JP2012167767A - Apparatus and method for supplying fuel hydrogen gas - Google Patents

Apparatus and method for supplying fuel hydrogen gas Download PDF

Info

Publication number
JP2012167767A
JP2012167767A JP2011030396A JP2011030396A JP2012167767A JP 2012167767 A JP2012167767 A JP 2012167767A JP 2011030396 A JP2011030396 A JP 2011030396A JP 2011030396 A JP2011030396 A JP 2011030396A JP 2012167767 A JP2012167767 A JP 2012167767A
Authority
JP
Japan
Prior art keywords
hydrogen
heat exchanger
temperature
filling
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011030396A
Other languages
Japanese (ja)
Other versions
JP5759741B2 (en
Inventor
Naohiko Kamiyama
直彦 神山
Taishi Yoshimura
大士 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2011030396A priority Critical patent/JP5759741B2/en
Publication of JP2012167767A publication Critical patent/JP2012167767A/en
Application granted granted Critical
Publication of JP5759741B2 publication Critical patent/JP5759741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and method for supplying fuel hydrogen gas for filling an on-vehicle hydrogen filling tank of a vehicle with hydrogen gas in a short time.SOLUTION: The fuel hydrogen gas supply method includes the steps of: pressurizing liquid hydrogen introduced from a liquid hydrogen storage container 1; introducing the pressurized liquid hydrogen into a heat exchanger 3 to vaporize the liquid hydrogen; and filling the on-vehicle hydrogen filling tank with the hydrogen gas introduced from the heat exchanger 3, through a filling nozzle 6. Flow control valves 4, 9, 16 disposed in hydrogen supply lines 7, 8, 15 are controlled to be opened/closed to adjust a mixed gas temperature to a target temperature. The mixed gas is made by mixing the low-temperature gas flowing in a hydrogen supply bypass line B formed to bypass at least a part of the heat exchanger 3 and the flow control valve 4, and vaporized normal-temperature gas passing through the heat exchanger 3 and flowing in the hydrogen supply line 7.

Description

本発明は、燃料用水素ガスの充填方法に関し、特に、燃料電池自動車、水素エンジン自動車等の水素を燃料として走行する車両に搭載される車載用水素充填タンクに水素ガスを供給するための水素ステーション(水素スタンド)での燃料用水素ガスの充填装置及びその方法に関する。   TECHNICAL FIELD The present invention relates to a method for filling hydrogen gas for fuel, and in particular, a hydrogen station for supplying hydrogen gas to an on-vehicle hydrogen filling tank mounted on a vehicle such as a fuel cell vehicle or a hydrogen engine vehicle that runs using hydrogen as fuel. The present invention relates to an apparatus and a method for filling hydrogen gas for fuel in a (hydrogen stand).

近年、環境問題、エネルギー問題の要請から、ガソリン等の自動車用燃料の代替エネルギーとして、水素ガスを燃料として使用することが検討され、特に、水素ガスと酸素ガスの電気化学反応によって発電する燃料電池をエネルギー源として搭載した燃料電池車輌の実証走行試験が進められている。   In recent years, due to demands for environmental problems and energy problems, it has been considered to use hydrogen gas as an alternative energy for automobile fuel such as gasoline, and in particular, a fuel cell that generates electricity by an electrochemical reaction between hydrogen gas and oxygen gas. A demonstration running test of a fuel cell vehicle equipped with a fuel cell as an energy source is underway.

水素ガスを燃料として使用する車両の場合、車両に搭載される車載用水素充填タンクへの燃料水素の充填は、水素ステーションで行なわれる。そして水素ステーションでは、充填時間短縮のために充填する水素ガスの温度を目標温度−40℃、あるいは目標温度−20℃程度に制御しながら充填することが求められている。このような水素ステーションとして、従来、液化水素及び/またはスラッシュ水素が充填されている水素貯蔵タンクと、水素貯蔵タンクから流出する液化水素を圧縮して昇圧する昇圧ポンプと、昇温ポンプから吐出された液化水素を気化昇温させる熱交換器と、車載用水素充填タンクに設けられているカプラに着脱できる充填ノズルとを配置した水素供給ラインとで構成したものが提案されている(特許文献1)。   In the case of a vehicle using hydrogen gas as a fuel, fuel hydrogen is charged into an in-vehicle hydrogen filling tank mounted on the vehicle at a hydrogen station. In the hydrogen station, it is required to fill the hydrogen gas while controlling the temperature of the hydrogen gas to be filled at a target temperature of −40 ° C. or a target temperature of about −20 ° C. in order to shorten the filling time. As such a hydrogen station, conventionally, a hydrogen storage tank filled with liquefied hydrogen and / or slush hydrogen, a booster pump that compresses and pressurizes liquefied hydrogen flowing out of the hydrogen storage tank, and a temperature rising pump are discharged. Has been proposed which comprises a heat exchanger for evaporating and raising the temperature of the liquefied hydrogen and a hydrogen supply line provided with a filling nozzle that can be attached to and detached from a coupler provided in the on-vehicle hydrogen filling tank (Patent Document 1). ).

特開2008−196590号JP 2008-196590 A

先の特許文献で提案されている水素ステーションでは、熱交換器から導出された低温水素ガスと、別途配置した蓄圧器(気蓄器)から導出された常温水素ガスとを混合して所定の温度に制御するようにしている。このため、同方式では常温水素ガスを貯留しておく蓄圧器が必要となり、蓄圧器の設置スペースを必要とするうえ、設置コスト、メンテナンスコストが増加するという課題を有している。   In the hydrogen station proposed in the previous patent document, a low temperature hydrogen gas derived from a heat exchanger and a room temperature hydrogen gas derived from a separately installed pressure accumulator (air accumulator) are mixed to a predetermined temperature. I try to control it. For this reason, in this system, a pressure accumulator for storing room temperature hydrogen gas is required, which requires a space for installing the pressure accumulator, and has a problem that the installation cost and the maintenance cost increase.

次に、空温式熱交換器の特性を示す例として、液化ガスを昇圧ポンプで昇圧しながら空温式熱交換器を通して容器に充填を行った場合の、配管系各部のガス温度の変化(配管表面温度で代替している)を図5に示す。
図5より、ポンプ出口部では、ポンプ運転開始後、液化課すと同程度まで直線的に温度が低下しているのに対し、熱交換器の入口や熱交換器の途中では曲線(凸)的に温度が低下し、常温から定常状態になるまで数分以上を要することが分かる。
Next, as an example showing the characteristics of the air temperature heat exchanger, the gas temperature change in each part of the piping system when filling the container through the air temperature heat exchanger while increasing the pressure of the liquefied gas with the booster pump ( FIG. 5 shows the case where the pipe surface temperature is substituted.
From FIG. 5, the temperature at the pump outlet portion decreases linearly to the same extent as when liquefaction is imposed after the start of pump operation, whereas it is curved (convex) in the middle of the heat exchanger inlet and heat exchanger. It can be seen that it takes several minutes or more until the temperature drops to a steady state from room temperature.

つまり、この先に提案されている水素ステーションでは、燃料電池車両への水素充填が短いインターバルで連続的に行なわれる場合は、それほど問題ではないが、燃料電池車両が少なく、水素ステーションの使用頻度が少なくて充填インターバルが長い場合には、熱交換器の温度が常温(外気温度)の状態から充填が開始されるため、熱交換器を通して気化させた場合、そのガス温度が所望のガス温度に低下するまで、時間を要し、車載用水素充填タンクへの充填を迅速に行なうことが出来ないという問題がある。また、熱交換器の温度を十分に低下させてから充填を開始する場合には、所望温度に低下するまでに流通気化させたガスを充填に使用できないため、ガスを貯留するための設備を要するという問題も生じる。   In other words, in the hydrogen station that has been proposed earlier, there is not so much a problem when the fuel cell vehicle is continuously filled with hydrogen at short intervals, but there are few fuel cell vehicles and the frequency of use of the hydrogen station is low. When the filling interval is long, filling starts from the temperature of the heat exchanger at normal temperature (outside air temperature), so when vaporized through the heat exchanger, the gas temperature drops to the desired gas temperature. It takes a long time until the vehicle-mounted hydrogen filling tank cannot be quickly filled. In addition, when filling is started after the temperature of the heat exchanger is sufficiently lowered, the gas vaporized until the temperature is lowered to the desired temperature cannot be used for filling, and thus a facility for storing the gas is required. The problem also arises.

二重管式などの強制的な熱交換器の場合には、熱交換器が常温(外気温度)の状態にある場合には、冷媒を使用して熱交換器を冷却しておき、液化水素が熱交換器を流通することで熱交換器が冷えてきたら熱媒を使用して熱交換器を加熱して、所定温度の低温水素ガスを充填する、という方法が考えられるが、その場合、設備コストアップ、機器類の設置スペース増加につながる。また、目標とされている車両1台あたりへの充填時間(3〜5分)内で冷媒、熱媒の温度・供給量を制御して熱交換器出口でのガス温度を制御することは難しいという問題もある。   In the case of a forced heat exchanger such as a double pipe type, if the heat exchanger is at room temperature (outside air temperature), the heat exchanger is cooled with a refrigerant, and liquefied hydrogen If the heat exchanger is cooled by circulating through the heat exchanger, a method of heating the heat exchanger using a heat medium and filling low temperature hydrogen gas at a predetermined temperature is conceivable. This leads to an increase in equipment costs and an increase in equipment installation space. In addition, it is difficult to control the gas temperature at the outlet of the heat exchanger by controlling the temperature and supply amount of the refrigerant and heat medium within the target filling time (3 to 5 minutes) per vehicle. There is also a problem.

本発明は、このような点に着目して、車両の車載用水素充填タンクへの水素ガス充填を短時間に行なえることのできる燃料用水素ガス充填装置及びその方法を提供することを目的とする。   An object of the present invention is to provide a hydrogen gas filling device for fuel and a method thereof, which can fill in-vehicle hydrogen filling tank of a vehicle in a short time, paying attention to such points. To do.

上述の目的を達成するために、請求項1に記載の本発明は、水素を燃料として走行する車両に搭載される車載用水素充填タンクに水素を供給する装置を、液化水素貯蔵容器から導出した水素供給ラインの先端に車載用水素充填タンクと連結接続可能な充填ノズルを装着し、この水素供給ラインに液化水素貯蔵容器側から昇圧ポンプと、熱交換器と、流量調整弁と、流量計とを順に装着し、少なくとも熱交換器の一部と流量調整弁とをバイパスする状態で水素供給用バイパスラインを形成し、この水素供給用バイパスラインに低温流体用の流量調整弁を装着したことを特徴としている。   In order to achieve the above-mentioned object, the present invention as set forth in claim 1 derives from a liquefied hydrogen storage container an apparatus for supplying hydrogen to an in-vehicle hydrogen filling tank mounted on a vehicle that runs on hydrogen as fuel. At the tip of the hydrogen supply line, a filling nozzle that can be connected to and connected to an on-vehicle hydrogen filling tank is installed, and a booster pump, a heat exchanger, a flow control valve, a flow meter, In order to form a hydrogen supply bypass line with at least a part of the heat exchanger and the flow rate adjustment valve bypassed, and a flow rate adjustment valve for cryogenic fluid installed in the hydrogen supply bypass line. It is a feature.

請求項2に記載の本発明は請求項1に記載した構成に加えて、水素供給用バイパスラインを昇圧ポンプと熱交換器との間から分岐し、流量調整弁と流量計との間で合流させた分岐路で構成していることを特徴としており、請求項3に記載の本発明は請求項1または2に記載した構成に加えて、水素供給用バイパスラインを熱交換器の中途から分岐し、流量調整弁と流量計との間で合流させている分岐路で構成していることを特徴としている。   According to a second aspect of the present invention, in addition to the configuration described in the first aspect, the hydrogen supply bypass line is branched from between the booster pump and the heat exchanger, and is joined between the flow regulating valve and the flow meter. According to a third aspect of the present invention, in addition to the configuration described in the first or second aspect, the hydrogen supply bypass line is branched from the middle of the heat exchanger. However, it is characterized by comprising a branch passage that joins between the flow regulating valve and the flow meter.

請求項5に記載の本発明は、液化水素貯蔵容器から導出した液化水素を昇圧し、この昇圧した液化水素を熱交換器に導入して気化、昇温させ、この熱交換器から導出された水素ガスを水素供給ラインの先端に装着した充填ノズルから車載用水素充填タンクに充填する燃料用水素ガス充填方法において、少なくとも熱交換器の一部と流量調整弁とをバイパスする状態に形成した水素供給用バイパスラインを流れる低温ガスと、熱交換器を通過して水素供給ラインを流れる気化、昇温された常温ガスとを混合した混合ガスのガス温度が目標温度となるように各水素供給ラインに配置した流量調整弁を制御することを特徴としている。   In the present invention described in claim 5, the pressure of the liquefied hydrogen derived from the liquefied hydrogen storage container is increased, the increased pressure of the liquefied hydrogen is introduced into the heat exchanger, the temperature is increased, and the temperature is increased. In a hydrogen gas filling method for fuel that fills an in-vehicle hydrogen filling tank from a filling nozzle attached to the tip of a hydrogen supply line, hydrogen formed so as to bypass at least a part of a heat exchanger and a flow rate adjustment valve Each hydrogen supply line so that the gas temperature of the mixed gas, which is a mixture of low-temperature gas flowing through the supply bypass line, vaporization flowing through the heat exchanger and flowing through the hydrogen supply line, and room temperature gas raised in temperature, becomes the target temperature. It is characterized by controlling the flow rate regulating valve arranged in the above.

請求項6に記載の本発明は、請求項5に記載した構成に加えて、熱交換器が常温である場合には、水素供給用バイパスラインを使って充填を開始し、水素供給用バイパスラインの配管温度が予め設定した温度より低下した段階で、熱交換器が配設されている水素供給ラインを開通させて、水素供給バイパス路を流通する低温ガスと水素供給ラインを流れる常温ガスとを混合させるようにしたことを特徴としている。   According to the sixth aspect of the present invention, in addition to the configuration described in the fifth aspect, when the heat exchanger is at room temperature, filling is started using the hydrogen supply bypass line, and the hydrogen supply bypass line is provided. When the temperature of the pipe drops below the preset temperature, the hydrogen supply line in which the heat exchanger is installed is opened, and the low temperature gas flowing through the hydrogen supply bypass path and the normal temperature gas flowing through the hydrogen supply line are It is characterized by mixing.

本発明では、液化水素を気化、昇温する熱交換器の少なくとも一部と熱交換器から導出された常温ガスの流量を調節する流量調整弁とを水素供給用バイパスラインでバイパスし、この水素供給用バイパスラインを流通する低温ガスと熱交換器を通過した常温ガスとを、混合後のガス温度が目標温度となるように制御して混合するようにしていることから、水素ステーションの稼動が少なくて充填インターバルが長く、熱交換器の温度が常温になっていても、充填作動開始後、迅速に目標温度の低温ガスを車載用水素充填タンクに充填することが出来る。   In the present invention, at least a part of the heat exchanger that vaporizes and raises the temperature of liquefied hydrogen and a flow rate adjustment valve that adjusts the flow rate of the normal temperature gas derived from the heat exchanger are bypassed by a hydrogen supply bypass line. Since the low temperature gas flowing through the supply bypass line and the normal temperature gas that has passed through the heat exchanger are mixed so that the mixed gas temperature becomes the target temperature, the hydrogen station is operated. Even if the filling interval is long and the temperature of the heat exchanger is at room temperature, the on-vehicle hydrogen filling tank can be quickly filled with the low-temperature gas at the target temperature after the filling operation is started.

また、熱交換器を空温式にすることによって、熱媒設備や蓄圧器を省略することができ、熱媒設備や蓄圧器の設置スペースを用意しなくてもよく、設置コスト、メンテナンスコストを低減することができる。   Also, by using an air temperature heat exchanger, the heat medium equipment and pressure accumulator can be omitted, and there is no need to prepare a space for installing the heat medium equipment or pressure accumulator. Can be reduced.

本発明の一実施形態を示す水素ステーションの概略構成図である。It is a schematic block diagram of the hydrogen station which shows one Embodiment of this invention. 本発明の作動手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement procedure of this invention. 本発明の別の実施形態を示す水素ステーションの概略構成図である。It is a schematic block diagram of the hydrogen station which shows another embodiment of this invention. 本発明の異なる実施形態を示す水素ステーションの概略構成図である。It is a schematic block diagram of the hydrogen station which shows different embodiment of this invention. 液化ガスの昇圧、気化時の配管系表面温度及び配管圧力と経過時間との関係の一例を示すグラフである。It is a graph which shows an example of the pressure | voltage rise of liquefied gas, the piping system surface temperature at the time of vaporization, the relationship between piping pressure, and elapsed time.

以下、本発明に係る燃料用水素ガス充填装置の一例である水素ステーションの実施形態を図に基づき説明する。
図1は、ひとつの実施形態を示す水素ステーションの概略構成図であり、図中符号(1)は水素ガス供給源としての液化水素貯蔵容器、(2)は液化水素貯蔵容器(1)から導出した液化水素を昇圧・圧送する昇圧ポンプ、(3)は空温式熱交換器、(4)は外気との熱交換により加熱気化された常温流体用の流量調整弁、(5)は流量計、(6)は図示を省略した車載用水素充填タンクに接続可能な充填ノズルであり、これら昇圧ポンプ(2)、熱交換器(3)、流量調整弁(4)、流量計(5)、充填ノズル(6)は液化水素貯蔵容器(1)から導出した水素供給ライン(7)に液化水素貯蔵容器(1)側から順に装着されている。なお、本発明では液化水素容器(1)に貯留されている液化水素には、スラッシュ状に形成された水素も含むものとする。
Hereinafter, an embodiment of a hydrogen station, which is an example of a fuel hydrogen gas filling apparatus according to the present invention, will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a hydrogen station showing one embodiment, in which reference numeral (1) denotes a liquefied hydrogen storage container as a hydrogen gas supply source, and (2) denotes a liquefied hydrogen storage container (1). (3) is an air temperature heat exchanger, (4) is a flow control valve for normal temperature fluid that is heated and vaporized by heat exchange with outside air, and (5) is a flow meter. , (6) are filling nozzles that can be connected to an on-vehicle hydrogen filling tank (not shown). These booster pump (2), heat exchanger (3), flow rate adjustment valve (4), flow meter (5), The filling nozzle (6) is attached to the hydrogen supply line (7) led out from the liquefied hydrogen storage container (1) in order from the liquefied hydrogen storage container (1) side. In the present invention, the liquefied hydrogen stored in the liquefied hydrogen container (1) includes hydrogen formed in a slush shape.

昇圧ポンプ(2)と熱交換器(3)の間の水素供給ライン(7)から分岐路(8)が分岐導出され、この分岐路(8)の下流端は常温流体用流量調整弁(4)と流量計(5)との間で水素供給ライン(7)に合流させている。 そして、この分岐路(8)には、低温流体用の流量調整弁(9)が装着してあり、この分岐路(8)が空温式熱交換器(3)と流量調整弁(4)とをバイパスする水素供給用のバイパスライン(B)を構成している。   A branch path (8) is branched out from the hydrogen supply line (7) between the booster pump (2) and the heat exchanger (3), and the downstream end of the branch path (8) is a flow rate regulating valve (4) ) And the flow meter (5) are joined to the hydrogen supply line (7). The branch passage (8) is equipped with a flow rate adjusting valve (9) for low-temperature fluid, and this branch passage (8) is connected to the air temperature heat exchanger (3) and the flow rate adjusting valve (4). The hydrogen supply bypass line (B) is constructed.

水素供給ライン(7)での熱交換器(3)の出口側に温度検出器(10)が、また、分岐路(8)での低温流体用流量調整弁(9)の上流側に温度検出器(11)が、また、水素供給ライン(7)と分岐路(8)との合流部には温度検出器(12)及び圧力検出器(13)がそれぞれ配置してある。   A temperature detector (10) is provided at the outlet side of the heat exchanger (3) in the hydrogen supply line (7), and a temperature detector is provided at the upstream side of the flow regulating valve (9) for the cryogenic fluid in the branch passage (8). The temperature detector (12) and the pressure detector (13) are arranged at the junction of the hydrogen supply line (7) and the branch path (8), respectively.

そして、これら各検出器(10)(11)(12)(13)での検出データを制御装置(14)に入力し、これら各検出データに基づき、昇圧ポンプ(2)の作動制御、流量調整弁(4)及び低温流体用流量調整弁(9)の開閉制御を行なうようにしてある。   Then, the detection data from each of the detectors (10), (11), (12), and (13) is input to the control device (14). Based on these detection data, the operation control of the booster pump (2) and the flow rate adjustment are performed. Opening and closing control of the valve (4) and the flow regulating valve (9) for low temperature fluid is performed.

上述の構成からなる燃料用水素ガス充填装置では、 図2に示す手順で水素ガスを移送充填する。
充填開始にあたり、水素供給ライン(7)に介装されている(常温用)流量調整弁(4)と、バイパスライン(8)に介装されている低温流体用流量調整弁(9)の開度を確認する(ステップS1)。流量調整弁の前後に遮断弁が設置されている場合には遮断弁が閉止していることを確認する。ついで、充填装置の配管表面温度(T1)を温度検出器(11)から制御装置(14)に取り込む(ステップS2)。
In the fuel hydrogen gas filling apparatus having the above-described configuration, the hydrogen gas is transferred and filled in the procedure shown in FIG.
At the start of filling, open the flow rate adjustment valve (4) (for room temperature) provided in the hydrogen supply line (7) and the flow rate adjustment valve (9) for low temperature fluid provided in the bypass line (8). The degree is confirmed (step S1). If shut-off valves are installed before and after the flow control valve, check that the shut-off valve is closed. Next, the pipe surface temperature (T1) of the filling device is taken into the control device (14) from the temperature detector (11) (step S2).

配管表面温度(T1)と目標充填温度(例えば−40℃)(TSV)とを比較する(ステップS3)。充填頻度が少ない場合には、充填装置の配管表面温度(T1)は外気温と同じ常温となっており、目標温度よりも高温(T1≧TSV)である。次に昇圧ポンプ(2)を始動させ(ステップS4)、昇圧ポンプ(2)の始動後、合流点でのガス圧力(P12)、ガス温度(T12)を制御装置(14)に取り込む(ステップS5)。   The pipe surface temperature (T1) is compared with the target filling temperature (for example, −40 ° C.) (TSV) (step S3). When the filling frequency is low, the pipe surface temperature (T1) of the filling device is the same as the outside air temperature, which is higher than the target temperature (T1 ≧ TSV). Next, the booster pump (2) is started (step S4), and after the booster pump (2) is started, the gas pressure (P12) and the gas temperature (T12) at the junction are taken into the controller (14) (step S5). ).

合流点でのガス圧力(P12)と目標充填圧力(例えば35MPa)(PSV)とを比較し(ステップS6)、その時点でのガス圧力が目標充填圧力に達していない(P12<PSV)ときには、合流点でのガス温度(T12)と目標温度(TSV)とを比較する(ステップS7)。その時点での合流点でのガス温度が目標温度(TSV)よりも高温(T12≧TSV)であれば、分岐路(8)に介装されている低温流体用流量調整弁(9)の開度を調整して(ステップS8)、分岐路(8)を流れる液化水素ガス量を増加させ、ステップS5に戻り、上記手順(ステップS5〜ステップS8)を繰り返す。   The gas pressure at the junction (P12) is compared with the target filling pressure (for example, 35 MPa) (PSV) (step S6). When the gas pressure at that time does not reach the target filling pressure (P12 <PSV), The gas temperature (T12) at the junction is compared with the target temperature (TSV) (step S7). If the gas temperature at the merging point at that time is higher than the target temperature (TSV) (T12 ≧ TSV), the flow regulating valve (9) for the low-temperature fluid installed in the branch path (8) is opened. The degree is adjusted (step S8), the amount of liquefied hydrogen gas flowing through the branch path (8) is increased, the process returns to step S5, and the above procedure (steps S5 to S8) is repeated.

そして、ステップS6で合流点でのガス圧力(P12)と目標充填圧(PSV)とを比較した結果、合流点でのガス圧力(P12)が目標充填圧(PSV)に達した場合(P12≧PSV)には、車載用水素充填タンクへの水素ガス充填作業が完了したものとして、水素供給ライン(7)に介装されている(常温用)流量調整弁(4)と、バイパスライン(8)に介装されている低温流体用流量調整弁(9)を閉弁したのち(ステップS9)、昇圧ポンプ(2)を停止させ(ステップS10)、充填作業を終了する。   Then, as a result of comparing the gas pressure (P12) at the merging point with the target filling pressure (PSV) in step S6, the gas pressure (P12) at the merging point reaches the target filling pressure (PSV) (P12 ≧ PSV) includes a flow rate adjusting valve (4) (for room temperature) interposed in the hydrogen supply line (7) and a bypass line (8 ) Is closed (step S9), the booster pump (2) is stopped (step S10), and the filling operation is completed.

また、ステップS3で配管温度(T1)と目標温度(TSV)とを比較した結果、前回の充填作業終了からの経過時間が短いなどの理由から、充填装置の配管表面温度(T1)が目標温度よりも低温となっている(T1<TSV)場合には、昇圧ポンプ(2)を始動させ(ステップS11)、昇圧ポンプ(2)の始動後、合流点でのガス圧力(P12)、ガス温度(T12)を制御装置(14)に取り込む(ステップS12)。   Also, as a result of comparing the pipe temperature (T1) with the target temperature (TSV) in step S3, the pipe surface temperature (T1) of the filling device is the target temperature because the elapsed time from the end of the previous filling operation is short. If the temperature is lower (T1 <TSV), the booster pump (2) is started (step S11), and after the booster pump (2) is started, the gas pressure (P12) and gas temperature at the confluence (T12) is taken into the control device (14) (step S12).

合流点でのガス圧力(P12)と目標充填圧(例えば35MPa)(PSV)とを比較し(ステップS13)、その時点での圧力が目標充填圧(PSV)に達していない(P12<PSV)ときには、温度勾配を加味して合流部でのガス温度(T12)が目標温度(TSV)となるように分岐路(8)に介装されている低温流体用流量調整弁(9)の開度を調整するとともに(ステップS14)、水素供給ライン(7)に介装した常温用流量調整弁(4)の開度を調整し(ステップS15)、ステップS12に戻り、上記手順(ステップS12〜ステップS15)を繰り返す。   The gas pressure at the junction (P12) is compared with the target filling pressure (for example, 35 MPa) (PSV) (step S13), and the pressure at that time does not reach the target filling pressure (PSV) (P12 <PSV) Sometimes, the opening degree of the flow regulating valve for low-temperature fluid (9) installed in the branch passage (8) so that the gas temperature (T12) at the junction becomes the target temperature (TSV) in consideration of the temperature gradient. (Step S14), the opening degree of the flow rate adjusting valve (4) for room temperature interposed in the hydrogen supply line (7) is adjusted (step S15), the process returns to step S12, and the above procedure (step S12 to step S12) is performed. Repeat S15).

そして、ステップS13で合流点での圧力(P12)と目標充填圧(PSV)とを比較した結果、合流点での圧力(P12)が目標充填圧(PSV)に達した場合(P12≧PSV)には、車載用水素充填タンクへの水素ガス充填作業が完了したものとして、水素供給ライン(7)に介装されている(常温用)流量調整弁(4)と、バイパスライン(8)に介装されている低温流体用流量調整弁(9)を閉弁したのち(ステップS9)、昇圧ポンプ(2)を停止させ(ステップS10)、充填作業を終了する。   In step S13, when the pressure at the junction (P12) and the target filling pressure (PSV) are compared, the pressure (P12) at the junction reaches the target filling pressure (PSV) (P12 ≧ PSV). In this case, the hydrogen gas filling work for the on-vehicle hydrogen filling tank is completed, and the flow rate adjusting valve (4) (for room temperature) interposed in the hydrogen supply line (7) and the bypass line (8) are installed. After closing the low-temperature fluid flow regulating valve (9) provided (step S9), the booster pump (2) is stopped (step S10), and the filling operation is completed.

一方、前記ステップS7で、合流点でのガス温度(T12)と目標温度(TSV)とを比較した結果、合流点でのガス温度が目標温度(TSV)よりも低温(T12<TSV)であれば、ステップS12に進むようにしてある。   On the other hand, as a result of comparing the gas temperature (T12) at the junction point with the target temperature (TSV) in step S7, the gas temperature at the junction point is lower than the target temperature (TSV) (T12 <TSV). In this case, the process proceeds to step S12.

なお、圧力35Mpaにおいて、温度が一定(外気温度)の常温ガスと、温度を変化させた低温ガスを混合し、一定流量(1Kg/min)、一定温度(−40℃)とする場合の混合比率とをエンタルピーによる計算で求めると、以下の表のようになる。   Mixing ratio when mixing normal temperature gas with constant temperature (outside temperature) and low temperature gas with varying temperature at a constant flow rate (1Kg / min) and constant temperature (-40 ° C) at 35MPa pressure Is calculated as shown in the table below.

Figure 2012167767
Figure 2012167767

図3は、本発明の別の実施形態を示し、これは、バイパスライン(B)を空温式熱交換器(3)の内部流体経路の途中から導出した分岐路(15)で構成し、この分岐路(15)を空温式熱交換器(3)の下流側での流量調整弁(4)と流量計(5)との間で水素供給ライン(7)に合流させたものであり、この分岐路(15)には、前述した実施形態と同様に低温流体用流量調整弁(16)と温度検出器(17)が装着してある。   FIG. 3 shows another embodiment of the present invention, in which the bypass line (B) is constituted by a branch path (15) derived from the middle of the internal fluid path of the air temperature heat exchanger (3), This branch (15) is joined to the hydrogen supply line (7) between the flow control valve (4) and the flow meter (5) on the downstream side of the air temperature heat exchanger (3). The branch path (15) is provided with a flow regulating valve for low temperature fluid (16) and a temperature detector (17) as in the embodiment described above.

このように空温式熱交換器(3)の途中から分岐するバイパスライン(B)を設けた場合には、昇圧ポンプ(2)と空温式熱交換器(3)の間からバイパスライン(B)を分岐した場合に比して、温度低下が緩やかであり、温度制御が容易になる。   Thus, when the bypass line (B) branched from the middle of the air temperature heat exchanger (3) is provided, the bypass line (between the booster pump (2) and the air temperature heat exchanger (3) ( Compared with the case where B) is branched, the temperature drop is moderate and the temperature control becomes easy.

図4は、本発明の異なる実施形態を示し、これは昇圧ポンプ(2)と空温式熱交換器(3)の間の水素供給ライン(7)から低温流体用流量調整弁(9)と温度検出器(11)を介装した分岐路(8)と、空温式熱交換器(3)の流体経路途中から低温流体用流量調整弁(16)と温度検出器(17)とを介装した分岐路(15)とでバイパスライン(B)を形成したものであり、この第2の分岐路(15)は分岐路(8)と合流して、空温式熱交換器(3)の下流端での流量調整弁(4)と流量計(5)との間で水素供給ライン(7)に合流させたものである。   FIG. 4 shows a different embodiment of the invention, which consists of a hydrogen supply line (7) between a booster pump (2) and an air temperature heat exchanger (3) to a flow regulating valve (9) for a cryogenic fluid. From the middle of the fluid path of the air temperature type heat exchanger (3) via the branch flow path (8) interposing the temperature detector (11), and the low temperature fluid flow control valve (16) and the temperature detector (17) The bypass line (B) is formed with the mounted branch path (15), and this second branch path (15) merges with the branch path (8) to form an air temperature heat exchanger (3). The hydrogen supply line (7) is joined between the flow rate adjustment valve (4) and the flow meter (5) at the downstream end.

このように、昇圧ポンプ(2)と空温式熱交換器(3)の間から分岐路(8)を導出するとともに、空温式熱交換器(3)の途中から第2の分岐路(15)を分導出させ場合には、連続した充填により、空温式熱交換器(3)が十分に冷えている場合に、昇圧ポンプ(2)と空温式熱交換器(3)の間から分岐導出した分岐路(8)に変えて、空温式熱交換器(3)の途中から分岐導出し分岐路(15)を使用することで、より安定した温度制御が可能となる。   In this way, the branch path (8) is led out between the boost pump (2) and the air temperature heat exchanger (3), and the second branch path (from the middle of the air temperature heat exchanger (3) ( 15), when the air temperature heat exchanger (3) is sufficiently cooled by continuous filling, it is between the booster pump (2) and the air temperature heat exchanger (3). In place of the branch path (8) branched out from, branching out from the middle of the air temperature heat exchanger (3) and using the branch path (15) enables more stable temperature control.

本発明は、燃料電池自動車、水素エンジン自動車等の水素を燃料として走行する車両に搭載される車載用水素充填タンクに水素ガスを供給するための水素ステーションでの水素充填技術として利用することが出来る。   INDUSTRIAL APPLICABILITY The present invention can be used as a hydrogen filling technique at a hydrogen station for supplying hydrogen gas to an on-vehicle hydrogen filling tank mounted on a vehicle that runs on hydrogen such as a fuel cell vehicle or a hydrogen engine vehicle. .

1…液化水素貯蔵容器、2…昇圧ポンプ、3…熱交換器、4…流量調整弁、5…流量計、6…充填ノズル、7…水素供給ライン、9・16…低温流体用流量調整弁、8・15…分岐路、B…水素供給用バイパスライン。   DESCRIPTION OF SYMBOLS 1 ... Liquid hydrogen storage container, 2 ... Booster pump, 3 ... Heat exchanger, 4 ... Flow control valve, 5 ... Flow meter, 6 ... Filling nozzle, 7 ... Hydrogen supply line, 9.16 ... Flow control valve for low temperature fluid , 8.15 ... Branch, B ... Bypass line for hydrogen supply.

Claims (6)

水素を燃料として走行する車両に搭載される車載用水素充填タンクに水素を供給する装置であって、
液化水素貯蔵容器(1)から導出した水素供給ライン(7)の先端に車載用水素充填タンクと連結接続可能な充填ノズル(6)を装着し、この水素供給ライン(7)に液化水素貯蔵容器側から昇圧ポンプ(2)と、熱交換器(3)と、流量調整弁(4)と、流量計(5)とを順に装着し、少なくとも熱交換器(3)の一部と流量調整弁(4)とをバイパスする状態で水素供給用バイパスライン(B)を形成し、この水素供給用バイパスライン(B)に低温流体用の流量調整弁(9)(16)を装着したことを特徴とする燃料用水素ガス充填装置。
An apparatus for supplying hydrogen to an on-vehicle hydrogen filling tank mounted on a vehicle that runs using hydrogen as fuel,
At the tip of the hydrogen supply line (7) derived from the liquefied hydrogen storage container (1), a filling nozzle (6) that can be connected to an on-vehicle hydrogen filling tank is mounted, and the liquefied hydrogen storage container is attached to the hydrogen supply line (7). From the side, the booster pump (2), the heat exchanger (3), the flow rate adjustment valve (4), and the flow meter (5) are installed in order, and at least a part of the heat exchanger (3) and the flow rate adjustment valve The hydrogen supply bypass line (B) is formed in a state of bypassing (4), and the flow control valves (9) and (16) for low-temperature fluid are attached to the hydrogen supply bypass line (B). A hydrogen gas filling device for fuel.
水素供給用バイパスライン(B)を昇圧ポンプ(2)と熱交換器(3)との間から導出し、流量調整弁(4)と流量計(5)との間で合流させた分岐路(8)で構成している請求項1に記載した燃料用水素ガス充填装置。   The hydrogen supply bypass line (B) is led out from between the booster pump (2) and the heat exchanger (3), and is branched from the flow control valve (4) and the flow meter (5) ( 8. The hydrogen gas filling device for fuel according to claim 1, which is constituted by 8). 水素供給用バイパスライン(B)を熱交換器(3)の中途から導出し、流量調整弁(4)と流量計(5)との間で合流させている分岐路(15)で構成している請求項1または2に記載した燃料用水素ガス充填装置。   The hydrogen supply bypass line (B) is led out from the middle of the heat exchanger (3), and consists of a branch line (15) that joins between the flow control valve (4) and the flow meter (5). The hydrogen gas filling apparatus for fuel according to claim 1 or 2. 熱交換器(3)が空温式熱交換器である請求項1〜3のいずれか1項に記載した燃料用水素ガス充填装置。   The hydrogen gas filling apparatus for fuel according to any one of claims 1 to 3, wherein the heat exchanger (3) is an air temperature type heat exchanger. 液化水素貯蔵容器(1)から導出した液化水素を昇圧し、この昇圧した液化水素を熱交換器(3)に導入して気化させ、この熱交換器(3)から導出された水素ガスを水素供給ライン(7)の先端に装着した充填ノズル(6)から車載用水素充填タンクに充填する燃料用水素ガス充填方法において、
少なくとも熱交換器(3)の一部と流量調整弁(4)とをバイパスする状態に形成した水素供給用バイパスライン(B)を流れる低温ガスと、熱交換器(3)を通過して水素供給ライン(7)を流れる気化された常温ガスとを混合した混合ガスのガス温度が目標温度となるように各水素供給ライン(7)(B)に配置した流量調整弁(4)(9)(16)を制御することを特徴とする燃料用水素ガス充填方法。
The pressure of the liquefied hydrogen derived from the liquefied hydrogen storage container (1) is increased, the increased liquefied hydrogen is introduced into the heat exchanger (3) and vaporized, and the hydrogen gas derived from the heat exchanger (3) is converted into hydrogen. In a fuel hydrogen gas filling method for filling an in-vehicle hydrogen filling tank from a filling nozzle (6) attached to the tip of a supply line (7),
At least a part of the heat exchanger (3) and the flow rate adjusting valve (4) bypass the hydrogen supply bypass line (B), and the low temperature gas flowing through the heat exchanger (3) and hydrogen. Flow rate adjusting valves (4) (9) arranged in each hydrogen supply line (7) (B) so that the gas temperature of the mixed gas mixed with the vaporized normal temperature gas flowing through the supply line (7) becomes the target temperature. (16) is controlled, a hydrogen gas filling method for fuel.
熱交換器(3)が常温である場合には、水素供給用バイパスライン(B)を使って充填を開始し、水素供給用バイパスライン(B)の配管温度が予め設定した温度より低下した段階で、熱交換器(3)が配設されている水素供給ライン(7)を開通させて、水素供給用バイパスライン(B)を流通する低温ガスと水素供給ライン(7)を流れる常温ガスとを混合させるようにした請求項5に記載した燃料用水素ガス充填方法。   When the heat exchanger (3) is at room temperature, filling is started using the hydrogen supply bypass line (B), and the piping temperature of the hydrogen supply bypass line (B) is lowered from a preset temperature. Then, the hydrogen supply line (7) in which the heat exchanger (3) is disposed is opened, and the low temperature gas flowing through the hydrogen supply bypass line (B) and the normal temperature gas flowing through the hydrogen supply line (7) The fuel hydrogen gas filling method according to claim 5, wherein the fuel is mixed.
JP2011030396A 2011-02-16 2011-02-16 Hydrogen gas filling device for fuel and hydrogen gas filling method for fuel Active JP5759741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030396A JP5759741B2 (en) 2011-02-16 2011-02-16 Hydrogen gas filling device for fuel and hydrogen gas filling method for fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030396A JP5759741B2 (en) 2011-02-16 2011-02-16 Hydrogen gas filling device for fuel and hydrogen gas filling method for fuel

Publications (2)

Publication Number Publication Date
JP2012167767A true JP2012167767A (en) 2012-09-06
JP5759741B2 JP5759741B2 (en) 2015-08-05

Family

ID=46972111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030396A Active JP5759741B2 (en) 2011-02-16 2011-02-16 Hydrogen gas filling device for fuel and hydrogen gas filling method for fuel

Country Status (1)

Country Link
JP (1) JP5759741B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047109A1 (en) * 2014-09-26 2016-03-31 川崎重工業株式会社 Hydrogen fuel supply system
JP2016056909A (en) * 2014-09-11 2016-04-21 日立オートモティブシステムズメジャメント株式会社 Gas filling device and method of the same
JP2016516963A (en) * 2013-04-22 2016-06-09 チャート・インコーポレイテッドChart Inc. Liquid natural gas cooling on the fly
JP2020051619A (en) * 2018-09-25 2020-04-02 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Device and method for filling pressurized gas tanks
WO2020098617A1 (en) * 2018-11-16 2020-05-22 China Energy Investment Corporation Limited Method and system of dispensing liquefied gas
JP2020085242A (en) * 2018-11-15 2020-06-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Equipment and method for filling a tank with pressurized gas
CN112050080A (en) * 2020-09-14 2020-12-08 北京航天试验技术研究所 Distributed control system, control method and measurement and control system for liquid hydrogen refueling station
CN112670530A (en) * 2019-10-16 2021-04-16 上海德威明兴新能源科技有限公司 Hydrogen heating device
CN113915607A (en) * 2021-11-23 2022-01-11 北京丰润铭科贸有限责任公司 Coal-fired boiler capable of fully combusting coal mixed with hydrogen
JP2022507723A (en) * 2018-11-16 2022-01-18 ナショナル インスティテュート オブ クリーン-アンド-ロー-カーボン エナジー Fluid bypass methods and systems for controlling the temperature of non-petroleum fuels
EP4023928A1 (en) * 2020-12-29 2022-07-06 China Energy Investment Corporation Limited Method for minimizing power demand for hydrogen refueling station
CN115264380A (en) * 2022-05-26 2022-11-01 合肥通用机械研究院有限公司 Liquid hydrogen station with hidden high-pressure precooling/cold accumulation unit and operation method
WO2023279908A1 (en) * 2021-07-09 2023-01-12 China Energy Investment Corporation Limited System and method for refueling and backup power generation
KR20230096182A (en) * 2021-12-22 2023-06-30 주식회사 한국가스기술공사 Liquid hydrogen fueling system
KR20230096181A (en) * 2021-12-22 2023-06-30 주식회사 한국가스기술공사 Liquid hydrogen fueling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10512940A (en) * 1994-07-01 1998-12-08 シカゴ ブリッジ アンド アイアン テクニカル サービシズ カンパニー Method and apparatus for supplying liquefied cryogenic fuel to a vehicle
JPH11270792A (en) * 1998-02-03 1999-10-05 Praxair Technol Inc Cylinder charging system of extremely low temperature fluid
JP2001004096A (en) * 1999-06-23 2001-01-09 Nippon Sanso Corp Gas supply method and device therefor
JP2005299819A (en) * 2004-04-13 2005-10-27 Iwatani Internatl Corp Low-temperature liquefied gas filling device
JP2011089620A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Gas filling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10512940A (en) * 1994-07-01 1998-12-08 シカゴ ブリッジ アンド アイアン テクニカル サービシズ カンパニー Method and apparatus for supplying liquefied cryogenic fuel to a vehicle
JPH11270792A (en) * 1998-02-03 1999-10-05 Praxair Technol Inc Cylinder charging system of extremely low temperature fluid
JP2001004096A (en) * 1999-06-23 2001-01-09 Nippon Sanso Corp Gas supply method and device therefor
JP2005299819A (en) * 2004-04-13 2005-10-27 Iwatani Internatl Corp Low-temperature liquefied gas filling device
JP2011089620A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Gas filling device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516963A (en) * 2013-04-22 2016-06-09 チャート・インコーポレイテッドChart Inc. Liquid natural gas cooling on the fly
JP2016056909A (en) * 2014-09-11 2016-04-21 日立オートモティブシステムズメジャメント株式会社 Gas filling device and method of the same
WO2016047109A1 (en) * 2014-09-26 2016-03-31 川崎重工業株式会社 Hydrogen fuel supply system
JP2016070301A (en) * 2014-09-26 2016-05-09 川崎重工業株式会社 Hydrogen fuel supply system
JP2020051619A (en) * 2018-09-25 2020-04-02 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Device and method for filling pressurized gas tanks
JP7399656B2 (en) 2018-09-25 2023-12-18 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Device and method for filling pressurized gas tanks
JP7374725B2 (en) 2018-11-15 2023-11-07 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Equipment and methods for filling tanks with pressurized gas
JP2020085242A (en) * 2018-11-15 2020-06-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Equipment and method for filling a tank with pressurized gas
JP2022510578A (en) * 2018-11-16 2022-01-27 ナショナル インスティテュート オブ クリーン-アンド-ロー-カーボン エナジー Methods and systems for distributing liquefied gas
KR102566242B1 (en) * 2018-11-16 2023-08-14 내셔널 인스티튜트 오브 클린-앤-로우-카본 에너지 Method and system for dispensing liquefied gas
US11009185B2 (en) 2018-11-16 2021-05-18 China Energy Investment Corporation Limited Method and system of dispensing liquefied gas
KR20210118811A (en) * 2018-11-16 2021-10-01 내셔널 인스티튜트 오브 클린-앤-로우-카본 에너지 Method and system for dispensing liquefied gas
WO2020098617A1 (en) * 2018-11-16 2020-05-22 China Energy Investment Corporation Limited Method and system of dispensing liquefied gas
JP2022507723A (en) * 2018-11-16 2022-01-18 ナショナル インスティテュート オブ クリーン-アンド-ロー-カーボン エナジー Fluid bypass methods and systems for controlling the temperature of non-petroleum fuels
CN111197696A (en) * 2018-11-16 2020-05-26 国家能源投资集团有限责任公司 Method and system for distributing liquefied gas
JP7370383B2 (en) 2018-11-16 2023-10-27 ナショナル インスティテュート オブ クリーン-アンド-ロー-カーボン エナジー Method and system for distributing liquefied gas
JP7370384B2 (en) 2018-11-16 2023-10-27 ナショナル インスティテュート オブ クリーン-アンド-ロー-カーボン エナジー Fluid bypass method and system for controlling the temperature of non-petroleum fuels
CN112670530A (en) * 2019-10-16 2021-04-16 上海德威明兴新能源科技有限公司 Hydrogen heating device
CN112050080A (en) * 2020-09-14 2020-12-08 北京航天试验技术研究所 Distributed control system, control method and measurement and control system for liquid hydrogen refueling station
US11391415B1 (en) 2020-12-29 2022-07-19 China Energy Investment Corporation Limited Method for minimizing power demand for hydrogen refueling station
CN114754285A (en) * 2020-12-29 2022-07-15 国家能源投资集团有限责任公司 Method for minimizing power requirements of a hydrogen refueling station
EP4023928A1 (en) * 2020-12-29 2022-07-06 China Energy Investment Corporation Limited Method for minimizing power demand for hydrogen refueling station
WO2023279908A1 (en) * 2021-07-09 2023-01-12 China Energy Investment Corporation Limited System and method for refueling and backup power generation
CN113915607A (en) * 2021-11-23 2022-01-11 北京丰润铭科贸有限责任公司 Coal-fired boiler capable of fully combusting coal mixed with hydrogen
KR20230096182A (en) * 2021-12-22 2023-06-30 주식회사 한국가스기술공사 Liquid hydrogen fueling system
KR20230096181A (en) * 2021-12-22 2023-06-30 주식회사 한국가스기술공사 Liquid hydrogen fueling system
KR102571937B1 (en) 2021-12-22 2023-08-30 주식회사 한국가스기술공사 Liquid hydrogen fueling system
KR102612240B1 (en) * 2021-12-22 2023-12-11 주식회사 한국가스기술공사 Liquid hydrogen fueling system
CN115264380A (en) * 2022-05-26 2022-11-01 合肥通用机械研究院有限公司 Liquid hydrogen station with hidden high-pressure precooling/cold accumulation unit and operation method
CN115264380B (en) * 2022-05-26 2024-01-26 合肥通用机械研究院有限公司 Liquid hydrogen station with hidden high-pressure precooling/cold accumulation unit and operation method

Also Published As

Publication number Publication date
JP5759741B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5759741B2 (en) Hydrogen gas filling device for fuel and hydrogen gas filling method for fuel
CN109708000B (en) L-CH2 type hydrogen station heat management system
CN101258103B (en) Hydrogen supply apparatus and fuel gas supply apparatus
JP7370384B2 (en) Fluid bypass method and system for controlling the temperature of non-petroleum fuels
AU2014261287B2 (en) Method and device for replenshing a supply of cryogenic liquid, notably of liquefied natural gas
US20170291486A1 (en) Hydrogen fuel supply system
CN101382099B (en) Gas supply device for an internal combustion engine driven by gaseous fuel
JP2019516047A (en) Method and apparatus for filling a high pressure storage tank
JP5572370B2 (en) Filling control equipment for high-pressure hydrogen test facilities and high-pressure hydrogen filling facilities
US7547385B2 (en) Method and system for producing a supercritical cryogenic fuel (SCCF)
JPWO2018173136A1 (en) Hydrogen gas supply apparatus and method
JP5494819B2 (en) LNG vaporization equipment
KR102511202B1 (en) Hydrogen charging device using Liquefied hydrogen
KR101059870B1 (en) Regasification Facility of LNG
KR20120123783A (en) Lng fuel supply system for vessel engine
KR20180062240A (en) fuel supply apparatus
CN102230574B (en) Liquefied natural gas (LNG) station with multifunctional air temperature type heating device
JP2015102229A (en) Method for filling hydrogen gas into on-vehicle storage container
KR101671475B1 (en) LNG Regasification Plant
JP6518851B1 (en) Gas supply method and gas supply system
JP2011144814A (en) Method for pressurizing liquefied hydrogen container
CN219468037U (en) Liquid methane filling system
KR101742294B1 (en) Plant And Method For LNG Regasification
US20230392753A1 (en) Systems and methods for dispensing cryogenic liquid fuel as a gas at controlled temperature using cryogenic fluid
WO2023240288A1 (en) Systems and methods for mixing and dispensing gas at a controlled temperature using cryogenic fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250