JP2011174528A - Method for filling hydrogen gas in hydrogen gas packing equipment - Google Patents
Method for filling hydrogen gas in hydrogen gas packing equipment Download PDFInfo
- Publication number
- JP2011174528A JP2011174528A JP2010038537A JP2010038537A JP2011174528A JP 2011174528 A JP2011174528 A JP 2011174528A JP 2010038537 A JP2010038537 A JP 2010038537A JP 2010038537 A JP2010038537 A JP 2010038537A JP 2011174528 A JP2011174528 A JP 2011174528A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen gas
- pressure
- filling
- sonic nozzle
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
本発明は、水素ガス供給源に貯蔵されている高圧水素ガスを受入容器等の被充填タンクに移送充填する高圧ガス充填設備での水素ガス充填方法に関する。 The present invention relates to a hydrogen gas filling method in a high-pressure gas filling facility for transferring and filling high-pressure hydrogen gas stored in a hydrogen gas supply source into a filling tank such as a receiving container.
例えば、燃料電池車等においては、燃料としての水素ガスは、受入容器である水素タンクに高圧で貯蔵され、水素タンクの水素貯蔵量が低下した場合には、水素ステーションにおいて水素ガス貯蔵源より水素ガスが移送充填される。 For example, in a fuel cell vehicle or the like, hydrogen gas as fuel is stored at a high pressure in a hydrogen tank that is a receiving container, and when the amount of hydrogen stored in the hydrogen tank decreases, the hydrogen gas is supplied from the hydrogen gas storage source at the hydrogen station. Gas is transfilled.
受入容器である水素タンクに水素ガスを急速に充填する場合、水素タンク内の温度が上昇するため、水素を冷却して、充填を行う方法(プレクール充填)が提供されている。従来、水素ガスをプレクール充填する場合、冷凍機や液体窒素を冷却源とした熱交換器によって冷却して充填する方式が知られている。 When hydrogen gas is rapidly filled into a hydrogen tank that is a receiving container, the temperature in the hydrogen tank rises. Therefore, a method for cooling and filling hydrogen (precool filling) is provided. Conventionally, when precool filling with hydrogen gas, a method of cooling and filling with a heat exchanger using a refrigerator or liquid nitrogen as a cooling source is known.
一般に、燃料電池車等の車両に水素を燃料として充填する場合、その充填時間は、3〜5分程度に抑えることが求められている。これにあわせた冷凍能力の冷凍機や熱交換器を設置すると設備コストや設置スペースを要するという問題点がある。 In general, when filling a vehicle such as a fuel cell vehicle with hydrogen as a fuel, the filling time is required to be suppressed to about 3 to 5 minutes. If a refrigerator or a heat exchanger having a refrigerating capacity corresponding to this is installed, there is a problem that equipment cost and installation space are required.
そこで、図2に示すように、ブラインタンクで冷熱を貯蔵しておく冷却方式も提案されている。
図中符号(51)は高圧水素ガスが充填されている蓄圧器であり、この蓄圧器(51)と燃料電池自動車に装備されている燃料タンク(52)とを、流量計(53)、流量調節弁(54)、熱交換器(55)、ディスペンサー(56)を介装した水素ガス充填路(57)で連通接続し、熱交換器(55)に供給する冷却源として、冷凍機(58)、ブラインタンク(59)、ブラインポンプ(60)、熱交換器(55)、ブラインタンク(59)、冷凍機(58)の順に循環するブラインを用いた冷却系で充填する水素ガスを冷却するようにしている。
Therefore, as shown in FIG. 2, a cooling method in which cold heat is stored in a brine tank has been proposed.
Reference numeral (51) in the figure is a pressure accumulator filled with high-pressure hydrogen gas, and this accumulator (51) and a fuel tank (52) equipped in a fuel cell vehicle are connected to a flow meter (53), a flow rate. A refrigerator (58) is connected as a cooling source connected to a hydrogen gas filling passage (57) through which a control valve (54), a heat exchanger (55), and a dispenser (56) are interposed, and is supplied to the heat exchanger (55). ), Brine tank (59), brine pump (60), heat exchanger (55), brine tank (59), refrigerator (58) in order, cool the hydrogen gas filled in the cooling system using brine. I am doing so.
そしてこの場合冷却系は、流量計(53)、流量調節弁(54)、熱交換器(55)、ディスペンサー(56)、圧力センサー(61)及び温度センサー(62)を収容している充填設備機器(63)とは、別に設置されている。 In this case, the cooling system includes a flow meter (53), a flow control valve (54), a heat exchanger (55), a dispenser (56), a pressure sensor (61), and a temperature sensor (62). It is installed separately from the device (63).
前述の冷却能力に見合う冷凍機を設置するよりも、能力の小さな冷凍機とブラインタンクを組み合わせ、充填前にブラインタンクに冷熱を貯蔵するほうが設備的コストを抑えることができる。しかし、この場合ではブラインタンクへの入熱をなくすことができないために、いつ車両が来てもプレクール充填できるように常に冷凍機を運転し、冷熱を貯蔵しておく必要があり、必要以上のエネルギーを消費するという問題がある。液体窒素を冷熱源とする場合でも、充填待機中の液体窒素タンクからのボイルオフがあり、効率的ではない。 Rather than installing a refrigerator suitable for the cooling capacity described above, it is possible to reduce the equipment cost by combining a refrigerator with a small capacity and a brine tank and storing the cold heat in the brine tank before filling. However, in this case, the heat input to the brine tank cannot be eliminated, so it is necessary to always operate the refrigerator and store the cold heat so that precool filling can be performed whenever the vehicle comes. There is a problem of consuming energy. Even when liquid nitrogen is used as a cold heat source, there is a boil-off from the liquid nitrogen tank waiting for filling, which is not efficient.
このような問題に鑑み、本発明は、いつ車両が来ても所定温度以下の水素ガスを充填できるものでありながら、エネルギーロスを極力抑制することのできる水素ガス充填設備での水素ガス充填方法を提供することを目的とする。 In view of such problems, the present invention is a method for filling hydrogen gas in a hydrogen gas filling facility capable of suppressing energy loss as much as possible while being able to fill hydrogen gas at a predetermined temperature or lower whenever a vehicle comes. The purpose is to provide.
上述の目的を達成するために、請求項1に記載の本発明は、充填タンクよりも高圧に設定されている蓄圧容器と被充填タンクとを水素ガス充填路で連通接続し、蓄圧容器の内圧と被充填タンクの内圧との差圧で水素ガスを移送・充填するに当たり、水素ガス充填路に音速ノズルを配置し、この音速ノズルに臨界圧力比以上の一次圧で水素ガスを供給し、前記音速ノズルの一次側と二次側とをバイパス路で接続し、バイパス路分岐部分よりも下流側の一次側水素ガス充填路に圧力調整弁を配置するとともに、バイパス路に流量調整弁を配置し、前記圧力調整弁と流量調整弁とをバイパス路合流部分より下流側での水素ガス充填路内の温度・圧力に基づき開閉制御するようにしたことを特徴としている。 In order to achieve the above-mentioned object, the present invention according to claim 1 is configured such that a pressure accumulating container set to a pressure higher than that of a filling tank and a tank to be filled are connected to each other through a hydrogen gas filling path, and the internal pressure of the pressure accumulating container is increased. When transferring and filling hydrogen gas with a differential pressure between the pressure and the internal pressure of the tank to be filled, a sonic nozzle is disposed in the hydrogen gas filling path, and hydrogen gas is supplied to the sonic nozzle at a primary pressure higher than the critical pressure ratio. The primary side and the secondary side of the sonic nozzle are connected by a bypass path, a pressure adjustment valve is arranged in the primary hydrogen gas filling path downstream from the bypass path branching part, and a flow rate adjustment valve is arranged in the bypass path. The pressure regulating valve and the flow regulating valve are controlled to be opened and closed based on the temperature and pressure in the hydrogen gas filling passage downstream from the bypass passage merging portion.
本発明では、水素ガス充填路に配置した音速ノズルに対して、臨界圧力比以上の圧力で水素ガスを供給するようにしているので、音速ノズルの二次側では、等エントロピー膨張により、水素ガス温度が下がることになり、冷凍機や熱交換器を用いずにプレクール充填を行うことができるようになる。 In the present invention, hydrogen gas is supplied to the sonic nozzle arranged in the hydrogen gas filling path at a pressure equal to or higher than the critical pressure ratio. Therefore, on the secondary side of the sonic nozzle, hydrogen gas is generated by isentropic expansion. The temperature is lowered, and precool filling can be performed without using a refrigerator or a heat exchanger.
また、充填が進むにつれ、音速ノズルの二次側圧力は上昇して行くため、音速ノズルの二次側温度を一定に制御するには、音速ノズルの一次側圧力を制御する必要があるが、音速ノズルの一次側圧力が変化すると音速ノズルを通過する水素ガスの流量が変化することになる。
このため、充填においては、水素ガス温度と流量とを同時に制御する必要があるが、本発明では、音速ノズルをバイパスするバイパス路を設け、音速ノズルの下流側での水素ガス充填路内の温度・圧力に基づき音速ノズルを流れる水素ガス量とバイパイ路を流れる水素ガス量とを制御するようにしていることから、音速ノズルからの水素ガスと音速ノズルを通過しない常温の水素ガスとを混合することで、水素ガス温度と流量を最適に保つことができる。
Also, as the filling proceeds, the secondary pressure of the sonic nozzle increases, so to control the secondary temperature of the sonic nozzle constant, it is necessary to control the primary pressure of the sonic nozzle, When the primary pressure of the sonic nozzle changes, the flow rate of hydrogen gas passing through the sonic nozzle changes.
For this reason, in the filling, it is necessary to control the hydrogen gas temperature and the flow rate at the same time. However, in the present invention, a bypass path for bypassing the sonic nozzle is provided, and the temperature in the hydrogen gas filling path downstream of the sonic nozzle is provided. -Since the amount of hydrogen gas flowing through the sonic nozzle and the amount of hydrogen gas flowing through the bypass pipe are controlled based on pressure, the hydrogen gas from the sonic nozzle and the hydrogen gas at room temperature that does not pass through the sonic nozzle are mixed. Thus, the hydrogen gas temperature and flow rate can be kept optimal.
本発明の実施に使用する水素ガス充填設備は、高圧水素ガスを貯蔵している蓄圧容器(1)と、燃料電池自動車等に搭載装備されている燃料タンク(被充填タンク)(2)とを水素ガス充填路(3)で連通接続し、この水素ガス充填路(3)に上流側から、流量計(4)、圧力調節弁(5)、音速ノズル(6)、ディスペンサー(7)が順に装着してある。 The hydrogen gas filling equipment used for carrying out the present invention comprises a pressure accumulating vessel (1) for storing high-pressure hydrogen gas, and a fuel tank (filled tank) (2) mounted on a fuel cell vehicle or the like. The hydrogen gas filling passage (3) is connected to the hydrogen gas filling passage (3). From the upstream side, the flow meter (4), the pressure control valve (5), the sonic nozzle (6), and the dispenser (7) are connected in this order. It is attached.
圧力調節弁(5)の上流側部分と音速ノズル(6)の下流側部分(二次側)との間にバイパス路(8)を形成し、このバイパス路(8)に流量調節弁(9)が装着してある。 A bypass passage (8) is formed between the upstream portion of the pressure control valve (5) and the downstream portion (secondary side) of the sonic nozzle (6), and the flow control valve (9) is formed in the bypass passage (8). ) Is attached.
また水素ガス充填路(3)には、バイパス路(8)の分岐部よりも下流側に音速ノズル(6)に流入する水素ガス流の一次側圧力を検出する一次側圧力センサー(10)を配置するとともに、バイパス路(8)との合流部分よりも下流側に水素ガス充填路(3)の圧力を検出する二次側圧力センサー(11)及び水素ガス充填路(3)での水素ガス温度を検出する温度センサー(12)が配置してある。 The hydrogen gas filling passage (3) is provided with a primary pressure sensor (10) for detecting the primary pressure of the hydrogen gas flow flowing into the sonic nozzle (6) downstream of the branch portion of the bypass passage (8). And a secondary pressure sensor (11) for detecting the pressure of the hydrogen gas filling passage (3) downstream of the junction with the bypass passage (8) and the hydrogen gas in the hydrogen gas filling passage (3). A temperature sensor (12) for detecting the temperature is arranged.
一次側圧力センサー(10)、二次側圧力センサー(11)、温度センサー(12)での各検出結果は制御装置(13)に入力され、この制御装置(13)からの指令に基づき前述の圧力調整弁(5)および流量調節弁(9)の開弁量が制御される。 The detection results of the primary side pressure sensor (10), the secondary side pressure sensor (11), and the temperature sensor (12) are input to the control device (13). The valve opening amounts of the pressure adjusting valve (5) and the flow rate adjusting valve (9) are controlled.
上述の水素ガス充填設備を用いて、蓄圧容器(1)から燃料電池自動車等に搭載装備されている燃料タンク(2)に水素ガスを充填供給する場合、当初、バイパス路(8)に装着した流量調節弁(9)を閉弁した状態で、水素ガス充填路(3)に装着した圧力調節弁(5)を適当な開度に開弁し、蓄圧容器(1)内に貯留されている水素ガスのガス圧と、供給を受ける燃料タンク(2)の内圧との差圧で水素ガスを移送充填することになる。このとき、水素ガス充填路(3)には音速ノズル(6)が装着されていることから、音速ノズル(6)の一次側圧力と二次側圧力とを圧力センサー(10)・(11)で監視し、音速ノズル(6)の一次側の圧力が臨界圧力比以上となるように圧力調整弁(5)の開弁量を制御する。音速ノズル(6)の一次側の圧力を臨界圧力比以上に維持すると、二次側では等エントロピー膨張により、水素ガスのガス温度が低下することになる。 When filling and supplying hydrogen gas from the pressure accumulator (1) to the fuel tank (2) installed in the fuel cell vehicle etc. using the hydrogen gas filling equipment described above, it was initially installed in the bypass (8). With the flow rate control valve (9) closed, the pressure control valve (5) attached to the hydrogen gas filling passage (3) is opened to an appropriate opening and stored in the pressure accumulator (1). Hydrogen gas is transferred and filled with a differential pressure between the gas pressure of the hydrogen gas and the internal pressure of the fuel tank (2) to be supplied. At this time, since the sonic nozzle (6) is mounted in the hydrogen gas filling passage (3), the primary pressure and the secondary pressure of the sonic nozzle (6) are detected by pressure sensors (10), (11). And the valve opening amount of the pressure regulating valve (5) is controlled so that the pressure on the primary side of the sonic nozzle (6) is not less than the critical pressure ratio. If the pressure on the primary side of the sonic nozzle (6) is maintained at a critical pressure ratio or higher, the gas temperature of the hydrogen gas will decrease due to isentropic expansion on the secondary side.
充填が進行するにつれて、音速ノズル(6)の二次側圧力は上昇していくことになる。この圧力上昇に伴い水素ガス温度も上昇することになるから、この二次側の温度を制御するためには、音速ノズル(6)に送り込む水素ガスの圧力(一次圧)を制御する必要がある。そして、音速ノズル(6)の一次側圧力が変化すると、音速ノズル(6)を通貨する水素ガスの流量が変化する。このため、燃料タンク(2)に水素ガスを充填する際には、水素ガスの温度と、流量とを同時に制御する必要があり、二次側の圧力とガス温度とを二次側圧力センサー(11)および温度センサー(12)で検出し、この検出結果に基づき、水素ガス充填路(3)に装着した圧力調節弁(5)の開弁量と、バイパス路(8)に装着した流量調節弁(9)の開弁量とを制御し、その二次側で音速ノズル(6)を通過しない常温の水素ガスを混合することで、水素ガスの温度と流量の制御をおこなう。 As the filling progresses, the secondary pressure of the sonic nozzle (6) increases. As the pressure rises, the hydrogen gas temperature also rises. Therefore, in order to control the temperature on the secondary side, it is necessary to control the pressure (primary pressure) of the hydrogen gas fed to the sonic nozzle (6). . When the primary pressure of the sonic nozzle (6) changes, the flow rate of hydrogen gas that currency the sonic nozzle (6) changes. For this reason, when filling the fuel tank (2) with hydrogen gas, it is necessary to control the temperature and flow rate of the hydrogen gas at the same time, and the secondary pressure and gas temperature are controlled by the secondary pressure sensor ( 11) and the temperature sensor (12). Based on the detection result, the opening amount of the pressure control valve (5) attached to the hydrogen gas filling passage (3) and the flow rate adjustment attached to the bypass passage (8) The opening amount of the valve (9) is controlled, and the temperature and flow rate of the hydrogen gas are controlled by mixing room temperature hydrogen gas that does not pass through the sonic nozzle (6) on the secondary side.
本発明方法では、蓄圧容器(1)の内圧と被充填タンク(2)の内圧との差圧で水素ガスを移送・充填するに当たり、水素ガス供給路(3)に一次側の圧力が臨界圧力比以上となるよう制御された音速ノズル(6)を配置するとともに、音速ノズル(6)の二次側の圧力および温度を監視し、検出圧力および温度に基づきバイパス路から常温の高圧(蓄圧容器内圧)の水素ガスを二次側で混合させるようにしていることから、冷凍機や熱交換器などの冷却設備を必要とせず、設備コスト、メンテナンスコスト、設置スペースの低減を図ることができる。 In the method of the present invention, when hydrogen gas is transferred / filled by the differential pressure between the internal pressure of the pressure accumulating vessel (1) and the internal pressure of the tank to be filled (2), the primary pressure in the hydrogen gas supply passage (3) is the critical pressure. The sonic nozzle (6) controlled to be higher than the ratio is arranged, and the pressure and temperature on the secondary side of the sonic nozzle (6) are monitored, and the normal pressure is increased from the bypass line based on the detected pressure and temperature (accumulation vessel). Since internal pressure) hydrogen gas is mixed on the secondary side, cooling equipment such as a refrigerator and a heat exchanger is not required, and equipment costs, maintenance costs, and installation space can be reduced.
さらに、水素ガス供給路(3)を利用して水素ガスを移送・充填させるだけで、瞬時に充填水素ガスの温度を低下させることができるから、熱交換器によるプレクールに比べ、充填対象車両が途切れた充填待機中でのエネルギーロスをなくすことができる。 Furthermore, since the temperature of the filling hydrogen gas can be instantaneously lowered simply by transporting and filling the hydrogen gas using the hydrogen gas supply channel (3), the vehicle to be filled is less than the precooling by the heat exchanger. It is possible to eliminate energy loss during interruption of filling.
本発明は、燃料電池車等の水素ガスを燃料として使用する車両への水素ガス充填に利用することができる。 The present invention can be used for filling hydrogen gas into a vehicle that uses hydrogen gas as a fuel, such as a fuel cell vehicle.
1…蓄圧容器、2…充填タンク、3…水素ガス充填路、5…圧力調整弁、6…音速ノズル、8…バイパス路、9…流量調整弁。 DESCRIPTION OF SYMBOLS 1 ... Accumulation container, 2 ... Filling tank, 3 ... Hydrogen gas filling path, 5 ... Pressure regulating valve, 6 ... Sonic nozzle, 8 ... Bypass path, 9 ... Flow regulating valve.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010038537A JP2011174528A (en) | 2010-02-24 | 2010-02-24 | Method for filling hydrogen gas in hydrogen gas packing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010038537A JP2011174528A (en) | 2010-02-24 | 2010-02-24 | Method for filling hydrogen gas in hydrogen gas packing equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011174528A true JP2011174528A (en) | 2011-09-08 |
Family
ID=44687572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010038537A Withdrawn JP2011174528A (en) | 2010-02-24 | 2010-02-24 | Method for filling hydrogen gas in hydrogen gas packing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011174528A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5632065B1 (en) * | 2013-12-27 | 2014-11-26 | 伸和コントロールズ株式会社 | Cooling hydrogen supply station and hydrogen cooling device |
CN104641164A (en) * | 2012-09-04 | 2015-05-20 | 林德股份公司 | Method for performing a pressure test on a tank and tank filling apparatus |
JP2015196397A (en) * | 2014-03-31 | 2015-11-09 | Jx日鉱日石エネルギー株式会社 | Hydrogen station, control device and control method |
WO2016152339A1 (en) * | 2015-03-23 | 2016-09-29 | 株式会社日立プラントメカニクス | Hydrogen pre-cooling system |
KR20160122814A (en) * | 2014-02-21 | 2016-10-24 | 가부시키가이샤 고베 세이코쇼 | Gas supply system and hydrogen station |
JP6231245B1 (en) * | 2017-08-24 | 2017-11-15 | 株式会社日立プラントメカニクス | High-pressure hydrogen expansion turbine filling system |
WO2018012320A1 (en) * | 2016-07-14 | 2018-01-18 | 株式会社日立プラントメカニクス | Expansion turbine filling system for high-pressure hydrogen |
EP3457019A1 (en) * | 2017-09-15 | 2019-03-20 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Gas supply device and method for starting operation of gas supply device |
CN112212208A (en) * | 2020-09-11 | 2021-01-12 | 浙江浙能航天氢能技术有限公司 | Filling system and method for combined work of hydrogenation machine and supercharging equipment |
CN112253990A (en) * | 2020-09-11 | 2021-01-22 | 浙江浙能航天氢能技术有限公司 | High-pressure hydrogen filling system based on temperature rise control and filling method thereof |
CN112902013A (en) * | 2021-04-07 | 2021-06-04 | 阳光新能源开发有限公司 | Gas filling flow rate control method of hydrogenation station and application device thereof |
CN113701049A (en) * | 2021-09-09 | 2021-11-26 | 液空厚普氢能源装备有限公司 | Intelligent cold energy recovery control system and control method for liquid hydrogen refueling station |
-
2010
- 2010-02-24 JP JP2010038537A patent/JP2011174528A/en not_active Withdrawn
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104641164A (en) * | 2012-09-04 | 2015-05-20 | 林德股份公司 | Method for performing a pressure test on a tank and tank filling apparatus |
CN104641164B (en) * | 2012-09-04 | 2016-11-16 | 林德股份公司 | Method and storage tank for realizing pressure detecting on storage tank fill equipment |
US9574709B2 (en) | 2013-12-27 | 2017-02-21 | Shinwa Controls Co., Ltd. | Cooled-hydrogen supply station and hydrogen cooling apparatus |
WO2015098158A1 (en) * | 2013-12-27 | 2015-07-02 | 伸和コントロールズ株式会社 | Cold hydrogen supply station and hydrogen-cooling device |
CN104968988A (en) * | 2013-12-27 | 2015-10-07 | 伸和控制工业股份有限公司 | Cold hydrogen supply station and hydrogen-cooling device |
JP5632065B1 (en) * | 2013-12-27 | 2014-11-26 | 伸和コントロールズ株式会社 | Cooling hydrogen supply station and hydrogen cooling device |
KR101900133B1 (en) | 2013-12-27 | 2018-09-18 | 신와 콘트롤즈 가부시키가이샤 | Cooled-hydrogen supply station and hydrogen cooling apparatus |
TWI620888B (en) * | 2013-12-27 | 2018-04-11 | Shinwa Controls Co Ltd | Cooling hydrogen supply station and hydrogen cooling device |
US10634283B2 (en) | 2014-02-21 | 2020-04-28 | Kobe Steel, Ltd. | Gas supply system and hydrogen station |
KR20160122814A (en) * | 2014-02-21 | 2016-10-24 | 가부시키가이샤 고베 세이코쇼 | Gas supply system and hydrogen station |
US10801671B2 (en) | 2014-02-21 | 2020-10-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Gas supply system and hydrogen station |
JP2015196397A (en) * | 2014-03-31 | 2015-11-09 | Jx日鉱日石エネルギー株式会社 | Hydrogen station, control device and control method |
WO2016152339A1 (en) * | 2015-03-23 | 2016-09-29 | 株式会社日立プラントメカニクス | Hydrogen pre-cooling system |
EP3486547A4 (en) * | 2016-07-14 | 2020-03-25 | Hitachi Plant Mechanics Co. Ltd. | Expansion turbine filling system for high-pressure hydrogen |
JP2018009651A (en) * | 2016-07-14 | 2018-01-18 | 株式会社日立プラントメカニクス | High-pressure hydrogen expansion turbine type filling system |
WO2018012320A1 (en) * | 2016-07-14 | 2018-01-18 | 株式会社日立プラントメカニクス | Expansion turbine filling system for high-pressure hydrogen |
JP2018021669A (en) * | 2017-08-24 | 2018-02-08 | 株式会社日立プラントメカニクス | High-pressure hydrogen expansion turbine type filling system |
JP6231245B1 (en) * | 2017-08-24 | 2017-11-15 | 株式会社日立プラントメカニクス | High-pressure hydrogen expansion turbine filling system |
EP3457019A1 (en) * | 2017-09-15 | 2019-03-20 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Gas supply device and method for starting operation of gas supply device |
US10480715B2 (en) | 2017-09-15 | 2019-11-19 | Kobe Steel, Ltd. | Gas supply device and method for starting operation of gas supply device |
CN112212208A (en) * | 2020-09-11 | 2021-01-12 | 浙江浙能航天氢能技术有限公司 | Filling system and method for combined work of hydrogenation machine and supercharging equipment |
CN112253990A (en) * | 2020-09-11 | 2021-01-22 | 浙江浙能航天氢能技术有限公司 | High-pressure hydrogen filling system based on temperature rise control and filling method thereof |
CN112902013A (en) * | 2021-04-07 | 2021-06-04 | 阳光新能源开发有限公司 | Gas filling flow rate control method of hydrogenation station and application device thereof |
CN112902013B (en) * | 2021-04-07 | 2022-11-18 | 阳光新能源开发股份有限公司 | Gas filling flow rate control method of hydrogenation station and application device thereof |
CN113701049A (en) * | 2021-09-09 | 2021-11-26 | 液空厚普氢能源装备有限公司 | Intelligent cold energy recovery control system and control method for liquid hydrogen refueling station |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011174528A (en) | Method for filling hydrogen gas in hydrogen gas packing equipment | |
RU2648312C2 (en) | Device for cooling a consumer with super-cooled liquid in cooling circuit | |
US10683967B2 (en) | Cooling of a supply pipe in a hydrogen refueling system | |
JP6793259B2 (en) | Hydrogen refueling system | |
US11480303B2 (en) | Gas fueling systems and methods with minimum and/or no cooling | |
US10920933B2 (en) | Device and process for refueling containers with pressurized gas | |
US11499765B2 (en) | Device and process for refueling containers with pressurized gas | |
US7854132B2 (en) | Circulation cooling system of cryogenic cable | |
JP6863903B2 (en) | Cooling of fluid with refrigerant at triple points | |
KR101224922B1 (en) | LNG regasification plant | |
KR101319364B1 (en) | Apparatus for controlling pressure of liquefied gas tank using fuel LNG and liquefied gas carrier having the same | |
WO2018173136A1 (en) | Hydrogen gas supply device and method thereof | |
US20140013777A1 (en) | Storage tank having heat exchanger and natural gas fuel supply system having same storage tank | |
JP6834999B2 (en) | Evaporative gas suppression device and evaporative gas suppression method for LNG tanks | |
JP2019535981A (en) | Hydrogen fuel supply system | |
US11506339B2 (en) | Device and process for refueling containers with pressurized gas | |
JP2013210045A (en) | Ship, liquefied gas evaporatoion device, control method, and modification method of the same | |
JP2007292181A (en) | Bog restraining method of liquefied gas facility | |
JP2007298052A (en) | Method and apparatus for cooling and holding liquefied gas receiving pipe | |
JP2013015308A (en) | Recovery device for vaporization heat of liquefied gas | |
JP5663503B2 (en) | Measuring method of hydrogen gas emission | |
KR101671475B1 (en) | LNG Regasification Plant | |
KR100708523B1 (en) | System and method for refueling lng without power | |
JP2015102229A (en) | Method for filling hydrogen gas into on-vehicle storage container | |
JP2008051287A (en) | Cold reserving system of liquefied natural gas facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130222 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20130308 |