below.
Figure 0004410291

合成例19(化合物(122))
中間体Wの合成
アルゴン気流下、冷却管付き300リットル三口フラスコ中に、1,3−ジブロモベンゼン19g(80mmol)、ジフェニルアミン6.5g(20mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.27g(1.5mol%)、トリ−o−トルイルホスフィン0.18g(3mol%)、t−ブトキシナトリウム2.9g(30mmol)、乾燥トルエン100ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し、得られた粗結晶を酢酸エチル50ミリリットルにて再結晶し、目的とする中間体W4.9g(収率75%)を得た。
化合物(122)の合成
アルゴン気流下、冷却管付き300ミリリットル三口フラスコ中に、マグネシウム0.5g(20mmol)、ヨウ素の小片、THF50ミリリットルを入れ、室温で30分間攪拌後、中間体W4.9g(15mmol)/THF100ミリリットル溶液を滴下した。滴下終了後、60℃で1時間攪拌しGrignard試薬を調製した。
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、9−10ジブロモアントラセン1.7g(5mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム0.2g(5mol%)、ジイソブチルアルミニウムヒドリド/トルエン溶液0.5ミリリットル(1M,0.5mmol)、THF100ミリリットルを加えた。ここに上記Grignard試薬を室温で滴下した後、昇温して一晩加熱攪拌した。反応終了後、反応液を氷水冷却して析出晶を濾取し、メタノール50ミリリットル、アセトン50ミリリットルの順で洗浄し、黄色粉末1.7gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(122)と同定された(収率50%)。
Synthesis Example 19 (Compound (122))
Synthesis of Intermediate W In a 300-liter three-necked flask with a condenser tube under an argon stream, 1,3-dibromobenzene 19 g (80 mmol), diphenylamine 6.5 g (20 mmol), tris (dibenzylidacetone) dibaradium 0.27 g (1.5 mol%), 0.18 g (3 mol%) of tri-o-toluylphosphine, 2.9 g (30 mmol) of t-butoxy sodium, and 100 ml of dry toluene were added, followed by heating and stirring at 100 ° C overnight. . After completion of the reaction, the precipitated crystals are collected by filtration, washed with 100 ml of methanol, and the obtained crude crystals are recrystallized with 50 ml of ethyl acetate to obtain 4.9 g of the desired intermediate W (yield 75%). Got.
Synthesis of Compound (122) In a 300 ml three-necked flask with a condenser tube under an argon stream, 0.5 g (20 mmol) of magnesium, a small piece of iodine, and 50 ml of THF were added and stirred for 30 minutes at room temperature. 15 mmol) / THF 100 ml solution was added dropwise. After completion of dropping, the mixture was stirred at 60 ° C. for 1 hour to prepare a Grignard reagent.
In a 500 ml three-necked flask equipped with a condenser tube under an argon stream, 1.7 g (5 mmol) of 9-10 dibromoanthracene, 0.2 g (5 mol%) of dichlorobis (triphenylphosphine) palladium, 0.5 of diisobutylaluminum hydride / toluene solution Milliliter (1M, 0.5 mmol) and 100 ml THF were added. The above Grignard reagent was added dropwise at room temperature, and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water and the precipitated crystals were collected by filtration and washed with 50 ml of methanol and 50 ml of acetone in this order to obtain 1.7 g of a yellow powder. This powder was identified as Compound (122) by NMR, IR and FD-MS measurements (yield 50%).

上記中間体の構造式及び化合物(122)の反応経路を以下に示す。

Figure 0004410291
The structural formula of the above intermediate and the reaction route of the compound (122) are shown below.
Figure 0004410291

合成例20(化合物(123))
中間体Xの合成
アルゴン気流下、冷却管付き300リットル三口フラスコ中に、ブロモベンゼン 16g(0.1mol)、アミノスチルベン9.8g(50mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.69g(1.5mol%)、トリ−o−トルイルホスフィン0.46g(3mol%)、t−ブトキシナトリウム7.2g(75mmol)、乾燥トルエン100ミリリットルを加えた後、100℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し、得られた粗結晶を酢酸エチル
50ミリリットルにて再結晶し、目的とする中間体X11g(収率80%)を得た。
中間体Yの合成
アルゴン気流下、冷却管付き500リットル三口フラスコ中に、ブロモベンゼン38g(0.16mol)、中間体X11g(40mmol)、トリス(ジベンジリデシアセトン) ジバラジウム0.55g(1.5mol%)、トリ−o−トルイルホスフィン0.37g(3mol%)、t−ブトキシナトリウム 5.8g(60mmol)、乾燥トルエン300ミリリットルを加えた後、120℃にて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、メタノール100ミリリットルにて洗浄し、得られた粗結晶を酢酸エチル50ミリリットルにて再結晶し、目的とする中間体Y13g(収率75%)を得た。
Synthesis Example 20 (Compound (123))
Synthesis of Intermediate X In a 300-liter three-necked flask with a condenser tube under an argon stream, 16 g (0.1 mol) of bromobenzene, 9.8 g (50 mmol) of aminostilbene, 0.69 g of tris (dibenzylidacetone) dibaradium ( 1.5 mol%), 0.46 g (3 mol%) of tri-o-toluylphosphine, 7.2 g (75 mmol) of t-butoxy sodium, and 100 ml of dry toluene, and then heated and stirred at 100 ° C. overnight. After completion of the reaction, the precipitated crystals are collected by filtration, washed with 100 ml of methanol, and the resulting crude crystals are recrystallized with 50 ml of ethyl acetate to obtain 11 g of the intended intermediate X (yield 80%). It was.
Synthesis of Intermediate Y In a 500-liter three-necked flask with a condenser tube under an argon stream, 38 g (0.16 mol) of bromobenzene, 11 g (40 mmol) of intermediate X, 0.55 g of tris (dibenzylidacetone) dibaradium (1. 5 mol%), 0.37 g (3 mol%) of tri-o-toluylphosphine, 5.8 g (60 mmol) of t-butoxy sodium, and 300 ml of dry toluene, and then heated and stirred at 120 ° C. overnight. After completion of the reaction, the precipitated crystals are collected by filtration, washed with 100 ml of methanol, and the obtained crude crystals are recrystallized with 50 ml of ethyl acetate to obtain 13 g of the desired intermediate Y (yield 75%). It was.

化合物(123)の合成
アルゴン気流下、冷却管付き300ミリリットル三口フラスコ中に、マグネシウム0.97g(40mmol)、ヨウ素の小片、THF50ミリリットルを入れ、室温で30分間攪拌後、中間体Y12g(30mmol)/THF100ミリリットル溶液を滴下した。滴下終了後、60℃で1時間攪拌しGrignard試薬を調製した。
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、9,10−ジブロモアントラセン3.4g(10mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム0.4g(5mol%)、ジイソブチルアルミニウムヒドリド/トルエン溶液1ミリリットル(1M,1mmol)、THF100ミリリットルを加えた。ここに上記Grignard試薬を室温で滴下した後、昇温して一晩加熱攪拌した。反応終了後、反応液を氷水冷却して析出晶を濾取し、メタノール50ミリリットル、アセトン50ミリリットルの順で洗浄し、黄色粉末5.4gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(122)と同定された(収率50%)。
Synthesis of Compound (123) 0.97 g (40 mmol) of magnesium, a small piece of iodine, and 50 ml of THF were placed in a 300 ml three-necked flask with a condenser tube under an argon stream, and stirred for 30 minutes at room temperature, and then intermediate Y12 g (30 mmol) / THF 100 ml solution was added dropwise. After completion of dropping, the mixture was stirred at 60 ° C. for 1 hour to prepare a Grignard reagent.
Under a stream of argon, in a 500 ml three-necked flask with a condenser tube, 3.4 g (10 mmol) of 9,10-dibromoanthracene, 0.4 g (5 mol%) of dichlorobis (triphenylphosphine) palladium, 1 ml of diisobutylaluminum hydride / toluene solution (1M, 1 mmol), 100 mL of THF was added. The above Grignard reagent was added dropwise at room temperature, and the mixture was heated and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water and the precipitated crystals were collected by filtration and washed with methanol (50 ml) and acetone (50 ml) in this order to obtain 5.4 g of a yellow powder. This powder was identified as Compound (122) by NMR, IR and FD-MS measurements (yield 50%).

上記中間体の構造式及び化合物(123)の反応経路を以下に示す。

Figure 0004410291
The structural formula of the above intermediate and the reaction route of the compound (123) are shown below.
Figure 0004410291

合成例21(化合物(124))
化合物(124)の合成
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、10,10’−ジブロモ−9,9’−ビアンスリル2.5g(5mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム0.2g(5mol%)、ジイソブチルアルミニウムヒドリド/トルエン溶液0.5ミリリットル(1M,0.5mmol)、THF100ミリリットルを加えた。ここに合成例(19)で調製したGrignard試薬を室温で滴下した後、昇温して一晩加熱攪拌した。反応終了後、反応液を氷水冷却して析出晶を濾取し、メタノール 50ミリリットル、アセトン50ミリリットルの順で洗浄し、黄色粉末2.0gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(124)と同定された(収率60%)。
Synthesis Example 21 (Compound (124))
Synthesis of Compound (124) In a 500 ml three-necked flask with a condenser tube under an argon stream, 2.5 g (5 mmol) of 10,10′-dibromo-9,9′-bianthryl, 0.2 g of dichlorobis (triphenylphosphine) palladium (5 mol%), 0.5 ml (1M, 0.5 mmol) of diisobutylaluminum hydride / toluene solution and 100 ml of THF were added. The Grignard reagent prepared in Synthesis Example (19) was added dropwise thereto at room temperature, and the temperature was raised and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water, and the precipitated crystals were collected by filtration and washed with 50 ml of methanol and 50 ml of acetone in this order to obtain 2.0 g of a yellow powder. This powder was identified as Compound (124) by NMR, IR, and FD-MS measurements (yield 60%).

上記化合物(124)の反応経路を以下に示す。

Figure 0004410291
A reaction route of the compound (124) is shown below.
Figure 0004410291

合成例22(化合物(125))
化合物(125)の合成
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、6,12ジブロモクリセン1.9g(5mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム0.2g(5mol%)、ジイソブチルアルミニウムヒドリド/トルエン溶液0.5ミリリットル(1M,0.5mmol)、THF100ミリリットルを加えた。ここに合成例(19)で調製したGrignard試薬を室温で滴下した後、昇温して一晩加熱攪拌した。反応終了後、反応液を氷水冷却して析出晶を濾取し、メタノール50ミリリットル、アセトン50ミリリットルの順で洗浄し、黄色粉末2.1gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(125)と同定された(収率60%)。
Synthesis Example 22 (Compound (125))
Synthesis of Compound (125) 1.9 g (5 mmol) of 6,12 dibromochrysene, 0.2 g (5 mol%) of dichlorobis (triphenylphosphine) palladium, diisobutylaluminum hydride in a 500 ml three-necked flask with a condenser tube under an argon stream / Toluene solution 0.5 ml (1M, 0.5 mmol) and THF 100 ml were added. The Grignard reagent prepared in Synthesis Example (19) was added dropwise thereto at room temperature, and the temperature was raised and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water and the precipitated crystals were collected by filtration and washed with methanol (50 ml) and acetone (50 ml) in this order to obtain 2.1 g of a yellow powder. This powder was identified as Compound (125) by NMR, IR and FD-MS measurements (yield 60%).

上記化合物(125)の反応経路を以下に示す。

Figure 0004410291
A reaction route of the compound (125) is shown below.
Figure 0004410291

合成例23(化合物(126))
化合物(126)の合成
アルゴン気流下、冷却管付き500ミリリットル三口フラスコ中に、5,12−ジブロモナフタセン1.9g(5mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム0.2g(5mol%)、ジイソブチルアルミニウムヒドリド/トルエン溶液0.5ミリリットル(1M,0.5mmol)、THF100ミリリットルを加えた。ここに合成例(19)で調製したGrignard試薬を室温で滴下した後、昇温して一晩加熱攪拌した。反応終了後、反応液を氷水冷却して析出晶を濾取し、メタノール50ミリリットル、アセトン50ミリリットルの順で洗浄し、黄色粉末2.1gを得た。この粉末は、NMR、IR及びFD−MSの測定により、化合物(126)と同定された(収率60%)。
Synthesis Example 23 (Compound (126))
Synthesis of Compound (126) In a 500 ml three-necked flask with a condenser tube under an argon stream, 1.9 g (5 mmol) of 5,12-dibromonaphthacene, 0.2 g (5 mol%) of dichlorobis (triphenylphosphine) palladium, diisobutyl 0.5 ml (1M, 0.5 mmol) of an aluminum hydride / toluene solution and 100 ml of THF were added. The Grignard reagent prepared in Synthesis Example (19) was added dropwise thereto at room temperature, and the temperature was raised and stirred overnight. After completion of the reaction, the reaction solution was cooled with ice water and the precipitated crystals were collected by filtration and washed with methanol (50 ml) and acetone (50 ml) in this order to obtain 2.1 g of a yellow powder. This powder was identified as Compound (126) by NMR, IR, and FD-MS measurements (yield 60%).

上記化合物(126)の反応経路を以下に示す。

Figure 0004410291
A reaction route of the compound (126) is shown below.
Figure 0004410291

Claims (9)

下記一般式〔4〕で示される有機エレクトロルミネッセンス素子用材料。
一般式〔4〕
Figure 0004410291
〔式中、X1〜X4は、それぞれ独立に、置換もしくは未置換の炭素原子数6〜30のアリーレン基を表し、X1とX2、X3とX4は互いに連結していてもよい。Y1〜Y4は、それぞれ独立に、下記一般式〔2〕で示される有機基を表す。a〜dは0〜2の整数を表す。ただし、X1、X2、X3及びX4のいずれもクリセン核を含有しない。
一般式〔2〕
Figure 0004410291
(式中、R1〜R4は、それぞれ独立に、水素原子、置換もしくは未置換の炭素原子数1〜20のアルキル基、置換もしくは未置換の炭素原子数6〜20のアリール基、シアノ基を表すか、R1とR2またはR3とR4が結合した三重結合を表す。Zは置換もしくは未置換の炭素原子数6〜20のアリール基を表す。nは0もしくは1を表す。)〕
A material for an organic electroluminescence element represented by the following general formula [4].
General formula [4]
Figure 0004410291
[Wherein, X 1 to X 4 each independently represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and X 1 and X 2 , X 3 and X 4 may be linked to each other. Good. Y 1 to Y 4 each independently represents an organic group represented by the following general formula [2]. a to d represent an integer of 0 to 2; However, none of X 1 , X 2 , X 3 and X 4 contains a chrysene nucleus.
General formula [2]
Figure 0004410291
Wherein R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a cyano group. Or a triple bond in which R 1 and R 2 or R 3 and R 4 are bonded together, Z represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and n represents 0 or 1. )]
前記X 1 〜X 4 に置換する基が、それぞれ独立に、炭素原子数1〜20のアルキル基、炭素原子数1〜20のアルコキシ基、および、炭素原子数6〜20のアリール基から選ばれる請求項1に記載の有機エレクトロルミネッセンス素子用材料 The groups substituted for X 1 to X 4 are each independently selected from an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. The organic electroluminescent element material according to claim 1 . 有機エレクトロルミネッセンス素子用発光材料であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子用材料。 It is a light emitting material for organic electroluminescent elements, The material for organic electroluminescent elements of Claim 1 or 2 characterized by the above-mentioned. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、該有機化合物薄膜の少なくとも一層が請求項1又は2に記載の有機エレクトロルミネッセンス素子用材料を含有する層であることを特徴とする有機エレクトロルミネッセンス素子。 The organic electroluminescent element formed by forming a light emitting layer or a plurality of layers of organic compound thin films including a light emitting layer between a pair of electrodes, wherein at least one of the organic compound thin films is for the organic electroluminescent element according to claim 1 or 2 . An organic electroluminescence device characterized by being a layer containing a material. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、請求項1又は2に記載の有機エレクトロルミネッセンス素子用材料を正孔注入材料、正孔輸送材料及びドーピング材料の中から選ばれる少なくとも一種類の材料として含有する層を、該電極間に形成してなることを特徴とする有機エレクトロルミネッセンス素子。 In the organic electroluminescent element formed by forming a light emitting layer or a plurality of layers of organic compound thin films including a light emitting layer between a pair of electrodes, the material for an organic electroluminescent element according to claim 1 or 2 is a positive hole injection material, a positive electrode. An organic electroluminescence device, wherein a layer containing at least one material selected from a hole transport material and a doping material is formed between the electrodes. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、該発光層が請求項1又は2に記載の有機エレクトロルミネッセンス素子用材料を0.1〜20重量%含有することを特徴とする有機エレクトロルミネッセンス素子。 In the organic electroluminescent element formed by forming a light emitting layer or a plurality of organic compound thin film including a light emitting layer between a pair of electrodes, the light emitting layer is made of the organic electroluminescent element material according to claim 1 or 2 in an amount of 0.0. 1 to 20 weight% of organic electroluminescent element characterized by the above-mentioned. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、正孔注入材料、正孔輸送材料又はドーピング材料の中から選ばれる少なくとも一種類の材料に、請求項1又は2に記載の有機エレクトロルミネッセンス素子用材料を、それぞれ独立に0.1〜20重量%含有することを特徴とする有機エレクトロルミネッセンス素子。 In an organic electroluminescence device formed by forming a light emitting layer or a plurality of layers of organic compound thin films including a light emitting layer between a pair of electrodes, at least one kind selected from a hole injection material, a hole transport material or a doping material The organic electroluminescent element characterized by containing 0.1-20 weight% of materials for organic electroluminescent elements of Claim 1 or 2 each independently in material. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、該発光層がスチルベン誘導体及び請求項1又は2に記載の有機エレクトロルミネッセンス素子用材料を含有する層であることを特徴とする有機エレクトロルミネッセンス素子。 3. An organic electroluminescence device comprising a light emitting layer or a plurality of organic compound thin films including a light emitting layer formed between a pair of electrodes, wherein the light emitting layer is a stilbene derivative and the organic electroluminescent device material according to claim 1 or 2. An organic electroluminescence element characterized by being a layer containing. 芳香族三級アミン誘導体および/またはフタロシアニン誘導体を含有する層を、発光層と陽極との間に形成してなることを特徴とする請求項4〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence according to any one of claims 4 to 8 , wherein a layer containing an aromatic tertiary amine derivative and / or a phthalocyanine derivative is formed between the light emitting layer and the anode. element.
JP2008196470A 1998-12-28 2008-07-30 Material for organic electroluminescence device and organic electroluminescence device using the same Expired - Lifetime JP4410291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196470A JP4410291B2 (en) 1998-12-28 2008-07-30 Material for organic electroluminescence device and organic electroluminescence device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP37392198 1998-12-28
JP14010399 1999-05-20
JP23465299 1999-08-20
JP2008196470A JP4410291B2 (en) 1998-12-28 2008-07-30 Material for organic electroluminescence device and organic electroluminescence device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008064481A Division JP4355352B2 (en) 1998-12-28 2008-03-13 Material for organic electroluminescence device and organic electroluminescence device using the same

Publications (2)

Publication Number Publication Date
JP2009024175A JP2009024175A (en) 2009-02-05
JP4410291B2 true JP4410291B2 (en) 2010-02-03

Family

ID=39841995

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2008064474A Expired - Fee Related JP4373477B2 (en) 1998-12-28 2008-03-13 Material for organic electroluminescence device and organic electroluminescence device using the same
JP2008064481A Expired - Lifetime JP4355352B2 (en) 1998-12-28 2008-03-13 Material for organic electroluminescence device and organic electroluminescence device using the same
JP2008196470A Expired - Lifetime JP4410291B2 (en) 1998-12-28 2008-07-30 Material for organic electroluminescence device and organic electroluminescence device using the same
JP2009142680A Expired - Fee Related JP4630378B2 (en) 1998-12-28 2009-06-15 Material for organic electroluminescence device and organic electroluminescence device using the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2008064474A Expired - Fee Related JP4373477B2 (en) 1998-12-28 2008-03-13 Material for organic electroluminescence device and organic electroluminescence device using the same
JP2008064481A Expired - Lifetime JP4355352B2 (en) 1998-12-28 2008-03-13 Material for organic electroluminescence device and organic electroluminescence device using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009142680A Expired - Fee Related JP4630378B2 (en) 1998-12-28 2009-06-15 Material for organic electroluminescence device and organic electroluminescence device using the same

Country Status (1)

Country Link
JP (4) JP4373477B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102066074B1 (en) * 2011-10-14 2020-01-14 엘지디스플레이 주식회사 Organic light emitting device and display panel using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686418B2 (en) * 1994-08-12 1997-12-08 東洋インキ製造株式会社 Diarylamine derivative, production method and use thereof
JP2924809B2 (en) * 1995-09-25 1999-07-26 東洋インキ製造株式会社 Light-emitting materials for organic electroluminescence devices
JP2924810B2 (en) * 1995-09-25 1999-07-26 東洋インキ製造株式会社 Organic electroluminescence device
JPH1174079A (en) * 1997-06-20 1999-03-16 Nec Corp Organic electroluminescent element
KR100688695B1 (en) * 1998-12-28 2007-03-02 이데미쓰 고산 가부시키가이샤 Organic electroluminescent element

Also Published As

Publication number Publication date
JP4630378B2 (en) 2011-02-09
JP2009024175A (en) 2009-02-05
JP4355352B2 (en) 2009-10-28
JP4373477B2 (en) 2009-11-25
JP2008239988A (en) 2008-10-09
JP2008223026A (en) 2008-09-25
JP2009242806A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP4117093B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4205059B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3998903B2 (en) Novel arylamine compound and organic electroluminescence device
JP4838969B2 (en) Novel styryl compound and organic electroluminescence device
JP4464070B2 (en) Arylamine compound and organic electroluminescence device using the same
JP5667042B2 (en) Aromatic amine derivative and organic electroluminescence device using the same
JP3498533B2 (en) Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JP3666086B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JPWO2004092111A1 (en) Aromatic amine derivative and organic electroluminescence device using the same
JP4002040B2 (en) Organic electroluminescence device
JP2001102172A (en) Organic electroluminescent device
JP3924943B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP2001335516A (en) Organic electroluminescence element
JP3994573B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3899698B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP3945032B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JP4211191B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4410291B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4521105B2 (en) Novel hydrocarbon compounds and organic electroluminescence devices
JPH09165573A (en) Luminescent material for organic electroluminescent element and organic electroluminescent element using the same
JP2007306020A (en) Organic electroluminescence element
JP2007306019A (en) Organic electroluminescence element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Ref document number: 4410291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151120

Year of fee payment: 6

EXPY Cancellation because of completion of term