JP2008038806A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008038806A
JP2008038806A JP2006215749A JP2006215749A JP2008038806A JP 2008038806 A JP2008038806 A JP 2008038806A JP 2006215749 A JP2006215749 A JP 2006215749A JP 2006215749 A JP2006215749 A JP 2006215749A JP 2008038806 A JP2008038806 A JP 2008038806A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
sulfur poisoning
cylinder
poisoning recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006215749A
Other languages
Japanese (ja)
Inventor
Masaaki Sato
正明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006215749A priority Critical patent/JP2008038806A/en
Priority to PCT/IB2007/002274 priority patent/WO2008017930A1/en
Publication of JP2008038806A publication Critical patent/JP2008038806A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • F01L2013/001Deactivating cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of recovering sulfur poisoning of a storage reduction-type NOx catalyst in an exhaust emission control device of an internal combustion engine, even when load of the internal combustion engine is low. <P>SOLUTION: In the exhaust emission control device of the internal combustion engine having a plurality of cylinders, and being capable of performing a cylinder cut-off operation for cutting off the number of cylinders to be combusted, the device includes the storage reduction-type NOx catalyst storing NOx and reducing the stored NOx by a reducing agent, a means for recovering sulfur poisoning performing the cylinder cut-off operation when performing recovering sulfur poisoning of the storage reduction-type NOx catalyst (S103). By the cylinder cut-off operation, in a cylinder in which fuel is combusted, a fuel supply rate increases and combustion gas with high temperature and a low air-fuel ratio is discharged, thereby a temperature fall of the storage reduction-type NOx catalyst can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排気通路に吸蔵還元型NOx触媒(以下、単にNOx触媒という。)を配置する技術が知られている。このNOx触媒は、流入する排気の酸素濃度が高いときに排気中
のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときに吸蔵し
ていたNOxを還元する。
A technique is known in which an NOx storage reduction catalyst (hereinafter simply referred to as a NOx catalyst) is disposed in an exhaust passage of an internal combustion engine. This NOx catalyst occludes NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and reduces the NOx occluded when the oxygen concentration of the inflowing exhaust gas decreases and a reducing agent is present.

ところで、NOx触媒には燃料に含まれる硫黄成分もNOxと同様に吸蔵される。このように吸蔵された硫黄成分はNOxよりも放出されにくく、NOx触媒内に蓄積される。これを硫黄被毒という。この硫黄被毒によりNOx触媒でのNOx浄化率が低下するため、適宜の時期に硫黄被毒から回復させる硫黄被毒回復処理を施す必要がある。この硫黄被毒回復処理は、NOx触媒を高温にし、且つ理論空燃比またはリッチ空燃比の排気をNOx触媒に流通させて行われる。   By the way, the sulfur component contained in the fuel is occluded in the NOx catalyst in the same manner as NOx. The sulfur component occluded in this way is less likely to be released than NOx and accumulates in the NOx catalyst. This is called sulfur poisoning. Since the NOx purification rate of the NOx catalyst is reduced by this sulfur poisoning, it is necessary to perform a sulfur poisoning recovery process for recovering from sulfur poisoning at an appropriate time. This sulfur poisoning recovery process is performed by raising the temperature of the NOx catalyst and flowing exhaust gas having a stoichiometric or rich air-fuel ratio to the NOx catalyst.

ここで、V型エンジンにおいて、硫黄被毒回復時に一方のバンクの気筒への空燃比をリッチ化又は理論空燃比化させ、他方のバンクの気筒への空燃比をリーン化するように制御を行なう技術が知られている(例えば、特許文献1参照。)。   Here, in the V-type engine, when sulfur poisoning is recovered, control is performed so that the air-fuel ratio to the cylinder of one bank is made rich or the stoichiometric air-fuel ratio and the air-fuel ratio to the cylinder of the other bank is made lean. A technique is known (for example, refer to Patent Document 1).

この技術によれば、一方のバンクの気筒からの排気中に未燃物質が発生し、この未燃物質により、吸蔵還元型NOx触媒から放出された硫黄成分が還元される。また、このとき
には、他方のバンクのリーン運転により、内燃機関全体の燃料消費が抑制されることになり、内燃機関全体の燃料消費を抑制しながら硫黄被毒回復処理を行なうことができる。
特開平9−291814号公報 特開平8−61052号公報 特開平8−189388号公報
According to this technique, an unburned substance is generated in the exhaust gas from the cylinder of one bank, and the sulfur component released from the NOx storage reduction catalyst is reduced by the unburned substance. At this time, the lean operation of the other bank suppresses the fuel consumption of the entire internal combustion engine, and the sulfur poisoning recovery process can be performed while suppressing the fuel consumption of the entire internal combustion engine.
Japanese Patent Laid-Open No. 9-291814 JP-A-8-61052 JP-A-8-189388

しかし、硫黄被毒回復は、高温及び低空燃比が必要となり、且つ数分間NOx触媒の雰
囲気をこの状態で維持しなくてはならない。ここで、内燃機関の負荷が低いと、該内燃機関から排出される排気の温度が低く且つ排気の空燃比はリーンとなる。このような運転状態では、硫黄被毒回復を断念せざるを得なかった。
However, recovery from sulfur poisoning requires high temperatures and low air-fuel ratios, and the NOx catalyst atmosphere must be maintained in this state for several minutes. Here, when the load on the internal combustion engine is low, the temperature of the exhaust gas discharged from the internal combustion engine is low and the air-fuel ratio of the exhaust gas becomes lean. Under such operating conditions, recovery from sulfur poisoning had to be abandoned.

また、内燃機関の負荷が比較的高い状態で硫黄被毒回復を開始しても、途中で負荷が低くなると該硫黄被毒回復を継続させることが困難となる。このような場合に硫黄被毒回復処理を中止すると、再度硫黄被毒回復処理を行なう必要があるため、燃料の消費量が多くなり燃費が悪化する。さらに、長期間硫黄被毒回復処理を実行できなければNOxの浄化
率が低下してしまう。
Further, even if the sulfur poisoning recovery is started in a state where the load of the internal combustion engine is relatively high, it becomes difficult to continue the sulfur poisoning recovery if the load becomes low on the way. If the sulfur poisoning recovery process is stopped in such a case, it is necessary to perform the sulfur poisoning recovery process again, so that the amount of fuel consumption increases and the fuel consumption deteriorates. Furthermore, if the sulfur poisoning recovery process cannot be executed for a long period of time, the NOx purification rate will decrease.

本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気浄化装置において、内燃機関の負荷が低い場合であっても吸蔵還元型NOx触媒の硫黄被毒を回
復させることができる技術を提供することを目的とする。
The present invention has been made in view of the above problems, and in an exhaust purification device for an internal combustion engine, even when the load on the internal combustion engine is low, the sulfur poisoning of the NOx storage reduction catalyst is recovered. The purpose is to provide technology that can be used.

上記課題を達成するために本発明による内燃機関の排気浄化装置は、以下の手段を採用
した。すなわち、本発明による内燃機関の排気浄化装置は、
複数の気筒を有し且つ燃料を燃焼させる気筒を減少させる減筒運転を行うことが可能な内燃機関の排気浄化装置において、
NOxを吸蔵し且つ吸蔵していたNOxが還元剤により還元される吸蔵還元型NOx触媒
と、
前記吸蔵還元型NOx触媒の硫黄被毒回復を行うときに前記減筒運転を行なう硫黄被毒
回復手段と、
を備えることを特徴とする。
In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention employs the following means. That is, the exhaust gas purification apparatus for an internal combustion engine according to the present invention is
In an exhaust emission control device for an internal combustion engine that has a plurality of cylinders and is capable of performing a reduced-cylinder operation that reduces a cylinder that burns fuel,
A NOx storage reduction catalyst in which NOx is stored and NOx stored is reduced by a reducing agent;
Sulfur poisoning recovery means for performing the reduced cylinder operation when performing sulfur poisoning recovery of the NOx storage reduction catalyst;
It is characterized by providing.

ここで、前記内燃機関は、全ての気筒において燃料を燃焼させること(全気筒運転)も、任意の気筒での燃料の燃焼を停止させ残りの気筒で燃料を燃焼させること(減筒運転)も可能な内燃機関である。   Here, the internal combustion engine burns fuel in all cylinders (all cylinder operation), or stops combustion of fuel in any cylinder and burns fuel in the remaining cylinders (reduced cylinder operation). It is a possible internal combustion engine.

ここで、減筒運転を行うと、燃料の燃焼を停止させている気筒(以下、停止気筒という。)からはトルクが発生しないため、内燃機関全体から発生するトルクが減少する。これに対し、燃料を燃焼させている気筒(以下、燃焼気筒という。)で発生するトルクを増加させることで、内燃機関全体としてトルクの減少を無くすことができる。そして、より多くの燃料を燃焼気筒に供給することにより、該燃焼気筒で発生するトルクを増加させることができる。つまり、停止気筒のトルク減少分を、燃焼気筒で補うことができる。例えば、減筒運転を行なうことにより内燃機関全体としてトルクが減少すると、運転者はアクセルペダルを踏み込むため、燃焼気筒への燃料供給量が増加される。   Here, when the reduced-cylinder operation is performed, no torque is generated from a cylinder that stops the combustion of fuel (hereinafter referred to as a stopped cylinder), and therefore the torque generated from the entire internal combustion engine is reduced. In contrast, by increasing the torque generated in the cylinder burning the fuel (hereinafter referred to as the combustion cylinder), it is possible to eliminate the decrease in the torque of the entire internal combustion engine. By supplying more fuel to the combustion cylinder, the torque generated in the combustion cylinder can be increased. That is, the reduction in torque of the stopped cylinder can be supplemented by the combustion cylinder. For example, when the torque of the internal combustion engine as a whole is reduced by performing the reduced cylinder operation, the driver depresses the accelerator pedal, so that the amount of fuel supplied to the combustion cylinder is increased.

このように、より多くの燃料を燃焼気筒へ供給することにより、該燃焼気筒における空燃比は低下し、燃焼温度は上昇する。すなわち、排気の空燃比および温度を、硫黄被毒回復に適した状態に近づけることができる。これにより、硫黄被毒の回復を実行可能な運転領域を広げることができるため、燃費の悪化を抑制することができる。   In this way, by supplying more fuel to the combustion cylinder, the air-fuel ratio in the combustion cylinder is lowered and the combustion temperature is raised. That is, the air-fuel ratio and temperature of the exhaust can be brought close to a state suitable for sulfur poisoning recovery. Thereby, since the driving | operation area | region which can perform recovery | restoration of sulfur poisoning can be expanded, the deterioration of a fuel consumption can be suppressed.

なお、前記硫黄被毒回復手段は、内燃機関から排出される排気の温度および排気の空燃比が、前記吸蔵還元型NOx触媒の硫黄被毒回復に必要な状態となるように減筒気筒の数
を決定してもよい。
The sulfur poisoning recovery means includes a number of reduced cylinders so that the temperature of the exhaust gas discharged from the internal combustion engine and the air-fuel ratio of the exhaust gas are in a state necessary for recovery of sulfur poisoning of the NOx storage reduction catalyst. May be determined.

本発明においては、前記内燃機関は、クランクアングル90度間隔で少なくとも1回連続して燃焼を行うV型8気筒内燃機関であり、
前記硫黄被毒回復手段は、硫黄被毒回復を行なうときにクランクアングル180度間隔で燃焼を行なうように、半分の気筒の燃焼を停止させることができる。
In the present invention, the internal combustion engine is a V-type 8-cylinder internal combustion engine that performs continuous combustion at least once at intervals of 90 degrees of crank angle.
The sulfur poisoning recovery means can stop the combustion in half of the cylinders so that combustion is performed at intervals of 180 degrees of crank angle when recovery from sulfur poisoning is performed.

V型8気筒内燃機関等の大排気量機関では、小排気量機関と比較して、最大発生トルクが大きいために、より低負荷で使用されることが多い。そのため、リーン空燃比で運転されることが多い。したがって、大排気量機関では、小排気量機関よりも、硫黄被毒回復処理を行なうことが困難な場合が多い。   A large displacement engine such as a V-type 8-cylinder internal combustion engine is often used at a lower load because the maximum generated torque is larger than that of a small displacement engine. Therefore, it is often operated with a lean air-fuel ratio. Therefore, it is often more difficult for a large displacement engine to perform a sulfur poisoning recovery process than a small displacement engine.

ここで、クランクアングル90度間隔で少なくとも1回連続して燃焼を行うV型8気筒内燃機関では、燃料の燃焼を1気筒おきに停止させても安定した運転が可能である。つまり、1気筒おきに燃焼させても、等間隔で燃料を燃焼させることができるため、運転状態が安定する。すなわち、クランクアングル180度間隔で燃焼を行なうことで、硫黄被毒回復時に高温且つ低空燃比とすることが容易に可能となる。これにより、大排気量機関であっても、低負荷時に硫黄被毒回復処理を実施することができる。なお、V型8気筒以外の内燃機関であっても、等間隔で燃料を燃焼させることが可能であれば、V型8気筒の場合と同様に安定な運転が可能である。   Here, in a V-type 8-cylinder internal combustion engine that continuously burns at least once at crank angle intervals of 90 degrees, stable operation is possible even if fuel combustion is stopped every other cylinder. That is, even if combustion is performed every other cylinder, fuel can be combusted at equal intervals, so that the operation state is stabilized. That is, by performing combustion at intervals of a crank angle of 180 degrees, it is possible to easily achieve a high temperature and a low air-fuel ratio when recovering sulfur poisoning. Thereby, even if it is a large displacement engine, a sulfur poisoning recovery process can be implemented at the time of low load. In addition, even in an internal combustion engine other than the V-type 8-cylinder, stable operation is possible as in the case of the V-type 8-cylinder as long as fuel can be burned at equal intervals.

本発明においては、排気弁を閉じたままとすることが可能な可変動弁機構を更に備え、前記硫黄被毒回復手段により硫黄被毒の回復が行なわれるときに、燃料の燃焼が停止される気筒の排気弁を閉じたままとすることができる。   In the present invention, a variable valve mechanism that can keep the exhaust valve closed is further provided, and when the sulfur poisoning recovery is performed by the sulfur poisoning recovery means, fuel combustion is stopped. The cylinder exhaust valve can remain closed.

停止気筒で通常と同じように排気弁を開閉させると、燃焼しないままの空気が排気通路へ排出されることになる。このような空気が、燃焼気筒からの排気と混ざると、燃焼気筒からの排気の空燃比を上昇させてしまう。すなわち、燃焼気筒でせっかく低下させた排気の空燃比が、停止気筒からの排気により上昇されるので、吸蔵還元型NOx触媒に到達す
る排気の空燃比が高くなってしまう。また、停止気筒からの排気は燃焼していないため温度が低い。したがって、停止気筒からの排気は、吸蔵還元型NOx触媒に到達する排気の
温度を低下させてしまう。
When the exhaust valve is opened and closed as usual in the stopped cylinder, air that is not burned is discharged into the exhaust passage. When such air is mixed with the exhaust from the combustion cylinder, the air-fuel ratio of the exhaust from the combustion cylinder is increased. That is, since the air-fuel ratio of the exhaust gas that has been reduced by the combustion cylinder is increased by the exhaust gas from the stopped cylinder, the air-fuel ratio of the exhaust gas that reaches the NOx storage reduction catalyst becomes high. Further, since the exhaust from the stopped cylinder is not combusted, the temperature is low. Therefore, the exhaust from the stopped cylinder lowers the temperature of the exhaust that reaches the NOx storage reduction catalyst.

これに対し、停止気筒の排気弁を閉じたままとすると、該停止気筒から排気通路へ空気が排出されることがなくなるので、より高温でより低空燃比の排気を吸蔵還元型NOx触
媒に到達させることができる。つまり、より低負荷で硫黄被毒回復が可能となる。
On the other hand, if the exhaust valve of the stop cylinder is kept closed, air is not discharged from the stop cylinder to the exhaust passage, so that the exhaust at higher temperature and lower air-fuel ratio reaches the NOx storage reduction catalyst. be able to. That is, it becomes possible to recover sulfur poisoning at a lower load.

本発明においては、前記硫黄被毒回復手段は、前記内燃機関の負荷が第1閾値以下となった場合に前記減筒運転を行なうことができる。   In the present invention, the sulfur poisoning recovery means can perform the reduced-cylinder operation when the load of the internal combustion engine becomes a first threshold value or less.

第1閾値とは、減筒運転をしなければ硫黄被毒回復が困難となるほど、排気の空燃比が高くなるか又は排気の温度が低くなる運転状態である。つまり、硫黄被毒回復が困難となったときに減筒運転を行なうことにより、負荷の高いときに、排気の空燃比が過剰に低下したり排気の温度が過剰に上昇したりすることを抑制できる。   The first threshold is an operating state in which the air-fuel ratio of the exhaust gas becomes higher or the temperature of the exhaust gas becomes lower as the sulfur poisoning recovery becomes more difficult unless the reduced-cylinder operation is performed. In other words, by reducing the cylinder operation when recovery from sulfur poisoning becomes difficult, it is possible to prevent the air-fuel ratio of the exhaust from excessively decreasing and the temperature of the exhaust from excessively increasing when the load is high. it can.

また、本発明においては、前記硫黄被毒回復手段は、減筒運転を行っているときに前記内燃機関の負荷が第1閾値よりも高い第2閾値以上となった場合に前記減筒運転を中止することができる。   In the present invention, the sulfur poisoning recovery means performs the reduced cylinder operation when the load of the internal combustion engine becomes equal to or higher than a second threshold value higher than the first threshold value during the reduced cylinder operation. Can be canceled.

第1閾値よりも第2閾値を高くしたのは、減筒運転から全気筒運転へ切り替わるときに排気の温度が低下するため、このときの排気の温度が硫黄被毒回復に必要な温度よりも低くなってしまうことを抑制するためである。また、負荷が高くなったことにより全気筒運転に切り替えれば、負荷の高いときの排気の空燃比が過剰に低下したり排気の温度が過剰に上昇したりすることを抑制できる。   The reason why the second threshold value is set higher than the first threshold value is that the temperature of the exhaust gas is lowered when switching from the reduced-cylinder operation to the all-cylinder operation. Therefore, the exhaust gas temperature at this time is higher than the temperature necessary for sulfur poisoning recovery. This is to suppress the lowering. Further, if the operation is switched to the all-cylinder operation due to an increase in the load, it is possible to suppress an excessive decrease in the air-fuel ratio of the exhaust when the load is high or an excessive increase in the temperature of the exhaust.

本発明に係る内燃機関の排気浄化装置によれば、内燃機関の負荷が低い場合であっても吸蔵還元型NOx触媒の硫黄被毒を回復させることができる。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention can recover sulfur poisoning of the NOx storage reduction catalyst even when the load on the internal combustion engine is low.

以下、本発明に係る内燃機関の排気浄化装置の具体的な実施態様について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust emission control device for an internal combustion engine according to the present invention will be described with reference to the drawings.

図1は、本実施例に係る内燃機関1とその排気系の概略構成を示す図である。図1に示す内燃機関1は、V型8気筒の4サイクル・ディーゼルエンジンである。内燃機関1は、クランクアングル90度毎に何れかの気筒で燃焼が行われる。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 and its exhaust system according to the present embodiment. The internal combustion engine 1 shown in FIG. 1 is a V-type 8-cylinder four-cycle diesel engine. The internal combustion engine 1 is combusted in one of the cylinders every 90 degrees of crank angle.

内燃機関1は、右バンク2および左バンク3を備えて構成されている。右バンク2および左バンク3には、夫々4つの気筒4が備わる。右バンク2には、1,3,5,および7番気筒(夫々#1,#3,#5,#7で示している。)が備わり、左バンク3には、2,
4,6,および8番気筒(夫々#2,#4,#6,#8で示している。)が備わる。右バンク2には、該右バンク2の各気筒4に接続される右排気マニホールド5が接続されている。また、左バンク3には、該左バンク3の各気筒4に接続される左排気マニホールド6が接続されている。そして、右排気マニホールド5は右排気管7へ接続され、左排気マニホールド6は左排気管8へ接続されている。
The internal combustion engine 1 includes a right bank 2 and a left bank 3. Each of the right bank 2 and the left bank 3 includes four cylinders 4. The right bank 2 includes cylinders 1, 3, 5, and 7 (represented by # 1, # 3, # 5, and # 7, respectively), and the left bank 3 includes 2,
4, 6, and 8 cylinders (represented by # 2, # 4, # 6, and # 8, respectively) are provided. A right exhaust manifold 5 connected to each cylinder 4 of the right bank 2 is connected to the right bank 2. Further, a left exhaust manifold 6 connected to each cylinder 4 of the left bank 3 is connected to the left bank 3. The right exhaust manifold 5 is connected to the right exhaust pipe 7, and the left exhaust manifold 6 is connected to the left exhaust pipe 8.

右排気管7の途中には、右吸蔵還元型NOx触媒9(以下、右NOx触媒9という。)が設けられ、左排気管8の途中には、左吸蔵還元型NOx触媒10(以下、左NOx触媒10という。)が設けられている。右NOx触媒9および左NOx触媒10は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低く且つ還元
剤が存在するときは吸蔵していたNOxを還元する機能を有する。
A right storage reduction type NOx catalyst 9 (hereinafter referred to as a right NOx catalyst 9) is provided in the middle of the right exhaust pipe 7, and a left storage reduction type NOx catalyst 10 (hereinafter, left) is provided in the middle of the left exhaust pipe 8. NOx catalyst 10) is provided. The right NOx catalyst 9 and the left NOx catalyst 10 occlude NOx in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and store the NOx when the oxygen concentration of the inflowing exhaust gas is low and a reducing agent is present. Has the function of reducing

また、内燃機関1には、夫々の気筒4に備わる排気弁15を閉弁したまま停止させることが可能な可変動弁機構11が備えられている。   Further, the internal combustion engine 1 is provided with a variable valve mechanism 11 that can be stopped while the exhaust valve 15 provided in each cylinder 4 is closed.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU13が併設されている。このECU13は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 13 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 13 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU13には、前記センサの他、内燃機関1のクランクアングルに応じた信号を出力するクランクポジションセンサ14、運転者がアクセルペダル16を踏み込んだ量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ17が電気配線を介して接続され、これらの出力信号がECU13へ入力されるようになっている。なお、アクセル開度センサ17により内燃機関1の負荷が検出される。   In addition to the above sensors, the ECU 13 outputs a signal corresponding to the crank angle of the internal combustion engine 1 and outputs an electric signal corresponding to the amount by which the driver depresses the accelerator pedal 16 to detect the engine load. The accelerator opening sensor 17 is connected via electric wiring, and these output signals are input to the ECU 13. The load on the internal combustion engine 1 is detected by the accelerator opening sensor 17.

一方、ECU13には、可変動弁機構11が電気配線を介して接続され、該ECU13により可変動弁機構11が制御される。   On the other hand, the variable valve mechanism 11 is connected to the ECU 13 via electric wiring, and the variable valve mechanism 11 is controlled by the ECU 13.

ここで、図2は、内燃機関1の各気筒4の燃焼順序を示した図である。右バンク2では、1,7,3,5番気筒の順に燃焼が行われ、左バンク3では、2,4,6,8番気筒の順に燃焼が行われる。そして、内燃機関1全体としては、1,2,7,3,4,5,6,8番気筒の順に燃焼が行われる。   Here, FIG. 2 is a diagram showing a combustion order of each cylinder 4 of the internal combustion engine 1. In the right bank 2, combustion is performed in the order of the first, seventh, third, and fifth cylinders, and in the left bank 3, combustion is performed in the order of the second, fourth, sixth, and eighth cylinders. And as a whole internal combustion engine 1, combustion is performed in the order of cylinders 1, 2, 7, 3, 4, 5, 6, and 8.

そして、本実施例では、硫黄被毒回復処理を実施するときであって、内燃機関1の負荷が所定負荷よりも低い場合には、減筒運転を行なう。つまり、クランクアングル90度間隔で燃焼を行っていたものを、クランクアングル180度間隔で燃焼を行なう。具体的には、1,7,4,6番気筒で燃料を燃焼させ、2,3,5,8番気筒で燃料の供給を停止することにより、燃焼を停止させる。または、逆に2,3,5,8番気筒で燃料を燃焼させ、1,7,4,6番気筒で燃料の供給を停止することにより、燃焼を停止させる。   In this embodiment, when the sulfur poisoning recovery process is performed and the load on the internal combustion engine 1 is lower than the predetermined load, the reduced-cylinder operation is performed. That is, combustion is performed at intervals of crank angles of 180 degrees, which are performed at intervals of crank angles of 90 degrees. Specifically, the combustion is stopped by burning the fuel in the first, seventh, fourth, and sixth cylinders and stopping the supply of fuel in the second, third, fifth, and eighth cylinders. Alternatively, the combustion is stopped by burning the fuel in the second, third, fifth, and eighth cylinders and stopping the supply of fuel in the first, seventh, fourth, and sixth cylinders.

なお、本実施例では、以下の(1)から(4)までの制御を行っている。   In the present embodiment, the following controls (1) to (4) are performed.

(1)硫黄被毒回復処理中に内燃機関1が低負荷となった場合
ここでいう低負荷とは、減筒運転をしなければ硫黄被毒回復が困難となるほど、排気の空燃比が高くなるか又は排気の温度が低くなる運転状態である。この閾値(以下、第1閾値という。)となる負荷は、予め実験等により求めておく。そして、半分の気筒4において燃料の燃焼を停止させることにより、クランクアングル180度間隔で燃料を燃焼させる。
(1) When the internal combustion engine 1 becomes a low load during the sulfur poisoning recovery process The low load referred to here means that the exhaust gas air-fuel ratio becomes so high that the sulfur poisoning recovery becomes difficult unless the reduced cylinder operation is performed. Or the exhaust temperature is lowered. The load that becomes this threshold value (hereinafter referred to as the first threshold value) is obtained in advance through experiments or the like. Then, by stopping the combustion of the fuel in the half cylinder 4, the fuel is burned at an interval of 180 degrees in the crank angle.

これにより、排気の温度を上昇させることができるので、低負荷となった場合であって
も右NOx触媒9および左NOx触媒10の温度の低下を抑制することができる。また、1気筒当たりに供給される燃料量が増加されるので、排気の空燃比を低下させることができる。したがって、硫黄被毒回復処理中に内燃機関1が高負荷から低負荷に移行した場合であっても、硫黄被毒回復処理を継続することができる。
As a result, the temperature of the exhaust gas can be raised, so that a decrease in the temperature of the right NOx catalyst 9 and the left NOx catalyst 10 can be suppressed even when the load is low. Moreover, since the amount of fuel supplied per cylinder is increased, the air-fuel ratio of the exhaust can be lowered. Therefore, even if the internal combustion engine 1 shifts from a high load to a low load during the sulfur poisoning recovery process, the sulfur poisoning recovery process can be continued.

(2)硫黄被毒回復処理中に内燃機関1が前記低負荷を脱した場合
このような場合に減筒運転を継続すると、排気の空燃比が過剰にリッチとなったり、排気の温度が過剰に上昇したり、内燃機関のトルクが上昇しなかったりするため、全気筒運転を行う。ただし、全気筒運転に切り替えるのは、内燃機関1の負荷が、前記第1閾値よりも高い第2閾値以上となった場合とする。
(2) When the internal combustion engine 1 takes off the low load during the sulfur poisoning recovery process If the reduced cylinder operation is continued in such a case, the air-fuel ratio of the exhaust becomes excessively rich or the temperature of the exhaust is excessive. All cylinder operation is performed because the internal combustion engine torque does not increase. However, switching to the all-cylinder operation is performed when the load of the internal combustion engine 1 becomes equal to or higher than a second threshold value that is higher than the first threshold value.

ここで、全気筒運転に切り替えると、排気の空燃比が低下するため、仮に前記第1閾値にて全気筒運転に切り替えると、硫黄被毒回復に必要な温度が得られなくなる虞がある。そのため、第1閾値よりも高い第2閾値以上となってから全気筒運転に切り替える。この第2閾値は、減筒運転から全気筒運転に切り替えたときに硫黄被毒回復を継続して行なうことができる負荷として、予め実験等により求めておく。   Here, when switching to all-cylinder operation, the air-fuel ratio of the exhaust gas decreases. Therefore, if switching to all-cylinder operation at the first threshold value, the temperature required for sulfur poisoning recovery may not be obtained. For this reason, the operation is switched to the all-cylinder operation after the second threshold value is higher than the first threshold value. This second threshold value is obtained in advance by experiments or the like as a load that can continuously perform sulfur poisoning recovery when switching from reduced cylinder operation to full cylinder operation.

(3)内燃機関1が前記低負荷で運転されているときに硫黄被毒回復処理を行なう必要が生じた場合
ここで、硫黄被毒回復処理を行なう必要が生じた場合とは、例えば右NOx触媒9また
は左NOx触媒10に吸蔵された硫黄成分の量が規定量を超えた場合である。なお、右N
Ox触媒9または左NOx触媒10に吸蔵された硫黄成分の量は、燃料消費量やNOxセン
サからの出力信号、車両の走行距離等により求めることができる。
(3) When it becomes necessary to perform sulfur poisoning recovery processing when the internal combustion engine 1 is operated at the low load Here, when it is necessary to perform sulfur poisoning recovery processing, for example, right NOx This is a case where the amount of the sulfur component occluded in the catalyst 9 or the left NOx catalyst 10 exceeds a specified amount. Right N
The amount of the sulfur component occluded in the Ox catalyst 9 or the left NOx catalyst 10 can be obtained from the fuel consumption, the output signal from the NOx sensor, the travel distance of the vehicle, and the like.

このような場合にも、半分の気筒4において燃料の燃焼を停止させ、クランクアングル180度間隔で燃焼を行なう。これにより、排気の温度を上昇させることができるので、右NOx触媒9および左NOx触媒10の温度を上昇させることができる。また、1気筒当たりに供給される燃料量が増加されるので、排気の空燃比を低下させることができる。したがって、内燃機関1が低負荷で運転されている場合であっても、硫黄被毒回復処理を実行することができる。   Even in such a case, the combustion of the fuel is stopped in the half cylinders 4 and the combustion is performed at intervals of 180 degrees of the crank angle. As a result, the temperature of the exhaust gas can be raised, so that the temperatures of the right NOx catalyst 9 and the left NOx catalyst 10 can be raised. Moreover, since the amount of fuel supplied per cylinder is increased, the air-fuel ratio of the exhaust can be lowered. Therefore, even when the internal combustion engine 1 is operated at a low load, the sulfur poisoning recovery process can be executed.

(4)内燃機関1が前記低負荷で運転されているときに硫黄被毒の回復が完了した場合
このような場合には、減筒運転を継続する必要はないため、直ちに全気筒運転に切り替える。
(4) When recovery from sulfur poisoning is completed when the internal combustion engine 1 is operated at the low load In such a case, it is not necessary to continue the reduced-cylinder operation, so immediately switch to the all-cylinder operation. .

次に、本実施例における硫黄被毒回復処理のフローについて説明する。図3は、本実施例における硫黄被毒回復処理のフローを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。   Next, the flow of the sulfur poisoning recovery process in the present embodiment will be described. FIG. 3 is a flowchart showing a flow of the sulfur poisoning recovery process in the present embodiment. This routine is repeatedly executed every predetermined time.

ステップS101では、右NOx触媒9または左NOx触媒10の硫黄被毒回復処理を行なう必要が生じているか否か判定される。判定は、前記したように、右NOx触媒9また
は左NOx触媒10に吸蔵された硫黄成分の量が規定量を超えたか否かにより行なわれる
In step S101, it is determined whether it is necessary to perform sulfur poisoning recovery processing of the right NOx catalyst 9 or the left NOx catalyst 10. As described above, the determination is made based on whether or not the amount of the sulfur component stored in the right NOx catalyst 9 or the left NOx catalyst 10 exceeds a specified amount.

ステップS101で肯定判定がなされた場合にはステップS102に進んで硫黄被毒が回復され、一方否定判定がなされた場合には硫黄被毒回復を行なう必要は無いため本ルーチンを一旦終了させる。   If an affirmative determination is made in step S101, the routine proceeds to step S102, where sulfur poisoning is recovered. On the other hand, if a negative determination is made, it is not necessary to perform sulfur poisoning recovery, so this routine is temporarily terminated.

ステップS102では、内燃機関1の負荷が前記第1閾値以下であるか否か判定される。すなわち、本ステップでは、硫黄被毒回復を行なうために減筒運転が必要であるか否か
判定される。
In step S102, it is determined whether or not the load of the internal combustion engine 1 is equal to or less than the first threshold value. That is, in this step, it is determined whether or not a reduced-cylinder operation is necessary to recover sulfur poisoning.

ステップS102で肯定判定がなされた場合には減筒運転を行なうためにステップS103へ進み、一方否定判定がなされた場合には全気筒運転を行なうためにステップS107へ進む。   If an affirmative determination is made in step S102, the process proceeds to step S103 to perform a reduced-cylinder operation, whereas if a negative determination is made, the process proceeds to step S107 to perform an all-cylinder operation.

ステップS103では、減筒運転にて硫黄被毒回復が行なわれる。同時に、燃焼が行われていない気筒4の排気弁が閉じたままとされる。なお、本実施例ではステップS103で減筒運転を行ないつつ硫黄被毒回復を行なうECU13が、本発明における硫黄被毒回復手段に相当する。   In step S103, sulfur poisoning recovery is performed in the reduced cylinder operation. At the same time, the exhaust valve of the cylinder 4 where combustion is not performed is kept closed. In this embodiment, the ECU 13 that performs the sulfur poisoning recovery while performing the reduced cylinder operation in step S103 corresponds to the sulfur poisoning recovery means in the present invention.

ステップS104では、内燃機関1の負荷が第2閾値以上であるか否か判定される。すなわち、減筒運転にて硫黄被毒回復が行なわれているときに、内燃機関1の負荷が上昇して、減筒運転の必要が無くなったか否か判定される。   In step S104, it is determined whether or not the load of the internal combustion engine 1 is equal to or greater than a second threshold value. That is, when the sulfur poisoning recovery is performed in the reduced-cylinder operation, it is determined whether the load on the internal combustion engine 1 has increased and the need for the reduced-cylinder operation has been eliminated.

ステップS104で肯定判定がなされた場合にはステップS107に進んで全気筒運転に切り替えられ、一方否定判定がなされた場合にはステップS105へ進み引き続き減筒運転にて硫黄被毒回復が行なわれる。   If an affirmative determination is made in step S104, the process proceeds to step S107 to switch to all-cylinder operation. On the other hand, if a negative determination is made, the process proceeds to step S105 and sulfur poisoning recovery is continued in the reduced cylinder operation.

ステップS105では、硫黄被毒の回復が完了したか否か判定される。例えば所定時間に亘り硫黄被毒回復が行なわれた場合に、硫黄被毒の回復が完了したと判定される。   In step S105, it is determined whether recovery from sulfur poisoning has been completed. For example, when the sulfur poisoning recovery is performed over a predetermined time, it is determined that the sulfur poisoning recovery is completed.

ステップS105で肯定判定がなされた場合にはステップS106へ進み、一方否定判定がなされた場合にはステップS104へ戻って引き続き減筒運転にて硫黄被毒回復が行なわれる。   If an affirmative determination is made in step S105, the process proceeds to step S106. On the other hand, if a negative determination is made, the process returns to step S104, and sulfur poisoning recovery is continued in the reduced cylinder operation.

ステップS106では、硫黄被毒回復処理が終了し、全気筒運転が行われる。減筒運転が行われていた場合には、燃焼が行われていなかった気筒4の排気弁15の開閉が再開される。   In step S106, the sulfur poisoning recovery process ends, and all cylinder operation is performed. When the reduced-cylinder operation is performed, the opening / closing of the exhaust valve 15 of the cylinder 4 that has not been combusted is resumed.

ステップS107では、全気筒運転にて硫黄被毒回復が行なわれる。減筒運転からの切替の場合には、燃焼が行われていなかった気筒4の排気弁15の開閉が再開される。   In step S107, sulfur poisoning recovery is performed in all cylinder operation. In the case of switching from the reduced-cylinder operation, the opening / closing of the exhaust valve 15 of the cylinder 4 in which combustion has not been performed is resumed.

ステップS108では、内燃機関1の負荷が第1閾値以下であるか否か判定される。本ステップは、ステップS102と同様の処理が行なわれる。   In step S108, it is determined whether or not the load of the internal combustion engine 1 is equal to or less than a first threshold value. In this step, processing similar to that in step S102 is performed.

ステップS108で肯定判定がなされた場合にはステップS103へ進み減筒運転にて硫黄被毒回復が行なわれ、一方否定判定がなされた場合にはステップS109へ進み引き続き全気筒運転にて硫黄被毒回復が行われる。   If an affirmative determination is made in step S108, the process proceeds to step S103, and sulfur poisoning recovery is performed by the reduced cylinder operation. On the other hand, if a negative determination is made, the process proceeds to step S109 and continues to sulfur poisoning in the all cylinder operation. Recovery is done.

ステップS109では、硫黄被毒の回復が完了したか否か判定される。本ステップは、ステップS105と同様の処理が行なわれる。   In step S109, it is determined whether or not the recovery from sulfur poisoning has been completed. In this step, processing similar to that in step S105 is performed.

ステップS109で肯定判定がなされた場合にはステップS106へ進んで硫黄被毒回復処理が終了され、一方否定判定がなされた場合にはステップS108へ戻り引き続き全気筒運転にて硫黄被毒回復が行なわれる。   If an affirmative determination is made in step S109, the process proceeds to step S106, where the sulfur poisoning recovery process is completed. On the other hand, if a negative determination is made, the process returns to step S108, and sulfur poisoning recovery is continued in all cylinder operation. It is.

以上説明したように、本実施例によれば、硫黄被毒回復が必要な場合であって内燃機関1が低負荷で運転されている場合には減筒運転を行なうことにより、排気の空燃比を低下させ且つ排気の温度を上昇させることができるため、硫黄被毒回復が可能となる。これに
より、硫黄被毒回復を行なうことができる運転領域を拡大させることができるので、様々な走行条件にて硫黄被毒回復を行なうことができる。また、硫黄被毒回復処理で消費される燃料量を低減することができるので、燃費を向上させることができる。
As described above, according to this embodiment, when the sulfur poisoning recovery is necessary and the internal combustion engine 1 is operated at a low load, the reduced-cylinder operation is performed, so that the air-fuel ratio of the exhaust gas is reduced. Can be reduced and the temperature of the exhaust gas can be raised, so that sulfur poisoning can be recovered. Thereby, since the operation range which can perform sulfur poisoning recovery can be expanded, sulfur poisoning recovery can be performed under various traveling conditions. In addition, since the amount of fuel consumed in the sulfur poisoning recovery process can be reduced, fuel efficiency can be improved.

また、クランクアングル90度間隔で少なくとも1回連続して燃焼を行うV型8気筒内燃機関において、減筒運転を行うときにはクランクアングル180度間隔で燃焼を行なうため、内燃機関を安定して運転させることができる。なお、V型8気筒に限らず、他の配列の気筒を有する内燃機関においても減筒運転を行なうことにより排気の空燃比を低下させ且つ排気の温度を上昇させることができる。また、他の配列の気筒を有する内燃機関においても等間隔で燃料を燃焼させることにより、安定した運転が可能となる。   Further, in a V-type 8-cylinder internal combustion engine that performs combustion at least once at intervals of 90 degrees of crank angle, combustion is performed at intervals of 180 degrees of crank angle when performing a reduced cylinder operation, so that the internal combustion engine is stably operated. be able to. Note that not only the V-type 8-cylinder but also an internal combustion engine having other arrangements of cylinders can reduce the air-fuel ratio of the exhaust and raise the temperature of the exhaust by performing the reduced-cylinder operation. Further, even in an internal combustion engine having other arrangements of cylinders, stable operation is possible by burning fuel at equal intervals.

さらに、減筒運転を行なうときには、燃焼が行われない気筒4の排気弁が可変動弁機構11により閉じたままとされるので、燃焼が行われない気筒から排出される空気により排気の空燃比が上昇したり排気の温度が低下したりすることを抑制できる。   Further, when performing the reduced-cylinder operation, the exhaust valve of the cylinder 4 where combustion is not performed is kept closed by the variable valve mechanism 11, so the air-fuel ratio of the exhaust is exhausted by the air discharged from the cylinder where combustion is not performed. Can be prevented from rising or the temperature of the exhaust gas can be lowered.

実施例に係る内燃機関とその排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine which concerns on an Example, and its exhaust system. 内燃機関の各気筒の燃焼順序を示した図である。It is the figure which showed the combustion order of each cylinder of an internal combustion engine. 実施例における硫黄被毒回復処理のフローを示したフローチャートである。It is the flowchart which showed the flow of the sulfur poisoning recovery process in an Example.

符号の説明Explanation of symbols

1 内燃機関
2 右バンク
3 左バンク
4 気筒
5 右排気マニホールド
6 左排気マニホールド
7 右排気管
8 左排気管
9 右NOx触媒
10 左NOx触媒
11 可変動弁機構
13 ECU
14 クランクポジションセンサ
15 排気弁
16 アクセルペダル
17 アクセル開度センサ
1 Internal combustion engine 2 Right bank 3 Left bank 4 Cylinder 5 Right exhaust manifold 6 Left exhaust manifold 7 Right exhaust pipe 8 Left exhaust pipe 9 Right NOx catalyst 10 Left NOx catalyst 11 Variable valve mechanism 13 ECU
14 Crank position sensor 15 Exhaust valve 16 Accelerator pedal 17 Accelerator opening sensor

Claims (5)

複数の気筒を有し且つ燃料を燃焼させる気筒を減少させる減筒運転を行うことが可能な内燃機関の排気浄化装置において、
NOxを吸蔵し且つ吸蔵していたNOxが還元剤により還元される吸蔵還元型NOx触媒
と、
前記吸蔵還元型NOx触媒の硫黄被毒回復を行うときに前記減筒運転を行なう硫黄被毒
回復手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
In an exhaust emission control device for an internal combustion engine that has a plurality of cylinders and is capable of performing a reduced-cylinder operation that reduces a cylinder that burns fuel,
A NOx storage reduction catalyst in which NOx is stored and NOx stored is reduced by a reducing agent;
Sulfur poisoning recovery means for performing the reduced cylinder operation when performing sulfur poisoning recovery of the NOx storage reduction catalyst;
An exhaust emission control device for an internal combustion engine, comprising:
前記内燃機関は、クランクアングル90度間隔で少なくとも1回連続して燃焼を行うV型8気筒内燃機関であり、
前記硫黄被毒回復手段は、硫黄被毒回復を行なうときにクランクアングル180度間隔で燃焼を行なうように、半分の気筒の燃焼を停止させることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The internal combustion engine is a V-type 8-cylinder internal combustion engine that performs continuous combustion at least once at intervals of 90 degrees in crank angle,
2. The internal combustion engine according to claim 1, wherein the sulfur poisoning recovery means stops combustion in half of the cylinders so that combustion is performed at intervals of a crank angle of 180 degrees when performing sulfur poisoning recovery. Exhaust purification device.
排気弁を閉じたままとすることが可能な可変動弁機構を更に備え、前記硫黄被毒回復手段により硫黄被毒の回復が行なわれるときに、燃料の燃焼が停止される気筒の排気弁を閉じたままとすることを特徴とする請求項1または2に記載の内燃機関の排気浄化装置。   A variable valve mechanism capable of keeping the exhaust valve closed; and when the sulfur poisoning recovery is performed by the sulfur poisoning recovery means, The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2, wherein the exhaust gas purification apparatus is kept closed. 前記硫黄被毒回復手段は、前記内燃機関の負荷が第1閾値以下となった場合に前記減筒運転を行なうことを特徴とする請求項1から3の何れかに記載の内燃機関の排気浄化装置。   The exhaust purification of an internal combustion engine according to any one of claims 1 to 3, wherein the sulfur poisoning recovery means performs the reduced-cylinder operation when a load of the internal combustion engine becomes a first threshold value or less. apparatus. 前記硫黄被毒回復手段は、減筒運転を行っているときに前記内燃機関の負荷が第1閾値よりも高い第2閾値以上となった場合に前記減筒運転を中止することを特徴とする請求項4に記載の内燃機関の排気浄化装置。   The sulfur poisoning recovery means stops the reduced-cylinder operation when the load of the internal combustion engine becomes equal to or higher than a second threshold value that is higher than the first threshold value during the reduced-cylinder operation. The exhaust emission control device for an internal combustion engine according to claim 4.
JP2006215749A 2006-08-08 2006-08-08 Exhaust emission control device of internal combustion engine Withdrawn JP2008038806A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006215749A JP2008038806A (en) 2006-08-08 2006-08-08 Exhaust emission control device of internal combustion engine
PCT/IB2007/002274 WO2008017930A1 (en) 2006-08-08 2007-08-07 Exhaust emission control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215749A JP2008038806A (en) 2006-08-08 2006-08-08 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008038806A true JP2008038806A (en) 2008-02-21

Family

ID=38846877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215749A Withdrawn JP2008038806A (en) 2006-08-08 2006-08-08 Exhaust emission control device of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2008038806A (en)
WO (1) WO2008017930A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063471A (en) * 2019-10-15 2021-04-22 株式会社豊田自動織機 Engine system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098666B1 (en) * 2020-09-28 2021-08-24 GM Global Technology Operations LLC System and method for controlling amount of sulfur on three-way catalyst by limiting deceleration cylinder cut off

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030412B2 (en) 1994-06-17 2000-04-10 三菱自動車工業株式会社 Exhaust purification catalyst device for internal combustion engine
JP3355842B2 (en) 1995-01-06 2002-12-09 三菱自動車工業株式会社 Exhaust purification catalyst device for internal combustion engine and temperature detection device for exhaust purification catalyst
JP3085192B2 (en) 1996-04-26 2000-09-04 三菱自動車工業株式会社 Engine exhaust gas purifier
EP1458958A1 (en) * 2001-11-30 2004-09-22 Delphi Technologies, Inc. Engine cylinder deactivation to improve the performance of exhaust emission control systems
US6758185B2 (en) * 2002-06-04 2004-07-06 Ford Global Technologies, Llc Method to improve fuel economy in lean burn engines with variable-displacement-like characteristics
US7805927B2 (en) * 2003-06-17 2010-10-05 Gm Global Technology Operations, Inc. Diesel engine displacement on demand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063471A (en) * 2019-10-15 2021-04-22 株式会社豊田自動織機 Engine system
WO2021075189A1 (en) * 2019-10-15 2021-04-22 株式会社豊田自動織機 Engine system

Also Published As

Publication number Publication date
WO2008017930A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4618265B2 (en) Control device for internal combustion engine
JP4453686B2 (en) Exhaust gas purification system for internal combustion engine
JP2008038812A (en) Control device for internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP4572709B2 (en) Exhaust gas purification system for internal combustion engine
JP2007239493A (en) Internal combustion engine with supercharger
JP4905327B2 (en) Exhaust gas purification system for internal combustion engine
JP2009257243A (en) Exhaust emission control device for internal combustion engine
JP4241784B2 (en) Exhaust gas purification system for internal combustion engine
JP2008144688A (en) Control device of internal combustion engine
JP4127295B2 (en) Throttle valve control device for internal combustion engine
JP2008038806A (en) Exhaust emission control device of internal combustion engine
JP2008069728A (en) Exhaust emission control device of internal combustion engine
JP4682829B2 (en) Exhaust gas purification device for internal combustion engine
JP2009013865A (en) Exhaust emission control device of internal combustion engine
JP2008064063A (en) Exhaust emission control device of internal combustion engine
JP2007332799A (en) Exhaust emission control device for internal combustion engine
JP2005330886A (en) Engine idle stop control unit
JP4645471B2 (en) Sulfur poisoning recovery control device
JP2009264203A (en) Exhaust device for internal combustion engine
JP2009174364A (en) Engine control device
JP2007247452A (en) Sulfur poisoning recovery control device
JP2014001682A (en) Exhaust gas purifier of internal combustion engine
JP2005291098A (en) Exhaust emission control device for engine
JP2006283611A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080410