JP4406353B2 - Exhaust gas purification system for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine Download PDF

Info

Publication number
JP4406353B2
JP4406353B2 JP2004353079A JP2004353079A JP4406353B2 JP 4406353 B2 JP4406353 B2 JP 4406353B2 JP 2004353079 A JP2004353079 A JP 2004353079A JP 2004353079 A JP2004353079 A JP 2004353079A JP 4406353 B2 JP4406353 B2 JP 4406353B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
storage reduction
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004353079A
Other languages
Japanese (ja)
Other versions
JP2006161647A (en
Inventor
豊 田内
章 正司
直人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Toyota Motor Corp
Original Assignee
Hino Motors Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Toyota Motor Corp filed Critical Hino Motors Ltd
Priority to JP2004353079A priority Critical patent/JP4406353B2/en
Publication of JP2006161647A publication Critical patent/JP2006161647A/en
Application granted granted Critical
Publication of JP4406353B2 publication Critical patent/JP4406353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気浄化を行う排気浄化システムに関する。   The present invention relates to an exhaust purification system that performs exhaust purification of an internal combustion engine.

内燃機関の排気通路に設けられたいわゆる吸蔵還元型NOx触媒(以下、「NOx触媒」ともいう。)によって、排気中のNOxを還元、浄化する技術が知られている。しかし、このNOx触媒にはNOxと同様に排気中のSOxも吸蔵される。そして、この吸蔵SOx量が増加しSOx被毒状態となると、NOx触媒によるNOxの還元、浄化能力が低下する。   A technique for reducing and purifying NOx in exhaust gas by a so-called storage reduction type NOx catalyst (hereinafter also referred to as “NOx catalyst”) provided in an exhaust passage of an internal combustion engine is known. However, this NOx catalyst also stores SOx in the exhaust as well as NOx. And when this amount of occluded SOx increases and it becomes a SOx poisoning state, the NOx reduction and purification ability by the NOx catalyst is lowered.

そこで、NOx触媒のSOx被毒の回復を、内燃機関の減速運転状態又はアイドル運転状態のときに実行する技術が公開されている(例えば、特許文献1を参照。)。この技術においては、内燃機関の減速運転状態やアイドル運転状態時の排気流量が少ないときに還元剤の燃料をNOx触媒に供給することで、比較的少量の燃料でSOx被毒状態からの回復が可能となる。
特開2002−155724号公報 特開2004−108176号公報 特開2004−197695号公報 特開2001−81237号公報 特開2000−161107号公報
Therefore, a technique for executing recovery of SOx poisoning of the NOx catalyst when the internal combustion engine is in a decelerating operation state or an idle operation state is disclosed (for example, see Patent Document 1). In this technique, when the internal combustion engine is in a decelerating operation state or an idling operation state, when the exhaust gas flow rate is small, the fuel of the reducing agent is supplied to the NOx catalyst, thereby recovering from the SOx poisoning state with a relatively small amount of fuel. It becomes possible.
JP 2002-155724 A JP 2004-108176 A JP 2004-197695 A JP 2001-81237 A JP 2000-161107 A

内燃機関の減速運転状態やアイドル運転状態等の排気流量が少ないときに還元剤の燃料をNOx触媒に供給することで、内燃機関のSOx被毒の回復を行う場合、NOx触媒における還元剤とSOxとの反応が比較的良好に行われるため、少ない燃料で効率的に、吸蔵されたSOxの放出が可能となる。   When recovering the SOx poisoning of the internal combustion engine by supplying the fuel of the reducing agent to the NOx catalyst when the exhaust gas flow rate is low, such as in the deceleration operation state or the idle operation state of the internal combustion engine, the reducing agent and SOx in the NOx catalyst are recovered. Therefore, the stored SOx can be efficiently released with a small amount of fuel.

しかし、その反面、NOx触媒に流入する排気流量が少ない状態で多量の硫黄分が排出されることになるため、排気中の硫黄分の濃度が上昇し、特に硫化水素による悪臭が顕著となる虞がある。   However, on the other hand, since a large amount of sulfur is discharged with a small exhaust flow rate flowing into the NOx catalyst, the concentration of sulfur in the exhaust increases, and in particular, bad odor due to hydrogen sulfide may become prominent. There is.

本発明では、上記した問題に鑑み、NOx触媒(吸蔵還元型NOx触媒)を備える内燃機関の排気浄化システムにおいて、そのSOx被毒を回復させるときに排気中の硫黄分の濃度が上昇し、悪臭が顕著となるのを回避することを目的とする。   In the present invention, in view of the above problems, in an exhaust gas purification system for an internal combustion engine equipped with a NOx catalyst (occlusion reduction type NOx catalyst), when the SOx poisoning is recovered, the concentration of the sulfur content in the exhaust gas increases, resulting in bad odor. It aims at avoiding becoming remarkable.

本発明では、上記した問題を解決するために、NOx触媒のSOx被毒回復時に発生する硫黄分濃度と排気流量との関係に着目した。それは、硫黄分による悪臭の影響は硫黄分の濃度に大きく依存するからである。   In the present invention, in order to solve the above-described problem, attention is paid to the relationship between the concentration of sulfur generated when SOx poisoning of the NOx catalyst is recovered and the exhaust gas flow rate. This is because the effect of bad odor due to the sulfur content greatly depends on the concentration of the sulfur content.

そこで、本発明は、内燃機関の排気浄化システムであって、内燃機関の排気通路に設けられた吸蔵還元型NOx触媒(NOx触媒)と、前記吸蔵還元型NOx触媒のSOx被毒を回復させるSOx被毒回復手段と、前記SOx被毒回復手段によって前記吸蔵還元型NOx触媒のSOx被毒回復が実行されるときの、該吸蔵還元型NOx触媒から流出する排気中の硫黄分の濃度を推定し、又は検出する硫黄濃度推定手段と、前記硫黄濃度推定手段によって推定され、又は検出される排気中の硫黄分の濃度が高くなるに従い、前記吸蔵還
元型NOx触媒に流入する排気流量を増大させる排気流量調整手段と、を備える。
Accordingly, the present invention is an exhaust gas purification system for an internal combustion engine, which is a storage reduction type NOx catalyst (NOx catalyst) provided in an exhaust passage of the internal combustion engine, and an SOx that recovers SOx poisoning of the storage reduction type NOx catalyst. Estimating the concentration of sulfur in the exhaust gas flowing out from the NOx storage reduction catalyst when SOx poisoning recovery of the NOx storage reduction catalyst is executed by the poisoning recovery means and the SOx poisoning recovery means. Or a sulfur concentration estimating means to detect, and an exhaust gas that increases the flow rate of exhaust gas flowing into the NOx storage reduction catalyst as the concentration of sulfur content in the exhaust gas estimated or detected by the sulfur concentration estimating means increases. A flow rate adjusting means.

上記の内燃機関の排気浄化システムでは、NOx触媒によって排気中のNOxが還元、浄化される。そして、排気中のNOxと同様にSOxもNOx触媒に吸蔵される。ここで、NOx触媒における吸蔵SOx量が増加すると、NOx触媒に吸蔵し得るNOx量が低下するため、結果的にNOx触媒によるNOxの還元、浄化能力が低下することになる。   In the internal combustion engine exhaust gas purification system, NOx in the exhaust gas is reduced and purified by the NOx catalyst. And SOx is occluded by the NOx catalyst as well as NOx in the exhaust. Here, when the amount of SOx stored in the NOx catalyst increases, the amount of NOx that can be stored in the NOx catalyst decreases. As a result, the NOx reduction and purification ability of the NOx catalyst decreases.

そこで、そのようなときは、SOx被毒回復手段によって、NOx触媒に吸蔵されSOx被毒状態となっているNOx触媒のNOx浄化能力の回復が図られる。具体的には、NOx触媒の温度をSOx被毒回復に適した温度まで上昇させるとともに、NOx触媒に流入する空燃比をリッチ状態とし、NOx触媒の周囲に還元剤が存在する雰囲気を形成する。例えば、内燃機関における燃焼状態を制御してそのような状態を形成してもよく、また排気中に燃料を添加することで該状態を形成してもよい。   Therefore, in such a case, the SOx poisoning recovery means recovers the NOx purification ability of the NOx catalyst stored in the NOx catalyst and in the SOx poisoning state. Specifically, the temperature of the NOx catalyst is raised to a temperature suitable for SOx poisoning recovery, the air-fuel ratio flowing into the NOx catalyst is made rich, and an atmosphere in which a reducing agent exists around the NOx catalyst is formed. For example, such a state may be formed by controlling the combustion state in the internal combustion engine, or the state may be formed by adding fuel to the exhaust gas.

このようにSOx被毒回復手段によってNOx触媒のSOx被毒回復が図られるとき、NOx触媒から流出する排気中にはNOx触媒に吸蔵されていた硫黄分が流れ出すため、排気中の硫黄分の量が増加する。そこで、その排気中の硫黄分の濃度を硫黄濃度推定手段によって推定し、又は検出し、その結果に基づいて排気流量調整手段によってNOx触媒に流入する排気流量が調整される。   Thus, when SOx poisoning recovery of the NOx catalyst is achieved by the SOx poisoning recovery means, the sulfur content stored in the NOx catalyst flows out into the exhaust gas flowing out from the NOx catalyst, so the amount of sulfur content in the exhaust gas Will increase. Therefore, the concentration of sulfur in the exhaust gas is estimated or detected by the sulfur concentration estimating means, and the exhaust flow rate flowing into the NOx catalyst is adjusted by the exhaust flow rate adjusting means based on the result.

その結果、NOx触媒のSOx被毒回復時に、NOx触媒から流出し大気中に放出される排気中の硫黄分の濃度は比較的低い値に維持することが可能となり、以て硫黄分による悪臭が顕著となるのを回避することが可能となる。尚、排気流量調整手段では、NOx触媒に流入する排気流量が調整されるため、NOx触媒に新気が流入されて硫黄分濃度が調整される場合よりも、NOx触媒の温度を高温に維持することが可能となる。   As a result, when SOx poisoning of the NOx catalyst is recovered, the concentration of the sulfur content in the exhaust gas that flows out of the NOx catalyst and is released into the atmosphere can be maintained at a relatively low value. It becomes possible to avoid becoming conspicuous. The exhaust flow rate adjusting means adjusts the exhaust flow rate flowing into the NOx catalyst, so that the temperature of the NOx catalyst is maintained at a higher temperature than when the fresh air flows into the NOx catalyst and the sulfur concentration is adjusted. It becomes possible.

ここで、上記の内燃機関の排気浄化システムにおいて、前記硫黄濃度推定手段は、前記吸蔵還元型NOx触媒のSOx吸蔵量が多いほど排気中の硫黄分の濃度は高いと推定するようにしてもよい。即ち、SOx吸蔵量が多くなるほど、NOx触媒のSOx被毒回復時における硫黄分の放出量が増加することを勘案したものである。   Here, in the exhaust gas purification system for an internal combustion engine, the sulfur concentration estimating means may estimate that the concentration of sulfur in the exhaust gas is higher as the SOx storage amount of the NOx storage reduction catalyst is larger. . That is, it is considered that the amount of sulfur released during the recovery of SOx poisoning of the NOx catalyst increases as the SOx storage amount increases.

また、上述までの内燃機関の排気浄化システムにおいて、前記SOx被毒回復手段による前記吸蔵還元型NOx触媒のSOx被毒回復がアイドル運転時に実行される場合、前記排気流量調整手段は、前記硫黄濃度推定手段によって推定され、又は検出される排気中の硫黄分の濃度が高くなるに従いアイドル回転速度を増加させることで、該吸蔵還元型NOx触媒に流入する排気流量を増大させるようにしてもよい。   Further, in the exhaust gas purification system for an internal combustion engine described above, when the SOx poisoning recovery means performs SOx poisoning recovery of the NOx storage reduction catalyst during idle operation, the exhaust flow rate adjusting means includes the sulfur concentration The exhaust gas flow rate that flows into the NOx storage reduction catalyst may be increased by increasing the idle rotation speed as the concentration of the sulfur content in the exhaust gas estimated or detected by the estimating means increases.

内燃機関がアイドル運転状態にあるときは、NOx触媒に流入する排気流量は比較的少ない。そこで、この場合、NOx触媒に流入する排気量の調整を、アイドル回転速度自体を調整することで行うものである。   When the internal combustion engine is in an idle operation state, the exhaust flow rate flowing into the NOx catalyst is relatively small. Therefore, in this case, the exhaust amount flowing into the NOx catalyst is adjusted by adjusting the idle rotation speed itself.

ここで、上述までの内燃機関の排気浄化システムにおいて、前記SOx被毒回復手段は、前記吸蔵還元型NOx触媒を昇温させるとともに該吸蔵還元型NOx触媒に流入する排気の空燃比をリーン側の空燃比とリッチ側の空燃比に交互に切り替えることで、該吸蔵還元型NOx触媒のSOx被毒を回復させる場合、前記排気流量調整手段は、該吸蔵還元型NOx触媒に流入する排気の空燃比が前記リーン側空燃比とされるときに該吸蔵還元型NOx触媒に流入する排気流量を増大させるようにしてもよい。   Here, in the exhaust gas purification system for an internal combustion engine described above, the SOx poisoning recovery means raises the temperature of the NOx storage reduction catalyst and sets the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst on the lean side. When the SOx poisoning of the NOx storage reduction catalyst is recovered by alternately switching between the air fuel ratio and the rich side air fuel ratio, the exhaust flow rate adjusting means is configured so that the exhaust air flow ratio adjusting means When the lean air-fuel ratio is set, the flow rate of exhaust gas flowing into the NOx storage reduction catalyst may be increased.

SOx被毒回復手段によってNOx触媒のSOx被毒状態を回復させるにあたって、NOx触媒に流入する排気の空燃比をリーン側空燃比とリッチ側空燃比とに交互に切り替え
る。このようにすることで、NOx触媒の温度が過度に上昇することなく、SOx被毒の回復が行われる。ここで、NOx触媒に吸蔵されたSOxの放出が主に行われるのは、NOx触媒に流入する排気の空燃比がリッチ側空燃比であるときである。排気の空燃比がリーン側空燃比とされているときは、NOx触媒の温度上昇を抑制するときでもあるため、ここでNOx触媒に流入する排気流量を増大させることで、SOx被毒回復時における過度の昇温防止が可能となるとともに、平均的な排気中の硫黄分濃度を下げて硫黄分による悪臭が顕著となるのを回避することが可能となる。
When the SOx poisoning recovery means recovers the SOx poisoning state of the NOx catalyst, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is alternately switched between the lean side air-fuel ratio and the rich side air-fuel ratio. By doing so, the SOx poisoning is recovered without excessively increasing the temperature of the NOx catalyst. Here, the SOx occluded in the NOx catalyst is mainly released when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is the rich air-fuel ratio. When the air-fuel ratio of the exhaust gas is set to the lean side air-fuel ratio, it is also a time to suppress the temperature rise of the NOx catalyst, so by increasing the exhaust gas flow rate flowing into the NOx catalyst here, at the time of SOx poisoning recovery Excessive temperature rise can be prevented, and it becomes possible to reduce the concentration of sulfur in the average exhaust gas and to prevent the bad odor due to the sulfur from becoming prominent.

NOx触媒(吸蔵還元型NOx触媒)を備える内燃機関の排気浄化システムにおいて、そのSOx被毒を回復させるときに排気中の硫黄分の濃度が上昇し、悪臭が顕著となるのを回避することが可能となる。   In an exhaust gas purification system for an internal combustion engine equipped with a NOx catalyst (occlusion reduction type NOx catalyst), it is possible to prevent the concentration of sulfur in the exhaust gas from increasing when the SOx poisoning is recovered, and the odor from becoming prominent. It becomes possible.

ここで、本発明に係る内燃機関の排気浄化システムの実施例について図面に基づいて説明する。   Now, an embodiment of an exhaust gas purification system for an internal combustion engine according to the present invention will be described with reference to the drawings.

図1は、本発明に係る排気浄化システムが適用される内燃機関1およびその制御系統の概略構成を表すブロック図である。内燃機関1は、4つの気筒2を有する圧縮着火式内燃機関である。また、気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、所定圧に加圧された燃料を貯留する蓄圧室4と接続されている。内燃機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、吸気ポートを介して燃焼室に接続される。同様に、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管は排気ポートを介して燃焼室に接続される。ここで、吸気ポートおよび排気ポートには、各々吸気弁および排気弁が設けられている。   FIG. 1 is a block diagram showing a schematic configuration of an internal combustion engine 1 to which an exhaust purification system according to the present invention is applied and its control system. The internal combustion engine 1 is a compression ignition type internal combustion engine having four cylinders 2. Further, a fuel injection valve 3 for directly injecting fuel into the combustion chamber of the cylinder 2 is provided. The fuel injection valve 3 is connected to a pressure accumulating chamber 4 that stores fuel pressurized to a predetermined pressure. An intake branch pipe 7 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 7 is connected to a combustion chamber via an intake port. Similarly, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 is connected to a combustion chamber via an exhaust port. Here, the intake port and the exhaust port are provided with an intake valve and an exhaust valve, respectively.

また、吸気枝管7は吸気管8に接続されている。吸気管8の上流部には吸気管8を流れる吸入空気量を検出するエアフローメータ9が設けられ、更にその下流には、吸気管8内を流れる吸気の流量を調節する吸気絞り弁10が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。   The intake branch pipe 7 is connected to the intake pipe 8. An air flow meter 9 for detecting the amount of intake air flowing through the intake pipe 8 is provided upstream of the intake pipe 8, and an intake throttle valve 10 for adjusting the flow rate of intake air flowing through the intake pipe 8 is provided further downstream thereof. It has been. The intake throttle valve 10 is provided with an intake throttle actuator 11 that is configured by a step motor or the like and that opens and closes the intake throttle valve 10.

吸気絞り弁10の上流側の吸気管8には、排気のエネルギーを駆動源として作動する過給機16のコンプレッサ側が設けられ、排気枝管12には過給機16のタービン側が設けられている。過給機16はいわゆる可変容量型過給機であって、その内部に可動式のノズルベーンを有し、該ノズルベーンの開度を調整することで、過給機16による過給圧が制御される。過給機16より下流であって吸気絞り弁10の上流の吸気管8には、過給機16によって加圧されて高温となった吸入空気を冷却するためのインタークーラ15が設けられている。インタークーラ15は冷却用の冷却水が供給されており、その供給量が調整されることで、インタークーラ15の冷却能力が制御される熱交換装置である。   An intake pipe 8 upstream of the intake throttle valve 10 is provided with a compressor side of a supercharger 16 that operates using exhaust energy as a drive source, and an exhaust branch pipe 12 is provided with a turbine side of the supercharger 16. . The supercharger 16 is a so-called variable capacity supercharger. The supercharger 16 has a movable nozzle vane therein, and the supercharging pressure by the supercharger 16 is controlled by adjusting the opening degree of the nozzle vane. . An intercooler 15 is provided in the intake pipe 8 downstream of the supercharger 16 and upstream of the intake throttle valve 10 for cooling the intake air that has been pressurized by the supercharger 16 and has reached a high temperature. . The intercooler 15 is a heat exchange device to which cooling water for cooling is supplied and the cooling capacity of the intercooler 15 is controlled by adjusting the supply amount.

また、過給機16のタービン側は、排気管13と接続され、この排気管13は、下流にてマフラーに接続されている。そして、排気管13の途中には、いわゆる吸蔵還元型NOx触媒のNOx触媒14が設けられている。また、NOx触媒14の上流の排気管13には、排気中に燃料を添加する燃料添加弁17が備えられている。   Further, the turbine side of the supercharger 16 is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected to a muffler downstream. In the middle of the exhaust pipe 13, a NOx catalyst 14 of a so-called storage reduction type NOx catalyst is provided. The exhaust pipe 13 upstream of the NOx catalyst 14 is provided with a fuel addition valve 17 that adds fuel to the exhaust.

更に、内燃機関1には、EGR装置21が設けられている。EGR装置21は排気枝管12を流れる排気の一部を吸気枝管7へ再循環させる。EGR装置21は、排気枝管12(上流側)から吸気枝管7(下流側)へ延出しているEGR通路22と、EGR通路22
上に上流側から順に設けられたEGRガス冷却用のEGRクーラ23と、EGRガスの流量調整用のEGR弁24と、から構成される。
Further, the internal combustion engine 1 is provided with an EGR device 21. The EGR device 21 recirculates a part of the exhaust gas flowing through the exhaust branch pipe 12 to the intake branch pipe 7. The EGR device 21 includes an EGR passage 22 extending from the exhaust branch pipe 12 (upstream side) to the intake branch pipe 7 (downstream side), and an EGR passage 22.
It is composed of an EGR cooler 23 for cooling EGR gas provided in order from the upstream side, and an EGR valve 24 for adjusting the flow rate of EGR gas.

また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。   The internal combustion engine 1 is also provided with an electronic control unit (hereinafter referred to as “ECU”) 20 for controlling the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and controls the operating conditions of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request. Unit.

ここで、燃料噴射弁3は、ECU20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、燃料噴射弁3からの燃料噴射時期および燃料噴射量が、内燃機関1の機関負荷や機関回転速度等の運転状態に応じて、噴射弁毎に制御される。また、燃料添加弁17も、ECU20からの指令に従って制御される。   Here, the fuel injection valve 3 performs an opening / closing operation by a control signal from the ECU 20. That is, according to a command from the ECU 20, the fuel injection timing and the fuel injection amount from the fuel injection valve 3 are controlled for each injection valve in accordance with the operation state such as the engine load and engine speed of the internal combustion engine 1. The fuel addition valve 17 is also controlled in accordance with a command from the ECU 20.

更に、クランクポジションセンサ30がECU20と電気的に接続されており、ECU20は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や、各気筒2におけるピストン位置等を検出する。   Further, the crank position sensor 30 is electrically connected to the ECU 20. The ECU 20 receives a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1, and the engine rotational speed of the internal combustion engine 1 and the piston position in each cylinder 2. Etc. are detected.

このように構成される内燃機関1においては、主にNOx触媒14によって排気の浄化が行われる。NOx触媒14においては、排気の空燃比がリーン状態であるとき排気中のNOxがその内部に吸蔵され、排気の空燃比がリッチ状態となり且つ還元剤(燃料添加弁17から添加された燃料)が存在する状態では、吸蔵されたNOxを還元、浄化するべく機能する。ここで、NOx触媒14には排気中のSOxもNOxと同様に吸蔵される。そして、このSOx吸蔵量が増加しSOx被毒状態となると、NOx触媒14によるNOx浄化能力が低下するため、吸蔵されたSOxをNOx触媒14から放出させてNOx触媒14のNOx浄化能力を回復させる必要がある。   In the internal combustion engine 1 configured as described above, exhaust gas purification is mainly performed by the NOx catalyst 14. In the NOx catalyst 14, when the air-fuel ratio of the exhaust is in a lean state, NOx in the exhaust is occluded therein, the exhaust air-fuel ratio becomes rich, and the reducing agent (fuel added from the fuel addition valve 17) is supplied. In the existing state, it functions to reduce and purify the stored NOx. Here, SOx in the exhaust gas is also stored in the NOx catalyst 14 in the same manner as NOx. When the SOx occlusion amount increases and the SOx poisoning state is reached, the NOx purification ability of the NOx catalyst 14 decreases, so the stored SOx is released from the NOx catalyst 14 to restore the NOx purification ability of the NOx catalyst 14. There is a need.

しかし、このSOx被毒状態からの回復を行う際、吸蔵されたSOxが還元剤と反応し硫化水素が発生する場合があり、悪臭が顕著となる虞がある。そこで、SOx被毒状態からの回復時における悪臭が顕著となるのを抑制するために、図2に示す排気流量制御を行う。尚、本実施例における排気流量制御は、内燃機関1がアイドル運転状態にあるときに、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。   However, when recovering from this SOx poisoning state, the stored SOx may react with the reducing agent to generate hydrogen sulfide, which may cause a bad odor. Therefore, the exhaust gas flow rate control shown in FIG. 2 is performed in order to suppress the odor from becoming prominent during recovery from the SOx poisoning state. The exhaust flow rate control in the present embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle when the internal combustion engine 1 is in an idle operation state.

S101では、NOx触媒14のSOx被毒状態を解消すべく、SOx被毒回復制御が開始される。具体的には、燃料噴射弁3の燃料噴射量、燃料噴射時期を調整して排気温度を上昇させるとともに、燃料添加弁17から排気中に燃料を添加する。これにより、NOx触媒14に吸蔵されていたSOxが放出されるとともに、SOxが還元されて硫化水素が発生し始める。S101の処理が終了すると、S102へ進む。   In S101, SOx poisoning recovery control is started to eliminate the SOx poisoning state of the NOx catalyst 14. Specifically, the fuel injection amount and fuel injection timing of the fuel injection valve 3 are adjusted to raise the exhaust gas temperature, and the fuel is added from the fuel addition valve 17 into the exhaust gas. As a result, the SOx stored in the NOx catalyst 14 is released and the SOx is reduced to start generating hydrogen sulfide. When the process of S101 ends, the process proceeds to S102.

S102では、NOx触媒14のSOx被毒回復制御が行われている際のアイドル回転速度が算出される。ここで、図3に示すように、NOx触媒14に吸蔵されているSOx量が多くなるに従い、SOx被毒回復制御時に放出されるSOx量が多くなるため、排気中の硫黄分の濃度は高くなる。排気中の硫黄分濃度が高くなると硫化水素の発生量も増加し悪臭がより顕著となる。   In S102, the idle rotation speed when the SOx poisoning recovery control of the NOx catalyst 14 is being performed is calculated. Here, as shown in FIG. 3, as the amount of SOx stored in the NOx catalyst 14 increases, the amount of SOx released during the SOx poisoning recovery control increases, so the concentration of sulfur in the exhaust is high. Become. As the sulfur concentration in the exhaust gas increases, the amount of hydrogen sulfide generated increases and the odor becomes more prominent.

そこで、S102では、NOx触媒14に吸蔵されているSOx量に従って、アイドル回転速度が算出される。アイドル回転速度が高くなるに従い、NOx触媒14に流れ込む排気流量は増加するため、NOx触媒14に吸蔵されているSOx量が多いほど、SOx被毒回復制御が行われている際のアイドル回転速度としてより高い回転速度が算出される。このようにすることで、排気中の硫黄分の濃度が上昇するのを抑制することが可能となる。   Therefore, in S102, the idle rotation speed is calculated according to the amount of SOx stored in the NOx catalyst 14. As the idle rotation speed increases, the exhaust flow rate flowing into the NOx catalyst 14 increases. Therefore, as the amount of SOx stored in the NOx catalyst 14 increases, the idle rotation speed when the SOx poisoning recovery control is performed is set as the idle rotation speed. A higher rotation speed is calculated. By doing in this way, it becomes possible to suppress that the density | concentration of the sulfur content in exhaust_gas | exhaustion raises.

尚、SOx吸蔵量の算出については、内燃機関1において消費された燃料量を考慮するとともに、S101で開始されたSOx被毒回復制御によって放出されたSOx量をも考慮する。S102の処理が終了すると、S103へ進む。   The calculation of the SOx occlusion amount takes into account the amount of fuel consumed in the internal combustion engine 1 and also the amount of SOx released by the SOx poisoning recovery control started in S101. When the process of S102 ends, the process proceeds to S103.

S103では、S102で算出されたSOx被毒回復制御時のアイドル回転数に内燃機関1の機関回転速度がなるべく、燃料噴射弁3からの燃料噴射量が調整され、アイドル回転速度が変更される。S103の処理が終了すると、S104へ進む。   In S103, the fuel injection amount from the fuel injection valve 3 is adjusted to change the idle rotation speed so that the engine rotation speed of the internal combustion engine 1 is as much as possible to the idle rotation speed in the SOx poisoning recovery control calculated in S102. When the process of S103 ends, the process proceeds to S104.

S104では、NOx触媒14のSOx被毒回復が終了したか否かが判定される。具体的には、NOx触媒14に吸蔵されているSOx量が所定量より少なくなった場合にSOx被毒回復が終了したと判定される。SOx被毒回復が終了したと判定されるとS105へ進み、SOx被毒回復が終了していないと判定されるとS102以降の処理が再び行われる。   In S104, it is determined whether the SOx poisoning recovery of the NOx catalyst 14 is completed. Specifically, when the amount of SOx stored in the NOx catalyst 14 is less than a predetermined amount, it is determined that the SOx poisoning recovery is completed. If it is determined that the SOx poisoning recovery is completed, the process proceeds to S105, and if it is determined that the SOx poisoning recovery is not completed, the processes after S102 are performed again.

S105では、NOx触媒14のSOx被毒回復制御が終了したことで、硫化水素の発生が中断されることをもって、内燃機関1のアイドル回転速度を、SOx被毒回復制御が開始される前の回転速度である通常アイドル回転速度に設定し直す。S105の処理後、本制御を終了する。   In S105, when the SOx poisoning recovery control of the NOx catalyst 14 is completed, the generation of hydrogen sulfide is interrupted, so that the idle rotation speed of the internal combustion engine 1 is changed to the rotation before the SOx poisoning recovery control is started. Reset to normal idle speed, which is the speed. After the process of S105, this control is terminated.

本制御によると、NOx触媒14のSOx被毒回復制御時に発生する硫黄分量に応じて、アイドル回転速度を介して排気流量が調整される。その結果、NOx触媒14から流れ出す排気中の硫黄分の濃度(硫化水素濃度)は比較的低い値に保たれ、悪臭が顕著となることが回避される。   According to this control, the exhaust gas flow rate is adjusted via the idle rotation speed in accordance with the sulfur content generated during the SOx poisoning recovery control of the NOx catalyst 14. As a result, the concentration of sulfur content (hydrogen sulfide concentration) in the exhaust gas flowing out from the NOx catalyst 14 is kept at a relatively low value, and it is avoided that the bad odor becomes prominent.

NOx触媒14のSOx被毒回復時に悪臭が顕著となるのを回避するための排気流量制御の第二の実施例について、図4および図5に基づいて説明する。図4には、排気流量制御に関するフローチャートを示す。図5には、図4の排気流量制御が行われるときの、排気流量の推移(図5(a)に示す。)、排気中の硫黄分濃度の推移(図5(b)に示す。)、NOx触媒14のSOx吸蔵量の推移(図5(c)に示す。)、排気の空燃比の推移(図5(d)に示す。)をそれぞれ示す。この排気流量制御は、ECU20によって行われる制御である。   A second embodiment of the exhaust gas flow rate control for avoiding a noticeable bad odor at the time of recovery of SOx poisoning of the NOx catalyst 14 will be described based on FIG. 4 and FIG. FIG. 4 shows a flowchart regarding the exhaust flow rate control. FIG. 5 shows changes in the exhaust flow rate (shown in FIG. 5A) and changes in the sulfur concentration in the exhaust (shown in FIG. 5B) when the exhaust flow control of FIG. 4 is performed. , The transition of the SOx occlusion amount of the NOx catalyst 14 (shown in FIG. 5C) and the transition of the exhaust air-fuel ratio (shown in FIG. 5D) are shown. This exhaust flow rate control is a control performed by the ECU 20.

S201では、NOx触媒14のSOx被毒状態を解消すべく、SOx被毒回復制御が開始される。具体的には、燃料噴射弁3の燃料噴射量、燃料噴射時期を調整して排気温度を上昇させるとともに、燃料添加弁17から排気中に燃料を添加する。その際、NOx触媒14の過度の昇温を回避するために、燃料添加弁17からの添加量等を調整し、NOx触媒14に流入する排気の空燃比がリッチ側の空燃比とリーン側の空燃比に交互になる、いわゆるリッチスパイク制御が行われる。リッチスパイク制御による排気の空燃比の推移が図5(d)に示されている。   In S201, SOx poisoning recovery control is started to eliminate the SOx poisoning state of the NOx catalyst 14. Specifically, the fuel injection amount and fuel injection timing of the fuel injection valve 3 are adjusted to raise the exhaust gas temperature, and the fuel is added from the fuel addition valve 17 into the exhaust gas. At that time, in order to avoid an excessive temperature rise of the NOx catalyst 14, the amount of addition from the fuel addition valve 17 is adjusted, and the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 14 is set to the rich-side air-fuel ratio and the lean-side air-fuel ratio. So-called rich spike control, which alternates with the air-fuel ratio, is performed. The transition of the air-fuel ratio of the exhaust by rich spike control is shown in FIG.

そして、排気の空燃比がリッチ側の空燃比とされるときに、主にNOx触媒14に吸蔵されていたSOxが放出されるとともに、SOxが還元されて硫化水素が発生し始める。従って、図5(b)に示すように、NOx触媒14から流出する排気中の硫黄分濃度は、排気の空燃比がリッチ側の空燃比とされると徐々に増加していく。それと同時に、図5(c)に示すように、排気の空燃比がリッチ側の空燃比とされるとNOx触媒14に吸蔵されているSOx量が減少することになる。S201の処理が終了すると、S202へ進む。   When the air-fuel ratio of the exhaust gas is set to the rich-side air-fuel ratio, SOx stored mainly in the NOx catalyst 14 is released and SOx is reduced and hydrogen sulfide begins to be generated. Accordingly, as shown in FIG. 5B, the sulfur concentration in the exhaust gas flowing out from the NOx catalyst 14 gradually increases when the air-fuel ratio of the exhaust gas is made rich. At the same time, as shown in FIG. 5 (c), when the air-fuel ratio of the exhaust is made rich, the amount of SOx stored in the NOx catalyst 14 is reduced. When the process of S201 ends, the process proceeds to S202.

S202では、SOx被毒回復制御のリッチスパイク制御において、NOx触媒14に流入する排気の空燃比をリッチ側空燃比とする期間であるか否かが判定される。該判定においてリッチ側空燃比とする期間であると判定されるとS203へ進み、リッチ側空燃比とする期間でないと判定されるとS205へ進む。   In S202, it is determined in the rich spike control of the SOx poisoning recovery control whether or not it is a period during which the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 14 is set to the rich air-fuel ratio. If it is determined in this determination that the period is the rich side air-fuel ratio, the process proceeds to S203, and if it is determined that the period is not the rich side air-fuel ratio, the process proceeds to S205.

S203では、NOx触媒14に流入する排気の空燃比をリッチ側空燃比とすべく、いわゆる低温燃焼が行われるとともに、燃料添加弁17からの燃料添加が行われる。低温燃焼では、EGR装置21によるEGRガス量を増大させることで燃焼前後の排気中の酸素濃度を低下させる。これとともに燃料添加弁17からの燃料添加により、排気の空燃比がリッチ側空燃比となる。S203の処理が終了すると、S204へ進む。   In S203, so-called low-temperature combustion is performed and fuel is added from the fuel addition valve 17 so that the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 14 is the rich air-fuel ratio. In low-temperature combustion, the oxygen concentration in the exhaust before and after combustion is lowered by increasing the amount of EGR gas by the EGR device 21. At the same time, the fuel addition from the fuel addition valve 17 causes the air-fuel ratio of the exhaust to become the rich side air-fuel ratio. When the process of S203 ends, the process proceeds to S204.

S205では、NOx触媒14に流入する排気の空燃比をリーン側空燃比とする高温、高排気流量燃焼が行われる。具体的には、燃料噴射時期を遅角側に移行するとともに、吸気絞り弁10の開度を閉じ側に変更する。これにより排気温度を上昇させるとともにEGR弁24の開度を閉じ側に変更して排気流量を増量する。従って、図5(a)に示すように、この高温、高排気流量燃焼が行われる間は、S203での低温燃焼が行われているときと比べて、排気流量が増大する。尚、NOx触媒14からのSOx放出量は徐々に減少することに併せて、高温、高排気流量燃焼時の排気流量も徐々に減少されていく。S205の処理が終了すると、S204へ進む。   In S205, high-temperature, high exhaust flow combustion is performed with the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 14 as the lean air-fuel ratio. Specifically, the fuel injection timing is shifted to the retard side, and the opening of the intake throttle valve 10 is changed to the closed side. As a result, the exhaust gas temperature is raised and the opening of the EGR valve 24 is changed to the closed side to increase the exhaust gas flow rate. Therefore, as shown in FIG. 5A, the exhaust flow rate increases during the high temperature, high exhaust flow rate combustion as compared with the low temperature combustion in S203. In addition, the exhaust gas flow rate at the time of high temperature and high exhaust gas flow combustion is gradually decreased in conjunction with the gradual decrease in the SOx release amount from the NOx catalyst 14. When the processing of S205 ends, the process proceeds to S204.

S204では、上述したS104と同様に、NOx触媒14のSOx被毒回復が終了したか否かが判定される。SOx被毒回復が終了したと判定されると本制御を終了し、SOx被毒回復が終了していないと判定されるとS202以降の処理が再び行われる。   In S204, as in S104 described above, it is determined whether or not the SOx poisoning recovery of the NOx catalyst 14 has been completed. If it is determined that the SOx poisoning recovery has been completed, the present control is terminated. If it is determined that the SOx poisoning recovery has not been completed, the processing from S202 is performed again.

本制御によると、SOx被毒回復制御において、NOx触媒14に流入する排気の空燃比がリーン側の空燃比とされるとき、即ち、NOx触媒14から放出される硫黄分量が少ないときに積極的に排気流量が増量される。これによって、NOx触媒14に流入する排気の空燃比がリッチ側の空燃比とされるときを含めたSOx被毒回復制御全体での、平均的な排気中の硫黄分濃度を低下させることが可能となり、以て硫黄分による悪臭が顕著となるのが回避され得る。   According to this control, in the SOx poisoning recovery control, when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 14 is set to the lean air-fuel ratio, that is, when the amount of sulfur released from the NOx catalyst 14 is small, The exhaust flow rate is increased. As a result, it is possible to reduce the average sulfur concentration in the exhaust gas in the entire SOx poisoning recovery control including when the air-fuel ratio of the exhaust gas flowing into the NOx catalyst 14 is set to the rich air-fuel ratio. Thus, it can be avoided that the bad odor due to the sulfur content becomes prominent.

本発明の実施例に係る内燃機関の排気浄化システムが適用される内燃機関およびその制御系統の概略構成を表す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an exhaust gas purification system for an internal combustion engine according to an embodiment of the present invention is applied and a control system thereof. 本発明の実施例1に係る内燃機関の排気浄化システムにおいて行われる排気流量制御のフローチャートである。It is a flowchart of the exhaust gas flow rate control performed in the exhaust gas purification system of the internal combustion engine which concerns on Example 1 of this invention. 本発明の実施例に係る内燃機関の排気浄化システムにおいてSOx被毒回復制御が行われる際の、NOx触媒のSOx吸蔵量と排気中の硫黄分濃度との関係を示す図である。It is a figure which shows the relationship between the SOx occlusion amount of a NOx catalyst, and the sulfur content density | concentration in exhaust_gas | exhaustion at the time of SOx poisoning recovery control being performed in the exhaust gas purification system of the internal combustion engine which concerns on the Example of this invention. 本発明の実施例2に係る内燃機関の排気浄化システムにおいて行われる排気流量制御のフローチャートである。It is a flowchart of the exhaust flow control performed in the exhaust gas purification system of the internal combustion engine which concerns on Example 2 of this invention. 図4に示す排気流量制御が行われる際の、排気流量、排気中の硫黄分濃度、NOx触媒のSOx吸蔵量、排気の空燃比の変動を示す図である。FIG. 5 is a diagram showing fluctuations in the exhaust gas flow rate, the sulfur concentration in the exhaust gas, the SOx occlusion amount of the NOx catalyst, and the air-fuel ratio of the exhaust gas when the exhaust gas flow rate control shown in FIG. 4 is performed.

符号の説明Explanation of symbols

1・・・・内燃機関
3・・・・燃料噴射弁
7・・・・吸気枝管
10・・・・吸気絞り弁
11・・・・吸気絞り用アクチュエータ
12・・・・排気枝管
13・・・・排気管
14・・・・吸蔵還元型NOx触媒(NOx触媒)
17・・・・燃料添加弁
20・・・・ECU
21・・・・EGR装置
24・・・・EGR弁
DESCRIPTION OF SYMBOLS 1 .... Internal combustion engine 3 .... Fuel injection valve 7 .... Intake branch pipe 10 .... Intake throttle valve 11 .... Intake throttle actuator 12 .... Exhaust branch pipe 13. ... Exhaust pipe 14 ... Occlusion reduction type NOx catalyst (NOx catalyst)
17 ... Fuel addition valve 20 ... ECU
21 ... EGR device 24 ... EGR valve

Claims (4)

内燃機関の排気通路に設けられた吸蔵還元型NOx触媒と、
前記吸蔵還元型NOx触媒のSOx被毒を回復させるSOx被毒回復手段と、
前記SOx被毒回復手段によって前記吸蔵還元型NOx触媒のSOx被毒回復が実行されるときの、該吸蔵還元型NOx触媒から流出する排気中の硫黄分の濃度を推定し、又は検出する硫黄濃度推定手段と、
前記硫黄濃度推定手段によって推定され、又は検出される排気中の硫黄分の濃度が高くなるに従い、前記吸蔵還元型NOx触媒に流入する排気流量を増大させる排気流量調整手段と、
を備えることを特徴とする内燃機関の排気浄化システム。
An NOx storage reduction catalyst provided in the exhaust passage of the internal combustion engine;
SOx poisoning recovery means for recovering SOx poisoning of the NOx storage reduction catalyst;
Sulfur concentration that estimates or detects the concentration of sulfur in the exhaust gas flowing out from the NOx storage reduction catalyst when SOx poisoning recovery of the NOx storage reduction catalyst is executed by the SOx poisoning recovery means An estimation means;
An exhaust flow rate adjusting means for increasing the exhaust flow rate flowing into the NOx storage reduction catalyst as the sulfur concentration in the exhaust gas estimated or detected by the sulfur concentration estimating means increases;
An exhaust gas purification system for an internal combustion engine, comprising:
前記硫黄濃度推定手段は、前記吸蔵還元型NOx触媒のSOx吸蔵量が多いほど排気中の硫黄分の濃度は高いと推定することを特徴とする請求項1に記載の内燃機関の排気浄化システム。   2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the sulfur concentration estimating means estimates that the concentration of sulfur in the exhaust gas is higher as the SOx storage amount of the NOx storage reduction catalyst is larger. 前記SOx被毒回復手段による前記吸蔵還元型NOx触媒のSOx被毒回復がアイドル運転時に実行される場合、前記排気流量調整手段は、前記硫黄濃度推定手段によって推定され、又は検出される排気中の硫黄分の濃度が高くなるに従いアイドル回転速度を増加させることで、該吸蔵還元型NOx触媒に流入する排気流量を増大させることを特徴とする請求項1又は請求項2に記載の内燃機関の排気浄化システム。   When SOx poisoning recovery of the NOx storage reduction catalyst by the SOx poisoning recovery means is executed during idle operation, the exhaust flow rate adjusting means is estimated or detected by the sulfur concentration estimation means in the exhaust gas. 3. The exhaust gas of an internal combustion engine according to claim 1, wherein the exhaust flow rate flowing into the NOx storage reduction catalyst is increased by increasing the idle rotation speed as the concentration of sulfur increases. 4. Purification system. 前記SOx被毒回復手段は、前記吸蔵還元型NOx触媒を昇温させるとともに該吸蔵還元型NOx触媒に流入する排気の空燃比をリーン側の空燃比とリッチ側の空燃比に交互に切り替えることで、該吸蔵還元型NOx触媒のSOx被毒を回復させる場合、前記排気流量調整手段は、該吸蔵還元型NOx触媒に流入する排気の空燃比が前記リーン側空燃比とされるときに該吸蔵還元型NOx触媒に流入する排気流量を増大させることを特徴とする請求項1から請求項3のいずれかに記載の内燃機関の排気浄化システム。   The SOx poisoning recovery means raises the temperature of the NOx storage reduction catalyst and alternately switches the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst between a lean air-fuel ratio and a rich air-fuel ratio. When the SOx poisoning of the NOx storage reduction catalyst is recovered, the exhaust flow rate adjusting means is configured to reduce the storage reduction when the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is the lean air-fuel ratio. The exhaust gas purification system for an internal combustion engine according to any one of claims 1 to 3, wherein an exhaust flow rate flowing into the NOx catalyst is increased.
JP2004353079A 2004-12-06 2004-12-06 Exhaust gas purification system for internal combustion engine Expired - Fee Related JP4406353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353079A JP4406353B2 (en) 2004-12-06 2004-12-06 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353079A JP4406353B2 (en) 2004-12-06 2004-12-06 Exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006161647A JP2006161647A (en) 2006-06-22
JP4406353B2 true JP4406353B2 (en) 2010-01-27

Family

ID=36663947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353079A Expired - Fee Related JP4406353B2 (en) 2004-12-06 2004-12-06 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4406353B2 (en)

Also Published As

Publication number Publication date
JP2006161647A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP4713147B2 (en) Engine control device
JP2006322364A (en) Exhaust emission control system of internal combustion engine
JP4572709B2 (en) Exhaust gas purification system for internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP5045339B2 (en) Exhaust gas purification system for internal combustion engine
JP4857957B2 (en) Engine control device
JP2007239493A (en) Internal combustion engine with supercharger
JP4345344B2 (en) Exhaust gas purification system for internal combustion engine
EP1515029B1 (en) Exhaust purification system of an internal combustion engine
JP4406353B2 (en) Exhaust gas purification system for internal combustion engine
JP2019105267A (en) Internal combustion engine
JP5263249B2 (en) Variable valve timing control device for an internal combustion engine with a supercharger
JP2008069740A (en) Internal combustion engine
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP4631680B2 (en) Exhaust gas purification device for internal combustion engine
JP3807209B2 (en) Operation control device for internal combustion engine
JPH10196381A (en) Control device of internal combustion engine mounted with variable nozzle type turbocharger
KR20180067898A (en) Method for reducing exhaust gas of engine in case of controlling scavenging
JP4367011B2 (en) Exhaust gas purification system for internal combustion engine
JP4433945B2 (en) Exhaust gas purification system for internal combustion engine
JP4341317B2 (en) Exhaust gas purification system for internal combustion engine
JP2005163548A (en) Control device for internal combustion engine
JP2008038806A (en) Exhaust emission control device of internal combustion engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine
JP6179561B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees