JP2011117481A - Method and device of filling control in high pressure hydrogen test equipment and high pressure hydrogen filling equipment - Google Patents

Method and device of filling control in high pressure hydrogen test equipment and high pressure hydrogen filling equipment Download PDF

Info

Publication number
JP2011117481A
JP2011117481A JP2009273159A JP2009273159A JP2011117481A JP 2011117481 A JP2011117481 A JP 2011117481A JP 2009273159 A JP2009273159 A JP 2009273159A JP 2009273159 A JP2009273159 A JP 2009273159A JP 2011117481 A JP2011117481 A JP 2011117481A
Authority
JP
Japan
Prior art keywords
pressure
filling
hydrogen
pressure hydrogen
regulating valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009273159A
Other languages
Japanese (ja)
Other versions
JP5572370B2 (en
Inventor
Naohiko Kamiyama
直彦 神山
Kenji Iwata
健次 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Iwatani International Corp
Original Assignee
Iwatani Industrial Gases Corp
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Industrial Gases Corp, Iwatani International Corp filed Critical Iwatani Industrial Gases Corp
Priority to JP2009273159A priority Critical patent/JP5572370B2/en
Publication of JP2011117481A publication Critical patent/JP2011117481A/en
Application granted granted Critical
Publication of JP5572370B2 publication Critical patent/JP5572370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of filling control in high pressure hydrogen test equipment and high pressure hydrogen filling equipment capable of applying pressure at a constant pressure rising rate without an excessive rise in temperature of an object to be tested, with a simple structure. <P>SOLUTION: A high pressure compressor 1, a cooling part 2, the object to be tested 3, and a high pressure buffer tank 4 are connected by a gas supply passage 5 to form a closed circuit. A discharge port 1a and a suction port 1b of the high pressure compressor 1 are connected by a bypass passage 8 with a pressure adjusting valve 7 interposed therein. A flow passage opening/closing valve 9 is arranged on a downstream side relative to a bypass passage branch part 8a on the discharge side of the high pressure compressor 1. A pressure adjusting valve 10 is arranged on an upstream side relative to an inflow port to the object to be tested 3. The opening of the pressure adjusting valve 10 is controlled so as to make the pressure rising rate constant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高圧水素使用設備を構成する機器や配管類の圧力変化に伴う耐久性を把握するための試験設備や、高圧水素を充填する設備での充填制御方法およびその装置に関する。   The present invention relates to a test facility for grasping durability associated with a pressure change of equipment and piping constituting a high-pressure hydrogen use facility, a filling control method in a facility for filling high-pressure hydrogen, and an apparatus therefor.

従来、高圧ガス使用設備を構成する構成部品の圧力変化に伴う耐久性を検査するために、大気圧から設定圧力まで、繰り返し圧力を変化させて耐久性を確認するいわゆるインパルス試験を課している。この場合、油等の非圧縮性流体による圧力印加が一般的である。   Conventionally, in order to inspect the durability accompanying the pressure change of the components that make up the equipment that uses high-pressure gas, a so-called impulse test that checks the durability by repeatedly changing the pressure from the atmospheric pressure to the set pressure has been imposed. . In this case, pressure is generally applied by an incompressible fluid such as oil.

高圧ガス設備向けの高圧ホースを試験体とした場合については、非圧縮性流体によるインパルス試験だけでなく、その影響を評価するために、実際に使用される気体による試験が望ましいが、遮断弁の開閉により急速に圧力を印加すると、断熱圧縮により試験体の内部に温度上昇が生じることから、圧力サイクル、温度サイクルのいずれが高圧ホースの耐久性に影響しているのか、正確な評価が出来ないという問題がある。このため、試験体の温度が過度に上昇しないよう、一定の昇圧率で圧力を印加することが求められる。   When a high-pressure hose for high-pressure gas equipment is used as a test specimen, not only an impulse test using an incompressible fluid but also a test using an actually used gas is desirable to evaluate the effect. If pressure is applied rapidly by opening and closing, the temperature rises inside the specimen due to adiabatic compression, so it is not possible to accurately assess which pressure cycle or temperature cycle affects the durability of the high-pressure hose. There is a problem. For this reason, it is required to apply pressure at a constant pressure increase rate so that the temperature of the specimen does not rise excessively.

燃料電池車等への水素充填設備においても、車載容器の温度上昇を防止するために一定の昇圧率での充填が提案されており、この一定の昇圧率で充填を行う方法として、たとえば、特許文献1に示されているように、充填対象物(車載容器)の内容積から、一定昇圧率となる充填流量を計算し、その流量を制御するものが提案されている。   Also in hydrogen filling equipment for fuel cell vehicles, etc., filling at a constant pressure increase rate has been proposed in order to prevent the temperature rise of the vehicle-mounted container. As a method of filling at this constant pressure increase rate, for example, a patent As shown in Document 1, a method has been proposed in which a filling flow rate at which a constant pressure increase rate is obtained is calculated from the internal volume of a filling object (on-vehicle container) and the flow rate is controlled.

また、充填対象物の内容積を把握しなくても、一定時間内における充填流量と、その間の圧力上昇幅から次の一定時間内の目標充填流量を設定する方法も提案されている。   In addition, a method of setting a target filling flow rate within the next fixed time from the filling flow rate within a fixed time and the pressure increase width during that time without knowing the internal volume of the filling object has also been proposed.

特開2005−98474号公報JP 2005-98474 A

しかし、上述のいずれの方式にあっても、充填中の流量を流量計で計測する必要があり、高圧水素用の流量計の設置は試験設備費用が高くなるという問題があり、また、既存の流量計では対応できないさらに高圧の試験においては、流量計が使えないという課題がある。   However, in any of the above-mentioned methods, it is necessary to measure the flow rate during filling with a flow meter, and there is a problem that the installation of a flow meter for high-pressure hydrogen increases the cost of test equipment. There is a problem that a flow meter cannot be used in a higher pressure test that cannot be handled by a flow meter.

また、試験体の内容積が常に一定であれば、内容積から充填流量を決めてもよいが、試験体の内容積が特定されていない場合、その都度、内容積から充填流量を設定することになり、その作業が煩雑となるという問題もあった。   If the internal volume of the specimen is always constant, the filling flow rate may be determined from the internal volume, but if the internal volume of the specimen is not specified, the filling flow rate should be set from the internal volume each time. There is also a problem that the work becomes complicated.

本発明は、このような点に着目してなされてもので、簡単な構成で、試験体の温度が過度に上昇することがなく、一定の昇圧率で圧力を印加することの出来る高圧水素試験設備や高圧水素充填設備での充填制御方法を提供することを目的とする。   Although the present invention has been made paying attention to such points, a high-pressure hydrogen test that can apply pressure at a constant pressure increase rate with a simple configuration without excessively increasing the temperature of the specimen. It aims at providing the filling control method in an installation or a high-pressure hydrogen filling installation.

上述の目的を達成するために、請求項1に記載の本発明は、高圧水素試験設備に高圧水素を充填するに当たり、試験体に充填供給する高圧水素の供給路に冷却部と圧力調整弁を介在させ、この圧力調整弁の開度を調整することにより、試験体が温度上昇の熱的影響を受けない一定昇圧率を設定するようにしたことを特徴としている。   In order to achieve the above-mentioned object, the present invention according to claim 1 is provided with a cooling unit and a pressure regulating valve in a high-pressure hydrogen supply passage for charging and supplying a test body when charging high-pressure hydrogen into a high-pressure hydrogen test facility. By interposing and adjusting the opening of the pressure regulating valve, the test body is characterized in that a constant pressure increase rate is set so as not to be thermally affected by the temperature rise.

請求項3に記載の本発明は、高圧水素試験設備に高圧水素を充填する装置を、高圧圧縮機、冷却部、試験体、高圧バッファタンクをガス供給路で接続して閉回路を形成し、高圧圧縮機の吐出口と吸込口とを圧力調整弁を介装したバイパス路で接続し、高圧圧縮機の吐出側でのバイパス路分岐部よりも下流側に流路開閉弁を配置し、試験体への流入口よりも上流側に圧力調整弁を配置し、この圧力調整弁の開度を昇圧率が一定となるように制御するように構成したことを特徴としている。   The present invention according to claim 3 forms a closed circuit by connecting an apparatus for charging high-pressure hydrogen to a high-pressure hydrogen test facility with a high-pressure compressor, a cooling unit, a test body, and a high-pressure buffer tank through a gas supply path, The discharge port and suction port of the high-pressure compressor are connected by a bypass passage with a pressure control valve, and a flow path opening / closing valve is placed downstream of the bypass passage branch on the discharge side of the high-pressure compressor. A pressure regulating valve is arranged upstream of the inlet to the body, and the opening degree of the pressure regulating valve is controlled so that the pressure increase rate is constant.

また、請求項5に記載の本発明は、高圧水素充填設備に高圧水素を充填するに当たり、充填容器に充填供給する高圧水素ガスの供給路に圧力調整弁を介在させ、この圧力調整弁の開度を調整することにより、充填容器が温度上昇の熱的影響を受けない昇圧率となるように設定するようにしたことを特徴としている。   Further, according to the fifth aspect of the present invention, when the high-pressure hydrogen filling facility is filled with high-pressure hydrogen, a pressure regulating valve is interposed in the supply path of the high-pressure hydrogen gas filled and supplied to the filling container, and the pressure regulating valve is opened. By adjusting the degree, the filling container is set to have a pressurization rate that is not affected by the thermal rise of the temperature rise.

さらにまた、請求項7に記載の本発明は、高圧水素貯蔵タンク、高圧圧縮機、充填容器をガス供給路で接続してガス充填回路を形成し、高圧圧縮機の吐出口と吸込口とを圧力調整弁を介装したバイパス路で接続し、高圧圧縮機の吐出側でのバイパス路分岐部よりも下流側に流路開閉弁を配置し、試験体への流入口よりも上流側に圧力調整弁を配置し、この圧力調整弁の開度を昇圧率が一定となるように制御するように構成したことを特徴としている。   Furthermore, the present invention as set forth in claim 7 forms a gas filling circuit by connecting a high-pressure hydrogen storage tank, a high-pressure compressor, and a filling container with a gas supply path, and has a discharge port and a suction port of the high-pressure compressor. Connected by a bypass line with a pressure regulating valve, a flow path opening / closing valve is arranged downstream of the bypass line branch on the discharge side of the high-pressure compressor, and the pressure is upstream of the inlet to the specimen. An adjustment valve is disposed, and the opening degree of the pressure adjustment valve is controlled so as to keep the pressure increase rate constant.

本発明では、試験体あるいは充填容器への充填を開始し、その後予め定めた時間(たとえば1秒間)での圧力上昇幅から直接、圧力調整弁の開度を開閉制御して、一定の昇圧率となるように圧力を調整することが出来るから、試験体や充填容器の内容積が変わっても、高価な流量計を用いることなく一定の昇圧率で高圧水素を充填することが出来るようになる。   In the present invention, the filling of the test specimen or the filling container is started, and thereafter, the opening degree of the pressure regulating valve is directly controlled based on the pressure increase width in a predetermined time (for example, 1 second), and a constant pressure increasing rate is obtained. The pressure can be adjusted so that even if the internal volume of the specimen or filling container changes, high-pressure hydrogen can be filled at a constant pressure increase rate without using an expensive flow meter. .

インパルス試験設備の概略フローを示す図である。It is a figure which shows the general | schematic flow of an impulse test equipment. インパルス試験での圧力と時間との関係を示す図でする。It is a figure which shows the relationship between the pressure and time in an impulse test. 水素ガスの充填制御の一例を示す圧力変化図である。It is a pressure change figure which shows an example of filling control of hydrogen gas. 水素充填設備の概略フローを示す図でする。It is a figure which shows the schematic flow of a hydrogen filling equipment.

図1は容器類・配管類やフィッティング類を試験体とし、高圧水素を作用させてインパルス試験を行う試験設備の概略を示す構成図である。
この試験設備は、高圧圧縮機(1)、冷却部(2)、試験体(3)、高圧バッファタンク(4)をそれぞれガス供給路(5)で接続して閉回路を形成し、高圧圧縮機(1)の吐出口(1a)に配置したクーラー(6)の出口(6a)と高圧圧縮機(1)の吸込口(1b)とを圧力調整弁(7)を介装したバイパス路(8)で接続し、クーラー(6)の出口(6a)側でのバイパス路分岐部(8a)よりも下流側に位置するガス供給路(5)に流路開閉弁(9)が配置してある。
FIG. 1 is a configuration diagram showing an outline of a test facility for performing an impulse test by using high-pressure hydrogen by using containers, piping, and fittings as test bodies.
In this test facility, a high-pressure compressor (1), a cooling section (2), a test body (3), and a high-pressure buffer tank (4) are connected by a gas supply path (5), respectively, to form a closed circuit. Bypass passage (7) between the outlet (6a) of the cooler (6) arranged at the discharge port (1a) of the machine (1) and the suction port (1b) of the high-pressure compressor (1) 8), and the flow path opening / closing valve (9) is arranged in the gas supply path (5) located downstream of the bypass path branching section (8a) on the outlet (6a) side of the cooler (6). is there.

冷却部(2)と試験体(3)との間のガス供給路(5)には、圧力調整弁(10)が介装してあり、この圧力調整弁(10)は制御装置(11)からの制御信号によりその開度を調整するように構成してある。制御装置(11)には試験体(3)の入口部(3a)で検出した温度と圧力および試験体(3)の出口部(3b)で検出した温度が検出データとして入力されるようになっている。   The gas supply path (5) between the cooling part (2) and the test body (3) is provided with a pressure regulating valve (10), and this pressure regulating valve (10) is a control device (11). The opening degree is adjusted by a control signal from. The temperature and pressure detected at the inlet (3a) of the specimen (3) and the temperature detected at the outlet (3b) of the specimen (3) are input to the control device (11) as detection data. ing.

試験体(3)と高圧バッファタンク(4)との間のガス供給路(5)には流路開閉弁(12)、および高圧バッファタンク(4)と高圧圧縮機(1)の吸込口(1b)との間のガス供給路(5)にはそれぞれ流路開閉弁(13)と圧力調整弁(14)とがそれぞれ介装してある。   The gas supply path (5) between the test body (3) and the high-pressure buffer tank (4) includes a flow path opening / closing valve (12), and a suction port (1) for the high-pressure buffer tank (4) and the high-pressure compressor (1). The gas supply path (5) between 1b) is provided with a flow path opening / closing valve (13) and a pressure regulating valve (14), respectively.

次に、上述の構成からなる試験設備を用いて、インパルス試験を行う手順を説明する。ガス供給路(5)に試験体(例えば高圧ホース)(3)を接続し、試験体(3)と高圧バッファタンク(4)との間の流路開閉弁(13)を閉弁した状態で高圧圧縮機(1)と冷却部(2)との間に配置した流路開閉弁(9)を開弁して、高圧圧縮機(1)で加圧された高圧水素ガスを冷却部で冷却した状態で試験体(3)に供給する。このとき、高圧圧縮機(1)で90MPa程度の圧力に加圧された水素ガスは、高圧圧縮機(1)の吐出口(1a)に配置されたクーラー(6)で40℃程度に冷却され、さらに、冷却部(2)で液体窒素などの冷媒と熱交換して、233K(−40℃)程度の温度に冷却されて、試験体(3)に供給される。   Next, a procedure for performing an impulse test using the test equipment having the above-described configuration will be described. With a test body (for example, a high pressure hose) (3) connected to the gas supply path (5), the flow path opening / closing valve (13) between the test body (3) and the high pressure buffer tank (4) is closed. The flow path opening / closing valve (9) disposed between the high pressure compressor (1) and the cooling section (2) is opened, and the high pressure hydrogen gas pressurized by the high pressure compressor (1) is cooled by the cooling section. In this state, it is supplied to the test body (3). At this time, the hydrogen gas pressurized to a pressure of about 90 MPa by the high pressure compressor (1) is cooled to about 40 ° C. by the cooler (6) disposed at the discharge port (1a) of the high pressure compressor (1). Further, heat is exchanged with a refrigerant such as liquid nitrogen in the cooling section (2), the temperature is cooled to about 233 K (−40 ° C.), and the specimen (3) is supplied.

試験体(3)では、高圧水素ガスが急速に流入すると、断熱圧縮により温度上昇が生じることから、試験体(3)の温度が過度に上昇しないようにするため、一定の昇圧率となるように圧力調整弁(10)の開度を調整して高圧水素ガスを充填する。そして、試験体(3)の内圧が所定の圧力(例えば70MPa)に達すると、高圧圧縮機(1)と冷却部(2)との間に配置した流路開閉弁(9)を閉弁するとともに、試験体(3)と高圧バッファタンク(4)との間の流路開閉弁(13)を開弁して、試験体(3)と高圧バッファタンク(4)とを連通させることにより、試験体(3)内の高圧水素ガスを高圧バッファタンク(4)内に移送することで、試験体(3)を大気圧程度まで脱圧させる。このガス充填−ガス脱圧の1サイクルの全体所要時間は5分程度で、インパルス試験ではこのガス充填−ガス脱圧サイクルを図2に示すように短時間ピッチで連続的に数千回繰り返す。   In the test body (3), when high-pressure hydrogen gas flows in rapidly, the temperature rises due to adiabatic compression, so that the temperature of the test body (3) does not rise excessively, so that the pressure increase rate is constant. Then, the opening of the pressure regulating valve (10) is adjusted and filled with high-pressure hydrogen gas. When the internal pressure of the test body (3) reaches a predetermined pressure (for example, 70 MPa), the flow path opening / closing valve (9) disposed between the high pressure compressor (1) and the cooling unit (2) is closed. At the same time, by opening the flow path opening / closing valve (13) between the test body (3) and the high pressure buffer tank (4), the test body (3) and the high pressure buffer tank (4) are communicated with each other, By transferring the high-pressure hydrogen gas in the test body (3) into the high-pressure buffer tank (4), the test body (3) is depressurized to about atmospheric pressure. The total time required for one cycle of this gas filling-gas depressurization is about 5 minutes. In the impulse test, this gas filling-gas depressurization cycle is repeated several thousand times continuously at a short pitch as shown in FIG.

高圧バッファタンク(4)と高圧圧縮機(1)とは、圧力調整弁(14)を介して基本的に常時連通されている。また、高圧圧縮機(1)は常時回転しており、高圧圧縮機(1)と冷却部(2)との間に配置した流路開閉弁(9)が閉弁した際には、バイパス路(8)を介して循環するように構成してある。そして、バイパス路(8)に配置した圧力調整弁(7)および高圧バッファタンク(4)と高圧圧縮機(1)との間のガス供給路(5)に配置した圧力調整弁(14)はいずれも二次側圧力が0.7〜0.8MPa程度の圧力になるように設定してある。   The high-pressure buffer tank (4) and the high-pressure compressor (1) are basically always in communication with each other via the pressure regulating valve (14). Further, the high pressure compressor (1) is always rotating, and when the flow path opening / closing valve (9) disposed between the high pressure compressor (1) and the cooling section (2) is closed, a bypass passage is provided. It is configured to circulate through (8). The pressure regulating valve (7) disposed in the bypass path (8) and the pressure regulating valve (14) disposed in the gas supply path (5) between the high pressure buffer tank (4) and the high pressure compressor (1) are: In either case, the secondary pressure is set to a pressure of about 0.7 to 0.8 MPa.

試験体(3)に供給される高圧水素ガス流量は、圧力調整弁(10)の開度を制御することにより行われる。この高圧水素ガス流量制御は、試験体(3)の出入口部分に配置した温度計(15a)(15b)と試験体(3)の圧力を検出する圧力計(16)から制御装置(11)に入力される温度および圧力から、昇圧率を算出し、この刻々と変化する時間当たりの圧力上昇があらかじめ設定されている昇圧率に合致するように圧力調整弁(10)の開度を制御するようにしてある。   The flow rate of the high-pressure hydrogen gas supplied to the test body (3) is performed by controlling the opening degree of the pressure regulating valve (10). This high-pressure hydrogen gas flow rate control is performed from the thermometer (15a) (15b) placed at the entrance and exit of the test body (3) and the pressure gauge (16) that detects the pressure of the test body (3) to the control device (11). The pressure increase rate is calculated from the input temperature and pressure, and the opening of the pressure control valve (10) is controlled so that the pressure increase per hour that changes every moment matches the preset pressure increase rate. It is.

この実施形態において、あらかじめ設定されている昇圧率とは、温度上昇の熱的影響を受けない昇圧率をいい、例えば水素ガスの場合、17〜18MPa/minの範囲の昇圧率である。   In this embodiment, the preset step-up rate refers to a step-up rate that is not thermally affected by temperature rise. For example, in the case of hydrogen gas, the step-up rate is in the range of 17 to 18 MPa / min.

インパルス試験をこのようにして行うと、試験体に供給する高圧水素ガスを冷却することで、充填対象物(試験体)の温度上昇を低減させて、検出結果に対する温度上昇の影響を抑制することが出来る。   When the impulse test is performed in this way, the high-pressure hydrogen gas supplied to the specimen is cooled, thereby reducing the temperature rise of the filling object (test specimen) and suppressing the influence of the temperature rise on the detection result. I can do it.

また、試験体(3)に充填した水素ガスを高圧バッファタンク(4)に回収し、圧縮機の吸入ラインに戻すことで、水素ガスを大気放出せず、試験費用を低減することが出来ることになる。さらに回収により、試験体内の水素脱圧を短時間に行うことができ、全体のガス充填―ガス脱圧のサイクルを短時間ピッチで繰り返すインパルス試験が容易となる。   In addition, hydrogen gas filled in the test body (3) is collected in the high-pressure buffer tank (4) and returned to the compressor suction line, so that hydrogen gas is not released into the atmosphere and the test cost can be reduced. become. Further, the recovery enables the hydrogen depressurization in the test body to be performed in a short time, and the impulse test in which the entire gas filling-gas depressurization cycle is repeated at a short time pitch becomes easy.

さらに常時運転する高圧圧縮機の吐出ラインに圧力調整弁(7)を配置することで、インパルス試験において試験体(3)への圧力印加を行わない脱圧工程時に、余剰分水素を大気へ放出することなく高圧圧縮機の吸入側へ回収することができ、試験用水素の無駄をなくすことができる。   In addition, by arranging a pressure regulating valve (7) in the discharge line of the high-pressure compressor that is always in operation, surplus hydrogen is released to the atmosphere during the depressurization process in which no pressure is applied to the specimen (3) in the impulse test. It can be recovered to the suction side of the high-pressure compressor without any waste, and the waste of test hydrogen can be eliminated.

図4は、高圧水素を充填する設備の概略を示す構成図を示す。
この高圧水素充填設備は、水素供給源(17)を圧力調整弁(14)を介して高圧圧縮機(1)の吸入口(1b)に連通接続するとともに、高圧圧縮機(1)の吐出口(1a)をクーラー(6)、流路開閉弁(9)、圧力調整弁(10)を介して充填容器(18)に連通接続したものであり、クーラー(6)と流路開閉弁(9)との間から分岐導出したバイパス路(8)を圧力調整弁(7)を介して高圧圧縮機(1)の吸入口(1b)に連通接続してある。
FIG. 4 is a configuration diagram showing an outline of equipment for charging high-pressure hydrogen.
In this high-pressure hydrogen filling facility, the hydrogen supply source (17) is connected to the suction port (1b) of the high-pressure compressor (1) through the pressure regulating valve (14) and the discharge port of the high-pressure compressor (1). (1a) is connected to the filling container (18) through a cooler (6), a flow path opening / closing valve (9), and a pressure regulating valve (10), and the cooler (6) and the flow path opening / closing valve (9 ) Is connected to the suction port (1b) of the high-pressure compressor (1) through the pressure regulating valve (7).

水素供給源(17)としては、高圧水素を貯蔵するタンクや天然ガス、LPG、灯油等を改質することで水素を発生させる水素発生装置が用いられる。   As the hydrogen supply source (17), a tank for storing high-pressure hydrogen, a hydrogen generator for generating hydrogen by reforming natural gas, LPG, kerosene, or the like is used.

図示しないが、本実施形態においては、流路開閉弁(9)と圧力調整(10)との間のガス供給路(5)に水素ガスを冷却する冷却部や、高圧圧縮機(1)からクーラー(6)を介して吐出される高圧水素を貯蔵する高圧バッファタンクを夫々単独にあるいは両方を設けてもよい。   Although not shown in the drawings, in the present embodiment, the gas supply path (5) between the flow path opening / closing valve (9) and the pressure adjustment (10) is supplied from a cooling unit for cooling hydrogen gas or a high pressure compressor (1). You may provide the high pressure buffer tank which stores the high pressure hydrogen discharged via a cooler (6) individually or both, respectively.

そして、本実施形態でも前述の実施形態と同様に、充填容器(18)での内圧上昇があらかじめ設定されている昇圧率に合致するように圧力調整弁(10)の開度を制御するようにしてある。昇圧率は充填容器の内容積、充填容器内にあるガスの初期温度・初期圧力により異なるが、たとえば水素ガスの場合、1〜30MPa/minの範囲の昇圧率である。   In this embodiment as well, as in the above-described embodiment, the opening degree of the pressure regulating valve (10) is controlled so that the increase in internal pressure in the filling container (18) matches the preset pressure increase rate. It is. The pressurization rate varies depending on the internal volume of the filling container and the initial temperature and initial pressure of the gas in the filling container. For example, in the case of hydrogen gas, the pressurization rate is in the range of 1 to 30 MPa / min.

本発明は、水素ガス充填設備や、高圧水素使用設備を構成する機器や配管類の実使用ガスを用いた試験設備での水素充填に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for hydrogen filling in a hydrogen gas filling facility or a test facility that uses an actual gas used in equipment or piping constituting a high-pressure hydrogen facility.

1…高圧圧縮機(1a…吐出口、1b…吸込口)、2…冷却部、3…試験体(3a…流入口)、4…高圧バッファタンク、5…ガス供給路、7…圧力調整弁、8…バイパス路(8a…バイパス路分岐部)、9…流路開閉弁、10…圧力調整弁、17…水素供給源、18…充填容器。   DESCRIPTION OF SYMBOLS 1 ... High pressure compressor (1a ... Discharge port, 1b ... Suction port) 2 ... Cooling part, 3 ... Test body (3a ... Inlet), 4 ... High pressure buffer tank, 5 ... Gas supply path, 7 ... Pressure control valve , 8 ... Bypass passage (8a ... Bypass passage branching portion), 9 ... Flow path opening / closing valve, 10 ... Pressure regulating valve, 17 ... Hydrogen supply source, 18 ... Filling container.

Claims (8)

高圧水素試験設備に高圧水素を充填するに当たり、試験体(3)に充填供給する高圧水素の供給路(5)に冷却部(2)と圧力調整弁(10)を介在させ、この圧力調整弁(10)の開度を調整することにより、試験体(3)が温度上昇の熱的影響を受けない昇圧率を設定するようにしたことを特徴とする高圧水素試験設備での充填制御方法。   When charging high-pressure hydrogen into the high-pressure hydrogen test facility, a cooling part (2) and a pressure regulating valve (10) are interposed in the high-pressure hydrogen supply passage (5) for filling and supplying the test body (3). A filling control method in a high-pressure hydrogen test facility, characterized in that, by adjusting the opening degree of (10), the pressure increase rate is set so that the test body (3) is not thermally affected by the temperature rise. 温度上昇の熱的影響を受けない一定昇圧率が17〜18MPa/minである請求項1に記載の高圧水素試験設備での充填制御方法。   The filling control method in the high-pressure hydrogen test facility according to claim 1, wherein the constant pressure increase rate not affected by the thermal rise of the temperature is 17 to 18 MPa / min. 高圧圧縮機(1)、冷却部(2)、試験体(3)、高圧バッファタンク(4)をガス供給路(5)で接続して閉回路を形成し、高圧圧縮機(1)の吐出口(1a)と吸込口(1b)とを圧力調整弁(7)を介装したバイパス路(8)で接続し、高圧圧縮機(1)の吐出側でのバイパス路分岐部(8a)よりも下流側に流路開閉弁(9)を配置し、試験体(3)への流入口(3a)よりも上流側に圧力調整弁(10)を配置し、この圧力調整弁(10)の開度を昇圧率が一定となるように制御するように構成したことを特徴とする高圧水素試験設備での充填制御装置。   The high pressure compressor (1), the cooling section (2), the test body (3), and the high pressure buffer tank (4) are connected by a gas supply path (5) to form a closed circuit, and the discharge of the high pressure compressor (1) The outlet (1a) and the suction port (1b) are connected by a bypass passage (8) with a pressure regulating valve (7) interposed, and from the bypass passage branch (8a) on the discharge side of the high-pressure compressor (1) In addition, a flow path opening / closing valve (9) is disposed on the downstream side, a pressure regulating valve (10) is disposed on the upstream side of the inlet (3a) to the test body (3), and the pressure regulating valve (10) A filling control apparatus in a high-pressure hydrogen test facility, characterized in that the opening degree is controlled so that the pressurization rate is constant. 試験体(3)での昇圧率が17〜18MPa/minである請求項3に記載の高圧水素試験設備での充填制御装置。   The filling control apparatus for a high-pressure hydrogen test facility according to claim 3, wherein the pressure increase rate in the test body (3) is 17 to 18 MPa / min. 高圧水素充填設備に高圧水素を充填するに当たり、充填容器(18)に充填供給する高圧水素の供給路(5)に圧力調整弁(10)を介在させ、この圧力調整弁(10)の開度を調整することにより、充填容器(18)が温度上昇の熱的影響を受けない昇圧率となるように設定するようにしたことを特徴とする高圧水素充填設備での充填制御方法。   When filling high-pressure hydrogen in the high-pressure hydrogen filling facility, a pressure regulating valve (10) is interposed in the high pressure hydrogen supply path (5) for filling and supplying the filling container (18), and the opening of the pressure regulating valve (10) The filling control method in the high-pressure hydrogen filling facility is characterized in that the pressure is increased so that the filling container (18) is not affected by the temperature rise by adjusting the pressure. 温度上昇の熱的影響を受けない昇圧率が1〜30MPa/minである請求項5に記載の高圧水素充填設備での充填制御方法。   The filling control method in the high-pressure hydrogen filling equipment according to claim 5, wherein the pressure increase rate not affected by the thermal rise of the temperature is 1 to 30 MPa / min. 水素供給源(17)、高圧圧縮機(1)、充填容器(18)をガス供給路(5)で接続してガス充填回路を形成し、高圧圧縮機(1)の吐出口(1a)と吸込口(1b)とを圧力調整弁(7)を介装したバイパス路(8)で接続し、高圧圧縮機(1)の吐出側でのバイパス路分岐部(8a)よりも下流側に流路開閉弁(9)を配置し、充填容器(18)への流入口よりも上流側に圧力調整弁(10)を配置し、この圧力調整弁(10)の開度を昇圧率が一定となるように制御するように構成したことを特徴とする高圧水素充填設備での充填制御装置。   A hydrogen supply source (17), a high pressure compressor (1), and a filling container (18) are connected by a gas supply path (5) to form a gas filling circuit, and a discharge port (1a) of the high pressure compressor (1) The suction port (1b) is connected by a bypass passage (8) with a pressure regulating valve (7) interposed, and flows downstream from the bypass passage branch (8a) on the discharge side of the high-pressure compressor (1). A road opening / closing valve (9) is arranged, a pressure regulating valve (10) is arranged upstream of the inlet to the filling container (18), and the opening rate of the pressure regulating valve (10) is set to be constant. A filling control apparatus in a high-pressure hydrogen filling facility, wherein the filling control apparatus is configured so as to be controlled. 充填容器(18)での昇圧率が1〜30MPa/minである請求項3に記載の高圧水素試験設備での充填制御装置。
4. The filling control apparatus for a high-pressure hydrogen test facility according to claim 3, wherein the pressurization rate in the filling container (18) is 1 to 30 MPa / min.
JP2009273159A 2009-12-01 2009-12-01 Filling control equipment for high-pressure hydrogen test facilities and high-pressure hydrogen filling facilities Active JP5572370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273159A JP5572370B2 (en) 2009-12-01 2009-12-01 Filling control equipment for high-pressure hydrogen test facilities and high-pressure hydrogen filling facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273159A JP5572370B2 (en) 2009-12-01 2009-12-01 Filling control equipment for high-pressure hydrogen test facilities and high-pressure hydrogen filling facilities

Publications (2)

Publication Number Publication Date
JP2011117481A true JP2011117481A (en) 2011-06-16
JP5572370B2 JP5572370B2 (en) 2014-08-13

Family

ID=44283050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273159A Active JP5572370B2 (en) 2009-12-01 2009-12-01 Filling control equipment for high-pressure hydrogen test facilities and high-pressure hydrogen filling facilities

Country Status (1)

Country Link
JP (1) JP5572370B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045352A (en) * 2013-08-27 2015-03-12 スズキ株式会社 Fuel gas filling device
CN104641164A (en) * 2012-09-04 2015-05-20 林德股份公司 Method for performing a pressure test on a tank and tank filling apparatus
JP2015169234A (en) * 2014-03-05 2015-09-28 大陽日酸株式会社 Fuel gas charging control device, fuel gas charging method and computer program
CN105300614A (en) * 2015-11-25 2016-02-03 江南工业集团有限公司 Vehicle LNG gas cylinder multifunctional valve test system and test method
CN108779895A (en) * 2016-03-15 2018-11-09 本田技研工业株式会社 Gas fill method
CN110878905A (en) * 2018-09-05 2020-03-13 气体产品与化学公司 Apparatus and method for testing compressed gas distribution stations
CN113251308A (en) * 2021-05-28 2021-08-13 山东大学 Combined valve nozzle for vehicle-mounted high-pressure hydrogen storage cylinder
CN113532843A (en) * 2021-06-29 2021-10-22 上海舜华新能源系统有限公司 Precooling hydrogen exposure test device and test method
CN113803637A (en) * 2020-06-11 2021-12-17 中国石油化工股份有限公司 High-pressure gas pressure control system
CN114321707A (en) * 2020-10-10 2022-04-12 中国石化工程建设有限公司 Method and system for unloading hydrogen from long-tube trailer to hydrogen filling station
CN114688449A (en) * 2022-04-25 2022-07-01 液空厚普氢能源装备有限公司 Online detection and purification control system and method for hydrogen quality of hydrogenation station
WO2023036863A3 (en) * 2021-09-09 2023-04-20 Dhes B.V. Inline cooling system for hydrogen refueling stations
WO2024048845A1 (en) * 2022-08-29 2024-03-07 한국자동차연구원 Hydrogen fueling assistance device and hydrogen fueling system comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5746962B2 (en) * 2011-12-20 2015-07-08 株式会社神戸製鋼所 Gas supply method and gas supply apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115796A (en) * 2000-10-05 2002-04-19 Nippon Sanso Corp Method of filling high pressure gas
JP2004060817A (en) * 2002-07-30 2004-02-26 Tokai Rubber Ind Ltd End seal structure of hose with bellows type metallic pipe
JP2005098474A (en) * 2003-08-15 2005-04-14 Taiyo Nippon Sanso Corp Fuel filling method
WO2008108198A1 (en) * 2007-03-07 2008-09-12 The Yokohama Rubber Co., Ltd. Rubber composition and vulcanized rubber product using the same
JP2009036213A (en) * 2007-07-31 2009-02-19 Tatsuno Corp Gas filling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115796A (en) * 2000-10-05 2002-04-19 Nippon Sanso Corp Method of filling high pressure gas
JP2004060817A (en) * 2002-07-30 2004-02-26 Tokai Rubber Ind Ltd End seal structure of hose with bellows type metallic pipe
JP2005098474A (en) * 2003-08-15 2005-04-14 Taiyo Nippon Sanso Corp Fuel filling method
WO2008108198A1 (en) * 2007-03-07 2008-09-12 The Yokohama Rubber Co., Ltd. Rubber composition and vulcanized rubber product using the same
JP2009036213A (en) * 2007-07-31 2009-02-19 Tatsuno Corp Gas filling system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641164A (en) * 2012-09-04 2015-05-20 林德股份公司 Method for performing a pressure test on a tank and tank filling apparatus
CN104641164B (en) * 2012-09-04 2016-11-16 林德股份公司 Method and storage tank for realizing pressure detecting on storage tank fill equipment
JP2015045352A (en) * 2013-08-27 2015-03-12 スズキ株式会社 Fuel gas filling device
JP2015169234A (en) * 2014-03-05 2015-09-28 大陽日酸株式会社 Fuel gas charging control device, fuel gas charging method and computer program
CN105300614A (en) * 2015-11-25 2016-02-03 江南工业集团有限公司 Vehicle LNG gas cylinder multifunctional valve test system and test method
CN108779895B (en) * 2016-03-15 2020-11-13 本田技研工业株式会社 Gas filling method
CN108779895A (en) * 2016-03-15 2018-11-09 本田技研工业株式会社 Gas fill method
CN110878905B (en) * 2018-09-05 2022-04-12 气体产品与化学公司 Apparatus and method for testing compressed gas distribution stations
CN110878905A (en) * 2018-09-05 2020-03-13 气体产品与化学公司 Apparatus and method for testing compressed gas distribution stations
CN113803637A (en) * 2020-06-11 2021-12-17 中国石油化工股份有限公司 High-pressure gas pressure control system
CN113803637B (en) * 2020-06-11 2023-07-04 中国石油化工股份有限公司 High-pressure gas pressure control system
CN114321707A (en) * 2020-10-10 2022-04-12 中国石化工程建设有限公司 Method and system for unloading hydrogen from long-tube trailer to hydrogen filling station
CN113251308A (en) * 2021-05-28 2021-08-13 山东大学 Combined valve nozzle for vehicle-mounted high-pressure hydrogen storage cylinder
CN113532843A (en) * 2021-06-29 2021-10-22 上海舜华新能源系统有限公司 Precooling hydrogen exposure test device and test method
WO2023036863A3 (en) * 2021-09-09 2023-04-20 Dhes B.V. Inline cooling system for hydrogen refueling stations
CN114688449A (en) * 2022-04-25 2022-07-01 液空厚普氢能源装备有限公司 Online detection and purification control system and method for hydrogen quality of hydrogenation station
WO2024048845A1 (en) * 2022-08-29 2024-03-07 한국자동차연구원 Hydrogen fueling assistance device and hydrogen fueling system comprising same

Also Published As

Publication number Publication date
JP5572370B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5572370B2 (en) Filling control equipment for high-pressure hydrogen test facilities and high-pressure hydrogen filling facilities
JP5428755B2 (en) Gas filling device
KR102530519B1 (en) Method and device for filling the tank
US8261595B2 (en) Method and system for fluid valve leak detection
JP6797817B2 (en) How to fill the tank with pressurized gas
JP2012167767A (en) Apparatus and method for supplying fuel hydrogen gas
US20140224379A1 (en) Filling of storage containers with a gaseous pressurised medium
CA2880915C (en) Method for performing a pressure test on a tank and tank filling apparatus
JP2021098516A (en) Space environment testing device and liquid nitrogen recovery method of the same
Cebolla et al. GASTEF: The high pressure gas tank testing facility of the European commission joint research centre
KR101428259B1 (en) Test equipment for cyclic test in extreme temperature
KR101445751B1 (en) Using a cryogenic fluid heat exchanger valve leakage measuring device
KR101925936B1 (en) fuel supply apparatus
JP6632557B2 (en) Sampling system
JP2016515185A (en) Method for filling a containment vessel with a gaseous medium under pressure, in particular hydrogen
CN113532843A (en) Precooling hydrogen exposure test device and test method
JP2015197190A (en) Hydrogen gas charging facility
JP5663503B2 (en) Measuring method of hydrogen gas emission
KR20200113982A (en) Performance test measurement equipment for safety valve
KR102294890B1 (en) Internal pressure test device for hydrogen storage containers for hydrogen vehicles
US20200271275A1 (en) Process and device for filling tanks with pressurized gas
KR102533425B1 (en) Hydrogen supply device and hydrogen supply method
CN114593360B (en) Hydrogen supply system, method and device for fuel cell vehicle
RU2611119C1 (en) Stand for power plants with used process gas accumulation testing
Acosta-Iborra et al. Hydrogen tank filling experiments at the JRC-IE GASTEF facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250