JP4406312B2 - Diamond electrode for electrolysis - Google Patents

Diamond electrode for electrolysis Download PDF

Info

Publication number
JP4406312B2
JP4406312B2 JP2004105766A JP2004105766A JP4406312B2 JP 4406312 B2 JP4406312 B2 JP 4406312B2 JP 2004105766 A JP2004105766 A JP 2004105766A JP 2004105766 A JP2004105766 A JP 2004105766A JP 4406312 B2 JP4406312 B2 JP 4406312B2
Authority
JP
Japan
Prior art keywords
diamond
electrode
titanium oxide
powder
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004105766A
Other languages
Japanese (ja)
Other versions
JP2004332108A (en
Inventor
正志 細沼
美和子 奈良
雅晴 宇野
善則 錦
常人 古田
楯生 黒須
脩 福長
哲朗 東城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Toyo Tanso Co Ltd filed Critical Permelec Electrode Ltd
Priority to JP2004105766A priority Critical patent/JP4406312B2/en
Publication of JP2004332108A publication Critical patent/JP2004332108A/en
Application granted granted Critical
Publication of JP4406312B2 publication Critical patent/JP4406312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、廃水や飲料水などに含まれる産業、人体及び環境に悪影響を与える対象物質を電気分解して無害化することを効率良く行うことができ、また工業用陽極として耐久性に優れた、高い酸化能力を有する電解用ダイヤモンド電極に関する。   INDUSTRIAL APPLICABILITY The present invention is capable of efficiently detoxifying target substances that adversely affect industries, human bodies and the environment contained in waste water and drinking water, and has excellent durability as an industrial anode. The present invention relates to a diamond electrode for electrolysis having a high oxidation ability.

電解プロセスは、クリーンな電気エネルギーを利用して、電極表面で化学反応を制御することにより、水溶液系であれば水素、酸素、オゾン、過酸化水素などを発生させることが可能であり、工業電解としては食塩電解、電解めっき、金属採取などで汎用されている基本技術である。最近では有機汚濁物を間接的に分解するか、該物質を電極に吸着し、直接的に電解することが可能であることから廃水処理にも利用されつつある。
一方電気分解における陽極での酸化反応では、水処理に有効な酸化剤(有効塩素、オゾンなど)が生成し、一部OHラジカルなどの活性種も発生することが知られており、それらを含む水は活性水、機能水、イオン水、殺菌水などの名称で汎用されている。
The electrolysis process uses clean electrical energy to control the chemical reaction on the electrode surface, so that hydrogen, oxygen, ozone, hydrogen peroxide, etc. can be generated in an aqueous solution system. Is a basic technology widely used in salt electrolysis, electroplating, metal sampling, and the like. Recently, organic pollutants can be decomposed indirectly, or the substances can be adsorbed on electrodes and directly electrolyzed, so that they are also being used for wastewater treatment.
On the other hand, in the oxidation reaction at the anode in electrolysis, it is known that oxidants (effective chlorine, ozone, etc.) effective for water treatment are generated, and some active species such as OH radicals are also generated. Water is widely used under names such as active water, functional water, ionic water, and sterilized water.

しかしこのような電解プロセスでも、電極材料によっては対象となる反応が十分に進行しないことが指摘されている。一般的に水溶液での電解の陽極酸化反応は、原料を水として電解が進行して電解生成物が得られるが、水の放電に対して反応性の高い電極触媒では他の共存物質の酸化が容易には進行しないことが多い。
酸化を行う電解用電極(陽極)の材料として、酸化鉛、酸化錫、白金、DSA、カーボンなどが使用される。又電極基材として使用し得る材料は、長寿命であり、かつ処理表面への汚染が起きないように耐食性を有することが必要である。陽極給電体用材料は、チタンなどの弁金属及びその合金に限定される。電極触媒も、白金やイリジウムなどの貴金属及びそれらの酸化物に限定される。
このような高価な材料を用いても電流を流すと電流密度や通電時間に応じて消耗し、前記材料が電解液中に溶出することが知られており、より耐食性の優れた電極が望まれている。
However, even in such an electrolytic process, it has been pointed out that the target reaction does not proceed sufficiently depending on the electrode material. In general, the anodic oxidation reaction of electrolysis in aqueous solution proceeds with electrolysis using water as the raw material, and an electrolysis product is obtained. Often does not progress easily.
Lead oxide, tin oxide, platinum, DSA, carbon, or the like is used as a material for an electrode for electrolysis (anode) for oxidation. A material that can be used as an electrode substrate is required to have a long life and have corrosion resistance so that the treated surface is not contaminated. Anode feeder materials are limited to valve metals such as titanium and alloys thereof. Electrocatalysts are also limited to noble metals such as platinum and iridium and their oxides.
Even when such an expensive material is used, it is known that when an electric current is passed, it is consumed according to the current density and energization time, and the material elutes in the electrolytic solution, and an electrode with better corrosion resistance is desired. ing.

黒鉛や非晶質カーボン材料は従来から電極材料として用いられているが、特に陽分極では著しい消耗がある。
同じカーボン系材料であるダイヤモンドは、熱伝導性、光学的透過性、高温及び酸化に対する耐久性に優れており、特にドーピングにより電気伝導性の制御も可能であることから、半導体デバイスやエネルギー変換素子として有望視されている。
最近、このような特性を有するダイヤモンドの酸性電解液中での安定性が、他のカーボン材料と比較して遥に優れていると報告され、電気化学用電極として有望であることが示唆されている[Swainら、Journal of Electrochemical Society, vol.141, 3382-、(1994)]。
米国特許第5,399,247号明細書では、ダイヤモンドを陽極材料に用いて有機廃水を分解できることが示唆されている。又特開2000−226682号公報では、陽極及び陰極として導電性ダイヤモンドを使用して水処理を行う方法が提案されている。更に又特開2000−254650号公報では、陽極として導電性ダイヤモンドを、陰極として過酸化水素発生用ガス拡散陰極を使用して水処理を行う方法が提案されている。
Graphite and amorphous carbon materials have been conventionally used as electrode materials, but there is significant consumption especially in anodic polarization.
Diamond, which is the same carbon-based material, has excellent thermal conductivity, optical transparency, durability against high temperatures and oxidation, and electrical conductivity can be controlled by doping. As promising.
Recently, it has been reported that the stability of diamond having such characteristics in acidic electrolyte is far superior to other carbon materials, suggesting that it is promising as an electrode for electrochemical use. [Swain et al., Journal of Electrochemical Society, vol.141, 3382-, (1994)].
US Pat. No. 5,399,247 suggests that organic wastewater can be decomposed using diamond as the anode material. Japanese Patent Application Laid-Open No. 2000-226682 proposes a method of conducting water treatment using conductive diamond as an anode and a cathode. Furthermore, Japanese Patent Application Laid-Open No. 2000-254650 proposes a method of performing water treatment using conductive diamond as an anode and a gas diffusion cathode for generating hydrogen peroxide as a cathode.

高電流密度下で高い電位領域でのダイヤモンド電極の工業的利用の報告はなされていないが、最近になってダイヤモンド電極は水の分解反応に対しては不活性であり、酸化以外にオゾンを生成することが報告されている(特開平11−269685号公報)。
このような研究から、電極としてダイヤモンドを使用する電解プロセスでは、従来の電極を用いた場合より効率向上が期待されているが、その反面、次のような実用的な観点からの改良が望まれていた。
Although there has been no report on the industrial use of diamond electrodes in a high potential region under a high current density, recently diamond electrodes are inactive against water decomposition and generate ozone in addition to oxidation. It has been reported (Japanese Patent Laid-Open No. 11-269685).
From these studies, the electrolytic process using diamond as the electrode is expected to improve efficiency compared to the conventional electrode, but on the other hand, improvements from the following practical viewpoints are desired. It was.

ダイヤモンド膜の作製方法として、熱フィラメントCVD法、マイクロ波プラズマCVD法、プラズマアークジェット法、PVD法等が開発されている。ダイヤモンドの一般的な製法であるCVD法では、700℃以上の高温還元工程を経るため、基材の熱膨張係数がダイヤモンドのそれに近いことが必須である。ダイヤモンド電極の基材には、通常熱膨張係数が近似する金属シリコンは使用されるが、この金属シリコンは機械的強度が低いため寸法が限定され、大型化が困難である。
工業電解に使用する電極の形状は複雑であるため、やはり加工が容易で機械的強度が大きい金属基材を使用することが好ましい。特に酸性溶液中で陽極電位領域で安定な金属として弁金属があり、これらの金属の中で、水素雰囲気で水素化物を生成しにくいことを考慮して、ニオブ基材を用いることが検討されている。
しかしながら応用分野によってはこのような改良されたダイヤモンド電極でも、寿命が乏しく対応できないことがある。この原因を検討した結果、大型の電極ではやはり基材と電極物質との間の熱膨張係数の相違、CVD装置の不均一性によるダイヤモンドの質のばらつき(非ダイヤモンド成分の析出)があり、ピンホールやクラックなどの欠陥が不可避的に生じることが確認されている。
As a method for producing a diamond film, a hot filament CVD method, a microwave plasma CVD method, a plasma arc jet method, a PVD method, and the like have been developed. In the CVD method, which is a general method for producing diamond, it is essential that the thermal expansion coefficient of the substrate is close to that of diamond because it undergoes a high-temperature reduction step of 700 ° C. or higher. As the base material of the diamond electrode, metal silicon having a thermal expansion coefficient that is close to that of the diamond electrode is usually used. However, since this metal silicon has low mechanical strength, its dimensions are limited and it is difficult to increase the size.
Since the shape of the electrode used for industrial electrolysis is complicated, it is preferable to use a metal substrate that is easy to process and has high mechanical strength. In particular, there is a valve metal as a metal that is stable in an anodic potential region in an acidic solution, and considering that it is difficult to generate a hydride in a hydrogen atmosphere among these metals, use of a niobium base material has been studied. Yes.
However, depending on the application field, even such an improved diamond electrode may not be able to cope with the short life. As a result of examining this cause, there is still a difference in the thermal expansion coefficient between the base material and the electrode material in large electrodes, and there is a variation in the quality of diamond due to non-uniformity of the CVD apparatus (deposition of non-diamond components). It has been confirmed that defects such as holes and cracks inevitably occur.

安定な陽極を提供するためには基材の耐久性を維持することが必要になる。ダイヤモンド膜と基材の密着性と基材の保護を目的としてカーバイドなどの中間層を基材表面に形成することが提案されている(特開平9−268395号公報)。中間層の効果は酸性電解浴での貴金属酸化物電極の基本的延命技術として古くから知られている(特開昭57−192281号公報)。しかしながらこのような酸化物中間層を形成しても、CVD法によるダイヤモンド合成条件では水素などのラジカルが発生するため、中間層の大部分が還元されていまい当該技術を利用することは簡単ではない。   In order to provide a stable anode, it is necessary to maintain the durability of the substrate. For the purpose of adhesion between the diamond film and the base material and protection of the base material, it has been proposed to form an intermediate layer such as carbide on the surface of the base material (Japanese Patent Laid-Open No. 9-268395). The effect of the intermediate layer has long been known as a basic technique for extending the life of a noble metal oxide electrode in an acidic electrolytic bath (Japanese Patent Laid-Open No. 57-192281). However, even if such an oxide intermediate layer is formed, radicals such as hydrogen are generated under the diamond synthesis conditions by the CVD method, so that most of the intermediate layer is not reduced and it is not easy to use this technique. .

一方超高圧合成法などで得られる導電性ダイヤモンド粉末を樹脂などの結合材を用いて成型すれば、電解に利用できる電極形態となりうる。また熱分解により弁金属塩から粉末ダイヤモンドを固着する方法(前記特開平11−269685号公報)も提案されているが、いずれも耐久性、基材との接合強度の面で不十分であった。
このような状況から、工業電解に利用できるダイヤモンド電極を更に改良できれば非常に望ましいことである。
Journal of Applied Electrochemistry, vol.28, 1021-1033(1998)
On the other hand, if conductive diamond powder obtained by an ultra-high pressure synthesis method or the like is molded using a binder such as a resin, an electrode form that can be used for electrolysis can be obtained. In addition, a method for fixing powder diamond from a valve metal salt by pyrolysis (JP-A-11-269685) has also been proposed, but these methods are insufficient in terms of durability and bonding strength with a substrate. .
From this situation, it would be highly desirable if the diamond electrode that can be used for industrial electrolysis could be further improved.
Journal of Applied Electrochemistry, vol.28, 1021-1033 (1998)

マグネリ相酸化チタンは、Tin2n-1の化学組成においてnが4から10である酸化物で、酸化腐食雰囲気での耐久性が高いという特色を有し、TiO2を原料とし、これを水素雰囲気下で高温還元するなどの方法により合成される。このマグネリ相を電極組成物として有する電極は、エボネクス(登録商標)と称され、工業電解の分野で汎用されている。この電極は腐食性の大きい電解浴で優れた耐久性を有することが知られているが、大きい電流を流せない。この欠点を解消するため、前記電極上に、イリジウム酸化物、スズ酸化物、ルテニウム酸化物、白金または酸化鉛などの触媒を担持することが提案されている(非特許文献1)。
金属チタンは電解を行うと表面近傍に強い電場を生じ、この電場が陽極酸化皮膜を成長させる駆動力となるため、一度形成されたTiO2あるいは含水したTiO2は金属チタンに対して不可逆な化合物となる。一方マグネリ相チタンの触媒作用はTin2n-1の小さなnの増減の繰り返しによって触媒酸化が進行するといわれている。即ちマグネリ相は電解によって小さなnの繰り返しの間に酸素発生等の電極反応を行い、不可逆的なTiO2の生成は行わない。
Magneli-phase titanium oxide is an oxide having a chemical composition of Ti n O 2n-1 where n is 4 to 10, and has a feature of high durability in an oxidizing corrosion atmosphere. TiO 2 is used as a raw material. It is synthesized by a method such as high temperature reduction under a hydrogen atmosphere. An electrode having this magnetic phase as an electrode composition is called Ebonex (registered trademark), and is widely used in the field of industrial electrolysis. Although this electrode is known to have excellent durability in a highly corrosive electrolytic bath, a large current cannot flow. In order to eliminate this drawback, it has been proposed to support a catalyst such as iridium oxide, tin oxide, ruthenium oxide, platinum or lead oxide on the electrode (Non-patent Document 1).
When titanium is electrolyzed, a strong electric field is generated in the vicinity of the surface, and this electric field serves as a driving force for growing the anodic oxide film. Therefore, once formed TiO 2 or hydrated TiO 2 is an irreversible compound for metallic titanium. It becomes. On the other hand, it is said that the catalytic action of magnesium phase titanium is such that catalytic oxidation proceeds by repeated small increase / decrease of n in Ti n O 2n-1 . That is, the Magneli phase undergoes an electrode reaction such as oxygen generation during small n repetitions by electrolysis and does not produce irreversible TiO 2 .

本発明者らは、前述したダイヤモンド電極とマグネリ相チタンの特色に着目し、両者を的確に組合せることにより、各種電解に使用でき、従来技術では実現できなかった電解用電極を提供することを目的とする。   The present inventors pay attention to the characteristics of the diamond electrode and the magnesium phase titanium described above, and provide an electrode for electrolysis that can be used for various electrolysis and that cannot be realized by the prior art by combining both appropriately. Objective.

本発明は、少なくともその表面がマグネリ相酸化チタンである電極基材、及び該電極上に電極触媒として混合担持した導電性ダイヤモンド粉末及びマグネリ相酸化チタン粉末を含んで成ることを特徴とする電解用ダイヤモンド電極である。
The present invention comprises an electrode base material having at least a surface of magnetic phase titanium oxide, and conductive diamond powder and magnetic phase titanium oxide powder mixedly supported as an electrode catalyst on the electrode. Diamond electrode.

以下、本発明を詳細に説明する。
高い酸化能力を有するダイヤモンド薄膜電極は、単体としては、厚さや価格の観点から工業用電極としては利用し難い。従って本発明では特に導電性ダイヤモンド粉末を電極触媒として使用し、他の材料と組合せて使用することにより、高い触媒能を有する電解用電極を提供する。或いはマグネリ相電極にCVD等により導電性ダイヤモンド膜を形成することも可能である。
本発明では前記他の材料として優れた耐久性や導電性を有するマグネリ相酸化チタンを電極基材として採用する。前述した通り、基材表面がマグネリ相酸化チタンで形成されていると、このマグネリ相酸化チタンは不可逆なTiO2の生成を行わず、基材表面に安定な酸化物層が形成されず、導電性の向上が達成できる。
Hereinafter, the present invention will be described in detail.
A diamond thin film electrode having high oxidation ability is difficult to use as an industrial electrode as a simple substance from the viewpoint of thickness and price. Therefore, in the present invention, an electrolysis diamond powder having high catalytic ability is provided by using conductive diamond powder as an electrode catalyst and using it in combination with other materials. Alternatively, a conductive diamond film can be formed on the magnetic phase electrode by CVD or the like.
In the present invention, magnetic phase titanium oxide having excellent durability and conductivity is adopted as the electrode base material. As described above, when the base material surface is formed of magnetic phase titanium oxide, this magnetic phase titanium oxide does not generate irreversible TiO 2 , and a stable oxide layer is not formed on the base material surface. Improvement in performance can be achieved.

更にこの基材は水素還元雰囲気に強いため、通常のCVD法によりダイヤモンドを直接析出させることができ、析出されたダイヤモンド粒子は基材表面に強固に保持され、長期間安定した操業を可能にする。
しかしこの基材表面にダイヤモンド粒子を含むスラリーを塗布後焼成して触媒であるダイヤモンド層を形成した電極ではマグネリ相酸化チタン基材とダイヤモンド粒子間の密着性が不十分で、電解中に基材表面のダイヤモンド粒子が脱落して電圧上昇を招くことが多い。
スラリー塗布と焼成によりダイヤモンド粒子を含む触媒層を形成する場合には、基材のマグネリ相酸化チタンと親和性のあるマグネリ相酸化チタンや他の酸化チタン粒子をダイヤモンド粒子とともに用いることが望ましい。
本発明の電解用電極は、廃水処理、機能水合成、無機、有機電解合成などの電気化学的な方法に使用できる。
Furthermore, since this base material is strong in a hydrogen reduction atmosphere, diamond can be directly deposited by a normal CVD method, and the precipitated diamond particles are firmly held on the surface of the base material, enabling stable operation for a long time. .
However, in the electrode having a diamond layer as a catalyst formed by applying a slurry containing diamond particles on the surface of the base material and then firing, the adhesion between the magnetic phase titanium oxide base material and the diamond particles is insufficient. In many cases, diamond particles on the surface fall off and the voltage rises.
When a catalyst layer containing diamond particles is formed by slurry application and firing, it is desirable to use magnetic phase titanium oxide having affinity with the magnetic phase titanium oxide of the base material or other titanium oxide particles together with the diamond particles.
The electrode for electrolysis of the present invention can be used in electrochemical methods such as wastewater treatment, functional water synthesis, inorganic and organic electrosynthesis.

本発明は、少なくともその表面がマグネリ相酸化チタンである電極基材、及び該電極上に電極触媒として混合担持した導電性ダイヤモンド粉末及びマグネリ相酸化チタン粉末を含んで成ることを特徴とする電解用ダイヤモンド電極である。
本発明の基材を構成するマグネリ相酸化チタンは基材表面に安定な酸化物層を形成させず、導電性の向上を達成する。更にこの基材は水素還元雰囲気に強いため、通常のCVD法によりダイヤモンドを直接析出させることができ、析出されたダイヤモンド粒子は基材表面に強固に保持され、長期間安定した操業を可能にする。
The present invention comprises an electrode base material having at least a surface of magnetic phase titanium oxide, and conductive diamond powder and magnetic phase titanium oxide powder mixedly supported as an electrode catalyst on the electrode . Diamond electrode.
The magnetic phase titanium oxide constituting the substrate of the present invention does not form a stable oxide layer on the surface of the substrate, and achieves an improvement in conductivity. Furthermore, since this base material is strong in a hydrogen reduction atmosphere, diamond can be directly deposited by a normal CVD method, and the precipitated diamond particles are firmly held on the surface of the base material, enabling stable operation for a long time. .

本発明のダイヤモンド電極は、図1及び2に示す次の2態様を含む。
(1) 先にマグネリ相酸化チタン基材11を準備し、この基材11にダイヤモンド粉末12と酸化チタン(TiO2)粉末13の混合粉末のスラリーを塗布し、高温真空焼成を行って基材11上に触媒層14を形成する(図1)。
(2) 基材となるべき酸化チタン粉末21からなるスラリーを乾燥しプレスにより成型して基材22とする。次いでこの基材22表面に、ダイヤモンド粉末23と酸化チタン粉末21Aの混合粉末のスラリーを塗布する。前記基材22とこの混合スラリーとを同時に高温真空焼成して前記基材中の酸化チタン粉末21と混合粉末中の酸化チタン粉末21Aをマグネリ相酸化チタンに変換し、マグネリ相酸化チタン基材22表面にダイヤモンド粉末23とマグネリ相酸化チタン粉末21からなる混合粉末の触媒層24を形成する(図2)。
The diamond electrode of the present invention includes the following two modes shown in FIGS.
(1) First, a magnetic phase titanium oxide base material 11 is prepared, and a slurry of a mixed powder of diamond powder 12 and titanium oxide (TiO 2 ) powder 13 is applied to the base material 11 and subjected to high-temperature vacuum firing to form a base material. A catalyst layer 14 is formed on 11 (FIG. 1).
(2) A slurry made of titanium oxide powder 21 to be a base material is dried and molded by pressing to form a base material 22. Next, a slurry of a mixed powder of diamond powder 23 and titanium oxide powder 21A is applied to the surface of the base material 22. The base material 22 and the mixed slurry are simultaneously subjected to high-temperature vacuum firing to convert the titanium oxide powder 21 in the base material and the titanium oxide powder 21A in the mixed powder into magnetic phase titanium oxide. A mixed powder catalyst layer 24 composed of diamond powder 23 and magnetic phase titanium oxide powder 21 is formed on the surface (FIG. 2 ).

(1)及び(2)のスラリー塗布及び焼成は、公知のマグネリ相酸化チタンの製法を利用できる。即ち原料である1〜100μmの粒径の酸化チタン粉末又はマグネリ相酸化チタンに適当な溶媒(水、イソプロピルアルコール等)を加えて塗らした後、粘性を高め均一なスラリーを得るために、適切な溶媒(ポリエチレンオキシド、メチルセルロース等)を更に加えてこれらを混合する。
この粉末スラリーをプレス装置内に充填し、0.5〜100MPaの圧力で目的の形状及び空隙率に成型する。良好な成型ができる圧力範囲は10〜80MPa程度である。この際に300〜400℃に加熱して、溶媒をほぼ完全に分解しておくことが望ましい。その後徐々に昇温して温度950〜1250℃、好ましくは1000〜1200℃に加熱し、不活性雰囲気中、この温度で数時間から1日程度保持することで、Ti47に代表されるマグネリ相酸化チタンが生成する。
For the slurry application and firing in (1) and (2), a known method for producing magnesium phase titanium oxide can be used. That is, after applying a suitable solvent (water, isopropyl alcohol, etc.) to the titanium oxide powder having a particle diameter of 1 to 100 μm or the magnetic phase titanium oxide as a raw material, A solvent (polyethylene oxide, methylcellulose, etc.) is further added and mixed.
The powder slurry is filled in a press apparatus and molded into a desired shape and porosity with a pressure of 0.5 to 100 MPa. The pressure range where good molding is possible is about 10 to 80 MPa. At this time, it is desirable that the solvent is almost completely decomposed by heating to 300 to 400 ° C. Thereafter, the temperature is gradually raised and heated to a temperature of 950 to 1250 ° C., preferably 1000 to 1200 ° C., and kept in this temperature for about several hours to one day in an inert atmosphere, as represented by Ti 4 O 7 Magnesium phase titanium oxide is produced.

触媒層形成のためのダイヤモンド粉末と酸化チタン粉末/マグネリ相酸化チタン粉末の混合比率は、電極触媒の有効面積、焼結した触媒層中のダイヤモンド粉末の保持力等を考慮して決定され、体積比率で1:20から20:1とすることが好ましい。触媒層の厚さは電極価格や性能面を考慮して決定され、通常はダイヤモンド析出層及びダイヤモンド−酸化チタン混合層とも1〜100μmであることが好ましい。
マグネリ相酸化チタン用の焼成前の粒子は、酸化チタン粒子でもマグネリ相酸化チタン粒子でも良く、この時点で導電性である必要はない。マグネリ相酸化チタン粒子を使用する場合には、混合粉末の高温焼結の前後に水素や炭素を使用して還元操作を行うが、ダイヤモンドの酸化雰囲気の黒鉛化温度が約800℃であり、焼結温度がこの温度に達する場合には、不活性雰囲気での処理が必要になる。
The mixing ratio of diamond powder and titanium oxide powder / magnesium phase titanium oxide powder for forming the catalyst layer is determined in consideration of the effective area of the electrode catalyst, the holding power of the diamond powder in the sintered catalyst layer, etc. The ratio is preferably 1:20 to 20: 1. The thickness of the catalyst layer is determined in consideration of the electrode price and performance, and it is usually preferable that both the diamond deposition layer and the diamond-titanium oxide mixed layer have a thickness of 1 to 100 μm.
The particles before firing for the magnetic phase titanium oxide may be titanium oxide particles or magnetic phase titanium oxide particles, and need not be conductive at this point. When using magnetic phase titanium oxide particles, reduction is performed using hydrogen or carbon before and after high-temperature sintering of the mixed powder, but the graphitization temperature of the diamond oxidizing atmosphere is about 800 ° C, and the sintering is performed. when the sintering temperature reaches this temperature, the process ing to the needs of an inert atmosphere.

ダイヤモンドは、超高圧或いは熱フィラメントCVD法、マイクロ波プラズマCVD法、プラズマアークジェット法及びPVD法などにより製造される。特にダイヤモンド粉末は、従来からの超高圧法やプラズマアークジェット法等により製造できるが、これらの方法には限定されない。
次に代表的なダイヤモンド製造法である熱フィラメント法について説明する。炭素源となるアルコール等の有機化合物を水素ガス等の還元雰囲気に保ち、フィラメントを炭素ラジカルが生成する温度1800−2400℃に加熱する。そして前記雰囲気内に、ダイヤモンドが析出する温度領域(750−950℃)になるように電極基材を配置する。このときの原料有機化合物の望ましい水素に対する濃度は0.1−10容量%、供給速度は反応容器のサイズにも依るが0.01−10リットル/分、圧力が15−760mmHgである。
Diamond is manufactured by an ultrahigh pressure or hot filament CVD method, a microwave plasma CVD method, a plasma arc jet method, a PVD method, or the like. In particular, diamond powder can be produced by a conventional ultra-high pressure method, a plasma arc jet method, or the like, but is not limited to these methods.
Next, the hot filament method, which is a typical diamond manufacturing method, will be described. An organic compound such as alcohol serving as a carbon source is kept in a reducing atmosphere such as hydrogen gas, and the filament is heated to a temperature of 1800-2400 ° C. at which carbon radicals are generated. And an electrode base material is arrange | positioned so that it may become the temperature range (750-950 degreeC) in which a diamond precipitates in the said atmosphere. At this time, the concentration of the starting organic compound with respect to the desired hydrogen is 0.1-10% by volume, the supply rate is 0.01-10 liter / min, depending on the size of the reaction vessel, and the pressure is 15-760 mmHg.

ダイヤモンドの良好な導電性を得るためには、原子価の異なる元素を微量添加することが不可欠であり、ホウ素やリンの好ましい含有率は1−100000ppmであり、より好ましい含有率は100−10000ppmである。具体的な化合物としては、毒性の低い酸化ホウ素や五酸化二リンなどがある。
ダイヤモンド触媒を製造する際のCVD条件は、マグネリ相酸化チタンが安定であるように設定する。前記(3)の方法では、ダイヤモンドは水素雰囲気で合成されるため、ダイヤモンド合成時にはマグネリ相酸化チタンの化学変化はない。基本的に物理的膨張収縮のみであり、仮にダイヤモンド形成後に亀裂が生じても、基材はマグネリ相酸化チタンであり電解用電極として望ましい耐久性は保たれる。
超高圧法による導電性ダイヤモンド粉末を生成させる代表的な方法として次に述べるプロセスが可能である。つまり高結晶性黒鉛粉末と任意の配合量の結晶性ホウ素粉末の混合物或いは構造中にホウ素を含有する高結晶性黒鉛成形体と既知のダイヤモンド転換触媒(鉄、コバルト、ニッケルからなる合金が代表的な触媒である)を高圧装置に充填して圧力5〜6GPa(ギガパスカル)、温度1500〜1600℃に2〜15分程度保持して、原料黒鉛をダイヤモンドに変換させ、回収した生成物の金属成分を酸処理等で除去した後、ダイヤモンド粒子を粉砕分級すれば、容易に1〜5μm程度の導電性ダイヤモンド粉末が得られる。なお更に微粉末が必要な場合は、振動ミル等によって粉砕効率を高めれば1μm以下の微粉末が得られる。これらは後述する実施例中で述べる電極形成材料として使用することができる。
In order to obtain good conductivity of diamond, it is indispensable to add a trace amount of elements having different valences. The preferable content of boron and phosphorus is 1-100000 ppm, and the more preferable content is 100-10000 ppm. is there. Specific compounds include boron oxide and diphosphorus pentoxide which have low toxicity.
The CVD conditions for producing the diamond catalyst are set so that the magnetic phase titanium oxide is stable. In the method (3), since diamond is synthesized in a hydrogen atmosphere, there is no chemical change in the magnetic phase titanium oxide during diamond synthesis. Basically, it is only physical expansion and contraction. Even if cracks occur after diamond formation, the base material is made of magnetic phase titanium oxide, and the durability desirable as an electrode for electrolysis is maintained.
The following process is possible as a typical method for producing conductive diamond powder by the ultra-high pressure method. In other words, a mixture of highly crystalline graphite powder and crystalline boron powder of any blending amount or a highly crystalline graphite molded body containing boron in the structure and a known diamond conversion catalyst (alloy consisting of iron, cobalt and nickel is typical. A high-pressure apparatus and hold at a pressure of 5 to 6 GPa (gigapascal) and a temperature of 1500 to 1600 ° C. for about 2 to 15 minutes to convert the raw material graphite into diamond and collect the recovered metal After removing the components by acid treatment or the like, if diamond particles are pulverized and classified, a conductive diamond powder of about 1 to 5 μm can be easily obtained. If a finer powder is required, a fine powder of 1 μm or less can be obtained by increasing the grinding efficiency with a vibration mill or the like. These can be used as an electrode forming material described in Examples described later.

電極基材の形状は、粒子、繊維、板、穴明き板などが可能である。板状に成形する場合でも粉末が原料であるため、空孔率は適宜調整できる。基材からみると電解液の浸透を抑制する点から空孔率はできるだけ小さいことが好ましい一方、触媒層からみるとある程度の三次元的有効面積を有することが重要であることから空孔率は大きい方が望ましい。電極基材の好ましい空孔率は10〜90%である。
本発明の電極基材はマグネリ相酸化チタンであるが、少量の他の金属や金属酸化物が含有されていても良く、更にチタンやタンタル等の金属を基材に接合させると機械的な強度が向上し、また僅かな粒子の隙間から電解液が浸透することが防止できる。このときのマグネリ相酸化チタンの厚さは0.1〜10mmとすることが好ましい。
The shape of the electrode substrate can be particles, fibers, plates, perforated plates, and the like. Even in the case of forming into a plate shape, since the powder is a raw material, the porosity can be appropriately adjusted. The porosity is preferably as small as possible from the viewpoint of suppressing the penetration of the electrolyte when viewed from the base material, whereas the porosity is important because it is important to have a certain three-dimensional effective area when viewed from the catalyst layer. The larger one is desirable. The preferable porosity of the electrode substrate is 10 to 90%.
The electrode base material of the present invention is magnetic phase titanium oxide, but it may contain a small amount of other metals and metal oxides, and further mechanical strength when a metal such as titanium or tantalum is joined to the base material. In addition, the electrolyte solution can be prevented from penetrating through a slight gap between particles. At this time, the thickness of the magnesium phase titanium oxide is preferably 0.1 to 10 mm.

次に本発明に係る電解用電極製造の実施例及び比較例を記載するが、これらは本発明を限定するものではない。   Next, although the Example and comparative example of the electrode production for electrolysis which concern on this invention are described, these do not limit this invention.

[実施例1]
マグネリ相酸化チタンを次のようにして製造した。
原料である酸化チタン粉末(粒子径:約1μm)に、水とイソプロピルアルコールを適量添加し、更にポリエチレンオキシドを添加し混合して、粘性のある均一なスラリーを得た。
このスラリーをプレス装置の容器内に充填し、20MPaの圧力で成型した。徐々に昇温し、温度1050℃で10時間シンタリングを行った後、水素ガスを導入し還元雰囲気に6時間保持して、Ti47を主成分とするマグネリ相酸化チタン板(厚さ2mm)を作製した。
この板を2分し、一方をそのまま基材とし、他方は粉砕して後述する触媒用とした。
[Example 1]
Magnesium phase titanium oxide was produced as follows.
An appropriate amount of water and isopropyl alcohol was added to the raw material titanium oxide powder (particle diameter: about 1 μm), and polyethylene oxide was further added and mixed to obtain a viscous uniform slurry.
This slurry was filled in a container of a press apparatus and molded at a pressure of 20 MPa. After gradually raising the temperature and sintering at a temperature of 1050 ° C. for 10 hours, hydrogen gas was introduced and held in a reducing atmosphere for 6 hours to obtain a magnesium phase titanium oxide plate (thickness) mainly composed of Ti 4 O 7. 2 mm).
This plate was divided into two, and one was used as it was as a substrate, and the other was pulverized for use in the catalyst described later.

次いで超高圧法により作製した、ホウ素3000ppmを含む導電性ダイヤモンド粉末を使用した。
このダイヤモンド粉末と前記マグネリ相酸化チタン粉末を組成比率1:1(体積比)となるように混合して水とイソプロピルアルコールを適量添加し、更にポリエチレンオキシドを添加し混合して、粘性のある均一なスラリーを得た。このスラリーを前記マグネリ相酸化チタン板上に展開し、更にプレス装置内にこの板を設置し、20MPaの圧力で成型した。徐々に昇温し、温度が1050℃になったところで、真空下(圧力:10-4Torr)で3時間シンタリングを行い、混合粉末触媒層を担持したマグネリ相酸化チタン板を得た。触媒層の厚さは50μmであった。
このマグネリ相酸化チタン板から面積1cm2の板を切り出して陽極とし、対極を面積1cm2のジルコニウム板とし、極間を1cmとして電解槽を組立てた。電解液を150g/リットルの硫酸、電解温度60℃、電流密度2A/cm2の条件で水電解を行ったところ、4500時間安定したセル電圧が維持され、長期期間の使用が可能であることが確認された。
Next, conductive diamond powder containing 3000 ppm of boron produced by an ultrahigh pressure method was used.
The diamond powder and the magnesium phase titanium oxide powder are mixed so as to have a composition ratio of 1: 1 (volume ratio), and an appropriate amount of water and isopropyl alcohol are added. A slurry was obtained. This slurry was spread on the magnetic phase titanium oxide plate, and this plate was placed in a press apparatus and molded at a pressure of 20 MPa. The temperature was gradually raised, and when the temperature reached 1050 ° C., sintering was performed under vacuum (pressure: 10 −4 Torr) for 3 hours to obtain a magnetic phase titanium oxide plate carrying a mixed powder catalyst layer. The thickness of the catalyst layer was 50 μm.
A plate having an area of 1 cm 2 was cut out from the magnetic phase titanium oxide plate to be an anode, a counter electrode was a zirconium plate having an area of 1 cm 2 , and an electrolytic cell was assembled with a distance of 1 cm between the electrodes. When water electrolysis was performed using 150 g / liter sulfuric acid, electrolysis temperature of 60 ° C., and current density of 2 A / cm 2 , the cell voltage was stable for 4500 hours and could be used for a long period of time. confirmed.

[実施例2]
実施例1と同じ条件で作製したTi47を主成分とするマグネリ相酸化チタン板を一旦粉砕し、粉末とした。この粉末の一部に水とイソプロピルアルコールを適量添加し、更にポリエチレンオキシドを添加し混合して、粘性のある均一なスラリーを得た。
このスラリー(基材用)をプレス装置の容器内に充填した。
[Example 2]
A magnetic phase titanium oxide plate mainly composed of Ti 4 O 7 produced under the same conditions as in Example 1 was once pulverized into powder. An appropriate amount of water and isopropyl alcohol was added to a part of the powder, and polyethylene oxide was further added and mixed to obtain a viscous uniform slurry.
This slurry (for base material) was filled in a container of a press apparatus.

このスラリー上に、CVD法により作製したダイヤモンド粉末と残りのマグネリ相酸化チタン粉末の組成比を1:2(体積比)として実施例1と同様にして混合し、前記スラリー上に展開した。200kgf/cm2の圧力で成型した後、徐々に昇温し、温度が1050℃になったところで、真空下(圧力:10-4Torr)で10時間シンタリングを行った。これにより、マグネリ相酸化チタンを基材とし、導電性ダイヤモンドを酸化チタン上に焼結した電極を作製した。触媒層の厚さは50μmであった
このマグネリ相酸化チタン板から面積1cm2の板を切り出して陽極とし、実施例1と同一条件で電解を行ったところ、4500時間安定したセル電圧が維持され、長期期間の使用が可能であることが確認された。
On this slurry, the composition ratio of the diamond powder produced by the CVD method and the remaining magnesium phase titanium oxide powder was set to 1: 2 (volume ratio) in the same manner as in Example 1 and developed on the slurry. After molding at a pressure of 200 kgf / cm 2 , the temperature was gradually raised, and when the temperature reached 1050 ° C., sintering was performed under vacuum (pressure: 10 −4 Torr) for 10 hours. As a result, an electrode was prepared by using conductive phase titanium oxide as a base material and sintering conductive diamond on titanium oxide. The thickness of the catalyst layer was 50 μm. When a 1 cm 2 area plate was cut out from this magnetic phase titanium oxide plate and used as an anode, electrolysis was performed under the same conditions as in Example 1, and a stable cell voltage was maintained for 4500 hours. It was confirmed that long-term use is possible.

[実施例3]
ダイヤモンド粉末とマグネリ相酸化チタン粉末の組成比率を1:1(体積比)とした混合粉末スラリーを調製し、高温焼結時の圧力を1MPa、焼結時間を24時間としたこと以外は、実施例1に従い、マグネリ相酸化チタンを基材とし、導電性ダイヤモンドを酸化チタン上に焼結した電極を作製した。
実施例1と同じ条件で電解を行ったところ、3500時間安定したセル電圧が維持され、長期期間の使用が可能であることが確認された。
[Example 3]
Except that a mixed powder slurry was prepared in which the composition ratio of diamond powder and magnetic phase titanium oxide powder was 1: 1 (volume ratio), the pressure during high-temperature sintering was 1 MPa, and the sintering time was 24 hours. In accordance with Example 1, an electrode was prepared by using magnesium phase titanium oxide as a base material and sintering conductive diamond on titanium oxide.
When electrolysis was performed under the same conditions as in Example 1, it was confirmed that a stable cell voltage was maintained for 3500 hours and that it could be used for a long period of time.

[比較例1]
マグネリ相酸化チタン基材に替えてシリコン基材を使用し、実施例2と同じダイヤモンドを前記シリコン基材表面に10μmの厚さまで形成し、実施例2等の同じ条件で電解を行ったところ、電解寿命は4000時間であり、実施例2とほぼ同等であった。
[Comparative Example 1]
When a silicon substrate was used instead of the magnetic phase titanium oxide substrate, the same diamond as in Example 2 was formed on the surface of the silicon substrate to a thickness of 10 μm, and electrolysis was performed under the same conditions as in Example 2. The electrolytic life was 4000 hours, which was almost the same as in Example 2.

[比較例2]
マグネリ相酸化チタン基材に替えてニオブ基材を使用し、実施例2と同じダイヤモンドを前記ニオブ基材表面に10μmの厚さまで形成し、実施例2と同じ条件で電解を行ったところ、200時間後に電圧が急激に増加した。通電を停止し電極表面を観察したところ、ダイヤモンド層の剥離が進行し、基材は腐食していた。
[Comparative Example 2]
When a niobium substrate was used instead of the magnetic phase titanium oxide substrate, the same diamond as in Example 2 was formed on the surface of the niobium substrate to a thickness of 10 μm, and electrolysis was performed under the same conditions as in Example 2. The voltage increased rapidly after time. When energization was stopped and the electrode surface was observed, peeling of the diamond layer proceeded and the substrate was corroded.

[比較例3]
実施例1に従って作製したマグネリ相酸化チタン板を基材とし、この基材表面に、実施例1のダイヤモンド粉末のみからなるスラリーを展開し、実施例1と同一の条件で焼成してダイヤモンド電極を作製した。実施例1と異なりこの操作のみでダイヤモンド粉末を基材上に固着できたため、実施例1と同様の電解試験を実施したことろ、電解初期からダイヤモンド粉末が脱落し、電圧が急激に増加した。
[Comparative Example 3]
Using a magnetic phase titanium oxide plate produced according to Example 1 as a base material, a slurry consisting only of the diamond powder of Example 1 was developed on the surface of the base material, and fired under the same conditions as in Example 1 to form a diamond electrode. Produced. Unlike Example 1, the diamond powder could be fixed on the base material only by this operation. Therefore, the same electrolytic test as in Example 1 was carried out. As a result, the diamond powder dropped off from the initial stage of electrolysis, and the voltage increased rapidly.

本発明に係る電解用電極の一実施形態を示す縦断面図。The longitudinal cross-sectional view which shows one Embodiment of the electrode for electrolysis which concerns on this invention. 同じく他の実施形態を示す縦断面図。 Similarly, the longitudinal cross-sectional view which shows other embodiment .

符号の説明Explanation of symbols

11 マグネリ相酸化チタン基材
12 ダイヤモンド粉末
13 酸化チタン粉末
14 触媒層
21、21A 酸化チタン粉末
22 基材
23 ダイヤモンド粉末
24 触媒
11 Magneli phase titanium oxide base material
12 Diamond powder
13 Titanium oxide powder
14 Catalyst layer
21, 21A Titanium oxide powder
22 Base material
23 Diamond powder
24 Catalyst layer

Claims (2)

なくともその表面がマグネリ相酸化チタンである電極基材、及び該電極上に電極触媒として混合担持した導電性ダイヤモンド粉末及びマグネリ相酸化チタン粉末を含んで成ることを特徴とする電解用ダイヤモンド電極。 Even without least the electrode substrate that surface is magneli phase titanium oxide, and the electrolyte diamond electrode, characterized in that it comprises a mixture loaded with conductive diamond powder and magneli phase titanium oxide powder on the electrode as an electrode catalyst . 導電性ダイヤモンド粉末とマグネリ相酸化チタン粉末の体積比が1:20から20:1である請求項記載のダイヤモンド電極。 Conductive diamond powder and magneli phase titanium oxide powder having a volume ratio of from 1:20 to 20: 1 is claimed in claim 1 diamond electrode according.
JP2004105766A 2003-04-15 2004-03-31 Diamond electrode for electrolysis Expired - Fee Related JP4406312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105766A JP4406312B2 (en) 2003-04-15 2004-03-31 Diamond electrode for electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003109858 2003-04-15
JP2004105766A JP4406312B2 (en) 2003-04-15 2004-03-31 Diamond electrode for electrolysis

Publications (2)

Publication Number Publication Date
JP2004332108A JP2004332108A (en) 2004-11-25
JP4406312B2 true JP4406312B2 (en) 2010-01-27

Family

ID=33513152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105766A Expired - Fee Related JP4406312B2 (en) 2003-04-15 2004-03-31 Diamond electrode for electrolysis

Country Status (1)

Country Link
JP (1) JP4406312B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489200A1 (en) * 2003-06-19 2004-12-22 Akzo Nobel N.V. Electrode
EP2135671B1 (en) * 2008-06-19 2015-03-04 Mitsubishi Gas Chemical Company, Inc. Catalyst and method for producing carboxylic acid and/or carboxylic anhydride in the presence of the catalyst
JP5463059B2 (en) * 2009-03-23 2014-04-09 東洋炭素株式会社 Carbon material coated with diamond thin film and method for producing the same
JP5672483B2 (en) * 2010-09-27 2015-02-18 住友電気工業株式会社 High hardness conductive diamond polycrystal and method for producing the same
KR101848292B1 (en) 2017-04-10 2018-04-12 주식회사 라이트브릿지 High-area, porous-type channel-embedded electrochemical electrodes and stacked electrolysis system having the same
JP2020203997A (en) * 2019-06-18 2020-12-24 旭化成株式会社 Method of treating reinforced composite material
WO2021176946A1 (en) * 2020-03-06 2021-09-10 株式会社村田製作所 Photocatalyst article, manufacturing method thereof, manufacturing method of photocatalytic reaction product using photocatalyst article, and photocatalytic reaction device

Also Published As

Publication number Publication date
JP2004332108A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US8338323B2 (en) Electrode for electrochemical reaction and production process thereof
JP5604017B2 (en) Electrochemical electrode and method for producing the same
JP4116726B2 (en) Electrochemical treatment method and apparatus
Flexer et al. The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems
EP1468965B1 (en) Diamond electrode for electrolysis
EP1640479A1 (en) Conductive diamond electrode and process for producing the same
Liu et al. Enhancing copper recovery and electricity generation from wastewater using low-cost membrane-less microbial fuel cell with a carbonized clay cup as cathode
JP2001192874A (en) Method for preparing persulfuric acid-dissolving water
JP2007039720A (en) Electroconductive diamond electrode and its producing method
Li et al. Achieving high single‐pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering
JP2005290403A (en) Electrolysis method by conductive diamond particle and method for manufacturing conductive diamond particle
Park et al. Three-dimensionally interconnected titanium foam anode for an energy-efficient zero gap-type chlor-alkali electrolyzer
JP4406312B2 (en) Diamond electrode for electrolysis
Liu et al. Modifying Ti-based gas diffusion layer passivation for polymer electrolyte membrane water electrolysis via electrochemical nitridation
JP4756572B2 (en) Porous diamond layer, method for producing porous diamond particles, and electrochemical electrode using the same
JP5408653B2 (en) Ozone generation method and ozone generation apparatus
JP3716204B2 (en) Electrolytic production method of organic compound and electrode for electrolytic production
JP2005325417A (en) Diamond electrode and production method therefor
Ha et al. Industrial-scale efficient alkaline water electrolysis achieved with sputtered NiFeV-oxide thin film electrodes for green hydrogen production
JP4121322B2 (en) Electrochemical processing equipment
CN116348634A (en) Layer and layer system, and conductive plate and electrochemical cell
JP6082935B2 (en) Manufacturing method of conductive material
CN108585126B (en) Lead peroxide electrode and preparation method and application thereof
Zhang Enhancing the Water Oxidation Performance of Bulk Al1. 2CrFe2Ni2 High Entropy Alloy Through Deep Cryogenic Treatment
JP5386324B2 (en) Method for producing electrode for electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4406312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees