JP4407442B2 - 筒内噴射式エンジンの燃圧制御装置 - Google Patents

筒内噴射式エンジンの燃圧制御装置 Download PDF

Info

Publication number
JP4407442B2
JP4407442B2 JP2004265496A JP2004265496A JP4407442B2 JP 4407442 B2 JP4407442 B2 JP 4407442B2 JP 2004265496 A JP2004265496 A JP 2004265496A JP 2004265496 A JP2004265496 A JP 2004265496A JP 4407442 B2 JP4407442 B2 JP 4407442B2
Authority
JP
Japan
Prior art keywords
fuel
fuel pressure
engine
fluctuation
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004265496A
Other languages
English (en)
Other versions
JP2006077730A (ja
Inventor
和哉 高木
暢男 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004265496A priority Critical patent/JP4407442B2/ja
Publication of JP2006077730A publication Critical patent/JP2006077730A/ja
Application granted granted Critical
Publication of JP4407442B2 publication Critical patent/JP4407442B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、気筒の燃焼室内に燃料を直接噴射する筒内噴射式エンジンの燃料噴射時期制御装置に関する。
近年、エンジン等から排出される排気ガス中に含まれる粒子の中でも特に100nm以下の径を有する微小粒子(所謂ナノ粒子)の人体への影響が懸念されている。この微小粒子については、同じ重量でも粒子個数が多いため総表面積が大きいため、表面に存在する有害化学物質の影響がより顕著に現れることが知られている。将来的には、単位排気量当たりの微小粒子数を規制する大気環境基準が導入されることが予想され、これに対処するためにも、排気ガス中に含まれる微小粒子数を効果的に減少させる技術が求められる。
現在、排気ガス内の粒子は重量濃度に基づき規制されており、例えばディーゼルエンジンにおいては、排気ガスをフィルタ(DPF)等の排気ガス処理装置に通過させ、排気ガス中に含まれる粒子を捕集することが行われる。また、一方、ガソリンエンジンにおいて、単位排気量当たりの粒子数を減らすには、基本的に、エンジンの燃焼室内での燃料の気化霧化時間をより長く確保して、燃料の燃焼効率を向上させることが望ましい。特に気筒の燃焼室内に燃料を直接噴射する筒内噴射式ガソリンエンジンにおいては、微小粒子が燃焼室内に充満し易く、高い燃焼効率の実現が求められる。これに対処し得る技術として、例えば特開平4−241753号公報(特許文献1)には、燃焼室内温度に応じて、燃料噴射時期を変更する技術が、具体的には、燃料室内温度が低い場合に燃料噴射時期を進角させることで、混合気の形成及びエミッションを向上させ、また、スモークの発生を防止するものが開示されている。
特開平4−241753号公報
また、燃焼室内での燃料の気化霧化を促進し、燃料の燃焼効率を向上させる方法としては、インジェクタによる燃料の噴射圧力(以下、燃圧という)を上昇させて、噴射時の燃料微粒化を向上させることが知られている。燃圧が高いほど、燃料の微粒化は良好になるが、燃圧が高くなるにつれ、同じ要求量の燃料を噴射するには、インジェクタを駆動させる噴射パルスのパルス幅を小さくする必要がある。しかしながら、パルス幅が小さくなりすぎると、インジェクタの信頼性が低下し、その噴射精度が悪くなることが知られている。例えばパルス幅0.5msecになると、噴射パルス幅と噴射量との間に保たれていたリニア性が乱れる(図6参照)。インジェクタの噴射精度が悪くなる結果、空燃比が不安定となり、排気浄化の悪化,トルク出力の低下を生じる惧れがある。
この発明は、上記技術的課題に鑑みてなされたもので、良好なインジェクタの噴射精度を確保し、排気浄化の悪化,トルク出力の低下を防止しつつ、燃焼室内での燃料の気化霧化を促進し、燃料の燃焼効率を向上させ得る筒内噴射式エンジンの燃圧制御装置を提供することを目的とする。
そこで、本願の請求項1に係る発明は、燃焼室内に燃料を直接噴射する筒内噴射式エンジンの燃圧制御装置において、エンジン回転数及びエンジン負荷をパラメータとし運転領域を複数の運転領域に区画し、各運転領域毎の上記燃焼室内に燃料を直接噴射するための燃料噴射弁に供給される基本燃圧を、低回転・低負荷領域に対し高回転・高負荷領域の方が高くなるように設定する基本燃圧設定手段と、各運転領域毎に設定される上記基本燃圧を上昇方向に補正する燃圧補正手段と、該燃圧補正手段による燃料の圧力補正に応じて燃料噴射パルスを縮小方向に補正する燃料噴射パルス補正手段と、各運転領域毎に上記燃焼室内における燃焼状態の変動を、該燃圧補正手段による燃料の圧力補正に伴う所定のパラメータの変動に基づき検出する燃焼変動検出手段と、を有しており、上記燃圧補正手段が、各運転領域毎に上記燃焼変動検出手段により検出される上記パラメータの変動が所定以上になった場合に燃料の圧力補正を制限し、所定以上の上記パラメータの変動が検出される前の燃料の圧力に固定することを特徴としたものである。
また、本願の請求項2に係る発明は、請求項1に係る発明において、更に、上記燃料噴射弁の燃料噴射時期を制御する燃料噴射時期制御手段が設けられており、該燃料噴射時期制御手段は、上記燃圧補正手段による燃圧補正に応じて、上記筒内のピストンが吸気行程における上死点と下死点との間に位置する所定のクランク角度に設定された上記燃料噴射弁の基本燃料噴射時期を進角させ、燃圧が低い場合には高い場合に比べて基本燃料噴射時期の進角量を小さくすることを特徴としたものである。
本願の請求項3に係る発明は、請求項1又は2に係る発明において、上記所定のパラメータがエンジン回転数であり、上記燃焼変動検出手段は、エンジンの回転変動を検出する手段であることを特徴としたものである。
ここで、噴射パルス幅が、噴射パルス幅と噴射量とのリニア性を維持し得る最小パルス幅よりも小さくなると、空燃比が要求空燃比からずれるため、燃焼変動が大きくなる。従って、燃料圧力の上昇補正に伴う噴射パルス幅の縮小補正における燃焼変動を検出すれば、噴射パルス幅が上記最小パルス幅よりも小さくなったか否か検出することができる。本願の請求項1に係る発明によれば、各運転領域毎に設定される基本燃圧の上昇方向における燃料の圧力補正に伴い、燃料噴射パルスのパルス幅が最小幅以下となり、空燃比が不安定になる状態を回避しつつ、燃料の圧力を最大限に上昇させて、燃料の気化霧化を促進することができ、微小粒子の排出を抑制することができる。
ここで、燃料圧力の上昇補正に伴い噴射パルス幅の縮小補正が行われた場合、燃料噴射時期を進角させて燃料の気化霧化時間を長く確保することが望ましい。しかしながら、燃圧の大きさにかかわらず一律に進角すると、燃圧が低く噴射パルス幅が長い場合、燃料が吸気弁及び排気弁のオーバーラップ期間にかかり、燃料が排気に吹き抜ける惧れがある。本願の請求項2に係る発明によれば、燃圧が低い場合には進角量が小さく設定されるため、吸気弁及び排気弁によるオーバーラップ期間での燃料噴射を抑制しつつ、噴射タイミングをできるだけ進角させ、燃料の気化霧化時間を長く確保し、微小粒子の排出を抑制することができる。
以下、本発明の実施形態について、添付図面を参照しながら説明する。
図1は、本発明の実施形態に係る筒内噴射式エンジン及び該エンジンに対して燃圧制御を行うシステム構成をあらわす図である。筒内噴射式エンジン1は、基本的に、ピストン13の吸気する行程時に燃料を燃焼室4内に噴射することで、燃焼室4内の混合気が均一である状態での燃焼(所謂均一燃焼)を行う多気筒エンジンである。
このエンジン1では、吸気弁2が開かれたときに、シリンダヘッド16内に構成される吸気ポート3を介して燃焼室4内に燃料燃焼用のエアが吸入され、かかる燃焼室4内のエア中に、所定のタイミングでインジェクタ5から燃料(ガソリン)が噴射され、混合気が形成される。気筒14毎に設けられた各インジェクタ5には、燃料供給系31内で燃料ポンプ(不図示)により燃料タンク(不図示)から汲み上げられ加圧された燃料が、共通の燃料分配通路30を介して送り込まれる。この燃料分配通路30には、各インジェクタ5に供給される燃料の圧力(燃圧)を検出する燃圧センサ30aが設けられている。また、燃料分配通路30には、燃料の流量を計測する燃料流量計(不図示)が設けられてもよい。
燃焼室4内で形成された混合気は、ピストン13により圧縮され、点火プラグ7及びそれに接続される点火回路8により所定のタイミングで点火されて燃焼する。点火プラグ7及び点火回路8は、エンジン本体に構成される気筒14毎に設けられ、それぞれ、所定の点火タイミングで点火を行い、混合気を燃焼させる。なお、点火プラグ7の点火タイミングは、自在にリタード(遅角)させる若しくはアドバンス(進角)させることができる。燃焼ガスすなわち排気ガスは、排気弁9が開かれたときに、シリンダヘッド16内に構成された排気ポート17を通じて排気マニホールド18へ排出される。
また、吸気弁2及び排気弁9には、それぞれ、可変動弁機構2a及び9aが取り付けられ、これら可変動弁機構2a及び9aにより吸気弁2及び排気弁9の開閉作動時期(バルブタイミング)が個々に変更されるようになっている。
排気ポート17に連通する排気マニホールド18には、排気中の酸素濃度に基づき空燃比を検出するリニアOセンサ21が設けられている。また、排気マニホールド18に接続する排気管19には、排気浄化用触媒としてCO,HC及びNOxを浄化する三元触媒を用いた触媒コンバータ20が介設され、触媒コンバータ20の下流側には、触媒の劣化状態を判定するために、出力が理論空燃比を境に反転するラムダOセンサ22が設けられている。また、排気管19には、該排気管19内に通過する排気ガスの一部をEGR(exhaust gas recirculation)として吸気管32に戻す排気ガス再循環通路(以下、EGR通路と表記)23が設けられ、このEGR通路23に、EGRガス流量を制御するEGR弁29が介設されている。
他方、吸気ポート3に連通する吸気マニホールド24には、燃費向上を図り、燃料と空気の混合比を最適化すべく、吸気マニホールド24内のエア流動を制御する吸気流動制御弁(TSCV)25が設けられている。また、吸気マニホールド24に連通する吸気管32には、エアの流れを安定化させるサージタンク26と、アクセルペダル(図示せず)の踏み込み量に応じて開閉されてエアを絞るスロットル弁27と、吸気管32内に通過する吸入エアの流量を検出するエアフローセンサ28とが設けられている。スロットル弁27には、該スロットル弁27の開度、すなわちアクセルペダル(不図示)の踏み込み量を検出するアクセル開度センサ45が取り付けられている。なお、特に図示しないが、エアフローセンサ28の上流側には、通常、エア中のダスト等を除去するエアクリーナが設けられる。
この実施形態では、エンジン本体において、シリンダブロック10に配設されて、ウォータジャケット15内を還流する冷却水の温度を検出する水温センサ41,シリンダブロック10の下部側壁に配設されて、クランク軸11の基準位置からの回転角度を検出するクランク角センサ42が設けられている。クランク軸11の回転角度を検出することで、クランク軸11にロッド12を介して連結されたピストン13の気筒14内での位置が求まる。
また、エンジン本体に直接に配設されるセンサ以外に、エンジン1には、例えばエンジン1のエアクリーナ(不図示)に配設されて、吸気ポート3へ吸入される吸入エアの温度(吸気温度)を検出する吸気温センサ43,エンジン1の回転数を検出するエンジン回転数センサ44と、が設けられている。
なお、ここでは、エンジンに搭載されるセンサとして代表的なもの若しくは本発明に関連するもののみを挙げ、それ以外のセンサについてはその説明を省略する。
以上のような構成を備えたエンジン1に対して、該エンジン1を制御するエンジンコントロールユニット(以下、ECUと表記)40が設けられている。このECU40は、エンジン1用の総合的な制御装置となるコンピュータであって、各種センサから検出された情報、例えば、エアフローセンサ28によって検出される吸入エアの流量,水温センサ41によって検出されるエンジン水温,クランク角センサ42によって検出されるクランク軸11の回転角度,吸気温センサ43によって検出される吸気温度,エンジン回転数センサ44によって検出されるエンジン回転数,アクセル開度センサ45やアイドルスイッチ(アクセルペダル全閉時にONされるスイッチであるが、ここでは不図示)によって検出されるアクセル開度,燃料流量計によって検出されるインジェクタ5への燃料流量等の各種パラメータ情報に基づいて、インジェクタ5における燃料噴射タイミング制御,点火プラグ7における点火時期制御,スロットル弁27におけるアイドル回転数制御などの各種制御を行う。このECU40は、その内部に、制御回路(不図示)を有しており、各種制御を行うに際して実行される補正,演算,判定等の処理は、その制御回路によって行われる。
特に、本実施形態では、ECU40が、排出される排気ガス中に含まれる微小粒子数を減少させるために、燃焼室4内での燃料の気化霧化を促進すべく、噴射時における燃料の微粒化を図り、燃圧を上昇方向に補正するような燃圧制御を行う。燃圧を上昇させた場合には、噴射時における燃料の微粒化が向上させられるとともに、同じ要求量の燃料を噴射する上で、インジェクタ5を駆動させる噴射パルスのパルス幅を縮小することができる。縮小された噴射パルスのパルス幅に基づき、燃料噴射時間が短縮されると、点火プラグ7による所定タイミングでの点火までの燃料の気化霧化時間をより長く確保することができる。
図2は、各行程からなるエンジン動作の1サイクルに対して設定された、通常燃圧時及び高燃圧時の噴射パルス、吸気弁及び排気弁の開動作期間をあらわすタイミングチャートである。この図から明らかなように、点火プラグ7による点火が圧縮行程後のクランク角度0°(720°)の時点で行われる場合、通常燃圧時には、噴射パルスpの終了時から点火までの時間はtであるが、高燃圧時には、噴射パルスのパルス幅が縮小される分だけ噴射パルスpの終了時から点火までの時間tは長くなる(t<t)。これにより、高燃圧時には、通常燃圧時に比べて、より長い燃料の気化霧化時間が確保され、気化霧化が促進され得る。
燃圧が高いほど、燃料の微粒化は良好になり、また、より長い燃料の気化霧化時間を確保することができるが、燃圧の上昇とともに、同じ要求量の燃料を噴射するために、噴射パルスのパルス幅が過度に縮小されると、インジェクタ5の信頼性が低下し、その噴射精度が悪くなる惧れがある。図1に示すシステム構成においては、これを回避するために、燃焼室4の燃焼状態の変動が、燃圧の上昇に伴う所定のパラメータ(例えば回転偏差や角速度等)の変動に基づき検出され、パラメータの変動が所定以上になった場合には、燃焼室4内での空燃比が不安定であると判断され、それ以降の燃圧の上昇補正が制限されて、所定以上のパラメータの変動が検出される直前の燃料の圧力に固定されるようになっている。以下、本願発明の要旨に係る燃圧制御について詳しく説明する。
図3A及び3Bは、ECU40により実行される一連の制御処理に含まれる燃圧制御処理についてのフローチャートである。この燃圧制御処理は、エンジン稼働中に所定の処理周期(例えば、8msec)毎に行われる。この処理では、まず、各種センサから検出される各種パラメータ信号が読み込まれる(♯11)。具体的には、エアフローセンサ28によって検出される気筒2内に吸入されるエアの流量,エンジン回転数センサ44によって検出されるエンジン回転数,水温センサ41によって検出されるエンジン水温等が読み込まれる。次に、燃圧補正が既に済んだか否かが判断される(♯12)。具体的には、燃圧補正が既に済んだか否かは、ECU40に設定された燃圧補正フラグ(1又は0)に基づき判断される。
♯12の結果、燃圧補正フラグ1が検出され、燃圧補正が済んだと判断された場合には、引き続き、補正後のベース燃圧に基づき、燃圧が設定される(♯18)。その後、♯18で設定された燃圧に基づき、燃料噴射パルスが算出される(♯19)。そして、燃圧に応じて燃料噴射が設定され(♯20)、燃料噴射が実行される(♯21)。その後、処理はメインルーチンにリターンされる。
また、一方、♯12の結果、燃圧補正フラグ0が検出され、燃圧補正が済んでいないと判断された場合には、その時点でのエンジン回転数及びエンジン負荷による運転状態が、図4に示すようなマップ上の運転領域Aに該当するか否かが判断される(♯13)。なお、図4は、ECU40に予め設定されたマップであり、エンジン回転数及びエンジン負荷による運転状態が、互いに異なるベース燃圧2.5MPa,7MPa,11.5MPaがそれぞれ設定された運転領域A,B,Cに区画されてなるマップである。♯13の結果、運転領域Aに該当すると判断された場合には、該運転領域Aに対応したベース燃圧(2.5MPa)が設定される(♯14)。他方、運転領域Aに該当しないと判断された場合には、引き続き、その時点でのエンジン回転数及びエンジン負荷による運転状態が、図4に示すようなマップ上の運転領域Bに該当するか否かが判断される(♯15)。♯15の結果、運転領域Bに該当すると判断された場合には、該運転領域Bに対応したベース燃圧(7MPa)が設定される(♯16)。他方、運転領域Bに該当しないと判断された場合には、自動的に運転領域Cに該当すると判断され、運転領域Cに対応したベース燃圧(11.5MPa)が設定される(♯17)。
♯14,♯16,♯17のいずれかで設定されたベース燃圧に対応して、要求量の燃料を噴射するために、所定のパルス幅をもつ燃料噴射パルスが算出される(♯22)。インジェクタ5は、この燃料噴射パルスに基づき所定間隔開弁して、燃焼室4内に燃料を噴射する。次に、燃圧がベース燃圧から所定圧だけ上昇させられる(♯23)。すなわち、最初の燃料噴射においては、運転領域A,B,Cでそれぞれ設定されたベース燃圧2.5MPa,7MPa,11.5MPaから所定圧だけ燃圧が上昇させられる。要求量の燃料噴射を維持するために、この燃圧上昇に伴い、そのパルス幅が小さくなるように燃料噴射パルスが縮小補正される(♯24)。♯24の後、記号Sを介して図3Aから図3Bへ進む。
次に、その時点での運転状態の下で、上昇後の燃圧に応じた燃料噴射時期(噴射タイミング)が設定される(♯25)。そして、燃料噴射が所定のタイミング及び間隔で実行される(♯26)。図1に示すシステム構成では、燃焼状態が常時検出され、該燃焼状態に基づき燃焼変動が算出されるが、♯26の燃料噴射の実行に伴い、回転変動(ΔNe)が算出される(♯27)。この回転変動(ΔNe)は、例えばクランク軸11についての前回の回転と今回の回転との間の回転偏差や角速度等に基づき算出可能である。その後、ΔNeが所定値より大きいか否かが判断される(♯28)。♯28の結果、ΔNeが所定値より小さいと判断された場合、燃焼状態が安定しているとして、燃圧上昇を継続すべく、処理は即時メインルーチンへリターンされる。他方、ΔNeが所定値より大きいと判断された場合には、燃焼状態が不安定である、すなわち空燃比が不安定であるとして、燃圧上昇を中止すべく、♯29以降のステップが実行される。
まず、♯29では、♯13及び♯15での判断結果に基づき、今回の運転状態が運転領域Aに該当するか否かが判断される。その結果、運転領域Aに該当すると判断された場合には、運転領域Aにおける前回の燃圧に固定され、それ以降での燃圧上昇が中止される(♯30)。他方、運転領域Aに該当しないと判断された場合には、引き続き、今回の運転状態が運転領域Bに該当するか否かが判断される(♯31)。♯31の結果、運転領域Bに該当すると判断された場合には、運転領域Bにおける前回の燃圧に固定され、それ以降での燃圧上昇が中止される(♯32)。他方、運転領域Bに該当しないと判断された場合には、今回の運転状態が運転領域Cに該当するとして、運転領域Cにおける前回の燃圧に固定される(♯33)。♯30,♯32及び♯33の後、ステップ♯34が実行される。
♯34では、全燃圧の補正が済んだが否かが判断される。そして、全燃圧補正が済んだと判断された場合に、燃圧補正フラグが1に設定され(♯35)、他方、全燃圧補正が済んでいないと判断された場合には、燃圧補正フラグが0に設定される(♯36)。以上で、処理がメインルーチンへリターンされる。
以上の燃圧制御処理を行い、上昇方向における燃圧補正に伴い噴射パルスのパルス幅が最小幅以下となり空燃比が不安定になる状態を回避しつつ、燃圧を最大限に上昇させることにより、噴射時の燃料の微粒化を最大限に向上させ、また、点火までの燃料の気化霧化時間をより長く確保することが可能となる。図5には、上記燃圧制御処理が行われた場合に取得された燃圧と排気ガス中に含まれる微小粒子数との相対変化を示す。この図から分かるように、燃圧が高くなるほど、燃焼室4内における燃料の気化霧化が促進させられ、微小粒子数が減少させられる。
また、図3B中の♯25では、ECU40により、上昇後の燃圧に応じたインジェクタ5の燃料噴射タイミングが制御されるが、ここでは、燃料噴射を早期に実行すべく、気筒14内のピストン13が吸気行程における上死点と吸気下記点との間に位置する所定のクランク角度に設定された基本燃圧噴射タイミングを進角させるようにしている。燃圧噴射タイミングを進角させることにより、燃料噴射終了から点火までの燃料の気化霧化時間をより長く確保し、燃料の気化霧化を促進することができる。
ところで、図2には、各行程からなるエンジン動作の1サイクルに対して設定された通常燃圧時及び高燃圧時の噴射パルスとともに、吸気弁2及び排気弁9の開動作期間が示される。この図から分かるように、吸気弁2は、吸気行程の始めから圧縮行程の半ばまで開状態にある一方、排気弁9は、爆発行程の途中から排気行程を経て次の吸気行程の途中まで開状態にある。つまり、この場合には、吸気行程開始時から所定期間Rだけ、吸気弁2及び排気弁9が同時に開く状態(所謂バルブオーバーラップ)になる。一般に、かかるオーバーラップ期間Rにおいては、吸気が排気ポート17側に吹き抜けたり吸気ポート3に吹き返したり、また、アイドリングが不安定になったりする等の問題が生じ易いことが知られている。そして、燃圧が低く、噴射パルスが長い場合、燃料噴射時期の進角量を大きくし過ぎると、噴射パルスがオーバーラップ期間にかかり、噴射された燃料が排気に吹き抜ける惧れがある。したがって、オーバーラップ期間Rにおける燃圧が低い場合での燃料噴射を抑制することが望ましい。これに対処して、燃圧が低い場合には、燃料噴射タイミングを進角させながらも、燃料噴射タイミングの進角量を燃圧が高い場合に比べて小さく設定するようにしてもよい。これにより、燃圧が低い場合にも、燃焼室4における安定した燃焼状態を保ちつつ、燃料の気化霧化時間を長く確保することができる。
なお、本発明は、例示された実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能であることは言うまでもない。
本願発明に係る筒内噴射式エンジンの燃圧制御装置は、自動車等の車両を含み、筒内噴射式エンジンが搭載されるものであれば、いかなるものにも適用可能である。
本発明の実施形態に係る筒内噴射式エンジン及び該エンジンに対して燃圧制御を行うシステム構成をあらわす図である。 吸気から排気までの各行程からなるエンジン動作の1サイクルに対して設定された、通常燃圧時及び高燃圧時の噴射パルス、吸気弁及び排気弁の開動作期間をあらわすタイミングチャートである。 ECUにより実行される燃圧制御処理の前半部分についてのフローチャートである。 ECUにより実行される燃圧制御処理の後半部分についてのフローチャートである。 エンジン回転数及びエンジン負荷による運転状態が、それぞれ異なるベース燃圧が設定された運転領域に区画されてなるマップである。 燃圧と排気ガス中に含まれる微小粒子数との相対変化をあらわすグラフである。 燃料噴射パルス幅と燃料噴射量との相対変化をあらわすグラフである。
符号の説明
1…エンジン
2…吸気弁
3…吸気ポート
4…燃焼室
5…インジェクタ
7…点火プラグ
8…点火回路
9…排気弁
11…クランク軸
12…ロッド
13…ピストン
14…気筒
24…吸気マニホールド
25…吸気流動制御弁
27…スロットル弁
28…エアフローセンサ
30…燃料分配通路
30a…燃圧センサ
31…燃料供給系
40…ECU
41…水温センサ
42…クランク角センサ
43…吸気温センサ
44…エンジン回転数センサ
45…アクセル開度センサ

Claims (3)

  1. 燃焼室内に燃料を直接噴射する筒内噴射式エンジンの燃圧制御装置において、
    エンジン回転数及びエンジン負荷をパラメータとし運転領域を複数の運転領域に区画し、各運転領域毎の上記燃焼室内に燃料を直接噴射するための燃料噴射弁に供給される基本燃圧を、低回転・低負荷領域に対し高回転・高負荷領域の方が高くなるように設定する基本燃圧設定手段と、
    各運転領域毎に設定される上記基本燃圧を上昇方向に補正する燃圧補正手段と、
    上記燃圧補正手段による燃料の圧力補正に応じて燃料噴射パルスを縮小方向に補正する燃料噴射パルス補正手段と、
    各運転領域毎に上記燃焼室内における燃焼状態の変動を、該燃圧補正手段による燃料の圧力補正に伴う所定のパラメータの変動に基づき検出する燃焼変動検出手段と、を有しており、
    上記燃圧補正手段が、各運転領域毎に上記燃焼変動検出手段により検出される上記パラメータの変動が所定以上になった場合に燃料の圧力補正を制限し、所定以上の上記パラメータの変動が検出される前の燃料の圧力に固定することを特徴とする筒内噴射式エンジンの燃圧制御装置。
  2. 更に、上記燃料噴射弁の燃料噴射時期を制御する燃料噴射時期制御手段が設けられており、
    上記燃料噴射時期制御手段は、上記燃圧補正手段による燃圧補正に応じて、上記筒内のピストンが吸気行程における上死点と下死点との間に位置する所定のクランク角度に設定された上記燃料噴射弁の基本燃料噴射時期を進角させ、燃圧が低い場合には高い場合に比べて基本燃料噴射時期の進角量を小さくすることを特徴とする請求項1記載の筒内噴射式エンジンの燃圧制御装置。
  3. 上記所定のパラメータがエンジン回転数であり、
    上記燃焼変動検出手段は、エンジンの回転変動を検出する手段であることを特徴とする請求項1又は2記載の筒内噴射式エンジンの燃圧制御装置。
JP2004265496A 2004-09-13 2004-09-13 筒内噴射式エンジンの燃圧制御装置 Expired - Fee Related JP4407442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265496A JP4407442B2 (ja) 2004-09-13 2004-09-13 筒内噴射式エンジンの燃圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265496A JP4407442B2 (ja) 2004-09-13 2004-09-13 筒内噴射式エンジンの燃圧制御装置

Publications (2)

Publication Number Publication Date
JP2006077730A JP2006077730A (ja) 2006-03-23
JP4407442B2 true JP4407442B2 (ja) 2010-02-03

Family

ID=36157375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265496A Expired - Fee Related JP4407442B2 (ja) 2004-09-13 2004-09-13 筒内噴射式エンジンの燃圧制御装置

Country Status (1)

Country Link
JP (1) JP4407442B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214219B1 (ko) * 2010-11-29 2012-12-20 주식회사 현대케피코 연료 직접 분사 시스템에서의 연료압 제어 방법 및 장치
JP5704244B2 (ja) * 2011-09-14 2015-04-22 トヨタ自動車株式会社 内燃機関の制御装置
JP6434863B2 (ja) * 2015-06-11 2018-12-05 株式会社Ksf 内燃機関

Also Published As

Publication number Publication date
JP2006077730A (ja) 2006-03-23

Similar Documents

Publication Publication Date Title
US7841316B2 (en) Controller for direct injection engine
US7168409B2 (en) Controller for direct injection internal combustion engine
KR101035439B1 (ko) 실린더내 분사식 스파크 점화 내연기관의 제어 장치 및 제어 방법
US10215126B2 (en) Control device for internal combustion engine
JP2009041540A (ja) ガソリンエンジンの制御装置
JP4093080B2 (ja) 圧縮自着火運転可能なエンジン
US6283089B1 (en) Direct-injection internal combustion engine and method for controlling the engine
JP4407442B2 (ja) 筒内噴射式エンジンの燃圧制御装置
JP3775942B2 (ja) 内燃機関の燃料噴射制御装置
JP2006090230A (ja) 筒内噴射式エンジンの燃料噴射時期制御装置
JP4166135B2 (ja) 内燃機関の運転領域制御装置
JP2002168142A (ja) ディーゼルエンジンの燃料噴射制御装置
JP2002221037A (ja) 筒内噴射式ガス燃料内燃機関
JP5098910B2 (ja) 直噴式エンジンの燃料圧力制御装置
JP5167854B2 (ja) 内燃機関
JP2006132399A (ja) 過給機付エンジンの制御装置および制御方法
JP2004190539A (ja) 2サイクル運転可能な頭上弁式多気筒エンジン
JP4296585B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP2002038995A (ja) ディーゼルエンジンの燃料噴射装置
JP4576884B2 (ja) 内燃機関の制御装置および制御方法
JP5637098B2 (ja) 内燃機関の制御装置
JP2005220823A (ja) 筒内噴射式内燃機関の制御装置
JP2000257476A (ja) 筒内噴射式内燃機関の制御装置
JP2006083834A (ja) 筒内噴射式ガソリンエンジンの制御装置
US20210003086A1 (en) Engine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees