JP4406836B2 - Method and apparatus for measuring ice filling amount - Google Patents
Method and apparatus for measuring ice filling amount Download PDFInfo
- Publication number
- JP4406836B2 JP4406836B2 JP2004169573A JP2004169573A JP4406836B2 JP 4406836 B2 JP4406836 B2 JP 4406836B2 JP 2004169573 A JP2004169573 A JP 2004169573A JP 2004169573 A JP2004169573 A JP 2004169573A JP 4406836 B2 JP4406836 B2 JP 4406836B2
- Authority
- JP
- Japan
- Prior art keywords
- ice
- amount
- pressurized gas
- supply amount
- filling amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
この発明は、氷充填量計測方法およびその装置に関し、密閉できる液槽や倉庫などの空間内の氷の充填量を直接計測できるようにしたもので、特にダイナミック形の氷蓄熱槽の氷の充填量の計測に好適なものである。 TECHNICAL FIELD The present invention relates to an ice filling amount measuring method and an apparatus therefor, which can directly measure the filling amount of ice in a space such as a liquid tank or a warehouse that can be sealed, and in particular, filling ice in a dynamic ice storage tank. It is suitable for measuring the amount.
空間内の氷の充填量を計測する必要がある場合の一つに、氷蓄熱装置における蓄熱槽内の氷がある。 One of the cases where it is necessary to measure the filling amount of ice in the space is ice in a heat storage tank in an ice heat storage device.
この氷蓄熱装置の形式の一つにダイナミック形のものがあり、蓄熱槽外で製氷して槽内に搬送するようにしている。 One type of this ice heat storage device is a dynamic type, which makes ice outside the heat storage tank and transports it into the tank.
例えば冷凍機によって作られた過冷却水を配管によって氷蓄熱槽の上部に吐出させ、吐出の際の衝撃などで過冷却状態を解除し、氷結シャーベット状の氷水として氷蓄熱槽に貯留するようにするものがある。 For example, supercooled water produced by a refrigerator is discharged to the upper part of the ice heat storage tank by piping, the supercooled state is released by impact etc. at the time of discharge, and it is stored in the ice heat storage tank as frozen sherbet-like ice water There is something to do.
また、冷凍機によって作られた過冷却水を直後に過冷却解除部で過冷却状態を解除して氷結シャーベット状の氷水とし、氷水の状態で配管によって氷蓄熱槽に貯留するようにするものがある。 In addition, the supercooling water produced by the refrigerator is immediately released from the supercooling state at the supercooling release unit to form frozen sherbet-like ice water and stored in the ice heat storage tank by piping in the ice water state. is there.
このような氷蓄熱槽では、氷の充填量を計測し、蓄熱量を監視・制御することが、効率的な運転に欠かせない重要な要素である。 In such an ice storage tank, measuring the amount of ice filling and monitoring / controlling the amount of stored heat is an essential element for efficient operation.
このため、従来から種々の計測方法や装置が提案されている。
例えば、特許文献1のダイナミック氷蓄熱槽では、導電率計を設けて氷蓄熱槽内の氷スラリーの導電率を計測し、予め求めた導電率と残存氷量との相関関係から残存氷量を算出する。
For this reason, various measurement methods and apparatuses have been proposed conventionally.
For example, in the dynamic ice heat storage tank of Patent Document 1, a conductivity meter is provided to measure the conductivity of the ice slurry in the ice heat storage tank, and the remaining ice amount is calculated from the correlation between the conductivity obtained in advance and the remaining ice amount. calculate.
また、特許文献2の氷の充填率計測装置では、蓄熱槽の底部に設置した音響測深機で氷スラリーの下面までの高さと氷のない液面上端までの高さとを計測し、演算で氷の充填率を算出する。 In addition, in the ice filling rate measuring device of Patent Document 2, an acoustic sounding instrument installed at the bottom of the heat storage tank measures the height to the bottom of the ice slurry and the height to the top of the liquid surface without ice, and calculates the ice by calculation. The filling rate is calculated.
さらに、特許文献3の氷充填率計測装置では、氷スラリーの一部を分流させ、加熱器で加熱し、加熱部の表面温度を計測することで、予め求めた校正曲線から氷の充填率を求める。
ところが、従来のいずれの計測方法も、氷の充填量を導電率、氷の下面と水面の高さ、加熱時の表面温度などから間接的に氷の充填量を計測することから、計測精度に問題があるとともに、計測点によっては、蓄熱槽全体の状態を代表する値でないなどの問題もある。 However, each of the conventional measurement methods measures the ice filling amount indirectly from the conductivity, the ice bottom and water surface height, the surface temperature during heating, etc. There is a problem, and depending on the measurement point, there is a problem that the value is not representative of the state of the entire heat storage tank.
また、このような氷蓄熱槽内の氷の充填量だけでなく、密閉された倉庫内の氷の保存量や残存量を高精度に計測できる方法や装置の開発が望まれている。 In addition, it is desired to develop a method and apparatus capable of measuring not only the amount of ice in the ice storage tank but also the amount of ice stored and the amount remaining in a closed warehouse with high accuracy.
この発明は、かかる従来技術の問題点と要望に鑑みてなされたもので、氷の充填量などを直接かつ高精度に計測できる氷充填量計測方法およびその装置を提供しようとするものである。 The present invention has been made in view of the problems and demands of the prior art, and an object of the present invention is to provide an ice filling amount measuring method and apparatus for directly and accurately measuring the ice filling amount.
上記従来技術が有する課題を解決するため、この発明の請求項1記載の氷充填量計測方法は、 空間を密閉した状態で計測用の加圧気体を設定圧力まで供給して氷のない状態の初期供給量を計測した初期特性を把握しておき、氷のある状態の前記設定圧力までに供給する前記加圧気体の供給量を計測し、これら初期供給量と供給量との差から氷充填量を算出することを特徴とするものである。 In order to solve the above-described problems of the prior art, the ice filling amount measuring method according to claim 1 of the present invention is configured to supply a pressurized gas for measurement up to a set pressure in a state where the space is sealed, Understand the initial characteristics of the initial supply amount, measure the supply amount of the pressurized gas supplied up to the set pressure in the presence of ice, and fill the ice from the difference between these initial supply amount and supply amount The quantity is calculated.
この氷充填量計測方法によれば、空間を密閉した状態で計測用の加圧気体を設定圧力まで供給して氷のない状態の初期供給量を計測した初期特性を把握しておき、氷のある状態の前記設定圧力までに供給する前記加圧気体の供給量を計測し、これら初期供給量と供給量との差から氷充填量を算出するようにしており、氷のある状態とない状態とで密閉空間に設定圧力となるまで供給すべき加圧気体の供給量の差から直接氷の体積を求めることができ、氷の充填量を算出できるようになる。 According to this ice filling amount measurement method, the initial characteristics of measuring the initial supply amount in the absence of ice by supplying the pressurized gas for measurement up to the set pressure with the space sealed, The supply amount of the pressurized gas supplied up to the set pressure in a certain state is measured, and the ice filling amount is calculated from the difference between the initial supply amount and the supply amount. Thus, the volume of ice can be determined directly from the difference in the amount of pressurized gas to be supplied until the set pressure is reached in the sealed space, and the ice filling amount can be calculated.
また、この発明の請求項2記載の氷充填量計測方法は、請求項1記載の構成に加え、前記供給量の計測時にのみ前記空間を密閉し、常時大気開放状態とすることを特徴とするものである。 According to a second aspect of the present invention, in addition to the configuration of the first aspect, the ice filling amount measuring method is characterized in that the space is sealed only at the time of measuring the supply amount, and is always open to the atmosphere. Is.
この氷充填量計測方法によれば、前記供給量の計測時の数秒間にのみ前記空間を密閉し、常時大気開放状態とするようにしており、完全な密閉空間でなくても計測に必要なごく短時間だけ密閉状態にして計測することで、完全な密閉空間にする必要をなくし、広く適用できるようにしている。 According to this ice filling amount measuring method, the space is sealed only for a few seconds during the measurement of the supply amount, and is always kept open to the atmosphere. By measuring in a sealed state for a very short time, it is not necessary to make a completely sealed space, making it widely applicable.
さらに、この発明の請求項3記載の氷充填量計測方法は、請求項1または2記載の構成に加え、前記空間を液槽とするとともに、液面を一定に保持した状態で前記初期供給量および前記供給量を計測するようにしたことを特徴とするものである。 Furthermore, the ice filling amount measuring method according to claim 3 of the present invention is the structure according to claim 1 or 2, and the initial supply amount in a state where the space is a liquid tank and the liquid level is kept constant. In addition, the supply amount is measured.
この氷充填量計測方法によれば、前記空間を液槽とするとともに、液面を一定に保持した状態で前記初期供給量および前記供給量を計測するようにしており、ダイナミック形の氷蓄熱槽などであっても初期供給量と供給量を常に同一条件で測定でき、高精度に氷の充填量を計測できるようになる。 According to this ice filling amount measuring method, the space is used as a liquid tank, and the initial supply amount and the supply amount are measured in a state where the liquid level is kept constant. Even in such cases, the initial supply amount and the supply amount can always be measured under the same conditions, and the ice filling amount can be measured with high accuracy.
また、この発明の請求項4記載の氷充填量計測方法は、請求項1〜3のいずれかに記載の構成に加え、前記計測用の加圧気体を圧縮空気または圧縮窒素とすることを特徴とするものである。 According to a fourth aspect of the present invention, there is provided an ice filling amount measuring method, wherein, in addition to the configuration according to any one of the first to third aspects, the pressurized gas for measurement is compressed air or compressed nitrogen. It is what.
この氷充填量計測方法によれば、前記計測用の加圧気体を圧縮空気または圧縮窒素とするようにしており、簡単に入手でき、加圧気体により他の機器へ悪影響を及ぼすことなく計測できるようにしている。 According to this ice filling amount measurement method, the pressurized gas for measurement is compressed air or compressed nitrogen, which can be easily obtained and measured without adversely affecting other equipment by the pressurized gas. I am doing so.
さらに、この発明の請求項5記載の氷充填量計測装置は、密閉可能な空間に計測用の加圧気体を設定圧力まで供給する加圧気体供給手段と、この加圧気体供給手段による加圧気体の供給量を計測する供給量計測手段と、氷のない状態での前記加圧気体の初期供給量と氷のある状態の前記加圧気体の供給量との差から氷充填量を算出する演算手段とを備えることを特徴とするものである。 Furthermore, an ice filling amount measuring device according to claim 5 of the present invention is a pressurized gas supply means for supplying a pressurized gas for measurement up to a set pressure in a sealable space, and a pressurization by the pressurized gas supply means An ice filling amount is calculated from a supply amount measuring means for measuring a gas supply amount, and a difference between an initial supply amount of the pressurized gas without ice and a supply amount of the pressurized gas with ice. And a calculating means.
この氷充填量計測装置によれば、空間を密閉した状態で計測用の加圧気体を加圧気体供給手段で設定圧力まで供給して氷のない状態の初期供給量と氷のある状態の前記設定圧力までに供給する前記加圧気体の供給量を供給量計測手段で計測し、これら初期供給量と供給量との差から氷充填量を演算手段で算出するようにしており、氷のある状態とない状態とで密閉空間に設定圧力となるまで供給すべき加圧気体の供給量の差から直接氷の体積を求めることができ、氷の充填量を算出できるようになる。 According to this ice filling amount measuring apparatus, the pressurized gas for measurement is supplied up to the set pressure by the pressurized gas supply means in a state where the space is sealed, and the initial supply amount in the state without ice and the above-mentioned in the state with ice The supply amount of the pressurized gas supplied up to the set pressure is measured by the supply amount measuring means, and the ice filling amount is calculated by the calculating means from the difference between the initial supply amount and the supply amount. The volume of ice can be directly calculated from the difference in the amount of pressurized gas to be supplied until the set pressure is reached in the sealed space in the closed state and in the non-closed state, and the amount of filled ice can be calculated.
また、この発明の請求項6記載の氷充填量計測装置は、請求項5記載の構成に加え、前記空間を液槽で構成するとともに、この液槽の液面を一定に保持する液面保持手段を設けたことを特徴とするものである。 According to a sixth aspect of the present invention, in addition to the configuration of the fifth aspect, the ice filling amount measuring device is configured to hold the liquid level of the liquid tank at a constant level while the space is constituted by a liquid tank. Means is provided.
この氷充填量計測装置によれば、前記空間を液槽で構成するとともに、この液槽の液面を一定に保持する液面保持手段を設けるようにしており、ダイナミック形の氷蓄熱槽などであっても液面保持手段で初期供給量と供給量を常に同一条件で測定でき、高精度に氷の充填量を計測できるようになる。 According to this ice filling amount measuring apparatus, the space is constituted by a liquid tank, and liquid level holding means for holding the liquid level of the liquid tank constant is provided. Even in such a case, the initial supply amount and the supply amount can always be measured under the same conditions by the liquid level holding means, and the ice filling amount can be measured with high accuracy.
なお、氷蓄熱槽などを加圧することによって変形が発生しても、初期供給圧力と計測時供給圧力が同一であるために、変形量も同一であって計測精度に影響するものではない。 Even if deformation occurs by pressurizing the ice heat storage tank or the like, since the initial supply pressure and the measurement supply pressure are the same, the deformation amount is the same and does not affect the measurement accuracy.
この発明の請求項1記載の氷充填量計測方法によれば、空間を密閉した状態で計測用の加圧気体を設定圧力まで供給して氷のない状態の初期供給量を計測した初期特性を把握しておき、氷のある状態の前記設定圧力までに供給する前記加圧気体の供給量を計測し、これら初期供給量と供給量との差から氷充填量を算出するようにしたので、氷のある状態とない状態とで密閉空間に設定圧力となるまで供給すべき加圧気体の供給量の差から直接氷の体積を求めることができ、氷の充填量を算出することができる。 According to the ice filling amount measuring method of the first aspect of the present invention, the initial characteristic is obtained by measuring the initial supply amount in a state where there is no ice by supplying the pressurized gas for measurement up to the set pressure with the space sealed. Knowing and measuring the supply amount of the pressurized gas supplied up to the set pressure in the state of ice, and calculating the ice filling amount from the difference between these initial supply amount and supply amount, The volume of ice can be directly calculated from the difference in the supply amount of pressurized gas to be supplied until the set pressure is reached in the sealed space between the presence and absence of ice, and the ice filling amount can be calculated.
また、この発明の請求項2記載の氷充填量計測方法によれば、前記供給量の計測時にのみ前記空間を密閉し、常時大気開放状態とするようにしたので、完全な密閉空間でなくても計測に必要なごく短時間だけ密閉状態にして計測することで、完全な密閉空間にする必要をなくし、広く適用して氷の充填量を計測することができる。 Further, according to the ice filling amount measuring method according to claim 2 of the present invention, the space is sealed only at the time of measuring the supply amount, and is always open to the atmosphere. However, it is possible to measure the filling amount of ice by applying it in a sealed state for a very short time required for measurement, eliminating the need for a completely sealed space and applying it widely.
さらに、この発明の請求項3記載の氷充填量計測方法によれば、前記空間を液槽とするとともに、液面を一定に保持した状態で前記初期供給量および前記供給量を計測するようにしたので、ダイナミック形の氷蓄熱槽などであっても初期供給量と供給量を常に同一条件で測定でき、高精度に氷の充填量を計測することができる。 Furthermore, according to the ice filling amount measuring method according to claim 3 of the present invention, the initial supply amount and the supply amount are measured while the space is used as a liquid tank and the liquid level is kept constant. Therefore, even with a dynamic ice storage tank or the like, the initial supply amount and the supply amount can always be measured under the same conditions, and the ice filling amount can be measured with high accuracy.
また、この発明の請求項4記載の氷充填量計測方法によれば、前記計測用の加圧気体を圧縮空気または圧縮窒素とするようにしたので、加圧気体を簡単に入手でき、加圧気体により他の機器へ悪影響を及ぼすことなく計測することができる。 According to the ice filling amount measuring method of claim 4 of the present invention, the pressurized gas for measurement is compressed air or compressed nitrogen, so that the pressurized gas can be easily obtained and pressurized. Measurement can be performed without adversely affecting other devices due to gas.
さらに、この発明の請求項5記載の氷充填量計測装置によれば、空間を密閉した状態で計測用の加圧気体を加圧気体供給手段で設定圧力まで供給して氷のない状態の初期供給量と氷のある状態の前記設定圧力までに供給する前記加圧気体の供給量を供給量計測手段で計測し、これら初期供給量と供給量との差から氷充填量を演算手段で算出するようにしたので、氷のある状態とない状態とで密閉空間に設定圧力となるまで供給すべき加圧気体の供給量の差から直接氷の体積を求めることができ、氷の充填量を算出することができる。 Furthermore, according to the ice filling amount measuring apparatus of the fifth aspect of the present invention, the pressurized gas for measurement is supplied up to the set pressure by the pressurized gas supply means in a state where the space is sealed, and the initial state in which no ice is present. The supply amount and the supply amount of the pressurized gas supplied up to the set pressure with ice are measured by the supply amount measuring means, and the ice filling amount is calculated by the arithmetic means from the difference between the initial supply amount and the supply amount. As a result, the volume of ice can be determined directly from the difference in the amount of pressurized gas to be supplied until the set pressure is reached in the sealed space with and without ice. Can be calculated.
また、この発明の請求項6記載の氷充填量計測装置によれば、前記空間を液槽で構成するとともに、この液槽の液面を一定に保持する液面保持手段を設けるようにしたので、ダイナミック形の氷蓄熱槽などであっても液面保持手段で初期供給量と供給量を常に同一条件で測定でき、高精度に氷の充填量を計測することができる。 According to the ice filling amount measuring apparatus of the sixth aspect of the present invention, the space is constituted by a liquid tank, and liquid level holding means for holding the liquid level of the liquid tank constant is provided. Even in the case of a dynamic ice storage tank or the like, the initial supply amount and the supply amount can always be measured under the same conditions by the liquid level holding means, and the ice filling amount can be measured with high accuracy.
以下、この発明の一実施の形態について、図面に基づき詳細に説明する。
図1は、この発明の氷充填量計測装置の一実施の形態にかかる概略構成図である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram according to an embodiment of an ice filling amount measuring apparatus of the present invention.
この氷充填量計測装置10は、例えばダイナミック形の氷蓄熱槽の氷の充填量の計測に用いられ、蓄熱槽内に氷が存在しない状態で、槽内の圧力を規定値まで加圧するために必要な加圧気体の供給量を把握しておき、氷ができて氷の充填量を計測したい時に、氷が存在しない時と同じ圧力まで加圧して、それに必要な加圧気体の供給量の差から水面上に浮遊する氷の体積を算出し、水面上と水中に没している氷の重量を演算するものであり、一般に蓄熱槽などの一定量保有した水を氷結させて氷の量を増減する場合には、水面の変化がなく、水面の変化からは氷の充填量を計測することができない。
This ice filling
そこで、この氷充填量計測装置10では、氷が充填される空間となる蓄熱槽11が密閉可能に構成され、保有水の量を一定に保つことができるようにオーバーフロー配管12とオーバーフローバルブV1が設けられるとともに、蓄熱槽11内を一定の圧力、例えば大気圧状態にするためのブロー配管13とブローバルブV2が設けてあり、これらのバルブV1、V2を閉じることで蓄熱槽11を密閉状態にできるようにしてある。
Therefore, in this ice filling
このような密閉可能な蓄熱槽11内の氷の充填量を計測するため、この氷充填量計測装置10では、圧縮空気または圧縮窒素などの加圧気体を供給する加圧気体供給管14が蓄熱槽11上部の空気層に接続されており、流量計FI、圧力計PI1、加圧気体供給バルブV3が設けてあり、加圧気体の供給量や供給圧力を検出できるようになっている。
In order to measure the filling amount of ice in the
さらに、この氷充填量計測装置10では、蓄熱槽11に槽内の空気の温度を計測する温度計TI1〜TI3が設けられるとともに、槽内圧力を計測する圧力計PI2が設けてある。
Further, in this ice filling
また、この蓄熱槽11には、補給水配管15と補給水バルブV4が設けられ、水の補給できるようにするとともに、破裂板RDが設けられ、内圧が過上昇した場合に、破裂させることで蓄熱槽11を保護するようにしてある。
In addition, the
さらに、この氷充填量計測装置10では、演算手段として演算装置16が設けられ、流量計FI、圧力計PI1、PI2、温度計TI1〜TI3などの計測結果が入力させるとともに、氷充填量の算出のための演算や電磁弁や電動弁で構成される各バルブV1〜V4などの開閉の制御ができるようにしてある。
Further, in the ice filling
次に、このように構成した氷充填量計測装置10の動作とともに、氷充填量の計測方法について説明する。
この蓄熱槽11の場合には、まず、氷がない状態としてブローバルブV2を開いて槽内を大気圧状態にするとともに、オーバーフローバルブV1を開き、保有水量を一定にする。
Next, the ice filling amount measuring method will be described together with the operation of the ice filling
In the case of this
この場合、保有水量が多い場合には、オーバーフローバルブV1を開くだけで良いが、オーバーフローバルブV1からオーバーフローがない場合には、補給水バルブV4から水を補給して保有水を一定にする。なお、蓄熱槽11の保有水を一定にするのは、少なくとも氷の充填量の計測の際だけで良く、通常の蓄熱運転中は、必ずしも一定にする必要はなく、蓄熱に支障のない範囲であれば良い。
In this case, when the amount of retained water is large, it is only necessary to open the overflow valve V1, but when there is no overflow from the overflow valve V1, water is replenished from the makeup water valve V4 to keep the retained water constant. It should be noted that the water stored in the
こののち、蓄熱槽11を密閉状態にするため、オーバーフローバルブV1やブローバルブV2、補給水バルブV4などを閉じる。
Thereafter, the overflow valve V1, the blow valve V2, the make-up water valve V4, and the like are closed in order to keep the
そして、加圧気体供給バルブV3を開き、圧縮空気や圧縮窒素などを供給し、蓄熱槽11の空気の層の部分を予め設定した圧力、例えば1,000Paまで加圧し、これに必要とした加圧気体の供給量を初期供給量として記憶しておく。
Then, the pressurized gas supply valve V3 is opened, compressed air, compressed nitrogen, or the like is supplied, and the air layer portion of the
なお、この初期供給量の計測後は、ブローバルブV2を開き、蓄熱槽11を大気開放状態にする。
After the initial supply amount is measured, the blow valve V2 is opened, and the
こうして氷のない状態の初期供給量を計測した後、氷蓄熱装置を運転し、蓄熱槽11に氷水の蓄熱を行う。
After measuring the initial supply amount in a state where there is no ice in this way, the ice heat storage device is operated, and the
そして、氷の浮遊状態での蓄熱槽11の氷の充填量を計測する場合には、氷のない場合と同様に、蓄熱層11内を大気圧状態とするとともに、保有水量を一定にした後、蓄熱槽11を密閉状態とする。
And when measuring the filling amount of ice in the
この蓄熱槽11の密閉状態で、加圧気体供給バルブV3を開いて圧縮空気や圧縮窒素などの加圧気体を、氷のない場合に設定した圧力と同一の圧力になるまで供給し、その圧力になるまでに供給した加圧気体の供給量を計測し、記憶する。
In the sealed state of the
こうして得られた氷のない場合の初期供給量と氷のある場合の供給量との差は、水面上に浮遊している氷の体積に相当する。 The difference between the initial supply amount without ice and the supply amount with ice thus obtained corresponds to the volume of ice floating on the water surface.
こうして、水面上に浮遊する氷の体積が求められると、演算により氷の浮遊部の重量が求められ、水没している氷の重量を求めて全氷の充填量が求まる。
この結果、氷の充填率IPFを求めることができる。
Thus, when the volume of ice floating on the water surface is obtained, the weight of the ice floating portion is obtained by calculation, and the weight of ice submerged is obtained to obtain the filling amount of all ice.
As a result, the ice filling rate IPF can be obtained.
このような氷充填量の計測装置10およびその方法によれば、蓄熱槽11の浮遊氷が空気の層から排除した体積を直接計測することができ、従来の間接的な測定と校正曲線を用いる場合に比べ、圧力計測、温度計測および流量計測を行うだけであり、非常に高精度に計測することができるとともに、水と氷の比重から演算で氷の全重量を精度良く求めることができる。
According to the ice filling
また、製氷装置の停止中や運転中、あるいは解氷中のいずれで、氷が蓄熱槽11内、配管内やポンプ内などのいずれにどのような状態で存在していても、さらに、蓄熱槽11の水面に波打ちや水滴の飛散、あるいは水中への空気の噛み込みなど、いかなる状態でも同じように精度良く、加圧気体を供給して設定圧力にするまでの短時間で氷の充填量を計測することができ、蓄熱槽の大きさにもよるが、例えば数秒間で計測することができる。
In addition, regardless of whether the ice is present in the
さらに、このような高精度の氷の充填量の計測ができるので、氷蓄熱式空気調和設備では、過剰製氷によるエネルギーの損失や設備の損耗を防止できるとともに、過少製氷による冷熱源不足の問題もなく、最適な状態で蓄熱することができる。 In addition, because it is possible to measure the amount of ice filling with high accuracy, it is possible to prevent energy loss and equipment wear due to excessive ice making, and the problem of insufficient cold heat sources due to insufficient ice making. It is possible to store heat in an optimal state.
また、この氷充填量計測装置10およびその方法は、氷蓄熱槽のように、水などの液体に浮遊する氷の全重量を計測できるだけでなく、密閉構造の倉庫などの氷の保存量や残存量を計測する場合にも適用でき、設定圧力になるまでの、氷のない状態での加圧気体の初期供給量と氷のある状態での加圧気体の供給量を計測することで、氷の体積を直接計測でき、高精度に氷の量を求めることができる。
In addition, the ice filling
次に、この発明の氷充填量計測装置の具体的な計算例について説明する。
この計算例では、蓄熱槽として、長さ:8m、幅:4.5m、深さ:4.5mの大きさものを用い、その水面の高さを4mとした。
Next, a specific calculation example of the ice filling amount measuring apparatus according to the present invention will be described.
In this calculation example, a heat storage tank having a length of 8 m, a width of 4.5 m, and a depth of 4.5 m was used, and the height of the water surface was 4 m.
(計測例0)
蓄熱槽に空気で加圧して計測するために、加圧した際に蓄熱槽が膨張して変形する可能性があるので、それを補正する必要がある。
(Measurement example 0)
In order to pressurize and measure the heat storage tank with air, there is a possibility that the heat storage tank expands and deforms when it is pressurized, and it is necessary to correct it.
蓄熱槽の氷充填量が“0”の状態で、蓄熱槽の計測時に加圧する圧力による蓄熱槽の特性は、表1に示すようになる。 Table 1 shows the characteristics of the heat storage tank according to the pressure applied during measurement of the heat storage tank when the ice filling amount of the heat storage tank is “0”.
すなわち、計測圧力として1,000Paの内圧を掛けると、蓄熱槽内の空気層が変形して、加圧前には18.00m3であったものが、0.86kgの空気が供給されて18.48m3まで膨張し、蓄熱槽内の空気の重量は加圧前には23.26kgであったものが24.12kgとなる。 That is, when an internal pressure of 1,000 Pa is applied as the measurement pressure, the air layer in the heat storage tank is deformed, and what was 18.00 m 3 before pressurization is supplied with 0.86 kg of air. It expands to .48 m 3, and the weight of the air in the heat storage tank is 23.26 kg before being pressurized to 24.12 kg.
(計測例1)
この計測例1では、蓄熱槽の加圧圧力を1,000Pa(g)とし、氷浮遊時の加圧空気の供給量が0.83kgであった場合の計測例として表1中に示してある。
(Measurement example 1)
In this measurement example 1, it is shown in Table 1 as a measurement example when the pressurized pressure of the heat storage tank is 1,000 Pa (g) and the supply amount of pressurized air at the time of ice floating is 0.83 kg. .
この場合には、計測例0の氷のない状態での初期空気供給量と計測例1の氷浮遊状態での空気供給量の差から、氷浮遊部の体積が2.04m3となり、演算により全氷の体積が25.48m3となり、全氷の充填量が23.439kgと算出することができる。
したがって、この場合の氷充填率IPFは、演算結果から16%となる。
In this case, from the difference between the initial air supply amount in the measurement example 0 without ice and the air supply amount in the measurement example 1 in the ice floating state, the volume of the ice floating portion becomes 2.04 m 3 . The total ice volume is 25.48 m 3 , and the total ice filling amount can be calculated as 23.439 kg.
Therefore, the ice filling rate IPF in this case is 16% from the calculation result.
(計算例2)
この計算例2では、蓄熱槽の加圧圧力を1,000Pa(g)とし、氷浮遊時の加圧空気の供給量が0.79kgであった場合の計測例として表1中に示してある。
(Calculation Example 2)
In this calculation example 2, the pressurized pressure of the heat storage tank is set to 1,000 Pa (g), and the measurement example in the case where the supply amount of pressurized air at the time of ice floating is 0.79 kg is shown in Table 1. .
この場合には、計算例0の氷のない状態での初期空気供給量と計測例2の氷浮遊状態での空気供給量の差から、氷浮遊部の体積が4.78m3となり、演算により全氷の体積が59.78m3となり、全氷の充填量が54.996kgと算出することができる。
したがって、この場合の氷充填率IPFは、演算結果から38%となる。
In this case, the volume of the ice floating portion is 4.78 m 3 from the difference between the initial air supply amount in the calculation example 0 without ice and the air supply amount in the measurement example 2 in the ice floating state. The total ice volume is 59.78 m 3 , and the total ice filling amount can be calculated as 54.996 kg.
Therefore, the ice filling rate IPF in this case is 38% from the calculation result.
以上のように、計測に用いる加圧気体の氷のない場合の初期供給量と、氷のある場合の加圧気体の供給量をそれぞれ仮定した場合の計測例を示したように、これらの供給量を計測することで、浮遊部の氷の体積を直接計測でき、これらの値から、全氷充填量を演算し、氷充填率を求めることができることが分かる。 As described above, as shown in the measurement examples when the initial supply amount of the pressurized gas used for measurement without ice and the supply amount of the pressurized gas with ice are assumed, these supply It can be seen that by measuring the amount, the volume of ice in the floating part can be directly measured, and from these values, the total ice filling amount can be calculated to obtain the ice filling rate.
また、これらの計測例では、加圧空気の弁口径を20mm、放出空気の弁口径を32mmとした場合には、計測時の加圧に要する時間が4〜5秒、計測後の放出に要する時間が55〜59秒であり、短時間に計測し、元の大気に戻すことができる。
10 氷充填量計測装置
11 蓄熱槽(液槽)
12 オーバーフロー配管
13 ブロー配管
14 加圧気体供給管
15 補給水配管
16 演算装置
V1 オーバーフローバルブ
V2 ブローバルブ
V3 加圧気体供給バルブ
V4 補給水バルブ
FI 流量計
PI1,PI2 圧力計
TI1〜TI3 温度計
RD 破裂板
10 Ice filling
12
Claims (6)
この加圧気体供給手段による加圧気体の供給量を計測する供給量計測手段と、
氷のない状態での前記加圧気体の初期供給量と氷のある状態の前記加圧気体の供給量との差から氷充填量を算出する演算手段とを備えることを特徴とする氷充填量計測装置。 Pressurized gas supply means for supplying pressurized gas for measurement to a settable pressure in a sealable space;
A supply amount measuring means for measuring the supply amount of the pressurized gas by the pressurized gas supply means;
An ice filling amount comprising: an arithmetic unit for calculating an ice filling amount from a difference between an initial supply amount of the pressurized gas in a state without ice and a supply amount of the pressurized gas in a state with ice Measuring device.
6. The ice filling amount measuring apparatus according to claim 5, wherein the space is constituted by a liquid tank, and liquid level holding means for holding the liquid level of the liquid tank constant is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004169573A JP4406836B2 (en) | 2004-06-08 | 2004-06-08 | Method and apparatus for measuring ice filling amount |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004169573A JP4406836B2 (en) | 2004-06-08 | 2004-06-08 | Method and apparatus for measuring ice filling amount |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005351487A JP2005351487A (en) | 2005-12-22 |
JP4406836B2 true JP4406836B2 (en) | 2010-02-03 |
Family
ID=35586115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004169573A Expired - Fee Related JP4406836B2 (en) | 2004-06-08 | 2004-06-08 | Method and apparatus for measuring ice filling amount |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4406836B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101305199B1 (en) * | 2011-12-09 | 2013-09-12 | 한양대학교 에리카산학협력단 | Heat storage device of vehicle |
CN114322422B (en) * | 2021-12-09 | 2022-10-28 | 西安交通大学 | Cold surface frost formation amount measuring method and application |
-
2004
- 2004-06-08 JP JP2004169573A patent/JP4406836B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005351487A (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5139290B2 (en) | Beverage dispenser | |
JP4877434B2 (en) | Gas filling device and gas filling method | |
JP6001600B2 (en) | System for controlling gas supply unit and gas filling method | |
JP7096062B2 (en) | Gas filling device | |
JPH07186904A (en) | Method and device for filling gas medium promptly to pressure vessel | |
CA2501530C (en) | Continuous flow chemical metering apparatus | |
US9228881B2 (en) | Method and apparatus for in-situ calibration and function verification of fluid level sensor | |
JP2007525638A (en) | Measurement of fluid volume in a container using pressure | |
JP2007024152A (en) | Gas supply device | |
JP2011117481A (en) | Method and device of filling control in high pressure hydrogen test equipment and high pressure hydrogen filling equipment | |
NO343813B1 (en) | Device and method for monitoring of annulus volume in a pipe | |
JP2009222596A (en) | Apparatus for detecting position of liquid level and measuring liquid volume | |
JP4923957B2 (en) | Leak inspection device | |
JP4406836B2 (en) | Method and apparatus for measuring ice filling amount | |
JP4803788B2 (en) | Carbon dioxide filling device | |
KR20190003217A (en) | Measurement apparatus of ice adhesion properties and measurement method ice adhesion properties using the same | |
JP4662372B2 (en) | Flow rate measuring method and flow rate measuring device | |
JP2007138973A (en) | Hydrogen filling method and hydrogen filling monitoring device to hydrogen storage vessel | |
JP2017180748A (en) | Fuel gas filling device | |
JP2006160287A (en) | Tank truck and mass control system thereof | |
US20150053272A1 (en) | Pressure stabilization method | |
KR101839463B1 (en) | Pvt mass gauging apparatus and method thereof | |
JP4964462B2 (en) | High pressure gas supply apparatus and high pressure gas supply method | |
KR101446931B1 (en) | Apparatus and method for super-cooling pressurized cryogenic liquid | |
JP2021531106A (en) | Cryogenic surgery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091015 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091028 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |