JP5663503B2 - Measuring method of hydrogen gas emission - Google Patents

Measuring method of hydrogen gas emission Download PDF

Info

Publication number
JP5663503B2
JP5663503B2 JP2012007001A JP2012007001A JP5663503B2 JP 5663503 B2 JP5663503 B2 JP 5663503B2 JP 2012007001 A JP2012007001 A JP 2012007001A JP 2012007001 A JP2012007001 A JP 2012007001A JP 5663503 B2 JP5663503 B2 JP 5663503B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
filling
valve
line
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012007001A
Other languages
Japanese (ja)
Other versions
JP2013148120A (en
Inventor
渡辺 昇
昇 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2012007001A priority Critical patent/JP5663503B2/en
Publication of JP2013148120A publication Critical patent/JP2013148120A/en
Application granted granted Critical
Publication of JP5663503B2 publication Critical patent/JP5663503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、水素ガス放散量の測定方法に関する。 The present invention is directed to a method of measurement of hydrogen gas emission.

次世代の自動車として、水素ガスを燃料として用いる燃料電池搭載車両(「水素自動車」、或いは「水素エンジン自動車」ともいう)の開発が進められている。燃料電池搭載車両は、炭酸ガス、NOx、SOx等の排出がなく、水を排出するだけの環境にやさしい自動車とされている。   As a next-generation vehicle, a fuel cell vehicle using hydrogen gas as a fuel (also referred to as a “hydrogen vehicle” or a “hydrogen engine vehicle”) is being developed. A vehicle equipped with a fuel cell is considered to be an environment-friendly vehicle that does not emit carbon dioxide, NOx, SOx, etc., and only discharges water.

上記燃料電池搭載車両は、燃料補給時には通常のガソリン自動車と同様に、その燃料である水素ガスを充填する水素ガス充填装置を備えた供給基地である水素ステーション(以下、「水素ガス充填装置」という)まで走行し、該水素ガス充填装置から水素ガスを補給する(例えば、特許文献1参照。)。   The fuel cell-equipped vehicle is a hydrogen station (hereinafter referred to as a “hydrogen gas filling device”), which is a supply base equipped with a hydrogen gas filling device that fills the hydrogen gas as the fuel in the same manner as a normal gasoline vehicle when refueling. ), And hydrogen gas is replenished from the hydrogen gas filling device (see, for example, Patent Document 1).

図2は、従来の水素ガス充填装置の概略構成を模式的に示す図である。
図2を参照するに、従来の水素ガス充填装置100は、蓄圧器104と、水素ガス充填ライン105と、プレクーラー106と、流量調節弁107と、流量計109と、遮断弁111と、放散ライン112と、放散弁114と、フレキシブルホース115と、充填ノズル116と、を有する。
FIG. 2 is a diagram schematically showing a schematic configuration of a conventional hydrogen gas filling apparatus.
Referring to FIG. 2, a conventional hydrogen gas filling apparatus 100 includes a pressure accumulator 104, a hydrogen gas filling line 105, a precooler 106, a flow rate control valve 107, a flow meter 109, a shutoff valve 111, and a diffusion. It has a line 112, a diffusion valve 114, a flexible hose 115, and a filling nozzle 116.

水素ガス充填ライン105は、一端が蓄圧器104と接続されている。プレクーラー106は、水素ガス充填ライン105の他端側に設けられている。流量調節弁107は、蓄圧器104の出口側に位置する水素ガス充填ライン105に設けられている。
流量計109は、流量調節弁107の下流側に位置する水素ガス充填ライン105に設けられている。遮断弁111は、プレクーラー106と流量計109との間に位置する水素ガス充填ライン105に設けられている。
One end of the hydrogen gas filling line 105 is connected to the pressure accumulator 104. The precooler 106 is provided on the other end side of the hydrogen gas filling line 105. The flow control valve 107 is provided in the hydrogen gas filling line 105 located on the outlet side of the pressure accumulator 104.
The flow meter 109 is provided in the hydrogen gas filling line 105 located on the downstream side of the flow rate control valve 107. The shut-off valve 111 is provided in the hydrogen gas filling line 105 located between the precooler 106 and the flow meter 109.

放散ライン112は、遮断弁111とプレクーラー106との間に位置する水素ガス充填ライン105から分岐されている。放散弁114は、放散ライン112に設けられている。
フレキシブルホース115は、一端が水素ガス充填ライン105の他端と接続されている。充填ノズル116は、フレキシブルホース115の他端と接続されると共に、燃料電池搭載車両101の車載タンク102と接続されている。
The diffusion line 112 is branched from a hydrogen gas filling line 105 located between the shut-off valve 111 and the precooler 106. The diffusion valve 114 is provided in the diffusion line 112.
One end of the flexible hose 115 is connected to the other end of the hydrogen gas filling line 105. The filling nozzle 116 is connected to the other end of the flexible hose 115 and to the vehicle-mounted tank 102 of the fuel cell vehicle 101.

ここで、図2に示す従来の水素ガス充填装置100から燃料電池搭載車両101への水素ガスの充填方法、及び水素ガス充填装置100から燃料電池搭載車両101の切り離し方法について説明する。   Here, the hydrogen gas filling method from the conventional hydrogen gas filling device 100 shown in FIG. 2 to the fuel cell-equipped vehicle 101 and the method for separating the fuel cell-equipped vehicle 101 from the hydrogen gas filling device 100 will be described.

まず、始めに、水素ガス充填装置100の充填ノズル116を燃料電池搭載車両101に接続し、次いで、蓄圧器104(或いは、圧縮機)から燃料電池搭載車両101に搭載された車載タンク102へ高圧の水素ガスの充填を開始し、車載タンク102内の圧力が35〜70MPaの間の任意の圧力に昇圧されたら水素ガスの充填を終了する。   First, the filling nozzle 116 of the hydrogen gas filling device 100 is connected to the fuel cell-equipped vehicle 101, and then the high pressure is applied from the accumulator 104 (or the compressor) to the in-vehicle tank 102 mounted on the fuel cell-equipped vehicle 101. When the pressure in the in-vehicle tank 102 is increased to an arbitrary pressure between 35 and 70 MPa, the filling of the hydrogen gas is finished.

この際、車載タンク102の上流側に配置された流量調整弁107から車載タンク102までの区間が同一の圧力になる。
そして、車載タンク102の遮断弁(図示せず)を閉じた後、水素ガス充填装置100から燃料電池搭載車両101を切り離すために、燃料電池搭載車両101から充填ノズル116を取り外す。
このとき、充填ノズル116は、安全のため、その一次側の圧力を0.4MPa程度に低下させなければ、燃料電池搭載車両101から取り外すことができない。
At this time, the section from the flow regulating valve 107 disposed on the upstream side of the in-vehicle tank 102 to the in-vehicle tank 102 has the same pressure.
Then, after closing the shutoff valve (not shown) of the in-vehicle tank 102, the filling nozzle 116 is removed from the fuel cell-equipped vehicle 101 in order to disconnect the fuel cell-equipped vehicle 101 from the hydrogen gas filling device 100.
At this time, the filling nozzle 116 cannot be removed from the fuel cell-equipped vehicle 101 unless the pressure on the primary side is reduced to about 0.4 MPa for safety.

このため、水素ガス充填装置100側においては、充填タンク102への充填が終了後、開いた状態とされた遮断弁111を閉じ、次いで、閉じた状態とされた放散弁114を開けることで、遮断弁111から充填ノズル116までの間に滞留する水素ガスを大気放出して、遮断弁111から充填ノズル116までの区間の圧力を所定の圧力以下に低下させる放散処理を行う。   For this reason, on the hydrogen gas filling device 100 side, after the filling of the filling tank 102 is completed, the shut-off valve 111 that is opened is closed, and then the diffusion valve 114 that is closed is opened, Hydrogen gas staying between the shutoff valve 111 and the filling nozzle 116 is released into the atmosphere, and a diffusion process is performed to reduce the pressure in the section from the shutoff valve 111 to the filling nozzle 116 below a predetermined pressure.

該放散処理後、開いた状態とされた放散弁114を閉じ、最後に、充填ノズル116を燃料電池搭載車両101から切り離す(取り外す)。   After the diffusion process, the diffusion valve 114 opened is closed, and finally, the filling nozzle 116 is disconnected (removed) from the vehicle 101 equipped with the fuel cell.

特開2003−336795号公報JP 2003-336895 A

ところで、車載タンク102への充填中に流量計109を通過した水素ガスの流量は、流量計109にて計測可能であるが、充填終了後に放散弁114から放出される水素ガス放散量、つまり遮断弁111から充填ノズル116までの区間に滞留した水素ガスの放出量は計測できない。
このため、実際に車載タンク102に充填された正確な水素ガスの量を把握できないという問題があった。
By the way, the flow rate of hydrogen gas that has passed through the flow meter 109 during filling of the in-vehicle tank 102 can be measured by the flow meter 109, but the hydrogen gas emission amount released from the diffusion valve 114 after the filling is completed, that is, the cutoff. The amount of hydrogen gas remaining in the section from the valve 111 to the filling nozzle 116 cannot be measured.
For this reason, there has been a problem that the exact amount of hydrogen gas actually filled in the vehicle-mounted tank 102 cannot be grasped.

そこで本発明は、水素ガスの放散量を把握することで、充填先への正確な水素ガス充填量を把握することの可能な水素ガス放散量の測定方法を提供することを目的とする。 The present invention, by grasping the diffusion amount of the hydrogen gas, and an object thereof is to provide a method of measuring the possible hydrogen gas emission of knowing the exact hydrogen filling amount of the filling destination.

上記課題を解決するため、請求項1に係る発明によれば、高圧の水素ガスを充填先へ供給するための充填ラインと、前記充填ラインから分岐して設けられ、前記水素ガスを放散する放散弁が配置された放散ラインと、前記放散ラインの分岐位置より二次側に位置する前記充填ラインに設けられたコリオリ式流量計と、を有する水素ガス充填装置を用いた水素ガス放散量の測定方法であって、充填先への水素ガス充填後に遮断弁を閉じ、前記放散弁を開いて前記コリオリ式流量計を逆流した水素ガス流量を測定することを特徴とする水素ガス放散量の測定方法が提供される。 In order to solve the above-described problem, according to the first aspect of the present invention, a filling line for supplying high-pressure hydrogen gas to a filling destination, and a diffusion branching from the filling line and diffusing the hydrogen gas are provided. Measurement of hydrogen gas emission amount using a hydrogen gas filling device having a diffusion line in which a valve is disposed and a Coriolis flow meter provided in the filling line located on the secondary side of the branching position of the diffusion line A method for measuring a hydrogen gas emission amount, comprising closing a shutoff valve after filling hydrogen gas into a filling destination, opening the diffusion valve, and measuring a hydrogen gas flow rate flowing back through the Coriolis flow meter. Is provided.

本発明によれば、コリオリ式流量計はガスの流れ方向がどちらであっても通過したガス量を計測可能であるため、放散ラインの分岐位置より二次側に位置する充填ラインにコリオリ式流量計を設けることで、遮断弁から充填ノズルまでの間に滞留した水素ガスのうち、コリオリ式流量計を逆流して通過した水素ガスの量を把握することが可能となる。 According to the onset bright, because the Coriolis flowmeter is capable of measuring the amount of gas passed through be either the direction of gas flow, Coriolis to fill line located on the secondary side of the branch position of the emission line By providing the flow meter, it becomes possible to grasp the amount of hydrogen gas that has flowed back through the Coriolis flow meter out of the hydrogen gas retained between the shutoff valve and the filling nozzle.

これにより、水素ガス充填装置に設ける流量計の数を増加させることなく、放散弁から放出された水素ガスの量を測定でき、かつ放散弁から放出された水素ガス量に基づいて充填先に実際に充填された水素ガスの量をより正確に把握することができる。   As a result, the amount of hydrogen gas released from the diffusion valve can be measured without increasing the number of flow meters installed in the hydrogen gas filling device, and the actual amount at the filling destination is based on the amount of hydrogen gas released from the diffusion valve. The amount of hydrogen gas filled in can be grasped more accurately.

本発明の実施の形態に係る水素ガス放散量の測定方法に使用する水素ガス充填装置の概略構成を示す図である。It is a figure which shows schematic structure of the hydrogen gas filling apparatus used for the measuring method of the hydrogen gas emission amount which concerns on embodiment of this invention. 従来の水素ガス充填装置の概略構成を模式的に示す図である。It is a figure which shows typically schematic structure of the conventional hydrogen gas filling apparatus.

以下、図面を参照して本発明を適用した実施の形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の水素ガス充填装置の寸法関係とは異なる場合がある。   Embodiments to which the present invention is applied will be described below in detail with reference to the drawings. The drawings used in the following description are for explaining the configuration of the embodiment of the present invention, and the size, thickness, dimension, etc. of each part shown in the figure are the dimensional relations of an actual hydrogen gas filling device. May be different.

(実施の形態)
図1は、本発明の実施の形態に係る水素ガス放散量の測定方法に使用する水素ガス充填装置の概略構成を示す図である。
図1を参照するに、水素ガス充填装置10は、水素ガス供給源11と、充填ライン13と、圧縮機14と、蓄圧器15と、流量調節弁17と、遮断弁18と、放散ライン22と、放散弁23と、コリオリ式流量計19と、水素ガス冷却手段25と、フレキシブルホース26と、充填ノズル28と、を有する。
(Embodiment)
FIG. 1 is a diagram showing a schematic configuration of a hydrogen gas filling apparatus used in the method for measuring the hydrogen gas emission amount according to the embodiment of the present invention.
Referring to FIG. 1, hydrogen gas filling apparatus 10 includes a hydrogen gas supply source 11, and the filling line 13, a compressor 14, a pressure accumulator 15, the flow control valve 17, the shut-off valve 18, dissipating line 22, a diffusion valve 23, a Coriolis flow meter 19, a hydrogen gas cooling means 25, a flexible hose 26, and a filling nozzle 28.

水素ガス供給源11は、充填ライン13の一端と接続されており、充填ライン13を介して、圧縮機14に水素ガスを供給する。
圧縮機14は、水素ガス供給源11の後段(下流側)に位置する充填ライン13に設けられている。圧縮機14は、水素ガス供給源11から供給された水素ガスを圧縮し、圧縮した水素ガスを蓄圧器15に供給する。
The hydrogen gas supply source 11 is connected to one end of the filling line 13 and supplies hydrogen gas to the compressor 14 via the filling line 13.
The compressor 14 is provided in a filling line 13 located downstream (downstream) of the hydrogen gas supply source 11. The compressor 14 compresses the hydrogen gas supplied from the hydrogen gas supply source 11 and supplies the compressed hydrogen gas to the pressure accumulator 15.

蓄圧器15は、圧縮機14により圧縮された水素ガスを貯留すると共に、流量調節弁17及び遮断弁18を介して、圧縮された水素ガスを充填ライン13に供給する。
流量調節弁17は、蓄圧器15の二次側(下流側)に位置する充填ライン13に設けられている。流量調節弁17は、その開度を調節することで、流量調節弁17の二次側に流れる水素ガスの流量を調節するための弁である。
The pressure accumulator 15 stores the hydrogen gas compressed by the compressor 14 and supplies the compressed hydrogen gas to the filling line 13 via the flow rate adjustment valve 17 and the shutoff valve 18.
The flow rate control valve 17 is provided in the filling line 13 located on the secondary side (downstream side) of the pressure accumulator 15. The flow rate adjusting valve 17 is a valve for adjusting the flow rate of hydrogen gas flowing on the secondary side of the flow rate adjusting valve 17 by adjusting the opening degree thereof.

遮断弁18は、流量調節弁17の下流側に位置する充填ライン13に設けられている。遮断弁18は、放散ライン22を介して、放散弁23から水素ガスを放散する際に閉じられる弁である。
放散ライン22は、遮断弁18の下流側に位置する充填ライン13から分岐している。放散弁23は、放散ライン22に設けられている。放散弁23は、放散ライン22に輸送された水素ガスを放散する際に開かれる弁である。
The shut-off valve 18 is provided in the filling line 13 located on the downstream side of the flow rate control valve 17. The shutoff valve 18 is a valve that is closed when hydrogen gas is diffused from the diffusion valve 23 via the diffusion line 22.
The diffusion line 22 branches from the filling line 13 located on the downstream side of the shutoff valve 18. The diffusion valve 23 is provided in the diffusion line 22. The diffusion valve 23 is a valve that is opened when the hydrogen gas transported to the diffusion line 22 is diffused.

コリオリ式流量計19は、放散ライン22の分岐位置22Aより二次側(下流側)に位置する充填ライン13に設けられている。コリオリ式流量計19は、放散ライン22の分岐位置22Aと水素ガス冷却手段25との間に位置する充填ライン13に配置されている。
コリオリ式流量計19は、ガスの流れ方向がどちらであっても通過したガス量を計測することができる。
The Coriolis flow meter 19 is provided in the filling line 13 located on the secondary side (downstream side) from the branch position 22 </ b> A of the diffusion line 22. The Coriolis flow meter 19 is disposed in the filling line 13 located between the branch position 22A of the diffusion line 22 and the hydrogen gas cooling means 25.
The Coriolis flow meter 19 can measure the amount of gas that has passed regardless of the gas flow direction.

水素ガス冷却手段25は、コリオリ式流量計19の下流側に位置する充填ライン13に設けられている。水素ガス冷却手段25は、充填ライン13を流れる水素ガスを冷却する冷却機構である。水素ガス冷却手段25としては、例えば、シェル側に金属、ブライン、液化ガス等の冷媒を、チューブ側に水素ガスを通す構造のシェルアンドチューブ型熱交換器、外側管路側にブライン、液化ガス等の冷媒を、内側管路側に水素ガスを通す構造のチューブインチューブ(二重管)型熱交換器等を用いることができる。   The hydrogen gas cooling means 25 is provided in the filling line 13 located on the downstream side of the Coriolis flow meter 19. The hydrogen gas cooling means 25 is a cooling mechanism that cools the hydrogen gas flowing through the filling line 13. As the hydrogen gas cooling means 25, for example, a shell and tube heat exchanger having a structure in which a refrigerant such as metal, brine, and liquefied gas is passed on the shell side and hydrogen gas is passed on the tube side, brine, liquefied gas, and the like are placed on the outer conduit side. A tube-in-tube (double tube) type heat exchanger or the like having a structure in which hydrogen gas is allowed to pass through the refrigerant to the inner pipe line side can be used.

フレキシブルホース26は、一端が充填ライン13の他端に接続されており、他端が充填ノズル28と接続されている。充填ノズル28は、燃料電池搭載車両31の車載タンク32と接続されている。   One end of the flexible hose 26 is connected to the other end of the filling line 13, and the other end is connected to the filling nozzle 28. The filling nozzle 28 is connected to the vehicle tank 32 of the fuel cell vehicle 31.

ここで、図1に示す水素ガス充填装置10から燃料電池搭載車両31への水素ガスの充填方法、及び水素ガス充填装置10から燃料電池搭載車両31の切り離し方法について説明する中で、本実施の形態の水素ガスの放散方法について説明する。 Here, in that describes the shown to hydrogen gas filling device 10 in FIG. 1 filling method of the hydrogen gas to the fuel cell vehicle 31, and from the hydrogen gas filling device 10 for detaching method of a fuel cell vehicle 31, A method for diffusing hydrogen gas according to this embodiment will be described.

始めに、待機時において、蓄圧器15に高圧の水素ガスを予め充填しておく。
次いで、水素ガス充填装置10の充填ノズル28を燃料電池搭載車両31に接続し、蓄圧器15と車載タンク32との圧力差を利用して車載タンク32へ高圧の水素ガスを充填する。充填中、充填ライン13を通過する水素ガスは、コリオリ式流量計19を正方向に流れ、コリオリ式流量計19により水素ガスの流量が測定される。
その後、予め設定された圧力に車載タンク32が昇圧されたら、開いた状態から遮断弁18を閉じる。
First, during standby, the accumulator 15 is filled with high-pressure hydrogen gas in advance.
Next, the filling nozzle 28 of the hydrogen gas filling device 10 is connected to the fuel cell vehicle 31, and the vehicle tank 32 is filled with high-pressure hydrogen gas using the pressure difference between the pressure accumulator 15 and the vehicle tank 32. During filling, the hydrogen gas passing through the filling line 13 flows in the forward direction through the Coriolis flow meter 19, and the flow rate of the hydrogen gas is measured by the Coriolis flow meter 19.
Thereafter, when the in-vehicle tank 32 is pressurized to a preset pressure, the shutoff valve 18 is closed from the opened state.

次いで、水素ガスの放散処理を行う。具体的には、閉じられた状態の放散弁23を開き、遮断弁18から充填ノズル28までの区間に滞留した水素ガスを、放散ライン22を介して、放散弁23の先に設けられた逆火防止器(図示せず)から大気放出させることで、遮断弁18から充填ノズル28までの区間の圧力を所定の圧力以下(例えば、0.4MPa以下)に低下させる。   Next, hydrogen gas is diffused. Specifically, the diffusion valve 23 in the closed state is opened, and the hydrogen gas staying in the section from the shut-off valve 18 to the filling nozzle 28 is reversely provided at the tip of the diffusion valve 23 via the diffusion line 22. By releasing the air from a fire preventer (not shown), the pressure in the section from the shutoff valve 18 to the filling nozzle 28 is reduced to a predetermined pressure or lower (for example, 0.4 MPa or lower).

このとき、コリオリ式流量計19の二次側(下流側)に滞留した水素ガスはコリオリ式流量計24を逆方向に通過するため、コリオリ式流量計19により、逆方向に通過した水素ガスの流量を測定することが可能となる。すなわち、車載タンク32に充填されなかった水素ガスの流量の多くを把握することが可能となる。   At this time, since the hydrogen gas staying on the secondary side (downstream side) of the Coriolis flow meter 19 passes through the Coriolis flow meter 24 in the reverse direction, the Coriolis flow meter 19 The flow rate can be measured. That is, it is possible to grasp a large amount of the flow rate of the hydrogen gas that has not been filled in the vehicle-mounted tank 32.

その後、開いた状態とされた放散弁23を閉じる。最後に、充填ノズル28を燃料電池搭載車両31から切り離す。   Thereafter, the release valve 23 in the opened state is closed. Finally, the filling nozzle 28 is disconnected from the fuel cell vehicle 31.

本実施の形態の水素ガスの放散方法によれば、放散ライン22の分岐位置22Aと水素ガス冷却手段25との間に位置する充填ライン13にコリオリ式流量計19を設けることにより、コリオリ式流量計19はガスの流れ方向がどちらであっても通過したガス量を計測可能であるため、遮断弁18から充填ノズル28までの区間に滞留した水素ガスのうち、コリオリ式流量計19を逆流して通過した水素ガスの量を把握することが可能となる。 According to the hydrogen gas diffusion method of the present embodiment, the Coriolis flow rate is provided by providing the Coriolis flow meter 19 in the filling line 13 located between the branch position 22A of the diffusion line 22 and the hydrogen gas cooling means 25. Since the meter 19 can measure the amount of gas that has passed regardless of the gas flow direction, the Coriolis flow meter 19 is reversely flowed out of the hydrogen gas remaining in the section from the shut-off valve 18 to the filling nozzle 28. It is possible to grasp the amount of hydrogen gas that has passed through.

これにより、水素ガス充填装置10に設ける流量計の数を増加させることなく、放散弁23から放出された水素ガスの量を測定できるので、放散弁23から放出された水素ガスの量に基づいて車載タンク32(充填先)に、実際に充填された水素ガスの量をより正確に把握することができる。   Accordingly, the amount of hydrogen gas released from the diffusion valve 23 can be measured without increasing the number of flow meters provided in the hydrogen gas filling device 10, and therefore, based on the amount of hydrogen gas released from the diffusion valve 23. The amount of hydrogen gas actually filled in the vehicle-mounted tank 32 (filling destination) can be grasped more accurately.

また、コリオリ式流量計19を水素ガス冷却手段25の一次側(上流側)に設置することで、コリオリ式流量計19の使用可能な温度下限を考慮しなくてよくなると共に、水素ガス冷却手段25に滞留し放散された水素ガスの量も測定可能となるため、より正確な水素ガスの充填量を把握でき、かつ水素ガスの放散量の少量化が実現できる。   Further, by installing the Coriolis flow meter 19 on the primary side (upstream side) of the hydrogen gas cooling means 25, it becomes unnecessary to consider the lower limit of the usable temperature of the Coriolis flow meter 19, and the hydrogen gas cooling means 25. Therefore, it is possible to measure the amount of hydrogen gas that stays and diffuses in the gas, so that a more accurate filling amount of hydrogen gas can be grasped, and the amount of hydrogen gas diffused can be reduced.

なお、以上の図では蓄圧器15を利用した装置構成を例に挙げたが、圧縮機14で昇圧した水素ガスを直接充填する構成であってもよい。   In addition, although the apparatus structure using the pressure accumulator 15 was mentioned as an example in the above figure, the structure directly filled with the hydrogen gas pressure | voltage-risen with the compressor 14 may be sufficient.

以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and within the scope of the present invention described in the claims, Various modifications and changes are possible.

本発明は、燃料電池搭載車両に水素ガスを充填する水素ガス放散量の測定方法に適用可能である。 The present invention is applicable to hydrogen gas in the measurement method of hydrogen gas emission you filled in the fuel cell vehicle.

10…水素ガス充填装置、11…水素ガス供給源、13…充填ライン、14…圧縮機、15…蓄圧器、17…流量調節弁、18…遮断弁、19…コリオリ式流量計、22…放散ライン、22A…分岐位置、23…放散弁、25…水素ガス冷却手段、26…フレキシブルホース、28…充填ノズル、31…燃料電池搭載車両、32…車載タンク   DESCRIPTION OF SYMBOLS 10 ... Hydrogen gas filling apparatus, 11 ... Hydrogen gas supply source, 13 ... Filling line, 14 ... Compressor, 15 ... Accumulator, 17 ... Flow control valve, 18 ... Shut-off valve, 19 ... Coriolis flow meter, 22 ... Dissipation Line, 22A ... Branch position, 23 ... Dissipation valve, 25 ... Hydrogen gas cooling means, 26 ... Flexible hose, 28 ... Filling nozzle, 31 ... Vehicle equipped with fuel cell, 32 ... In-vehicle tank

Claims (1)

高圧の水素ガスを充填先へ供給するための充填ラインと、前記充填ラインから分岐して設けられ、前記水素ガスを放散する放散弁が配置された放散ラインと、前記放散ラインの分岐位置より二次側に位置する前記充填ラインに設けられたコリオリ式流量計と、を有する水素ガス充填装置を用いた水素ガス放散量の測定方法であって、
充填先への水素ガス充填後に遮断弁を閉じ、前記放散弁を開いて前記コリオリ式流量計を逆流した水素ガス流量を測定することを特徴とする水素ガス放散量の測定方法。
From a filling line for supplying high-pressure hydrogen gas to a filling destination, a diffusion line provided from the filling line and provided with a diffusion valve for releasing the hydrogen gas, and a branch position of the diffusion line. A Coriolis type flow meter provided in the filling line located on the next side, and a method for measuring hydrogen gas emission using a hydrogen gas filling device,
A method for measuring a hydrogen gas emission amount, comprising: closing a shutoff valve after filling hydrogen gas into a filling destination, opening the diffusion valve, and measuring a flow rate of hydrogen gas flowing back through the Coriolis flow meter.
JP2012007001A 2012-01-17 2012-01-17 Measuring method of hydrogen gas emission Active JP5663503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007001A JP5663503B2 (en) 2012-01-17 2012-01-17 Measuring method of hydrogen gas emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007001A JP5663503B2 (en) 2012-01-17 2012-01-17 Measuring method of hydrogen gas emission

Publications (2)

Publication Number Publication Date
JP2013148120A JP2013148120A (en) 2013-08-01
JP5663503B2 true JP5663503B2 (en) 2015-02-04

Family

ID=49045811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007001A Active JP5663503B2 (en) 2012-01-17 2012-01-17 Measuring method of hydrogen gas emission

Country Status (1)

Country Link
JP (1) JP5663503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103470947A (en) * 2013-09-11 2013-12-25 江苏永钢集团有限公司 Automatic filling device of liquid tank car
CN112253990B (en) * 2020-09-11 2023-03-28 浙江浙能航天氢能技术有限公司 High-pressure hydrogen filling system based on temperature rise control and filling method thereof
CN112212208B (en) * 2020-09-11 2023-03-28 浙江浙能航天氢能技术有限公司 Filling system and method for combined work of hydrogenation machine and supercharging equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913427B2 (en) * 2006-03-10 2012-04-11 大陽日酸株式会社 Method and apparatus for filling hydrogen gas
JP2008151808A (en) * 2008-03-07 2008-07-03 Oval Corp Coriolis mass flowmeter
JP2010209980A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Gas supply device and gas station equipped with gas supply device
JP2010266023A (en) * 2009-05-15 2010-11-25 Toyota Motor Corp Gas supply system
JP2011068919A (en) * 2009-09-24 2011-04-07 Hitachi Ltd Fe-ni based alloy with high-strength hydrogen embrittlement resistant
JP5561583B2 (en) * 2009-12-21 2014-07-30 日立金属株式会社 High pressure hydrogen components

Also Published As

Publication number Publication date
JP2013148120A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US20170130901A1 (en) Fuel refilling systems and methods
JP5759741B2 (en) Hydrogen gas filling device for fuel and hydrogen gas filling method for fuel
JP6797817B2 (en) How to fill the tank with pressurized gas
JP5572370B2 (en) Filling control equipment for high-pressure hydrogen test facilities and high-pressure hydrogen filling facilities
JP2007239956A (en) Method and device for filling hydrogen gas
JP2011174528A (en) Method for filling hydrogen gas in hydrogen gas packing equipment
JP5663503B2 (en) Measuring method of hydrogen gas emission
JP6351594B2 (en) Method and replenishment device for performing pressure resistance test in tank
CN105531526A (en) Liquid natural gas cooling on the fly
WO2013146316A1 (en) Vessel, liquefied gas vaporization device, and control method therefor as well as improvement method therefor
KR102519974B1 (en) gas filling device
JP2015537170A (en) Method and apparatus for filling a storage container with a gaseous medium under pressure
US9759382B2 (en) Method for filling up a storage tank with a gaseous pressurized medium, in particular hydrogen
JP2016138594A (en) Simple type hydrogen station
JP2010266023A (en) Gas supply system
KR20190038625A (en) Method and apparatus for detecting the amount of gas in a calibratable manner
JP6632557B2 (en) Sampling system
FI3359867T4 (en) Method for supplying cryogenic liquid, and facility for implementing said method
US20070175903A1 (en) Liquid hydrogen storage tank with reduced tanking losses
JP6695194B2 (en) Fuel gas filling system and fuel gas filling method
CN113818973B (en) Gas supply system of gas engine or dual fuel engine and operation method thereof
JP2015102229A (en) Method for filling hydrogen gas into on-vehicle storage container
JP3620948B2 (en) Gas supply system
JP2007278483A (en) Emergency shut-off valve
CN204739418U (en) IC -card liquefied natural gas adds mechanism of qi

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5663503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250