JP6082935B2 - Manufacturing method of conductive material - Google Patents

Manufacturing method of conductive material Download PDF

Info

Publication number
JP6082935B2
JP6082935B2 JP2012209047A JP2012209047A JP6082935B2 JP 6082935 B2 JP6082935 B2 JP 6082935B2 JP 2012209047 A JP2012209047 A JP 2012209047A JP 2012209047 A JP2012209047 A JP 2012209047A JP 6082935 B2 JP6082935 B2 JP 6082935B2
Authority
JP
Japan
Prior art keywords
powder
metal
oxide
conductive material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012209047A
Other languages
Japanese (ja)
Other versions
JP2014062306A (en
Inventor
森園 靖浩
靖浩 森園
貞弘 連川
貞弘 連川
光宇 吉本
光宇 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Original Assignee
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC filed Critical Kumamoto University NUC
Priority to JP2012209047A priority Critical patent/JP6082935B2/en
Publication of JP2014062306A publication Critical patent/JP2014062306A/en
Application granted granted Critical
Publication of JP6082935B2 publication Critical patent/JP6082935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、例えば電池、オゾン水の生成装置、電気分解装置等に利用される電極として好適に利用可能な電気伝導性に優れた導電性材料の製造方法に関する。   The present invention relates to a method for producing a conductive material having excellent electrical conductivity that can be suitably used as an electrode used in, for example, a battery, an ozone water generator, an electrolyzer, and the like.

電池、電気分解装置等に用いられる電極は、高い導電性が要求されるとともに腐食性がある電解溶液中でも長期間劣化しないような高い耐食性が必要とされる。従来、導電性及び耐食性が高い電極として白金が利用されているがコストが高いことから、比較的安価で耐食性に優れたチタンを電極へ利用する技術の開発が進められている。しかしながら、チタンは酸化しやすく、その表面はほとんど絶縁性の酸化チタンになりやすいことから、高い導電性が要求される電極への適用には制限される問題があり、導電性を向上する技術の開発が望まれている。   Electrodes used for batteries, electrolyzers and the like are required to have high corrosion resistance that does not deteriorate for a long time even in a corrosive electrolytic solution as well as high conductivity. Conventionally, platinum has been used as an electrode having high conductivity and corrosion resistance. However, since the cost is high, development of a technique for using titanium, which is relatively inexpensive and excellent in corrosion resistance, for the electrode has been advanced. However, since titanium easily oxidizes and its surface tends to become almost insulating titanium oxide, there is a problem that it is limited to application to electrodes that require high conductivity, and there is a problem of technology for improving conductivity. Development is desired.

一方、特許文献1には、チタン材の表面に酸化チタン層を形成し、その表面にPVD法によってAu、Pt、Pd等の貴金属層を形成した後、加熱処理する電極用チタン材の表面処理方法が開示されている。特許文献2には、チタン又はチタン合金からなる導電性基体の表面に電極活性物質を強固に接合保持させるために、導電性基体の表面を電解質溶液中で電解酸化して多孔質化し、多孔質化された導電性基体の表面に白金族金属等の電極活性物質を層状に形成する電極の製造方法が開示されている。特許文献3には、多孔質発泡チタンを炭窒化処理することにより、多孔質骨格表面に炭窒化チタン層を形成した多孔質発泡チタンの製造方法が開示されている。特許文献4には、サーメットの原料として応用される窒化チタン粉末の製造方法として、酸化チタン粉末とカーボン粉末とを混合したものを窒素ガス中において1350度以上で且つチタンの融点以下の温度で加熱する方法が開示されている。特許文献5には、サーメットの原料として応用される窒化チタン粉末の製造方法として、酸化チタンと炭素粉末を混合してバインダーで混練し造粒ペレットに整粒後、窒素気流中1500度〜1800度で加熱処理し、粉砕機で粉砕して炭窒化チタン粉末を得る方法が開示されている。特許文献6には、チタン系材料の表面を改質する技術として、チタン系材料を加熱炉に収容して、二酸化炭素雰囲気中、600〜900℃で加熱処理し、チタン系材料の表面に酸素及び炭素の拡散層を形成する方法が提案されている。また、特許文献7には、フィールドエミッションディスプレイに利用できる電子源の製造方法として、少なくとも基板上にアルミニウム陽極酸化膜を形成する工程と、炭化水素を原料ガスとし、かつ原料ガスの分解温度未満における気相炭素化法により、炭素系材料を前記アルミニウム陽極酸化膜の細孔のほぼ底部に密着して堆積させ、さらに、細孔内部に繊維状の炭素系材料を形成する工程とを具備する技術が開示されている。   On the other hand, in Patent Document 1, a titanium oxide layer is formed on the surface of a titanium material, a noble metal layer such as Au, Pt, Pd, etc. is formed on the surface by a PVD method, and then the surface treatment of the electrode titanium material to be heat-treated. A method is disclosed. In Patent Document 2, in order to firmly bond and hold an electrode active substance on the surface of a conductive substrate made of titanium or a titanium alloy, the surface of the conductive substrate is made porous by electrolytic oxidation in an electrolyte solution. An electrode manufacturing method is disclosed in which an electrode active material such as a platinum group metal is formed in a layer on the surface of a conductive substrate. Patent Document 3 discloses a method for producing porous titanium foam in which a titanium carbonitride layer is formed on the surface of a porous skeleton by carbonitriding porous titanium foam. In Patent Document 4, as a method for producing titanium nitride powder applied as a raw material for cermet, a mixture of titanium oxide powder and carbon powder is heated in nitrogen gas at a temperature of 1350 ° C. or higher and below the melting point of titanium. A method is disclosed. In Patent Document 5, as a method for producing titanium nitride powder applied as a raw material for cermet, titanium oxide and carbon powder are mixed, kneaded with a binder, granulated into granulated pellets, and then 1500 to 1800 degrees in a nitrogen stream. And a method of obtaining a titanium carbonitride powder by pulverizing with a pulverizer. In Patent Document 6, as a technique for modifying the surface of a titanium-based material, the titanium-based material is accommodated in a heating furnace and heat-treated at 600 to 900 ° C. in a carbon dioxide atmosphere. And a method of forming a carbon diffusion layer has been proposed. Patent Document 7 discloses a method of manufacturing an electron source that can be used for a field emission display, a step of forming an aluminum anodic oxide film on at least a substrate, a hydrocarbon as a source gas, and a temperature lower than the decomposition temperature of the source gas. A technique of depositing a carbonaceous material in close contact with the bottom of the pores of the aluminum anodic oxide film by vapor phase carbonization, and further forming a fibrous carbonaceous material inside the pores. Is disclosed.

特開2009−228123号公報JP 2009-228123 A 特開2009−197284号公報JP 2009-197284 A 特開2006−348330号公報JP 2006-348330 A 特開平1−96005号公報Japanese Unexamined Patent Publication No. 1-96005 特開平8−333107号公報JP-A-8-333107 特開2003−73799号公報JP 2003-73799 A 特開2003−31115号公報JP 2003-31115 A

特許文献1では、特殊かつ高価なPVD装置が必要であることから、費用負担が大きく設備導入が困難な場合があった。さらに、処理工程が複雑で工程数も多く、製造効率が悪いものであった。また、材料としてAu、Pt等の貴金属を使用する必要があるので表面処理後の製品が高コスト化するとともに、貴金属層の表面は平滑となるので表面積が少ない結果、高コストの割には電気伝導性の大幅な向上を期待できないおそれがあった。特許文献2では、導電性基体の多孔質の細孔内に、電極活性物質を深く、しかも複雑に食い込ませて基体表面上に固定させてアンカー効果によって強固に接合保持させるので、電極表面積が少なくなるおそれがあった。さらに、基体表面へ金属塩溶液の塗布−乾燥−焼成を行う工程を数回から数十回繰り返して目標とする電極活性物質量を確保する必要があるので、工程が煩雑で製造効率に劣る問題があった。また、材料として高価な白金族金属等を使用する必要があるので製造された電極が高コスト化する問題があった。特許文献3では、多孔質のチタンを形成する工程では、チタン粉末の他に結合剤、可塑剤、気泡剤、発泡剤等の多種の材料が必要であるとともに発泡スラリーの成形、乾燥、脱脂、焼結等を含むので複雑かつ煩雑なものとなり、該多孔質チタンを形成した後に炭窒化処理する必要があるので製造工程全体として複雑、煩雑なものであり、製造効率が悪かった。特許文献4、5では、サーメットの原料として窒化チタンや炭窒化チタンの粉末を製造する技術であるが、酸化チタン粉末を窒化や炭窒化するために比較的高い温度で加熱処理する必要があるため、加熱設備に高い費用を要し、中小企業等の場合には負担が大きく設備導入が困難な場合があった。さらに、窒化チタン粉末や炭窒化チタン粉末を仮に電極として応用する場合には、別途に該粉末を焼結して所定の形状に成形したり基板等に固着させたりする必要があるので、電極の形状や性能が制限されやすく、電池や電気分解装置等の電極材料として実用性に劣るとともに製造効率も悪いものであった。特許文献6のチタン系材料の表面処理方法では、チタン系材料の耐摩耗性を向上させようとするものであるが、単にチタン表面に酸素や炭素の拡散層を形成するだけでは大きな導電性の向上を望めず、電気伝導性が要求される電池や電気分解装置等の電極材料としては実用できないおそれがあった。また、特許文献7の電子源の製造方法では、フィールドエミッションディスプレイに利用される低電圧駆動可能な電子源を目的としているが、陽極酸化皮膜自体を改質するものではなく、炭素系材料を陽極酸化膜の細孔に気相炭素化法により堆積させるので、後工程でエッチング処理して電子源を表面に露出させる必要があり、工程数が多く煩雑でコストもかかるおそれがあった。   In Patent Document 1, since a special and expensive PVD apparatus is required, there are cases where the cost burden is large and the introduction of the equipment is difficult. Further, the processing steps are complicated, the number of steps is large, and the production efficiency is poor. In addition, since it is necessary to use a noble metal such as Au or Pt as a material, the cost of the product after the surface treatment is increased, and the surface of the noble metal layer is smooth, resulting in a small surface area. There was a risk that a significant improvement in conductivity could not be expected. In Patent Document 2, since the electrode active substance is deeply and complicatedly penetrated into the porous pores of the conductive substrate and fixed on the substrate surface to be firmly bonded and held by the anchor effect, the electrode surface area is small. There was a risk of becoming. Furthermore, since it is necessary to ensure the target amount of electrode active substance by repeating the process of applying, drying and firing the metal salt solution to the substrate surface several times to several tens of times, the process is complicated and the production efficiency is poor. was there. In addition, since it is necessary to use an expensive platinum group metal or the like as a material, there is a problem that the cost of the manufactured electrode is increased. In Patent Document 3, in the process of forming porous titanium, in addition to titanium powder, various materials such as a binder, a plasticizer, a foaming agent, and a foaming agent are required, and foaming slurry is formed, dried, degreased, Since it includes sintering and the like, it becomes complicated and complicated. Since it is necessary to perform carbonitriding after forming the porous titanium, the entire manufacturing process is complicated and complicated, and the production efficiency is poor. Patent Documents 4 and 5 are techniques for producing titanium nitride or titanium carbonitride powder as a raw material for cermet, but it is necessary to heat treatment at a relatively high temperature in order to nitride or carbonitride titanium oxide powder. In addition, high costs are required for heating equipment, and in the case of small and medium-sized enterprises, there are cases where it is difficult to introduce the equipment due to a heavy burden. Furthermore, when titanium nitride powder or titanium carbonitride powder is applied as an electrode, it is necessary to separately sinter the powder and form it into a predetermined shape or fix it to a substrate. The shape and performance are likely to be limited, and it is inferior in practicality as an electrode material for batteries, electrolyzers, and the like, and its production efficiency is also poor. In the surface treatment method for titanium-based material disclosed in Patent Document 6, an attempt is made to improve the wear resistance of the titanium-based material. However, simply forming a diffusion layer of oxygen or carbon on the titanium surface has a large conductivity. There was a possibility that improvement could not be expected and it could not be put into practical use as an electrode material for batteries, electrolyzers and the like that require electrical conductivity. The method of manufacturing an electron source disclosed in Patent Document 7 aims at an electron source that can be driven at a low voltage used in a field emission display, but does not modify the anodic oxide film itself, and uses a carbon-based material as an anode. Since it is deposited in the pores of the oxide film by the vapor phase carbonization method, it is necessary to perform an etching process in a subsequent process to expose the electron source on the surface, which may involve a large number of processes and may be expensive.

本発明は上記従来の課題に鑑みてなされたものであり、その一つの目的は、極めて簡単な設備だけで、簡便にかつ低コストで、電気伝導性に優れた導電性材料を製造できる導電性材料の製造方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and one object thereof is conductivity that can produce a conductive material excellent in electrical conductivity simply and at low cost with only extremely simple equipment. It is to provide a method for manufacturing a material.

上記課題を解決するために本発明は、表面が金属酸化物の多孔質構造からなる処理対象物10を、炭素粉末と、鉄、ニッケル、コバルト、鉄合金、ニッケル合金、コバルト合金の少なくとも1種の粉末と、を含む平均粒径が数μm〜数百μm程度のマイクロメートルオーダの炭素源粉末12中に埋没させた状態で、窒素ガス雰囲気(S)中で800℃から1100℃の間の温度で加熱処理し、該多孔質構造の金属酸化物を、金属窒化物、金属炭化物又は金属炭窒化物で置換し、処理対象物の多孔質構造を保持した導電性材料を得ることを特徴とする導電性材料の製造方法から構成される。処理対象物は、例えば、金属の表面を陽極酸化皮膜処理したもの、その他の金属の表面を酸化処理及び多孔質化処理したもの、又は、金属酸化物粉体を焼結して全体を多孔質構造としたもの等でもよい。 In order to solve the above-described problems, the present invention provides a processing object 10 having a surface having a porous structure of a metal oxide, at least one of carbon powder, iron, nickel, cobalt, iron alloy, nickel alloy, and cobalt alloy. Between 800 ° C. and 1100 ° C. in a nitrogen gas atmosphere (S) in a state of being embedded in a carbon source powder 12 having an average particle size of about several μm to several hundred μm . Heat-treating at a temperature, replacing the metal oxide having a porous structure with a metal nitride, metal carbide, or metal carbonitride to obtain a conductive material that retains the porous structure of the object to be treated. It is comprised from the manufacturing method of the electrically-conductive material to do. The object to be treated is, for example, a metal surface that has been anodized, a metal surface that has been oxidized and made porous, or a metal oxide powder that is entirely porous A structure or the like may be used.

また、処理対象物10を埋没させる炭素源粉末12に、酸化アルミニウム粉末や酸化チタン粉末等の金属酸化物粉末を混合し、前記加熱処理することにより、多孔質構造の金属酸化物の表面にアルミニウムやチタン等の酸化物粉末を構成する金属を拡散させることとしてもよい。例えば、炭素源粉末12に酸化イリジウムのような貴金属酸化物粉末を加えると導電性材料の電気伝導性をさらに高めることも可能になると予想される。   Further, by mixing a metal oxide powder such as an aluminum oxide powder or a titanium oxide powder with the carbon source powder 12 in which the object to be treated 10 is buried, the heat treatment is performed, so that the surface of the porous metal oxide is made of aluminum. Alternatively, the metal constituting the oxide powder such as titanium may be diffused. For example, it is expected that when the noble metal oxide powder such as iridium oxide is added to the carbon source powder 12, the electric conductivity of the conductive material can be further increased.

また、金属母材を陽極酸化皮膜処理することにより、表面が金属酸化物の多孔質構造からなる処理対象物10を形成することとしてもよい。   Moreover, it is good also as forming the process target object 10 which the surface consists of a porous structure of a metal oxide by anodizing the metal base material.

また、処理対象物10の金属酸化物は、酸化チタン、酸化ジルコニウム、酸化アルミニウムのいずれか1種であることとしてもよい。   Further, the metal oxide of the object to be processed 10 may be any one of titanium oxide, zirconium oxide, and aluminum oxide.

本発明の導電性材料の製造方法によれば、表面が金属酸化物の多孔質構造からなる処理対象物を、炭素粉末と、鉄、ニッケル、コバルト、鉄合金、ニッケル合金、コバルト合金の少なくとも1種の粉末と、を含む炭素源粉末中に埋没させた状態で、窒素ガス雰囲気中で加熱処理し、該多孔質構造の金属酸化物を、金属窒化物、金属炭化物又は金属炭窒化物で置換し、処理対象物の多孔質構造を保持した導電性材料に変換することから、多孔質構造が保持された状態で金属窒化物、金属炭化物又は金属炭窒化物を得ることができ、導電性及び耐食性に優れ、例えば、電極やオゾン水生成装置、電気分解装置の電極や半導体基板等に適用できる。さらに、形状に左右されることなく処理を行え、簡単な設備で、しかも簡単な操作で、低コストで導電性材料を製造することができる。   According to the method for producing a conductive material of the present invention, the object to be processed having a porous structure with a metal oxide surface is treated with at least one of carbon powder, iron, nickel, cobalt, an iron alloy, a nickel alloy, and a cobalt alloy. And heat treatment in a nitrogen gas atmosphere in a state of being buried in a carbon source powder containing seed powder, and replacing the metal oxide having a porous structure with metal nitride, metal carbide or metal carbonitride Then, since the conductive material is converted into a conductive material that retains the porous structure of the object to be treated, a metal nitride, metal carbide, or metal carbonitride can be obtained in a state in which the porous structure is retained. It has excellent corrosion resistance and can be applied to, for example, electrodes, ozone water generators, electrodes of electrolyzers, semiconductor substrates, and the like. Further, the treatment can be performed without being influenced by the shape, and the conductive material can be manufactured at low cost with simple equipment and simple operation.

また、加熱温度は、800℃から1100℃の間に設定された構成とすることにより、処理対象物の金属酸化物が溶融しない温度で加熱処理でき、元の多孔質構造を保持して金属窒化物、金属炭化物や金属炭窒化物に変換できる。   Further, by adopting a configuration in which the heating temperature is set between 800 ° C. and 1100 ° C., heat treatment can be performed at a temperature at which the metal oxide of the object to be treated does not melt, and the original porous structure is maintained and metal nitriding is performed. Product, metal carbide and metal carbonitride.

また、処理対象物を埋没させる炭素源粉末に、酸化アルミニウム粉末や酸化チタン粉末等の金属酸化物粉末を混合し、前記加熱処理することにより、多孔質構造の金属酸化物の表面にアルミニウムやチタン等の酸化物粉末を構成する金属を拡散させる構成とすることにより、導電性材料の電極性能の向上が期待できる。さらに、加熱処理の際に炭素源粉末が焼結するのを良好に防止できる。   Further, by mixing a metal source powder such as an aluminum oxide powder or a titanium oxide powder with a carbon source powder for burying the object to be treated, and by performing the heat treatment, aluminum or titanium is formed on the surface of the porous metal oxide. The electrode performance of the conductive material can be expected to improve by diffusing the metal constituting the oxide powder. Furthermore, it is possible to satisfactorily prevent the carbon source powder from being sintered during the heat treatment.

また、金属母材を陽極酸化皮膜処理することにより、表面が金属酸化物の多孔質構造からなる処理対象物を形成することから、マイクロメートルオーダ以上の厚い酸化皮膜すなわち表面積が大きい多孔質構造の金属酸化皮膜を簡単に形成することができる結果、導電性が高く電極性能に優れた導電性材料を簡単に製造できる。さらに、目的の導電性材料の形状が限定されにくく、導電性材料を大量生産して、低コストで製造することができる。   In addition, by subjecting the metal base material to an anodized film treatment, a surface of the object to be processed having a porous structure of metal oxide is formed, so a thick oxide film of a micrometer order or more, that is, a porous structure having a large surface area. As a result of easily forming the metal oxide film, a conductive material having high conductivity and excellent electrode performance can be easily produced. Furthermore, the shape of the target conductive material is not easily limited, and the conductive material can be mass-produced and manufactured at low cost.

また、処理対象物の金属酸化物は、酸化チタン、酸化ジルコニウム、酸化アルミニウムのいずれか1種であることから、例えば、電池、オゾン水生成装置、電気分解装置の電極又は半導体基板として実用できる導電性材料を提供できる。   In addition, since the metal oxide to be treated is any one of titanium oxide, zirconium oxide, and aluminum oxide, for example, a conductive material that can be used practically as an electrode of a battery, an ozone water generator, an electrolyzer, or a semiconductor substrate. Sex material can be provided.

上記記載の製造方法により得られ、表面に導電性の金属窒化物、金属炭化物又は金属炭窒化物の多孔質構造を有する導電性材料であるから、高い耐食性を備えると同時に、多孔質構造で表面積が大きいため高い導電性を発揮できる。その結果、高い導電性と耐食性が要求される電極として実用できる。   Since it is a conductive material having a porous structure of conductive metal nitride, metal carbide or metal carbonitride obtained on the surface, it has high corrosion resistance and at the same time has a porous structure and a surface area. High conductivity can be exhibited because of the large. As a result, it can be used as an electrode that requires high conductivity and corrosion resistance.

本発明の実施形態に係る導電性材料の製造方法の概略図である。It is the schematic of the manufacturing method of the electroconductive material which concerns on embodiment of this invention. 実施例1の導電性材料、比較例2、3の比較材料の表面のSEM(走査型電子顕微鏡)画像である。It is a SEM (scanning electron microscope) image of the surface of the electroconductive material of Example 1, and the comparative material of Comparative Examples 2 and 3. 実施例1の導電性材料、比較例1、2、3の比較材料の表面のX線回折図形である。2 is an X-ray diffraction pattern of the surfaces of the conductive material of Example 1 and the comparative materials of Comparative Examples 1, 2, and 3. FIG. 実施例1、2のEPMA(X線マクロアナライザー)分析画像である。It is an EPMA (X-ray macroanalyzer) analysis image of Examples 1 and 2. 実施例1〜4の導電性材料及び比較例1、2、4の比較材料の表面電気抵抗率の測定結果の表である。It is a table | surface of the measurement result of the surface electrical resistivity of the electroconductive material of Examples 1-4 and the comparative material of Comparative Examples 1, 2, and 4. FIG. 実施例1、比較例1、5の表面の電極反応特性試験の結果のグラフである。It is a graph of the result of the electrode reaction characteristic test of the surface of Example 1 and Comparative Examples 1 and 5. 金属の陽極酸化皮膜処理で酸化皮膜の成長過程を説明した模式図である。It is the schematic diagram explaining the growth process of the oxide film by the metal anodic oxide film process.

以下添付図面を参照しつつ本発明の導電性材料の製造方法の実施形態について説明する。本発明に係る導電性材料の製造方法は、多孔質構造の材料の表面を改質して導電性を向上する方法であり、多孔質構造を保持したまま、導電性の金属窒化物、金属炭化物又は金属炭窒化物に変換し、導電性及び耐食性に優れた導電性材料を得ることができる。図1は、本発明の導電性材料の製造方法の一実施形態を示している。本実施形態において、図1に示すように、導電性材料の製造方法は、表面が金属酸化物の多孔質構造からなる処理対象物10を炭素源粉末12中に埋没させた状態で、窒素ガス(N)雰囲気中で加熱処理することにより、該多孔質構造の金属酸化物を金属窒化物、金属炭化物又は金属炭窒化物で置換し、多孔質構造の電気伝導性を高めた導電性材料を得る。 Embodiments of a method for producing a conductive material of the present invention will be described below with reference to the accompanying drawings. The method for producing a conductive material according to the present invention is a method for improving the conductivity by modifying the surface of a porous structure material. Conductive metal nitrides and metal carbides are maintained while maintaining the porous structure. Or it can convert into metal carbonitride and can obtain the electroconductive material excellent in electroconductivity and corrosion resistance. FIG. 1 shows an embodiment of a method for producing a conductive material of the present invention. In the present embodiment, as shown in FIG. 1, the method for producing a conductive material includes a nitrogen gas in a state in which a processing object 10 whose surface is made of a metal oxide porous structure is buried in a carbon source powder 12. (N 2 ) Conductive material in which the metal oxide having a porous structure is replaced with a metal nitride, metal carbide or metal carbonitride by heat treatment in an atmosphere to increase the electrical conductivity of the porous structure Get.

処理対象物10は、表面が金属酸化物の多孔質構造で形成されている金属材料からなる。本実施形態では、処理対象物10は、具体的には、例えば、チタン、ジルコニア又はアルミニウムのいずれかの金属母材の表面を所定の厚さで陽極酸化皮膜処理したものからなる。すなわち、処理対象物の表面は、ほとんど絶縁性の金属酸化物で構成されている。炭素源粉末に埋没して窒素雰囲気中で加熱処理するのに先立って、金属を陽極として電解質溶液中で電気を流すことにより、金属表面に数μm以上の膜厚さで細孔径が数十nm〜数μm程度の陽極酸化皮膜を形成する陽極酸化皮膜処理工程を含む。したがって、チタンやアルミニウムBs等の金属を空気中に放置してできる数十オングストローム程度の薄い酸化皮膜Faの表面(図7(A)参照)とは異なり、処理対象物では金属素材Bsの表面に多孔質構造で膜厚が厚い酸化皮膜Fx(図7(d)参照)を有している。図7に示すように、例えば、アルミニウムの陽極酸化皮膜処理では、時間の経過に伴って(a)アルミニウムBsの表面にバリアー皮膜Fb0が成長し、(b)150〜250オングストロームの厚さで皮膜に細孔Porが発生する。さらに皮膜形成が進むと(c)細孔の部分で皮膜の溶解と生成が同時に生じて細孔Porがアルミニウム素地Bs側に発達し、そして(d)上層側に細孔Porの直径が約100オングストローム程度のポーラス皮膜Fpと下層側の緻密なバリアー層Fbとの二層の酸化アルミニウム皮膜Fxが所定の厚さで形成される。図7中、Lvは元のアルミニウム素地の基準面である。本実施形態では、後述のように、陽極酸化皮膜を構成する金属酸化物の孔壁が還元及び窒化、炭化又は炭窒化され、多孔質構造が保持されたまま同孔壁が金属窒化物、金属炭化物又は金属炭窒化物に変換される。なお、チタン、ジルコニア等のその他金属や合金でも同様の陽極酸化処理により多孔質構造の酸化皮膜を形成して処理対象物としてもよい。陽極酸化皮膜処理では、例えば、金属表面に1〜数百μm或いはそれ以上の厚い多孔質構造の金属酸化物を簡単に形成することができる。また、陽極皮膜処理では、細孔径が数十nmから数μm程度の微細な多孔質構造を簡単に形成することができる。   The processing object 10 is made of a metal material whose surface is formed with a porous structure of a metal oxide. In the present embodiment, the object to be treated 10 is specifically made of, for example, a surface of a metal base material of titanium, zirconia, or aluminum that has been subjected to an anodic oxide film treatment with a predetermined thickness. That is, the surface of the object to be processed is almost composed of an insulating metal oxide. Prior to being embedded in a carbon source powder and heat-treated in a nitrogen atmosphere, electricity is allowed to flow in the electrolyte solution using the metal as an anode, so that the pore diameter is several tens of nanometers or more on the metal surface. An anodized film treatment step for forming an anodized film of about several μm is included. Therefore, unlike the surface of a thin oxide film Fa of about several tens of angstroms formed by leaving a metal such as titanium or aluminum Bs in the air (see FIG. 7A), the object to be treated has a surface on the surface of the metal material Bs. It has a porous oxide film Fx (see FIG. 7D) having a porous structure and a large film thickness. As shown in FIG. 7, for example, in the treatment of an anodic oxide film of aluminum, (a) a barrier film Fb0 grows on the surface of aluminum Bs with time, and (b) a film with a thickness of 150 to 250 angstroms. The pore Por is generated. When the film formation further proceeds, (c) dissolution and generation of the film occur simultaneously in the pore portion, the pore Por develops on the aluminum substrate Bs side, and (d) the diameter of the pore Por is about 100 on the upper layer side. A two-layer aluminum oxide film Fx of a porous film Fp of about angstroms and a dense barrier layer Fb on the lower layer side is formed with a predetermined thickness. In FIG. 7, Lv is a reference plane of the original aluminum substrate. In this embodiment, as will be described later, the pore walls of the metal oxide constituting the anodized film are reduced, nitrided, carbonized, or carbonitrided, and the porous walls are retained with the metal nitride, metal, while maintaining the porous structure. Converted to carbide or metal carbonitride. It should be noted that other metals and alloys such as titanium and zirconia may be used as an object to be processed by forming an oxide film having a porous structure by the same anodizing treatment. In the anodic oxide film treatment, for example, a metal oxide having a thick porous structure of 1 to several hundred μm or more can be easily formed on the metal surface. In the anodic film treatment, a fine porous structure having a pore diameter of about several tens of nm to several μm can be easily formed.

図1では、処理対象物10の形状は、例えば板状に成形されているが、棒状、ネットや格子形状、その他任意の形状でもよい。また、処理対象物10は、陽極酸化皮膜処理をした金属に限らず、少なくとも表面に多孔質構造の金属酸化物を有するものであればよい。例えば、金属酸化物の粉末を焼結させて表面を含む全体が多孔質構造の金属酸化物で構成したものを処理対象物としてもよい。   In FIG. 1, the shape of the processing object 10 is formed in a plate shape, for example, but may be a rod shape, a net or lattice shape, or any other shape. Further, the object to be treated 10 is not limited to a metal that has been subjected to an anodic oxide film treatment, and may be any metal that has a metal oxide having a porous structure on at least the surface. For example, a metal oxide powder may be sintered and the entire object including the surface may be made of a metal oxide having a porous structure.

炭素源粉末12は、加熱された際に処理対象物である多孔質構造の金属酸化物を還元後に窒化、炭化又は炭窒化する手段として機能する。さらに、炭素源粉末は、該表面への酸化抑制作用を及しうる酸化抑制手段としても機能しうる。炭素源粉末は、加熱処理時に炭素を供給する炭素供給源である。該処理対象物の表面に炭素源粉末(炭素)を存在させて加熱することにより、炭素が周辺の酸素と反応して一酸化炭素又は二酸化炭素を発生しながら、多孔質構造をもつ金属酸化物のまわりの酸素分圧を下げ、金属酸化物の還元や酸化抑制に寄与する。その結果、炭素源粉末は、窒素ガス雰囲気中において、還元される金属酸化物表面と窒素との反応を促進して金属窒化物又は金属炭窒化物を形成する窒化促進手段として機能する。さらに、炭素源粉末は、処理対象物の多孔質構造の金属酸化物に炭素を拡散させて金属炭化物又は金属炭窒化物を形成する要素ともなりうる。すなわち、炭素源粉末は、還元される金属酸化物表面と炭素との反応を促進して金属炭化物又は金属炭窒化物を形成する炭化促進手段ともいえる。本実施形態では、炭素源は、粉末形態であることから、処理対象物の種々の形状、大きさに対応して該金属酸化物の表面に十分に炭素源を接触又は近接させ、処理対象物の表面の還元、酸化抑制、炭素の拡散を有効に実現する。同時に、炭素源粉末は、粉末粒子間に間隙が形成されるので、金属酸化物表面と雰囲気中の窒素との反応を維持できる。   The carbon source powder 12 functions as a means for nitriding, carbonizing, or carbonitriding after reduction of a porous structure metal oxide that is an object to be treated when heated. Furthermore, the carbon source powder can also function as an oxidation inhibiting means that can exert an oxidation inhibiting action on the surface. The carbon source powder is a carbon source that supplies carbon during the heat treatment. A metal oxide having a porous structure, while carbon source powder (carbon) is present on the surface of the object to be treated and heated, so that carbon reacts with surrounding oxygen to generate carbon monoxide or carbon dioxide. This reduces the oxygen partial pressure around and contributes to reduction of metal oxides and suppression of oxidation. As a result, the carbon source powder functions as a nitriding promotion means for promoting the reaction between the reduced metal oxide surface and nitrogen in a nitrogen gas atmosphere to form a metal nitride or metal carbonitride. Furthermore, the carbon source powder can also be an element for diffusing carbon into the porous structure metal oxide of the object to be processed to form a metal carbide or metal carbonitride. That is, the carbon source powder can be said to be a carbonization promoting means for promoting the reaction between the metal oxide surface to be reduced and carbon to form a metal carbide or metal carbonitride. In the present embodiment, since the carbon source is in the form of powder, the carbon source is sufficiently brought into contact with or close to the surface of the metal oxide in accordance with various shapes and sizes of the object to be treated. The surface reduction, oxidation inhibition, and carbon diffusion are effectively realized. At the same time, in the carbon source powder, a gap is formed between the powder particles, so that the reaction between the metal oxide surface and nitrogen in the atmosphere can be maintained.

炭素源粉末の具体例としては、例えば、炭素粉末と、鉄又は鉄を主成分とした鉄合金の粉末と、の少なくとも2種類の粉末を含む混合粉末で構成される。炭素粉末は、例えば、活性炭粉末、グラファイト粉末、木炭粉末等の炭素を主成分とする炭素材料からなる。鉄合金は、例えば、鉄に炭素を含有した炭素鋼、炭素鋼よりも炭素含有量が多い鋳鉄、その他炭素を含有した鉄基合金、鉄・炭素以外にクロム、ニッケル等が含有されたステンレス鋼等、その他の任意の合金元素が含有された特殊鋼(合金鋼)からなる。炭素を含む鉄合金は、例えば、炭素が0.01〜6.7重量%、好ましくは、0.01〜2重量%程度含むものがよい。なお、鉄又は鉄合金の粉末に変えて、同じ鉄族元素であるニッケル、コバルトの粉末、或いは鉄族元素を主成分とした合金であるニッケル合金、コバルト合金の粉末を、炭素粉末と混合して炭素源粉末を構成してもよい。ニッケルやコバルトは、鉄と似た性質を有しているので、炭素粉末と混合することで金属酸化物の還元等の上記同様の作用効果を期待できる。炭素源粉末は、加熱時に粉末同士で焼結したりしにくく、粉末中に埋没させた処理対象物と窒素との反応を阻害しないようなものが好適である。炭素源粉末は、処理が進んでも気体等(窒素や一酸化炭素、二酸化炭素)が通過しうるような粉末間隙が維持されるとよい。   Specific examples of the carbon source powder include a mixed powder containing at least two types of powders, such as carbon powder and iron or iron alloy powder containing iron as a main component. Carbon powder consists of carbon materials which have carbon as a main component, such as activated carbon powder, graphite powder, and charcoal powder, for example. Iron alloys include, for example, carbon steel containing carbon in iron, cast iron with a higher carbon content than carbon steel, other iron-based alloys containing carbon, stainless steel containing chromium, nickel, etc. in addition to iron / carbon Etc. It consists of special steel (alloy steel) containing other arbitrary alloy elements. As for the iron alloy containing carbon, for example, carbon contains 0.01 to 6.7% by weight, preferably about 0.01 to 2% by weight. Instead of iron or iron alloy powder, the same iron group element nickel, cobalt powder, or nickel alloy, cobalt alloy powder, which is an alloy mainly composed of iron group element, is mixed with carbon powder. The carbon source powder may be constituted. Since nickel and cobalt have properties similar to iron, the same effects as described above such as reduction of metal oxide can be expected by mixing with carbon powder. As the carbon source powder, a powder that is difficult to sinter between powders at the time of heating and does not inhibit the reaction between the object to be processed embedded in the powder and nitrogen is suitable. It is preferable that the carbon source powder maintain a powder gap that allows gas or the like (nitrogen, carbon monoxide, carbon dioxide) to pass through even if processing proceeds.

好適には、炭素源粉末は、炭素粉末と、鉄粉末又は炭素鋼等の炭素含有の鉄合金粉末(総称して以後、鉄鋼粉末)と、を混合して構成するとよい。炭素源粉末として炭素粉末のみを使用した場合よりも、炭素粉末と鉄鋼粉末とを所定の割合で混合した方が、処理対象物の処理効果が高くなることが実験的に分かっている。その理由は詳しくは判明していないが、炭素粉末と鉄の接触により遊離炭素の生成が顕著に起こり、酸素と反応して生じた一酸化炭素や二酸化炭素による酸素分圧の低下、それに伴う処理対象物の還元、さらに処理対象物への炭素の拡散が促進されると考えられる。さらに、鉄鋼粉末だけでは加熱時に焼結しやすいので、焼結しにくい炭素粉末を混合することで焼結防止に役立つ。すなわち、炭素粉末と鉄鋼粉末との混合粉末は、反応性の高い炭素源、及び焼結防止機能を同時に提供して、効率良く還元及び炭素拡散を実現できると考えられる。さらに、反応性が高いことから、炭素粉末だけのものと比較的して低温でも有効に金属酸化物の改質処理を実現できる。炭素粉末と鉄鋼粉末との混合比は任意でもよいが、例えば、体積比で3:7〜7:3の範囲で混合されるとよい。   Suitably, the carbon source powder may be constituted by mixing carbon powder and iron-containing powder containing carbon such as iron powder or carbon steel (hereinafter collectively referred to as steel powder). It has been experimentally found that the treatment effect of the treatment object is higher when carbon powder and steel powder are mixed at a predetermined ratio than when only carbon powder is used as the carbon source powder. The reason for this is not known in detail, but the formation of free carbon is noticeable due to the contact between the carbon powder and iron, and the oxygen partial pressure is reduced by the carbon monoxide and carbon dioxide produced by the reaction with oxygen, and the associated treatment. It is considered that the reduction of the object and the diffusion of carbon to the object to be treated are promoted. Furthermore, since iron powder alone is easy to sinter during heating, mixing with carbon powder that is difficult to sinter helps to prevent sintering. That is, it is considered that the mixed powder of the carbon powder and the steel powder can provide a highly reactive carbon source and a sintering preventing function at the same time, and can efficiently achieve reduction and carbon diffusion. Furthermore, since the reactivity is high, the metal oxide reforming process can be effectively realized even at a relatively low temperature as compared with the carbon powder alone. Although the mixing ratio of carbon powder and steel powder may be arbitrary, for example, it is good to mix in the range of 3: 7-7: 3 by volume ratio.

炭素源粉末の平均粒径は、例えば、数μm〜数百μm程度のマイクロメートルオーダに設定される。炭素源粉末の粒径が極端に小さいと加熱時に粉末が焼結しやすくなるので、粉末中の処理対象物の多孔質構造と窒素との反応が抑制されて導電性材料の製造が阻害されたり、処理後の対象物の取り出しが困難となる。また、炭素源粉末の粒径が大きすぎると、処理対象物の表面に対する還元や酸化抑制、炭化及び窒化等の機能が低下し、処理効率が落ちる。なお、炭素粉末と鉄鋼粉末との混合粉末のように2種以上の粉末を混合する際には、粒径を揃えるとよい。   The average particle diameter of the carbon source powder is set, for example, on the order of several micrometers to several hundreds of micrometers. If the particle size of the carbon source powder is extremely small, the powder easily sinters during heating, and the reaction between the porous structure of the object to be treated in the powder and nitrogen is suppressed, and the production of the conductive material is hindered. Therefore, it becomes difficult to take out the object after processing. On the other hand, when the particle size of the carbon source powder is too large, functions such as reduction, oxidation inhibition, carbonization, and nitriding on the surface of the object to be processed are reduced, and processing efficiency is lowered. In addition, when mixing 2 or more types of powder like the mixed powder of carbon powder and steel powder, it is good to arrange a particle size.

さらに、本実施形態では、炭素源粉末には、酸化アルミニウム(アルミナ)の粉末が混合される。酸化アルミニウムの粉末は、炭素源粉末の焼結防止剤として機能する。炭素粉末と鉄鋼粉末とのみを混合した炭素源粉末を使って処理した場合、粉末が軽く焼結されることがあり、処理後の対象物の取り出し時に表面を傷つける場合がある。炭素源粉末に酸化アルミニウム粉末を加えることにより、処理後の取り出しが容易になり、導電性材料としての品質を保持できる。同時に、炭素源粉末に混合した酸化アルミニウムは、炭素粉末と鉄鋼粉末に起因した還元作用により、アルミニウムとなり、還元され処理対象物の多孔質構造の表面に拡散される。これにより、処理対象物の表面部分に添加したい元素の酸化物を炭素源粉末に事前に混合することで、焼結防止と導電性の向上が両立できるようになる。酸化アルミニウムの粉末の量は、例えば、炭素粉末と鉄鋼粉末とをあわせた体積に対して数割程度の体積比で設定される。例えば、後述の実施例では、炭素源粉末は、炭素粉末:鉄鋼粉末:酸化アルミニウム粉末を4:6:3の体積比割合で混合した組成となっている。これにより、最終的に得られる導電性材料の多孔質構造には、金属窒化物、金属炭化物又は金属炭窒化物の生成に加えて、アルミニウムの拡散を生じさせることができ、導電性材料の電極としての性能の向上等が期待できる。なお、炭素源粉末には、酸化アルミニウム粉末の他に、例えば、酸化チタン粉末や酸化イリジウム粉末等のように、還元後に処理対象物に拡散させたい金属の酸化物粉末を、焼結防止も兼ねて混合してもよい。また、炭素源粉末に混合する金属酸化物粉末は、例えば、処理対象物の多孔質構造の金属酸化物とは異なる金属酸化物の粉末であってもよいし、同じ金属酸化物の粉末でもよく、1種の金属酸化物粉末のみでもよいし複数種類の金属酸化物粉末を混合してもよい。   Furthermore, in this embodiment, the carbon source powder is mixed with aluminum oxide (alumina) powder. The aluminum oxide powder functions as a sintering inhibitor for the carbon source powder. When processing is performed using a carbon source powder in which only carbon powder and steel powder are mixed, the powder may be slightly sintered, and the surface may be damaged when the processed object is taken out. By adding the aluminum oxide powder to the carbon source powder, it becomes easy to take out after the treatment, and the quality as the conductive material can be maintained. At the same time, the aluminum oxide mixed with the carbon source powder is converted into aluminum by the reducing action caused by the carbon powder and the steel powder, and is reduced and diffused to the surface of the porous structure of the object to be treated. Thereby, the oxide of the element to be added to the surface portion of the object to be treated is mixed with the carbon source powder in advance, so that both prevention of sintering and improvement of conductivity can be achieved. The amount of aluminum oxide powder is set, for example, at a volume ratio of about several tens of percent of the total volume of carbon powder and steel powder. For example, in the examples described later, the carbon source powder has a composition in which carbon powder: steel powder: aluminum oxide powder is mixed at a volume ratio of 4: 6: 3. Thereby, in the porous structure of the conductive material finally obtained, in addition to the formation of metal nitride, metal carbide or metal carbonitride, diffusion of aluminum can be caused, and the electrode of the conductive material As a result, improvement in performance can be expected. As the carbon source powder, in addition to the aluminum oxide powder, for example, a titanium oxide powder, an iridium oxide powder, or the like, a metal oxide powder that is desired to be diffused into the object to be treated after reduction also serves to prevent sintering. May be mixed. Further, the metal oxide powder mixed with the carbon source powder may be, for example, a metal oxide powder different from the porous structure metal oxide of the object to be processed, or the same metal oxide powder. Only one kind of metal oxide powder or a plurality of kinds of metal oxide powders may be mixed.

図1に示すように、炭素源粉末12は、例えば、処理対象物10全体を完全に覆って埋没させるような量で設定される。炭素源粉末12は、例えば、処理対象物10を完全に収容できるように大きな容積の耐熱容器14内に充填されている。図1では、容器14は、例えば、蓋15で閉蓋されているが、閉蓋した状態でも容器14内に窒素ガスが入るようになっている。この蓋15は、容器14を配置する閉鎖空間S内を真空ポンプで真空引きする際に、炭素源粉末12が飛散したり、真空ポンプ内に吸引されるのを防止するためのものである。蓋15は、例えば、耐熱性のある磁器からなるが、加熱時には焼失して容器を開口する紙等で形成してもよい。なお、蓋15は必ずしも必要とはしない。炭素源粉末12は、例えば、処理対象物10の表面全体に直接接触するように配置されて、さらに該処理対象物の表面からある程度の厚さで覆うように設定される。なお、例えば、容器14の底面に該処理対象物10が接触するように配置し、その上から炭素源粉末を充填して埋没させてもよい。また、炭素源粉末12は、処理対象物10全体を埋没させる態様に限らず、例えば、処理対象物10の一部分のみを表面処理をしたい場合にはその一部分のみを埋没させるようにしてもよい。また、炭素源粉末は容器内に充填する態様に限らず、処理対象物10を埋没させるように平板等の上に山状に盛って処理することとしてもよい。   As shown in FIG. 1, the carbon source powder 12 is set in such an amount as to completely cover and bury the entire processing object 10, for example. For example, the carbon source powder 12 is filled in a heat-resistant container 14 having a large volume so that the processing object 10 can be completely accommodated. In FIG. 1, the container 14 is closed with, for example, a lid 15, but nitrogen gas can enter the container 14 even when the container 14 is closed. The lid 15 is for preventing the carbon source powder 12 from being scattered or sucked into the vacuum pump when the inside of the closed space S in which the container 14 is disposed is evacuated by a vacuum pump. The lid 15 is made of, for example, a heat-resistant porcelain, but may be formed of paper or the like that burns away during heating and opens the container. The lid 15 is not always necessary. For example, the carbon source powder 12 is disposed so as to be in direct contact with the entire surface of the processing object 10 and is set so as to cover the surface of the processing object with a certain thickness. In addition, for example, the processing object 10 may be disposed so as to contact the bottom surface of the container 14, and the carbon source powder may be filled and buried from above. In addition, the carbon source powder 12 is not limited to a mode in which the entire processing target 10 is buried. For example, when only a part of the processing target 10 is to be surface-treated, only a part of the carbon source powder 12 may be buried. In addition, the carbon source powder is not limited to being filled in the container, and may be piled up and processed on a flat plate or the like so as to bury the processing object 10.

窒素ガス雰囲気は、図1に示すように、閉鎖空間S内に窒素ガスNを満たすことにより形成される。窒素ガス雰囲気は、処理対象物の多孔質構造の金属酸化物に変えて金属窒化物又は金属炭窒化物を形成させるための窒素源を供給する窒素供給源手段である。図1では、閉鎖空間Sは、例えば、加熱炉16の炉内空間すなわち加熱処理室17で構成される。処理室17は、例えば、図示しない開閉扉が設けられており、処理対象物を出し入れできる。本実施形態では、窒素ガス雰囲気は、ガスボンベ18から供給管を介して窒素ガスNを閉鎖空間Sに一端側から所定の流速で流入させつつ、該閉鎖空間Sの他端側から排気管を介して流出させながら保持されている。なお、窒素ガス雰囲気は、排気管から窒素ガスを流さずに閉鎖空間Sで保持するようにしてもよい。閉鎖空間S内に窒素ガス雰囲気を形成する際には、例えば、まず閉鎖空間S内の空気を真空ポンプ20で除いた後、ガスボンベ18から窒素ガスNを閉鎖空間S内に導入することにより、窒素濃度の高い窒素ガス雰囲気を形成する。図1上では、窒素供給管、排気管、及び真空ポンプ20と供給管との接続管には、それぞれバルブ22、23、24が設置されている。バルブ22、23、24を適宜開閉して、真空ポンプ20による閉鎖空間S内の真空引きと閉鎖空間Sの窒素供給及び排気を切替える。 As shown in FIG. 1, the nitrogen gas atmosphere is formed by filling the closed space S with nitrogen gas N 2 . The nitrogen gas atmosphere is nitrogen supply source means for supplying a nitrogen source for forming a metal nitride or a metal carbonitride instead of a metal oxide having a porous structure as an object to be processed. In FIG. 1, the closed space S is constituted by, for example, a furnace space of the heating furnace 16, that is, a heat treatment chamber 17. The processing chamber 17 is provided with an opening / closing door (not shown), for example, and a processing object can be taken in and out. In the present embodiment, the nitrogen gas atmosphere is generated by flowing the nitrogen gas N 2 from the gas cylinder 18 through the supply pipe into the closed space S at a predetermined flow rate from one end side, and connecting the exhaust pipe from the other end side of the closed space S. It is held while flowing through. Note that the nitrogen gas atmosphere may be held in the closed space S without flowing nitrogen gas from the exhaust pipe. When the nitrogen gas atmosphere is formed in the closed space S, for example, the air in the closed space S is first removed by the vacuum pump 20 and then nitrogen gas N 2 is introduced into the closed space S from the gas cylinder 18. A nitrogen gas atmosphere with a high nitrogen concentration is formed. In FIG. 1, valves 22, 23, and 24 are installed in the nitrogen supply pipe, the exhaust pipe, and the connection pipe between the vacuum pump 20 and the supply pipe, respectively. The valves 22, 23, and 24 are appropriately opened and closed to switch between evacuation of the closed space S by the vacuum pump 20 and supply and exhaust of nitrogen in the closed space S.

加熱手段としては、炉内に閉鎖空間Sを有する加熱炉16が利用される。加熱炉16は、例えば、加熱処理室17の周りに発熱体19が配置され、該処理室17内を長時間安定して高温状態に保持できるようになっている。加熱温度は、例えば、500℃〜金属酸化物が溶融する温度未満の間、好ましくは800℃〜1100℃の間に設定される。加熱温度があまりに低いと、炭素源粉末による処理対象物の金属酸化物の還元及び窒化、炭化又は炭窒化反応がほとんど起こらない。一方、加熱温度が高すぎると、炭素源粉末が溶融して、処理対象物の多孔質構造が崩れて表面積が減少しまうおそれがある。また、加熱時間は任意であり、加熱時間が長いほど処理対象の金属酸化物の還元や金属窒化物、金属炭化物又は金属炭窒化物の形成が促進される。例えば、後述の実施例1及び図2に示すように、加熱温度が1000℃で加熱時間を1時間に設定すると、金属酸化物の還元及び窒素、炭素、アルミニウムの拡散を十分に行うことができ、多孔質構造の導電性材料を得ることができる。   As the heating means, a heating furnace 16 having a closed space S in the furnace is used. In the heating furnace 16, for example, a heating element 19 is disposed around the heat treatment chamber 17, and the inside of the treatment chamber 17 can be stably maintained at a high temperature for a long time. The heating temperature is set, for example, between 500 ° C. and less than the temperature at which the metal oxide melts, preferably between 800 ° C. and 1100 ° C. When the heating temperature is too low, the reduction of the metal oxide of the object to be treated by the carbon source powder and the nitriding, carbonizing or carbonitriding reaction hardly occur. On the other hand, if the heating temperature is too high, the carbon source powder is melted, and the porous structure of the object to be processed may be destroyed to reduce the surface area. The heating time is arbitrary, and the longer the heating time, the more the reduction of the metal oxide to be treated and the formation of metal nitride, metal carbide or metal carbonitride are promoted. For example, as shown in Example 1 and FIG. 2 described later, when the heating temperature is 1000 ° C. and the heating time is set to 1 hour, the reduction of the metal oxide and the diffusion of nitrogen, carbon, and aluminum can be sufficiently performed. A conductive material having a porous structure can be obtained.

上記のように、本発明に係る導電性材料の製造方法では、表面が金属酸化物の多孔質構造からなる処理対象物を炭素源粉末中に埋没させた状態で、窒素雰囲気中で加熱処理することにより、炭素源粉末由来の炭素を作用させて多孔質構造の金属酸化物の還元を行わせながら、該多孔質構造に窒素又は炭素と反応させて多孔質構造を保持したまま金属窒化物、金属炭化物又は金属炭窒化物の形成を促進させる。これにより、表面積が大きく電気伝導性に優れた導電性材料を得ることができる。例えば、処理対象物10が表面に陽極酸化皮膜を形成したチタンやジルコニウムの場合には、上記処理により酸化皮膜の酸化チタンや酸化ジルコニウムが炭窒化チタン、炭窒化ジルコニウム等に変換された多孔質構造の皮膜となり、表面を絶縁性の金属酸化物から、高い導電性のものに改質することができる。このように、特殊な装置を用いることなく、陽極酸化用の装置や加熱炉等の極めて簡単な設備や装置だけで、簡便な操作で、しかも低コストで電気伝導性に優れた導電性材料を製造できる。導電性材料は、例えば、電池、オゾン水生成装置、電気分解装置等の腐食性の強い溶液中の電極や半導体基板等へ利用することができると同時に、金属酸化物を炭窒化物に変換しているので、電極等として使用中に腐食劣化や、その他電極性能を低下させるような材料自体の表面の反応変化も生じにくく、長寿命化することができる。   As described above, in the method for producing a conductive material according to the present invention, heat treatment is performed in a nitrogen atmosphere in a state in which a treatment target having a porous structure of metal oxide is embedded in a carbon source powder. In this way, while reducing the metal oxide having a porous structure by acting carbon derived from the carbon source powder, the metal nitride is reacted with nitrogen or carbon to maintain the porous structure while maintaining the porous structure, Promotes the formation of metal carbides or metal carbonitrides. As a result, a conductive material having a large surface area and excellent electrical conductivity can be obtained. For example, when the object to be treated 10 is titanium or zirconium having an anodic oxide film formed on the surface, the porous structure in which the titanium oxide or zirconium oxide of the oxide film is converted into titanium carbonitride, zirconium carbonitride, or the like by the above treatment. The surface can be modified from an insulating metal oxide to a highly conductive one. In this way, without using a special device, it is possible to produce a conductive material that is excellent in electrical conductivity at a low cost and with a simple operation using only an extremely simple facility or device such as an anodizing device or a heating furnace. Can be manufactured. Conductive materials can be used for electrodes, semiconductor substrates, etc. in highly corrosive solutions such as batteries, ozone water generators, electrolyzers, etc., and at the same time convert metal oxides into carbonitrides. Therefore, during use as an electrode or the like, corrosion deterioration and other reaction changes on the surface of the material itself that lower the electrode performance are unlikely to occur, and the life can be extended.

次に、本発明の導電性材料の製造方法及び導電性材料の具体的な実施例について説明する。   Next, specific examples of the method for producing a conductive material and the conductive material of the present invention will be described.

<実施例1>チタンからなる縦横サイズ10mm×10mm、厚さ1mmの大きさの板状の小片を陽極として電解質溶液中に浸し電気を流して陽極酸化皮膜処理することにより、表面に皮膜の厚さが約10μm、細孔径が数μm程度の陽極酸化皮膜を形成した処理対象物10を得た。炭素源粉末12としては、グラファイト粉末と炭素鋼粉末(約0.8重量%の炭素を含む)と酸化アルミニウムの粉末とを体積比で6:4:3の割合で混合した混合粉末を用いた。図1に示すように、炭素源粉末12を容器14内に充填するとともに、炭素源粉末12中に陽極酸化皮膜を形成したチタン板材からなる処理対象物10を完全に埋没させ、加熱炉16の処理室17内に配置する。そして、容器14に蓋15を取り付け炭素源粉末が空間内に飛散しないようにした状態で、処理室17内を真空ポンプ20で減圧した後、窒素ガス(純度4N(99.99%以上))を処理室17内に流入する。処理室17内の真空引きと窒素ガスの流入を数回繰り返して閉鎖空間S内を窒素ガス雰囲気とする。処理室の一端側から窒素ガスNを流入しつつ、他端側からは窒素ガスNを流出させながら窒素ガス雰囲気を保持した状態で、加熱炉16を1000℃に加熱し、1時間処理した後、加熱炉を自然冷却し、処理後の導電性材料EX1を取り出した。得られた導電性材料EX1について、表面のSEM(走査型電子顕微鏡)観察、EPMA(X線マイクロアナライザー)分析、X線回折、表面電気抵抗率の測定、及び電極反応特性試験を行った(図2、図3、図4、図5、図6参照)。また、フッ酸を含む水溶液中に処理後に得られた導電性材料を浸して耐食性試験を行った。 <Embodiment 1> The thickness of the coating on the surface is obtained by immersing the plate-shaped piece of titanium with a vertical and horizontal size of 10 mm × 10 mm and a thickness of 1 mm as an anode in an electrolyte solution and applying electricity to treat the anode. A processing object 10 having an anodic oxide film having a thickness of about 10 μm and a pore diameter of about several μm was obtained. As the carbon source powder 12, a mixed powder obtained by mixing graphite powder, carbon steel powder (containing about 0.8% by weight of carbon) and aluminum oxide powder in a volume ratio of 6: 4: 3 was used. . As shown in FIG. 1, the carbon source powder 12 is filled in the container 14, and the processing object 10 made of a titanium plate material in which the anodized film is formed in the carbon source powder 12 is completely buried, and the heating furnace 16 Arranged in the processing chamber 17. Then, after the lid 15 is attached to the container 14 and the carbon source powder is not scattered in the space, the inside of the processing chamber 17 is depressurized by the vacuum pump 20 and then nitrogen gas (purity 4N (99.99% or more)) Into the processing chamber 17. The closed space S is made a nitrogen gas atmosphere by evacuating the processing chamber 17 and inflowing nitrogen gas several times. While flowing the nitrogen gas N 2 from one end side of the processing chamber, while maintaining the nitrogen gas atmosphere while the outflow of nitrogen gas N 2 is from the other end, and heating the heating furnace 16 to 1000 ° C., 1 hour Then, the heating furnace was naturally cooled, and the treated conductive material EX1 was taken out. The obtained conductive material EX1 was subjected to surface SEM (scanning electron microscope) observation, EPMA (X-ray microanalyzer) analysis, X-ray diffraction, surface electrical resistivity measurement, and electrode reaction characteristic test (FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. In addition, a corrosion resistance test was performed by immersing the conductive material obtained after the treatment in an aqueous solution containing hydrofluoric acid.

<実施例2>加熱温度を800℃に設定した以外は実施例1と同じ条件で処理した。処理後に得られた導電性材料EX2について、EPMA分析、表面電気抵抗率の測定を行った(図4、図5参照)。   <Example 2> Processing was performed under the same conditions as in Example 1 except that the heating temperature was set to 800 ° C. The conductive material EX2 obtained after the treatment was subjected to EPMA analysis and surface electrical resistivity measurement (see FIGS. 4 and 5).

<実施例3>加熱温度を900℃に設定した以外は実施例1と同じ条件で処理した。処理後に得られた導電性材料EX3について、表面電気抵抗率の測定を行った(図5参照)。   <Example 3> Processing was performed under the same conditions as in Example 1 except that the heating temperature was set to 900 ° C. For the conductive material EX3 obtained after the treatment, the surface electrical resistivity was measured (see FIG. 5).

<実施例4>加熱温度を1100℃に設定した以外は実施例1と同じ条件で処理した。処理後に得られた導電性材料EX4について、表面電気抵抗率の測定を行った(図5参照)。   <Example 4> Processing was performed under the same conditions as in Example 1 except that the heating temperature was set to 1100 ° C. The surface electrical resistivity was measured for the conductive material EX4 obtained after the treatment (see FIG. 5).

<比較例1>購入時の未処理のチタンである比較材料TE1について、表面のX線回折、表面電気抵抗率の測定、電極反応特性試験を行った(図3、図4、図6参照)。   <Comparative example 1> About the comparative material TE1 which is untreated titanium at the time of purchase, the surface X-ray diffraction, the measurement of surface electrical resistivity, and the electrode reaction characteristic test were done (refer FIG.3, FIG.4, FIG.6). .

<比較例2>チタンを陽極として電解質溶液中に浸し電気を流して陽極酸化皮膜処理することにより、表面に約10μmの陽極酸化皮膜を形成したチタンである比較材料TE2について、SEM観察、表面のX線回折、表面電気抵抗率の測定を行った(図2、図3、図5)。   <Comparative Example 2> A comparative material TE2 which is titanium having an anodized film of about 10 μm formed on the surface by immersing titanium in the electrolyte solution as an anode and applying electricity to treat the anodized film. X-ray diffraction and surface electrical resistivity were measured (FIGS. 2, 3, and 5).

<比較例3>チタンを陽極酸化皮膜処理して得た処理対象物を炭素源粉末に埋め込まず窒素雰囲気中に置いて加熱処理した以外は、実施例1と同じ条件で処理し、処理後に得られた比較材料TE3について、SEM観察、表面のX線回折を行った(図2、図3参照)。   <Comparative Example 3> Treated under the same conditions as in Example 1 except that a treatment object obtained by treating titanium with an anodized film was not embedded in the carbon source powder and heat-treated in a nitrogen atmosphere. The obtained comparative material TE3 was subjected to SEM observation and surface X-ray diffraction (see FIGS. 2 and 3).

<比較例4>プラチナTE4について表面電気抵抗率の測定を行った(図5参照)。   <Comparative Example 4> Surface electrical resistivity was measured for platinum TE4 (see FIG. 5).

<比較例5>陽極酸化皮膜を形成していない通常のチタンを炭素源粉末中に埋没して窒素雰囲気中で加熱処理した以外は、実施例1と同じ条件で処理した。処理後に得られた比較材料TE5について、電極反応特性試験を行った(図6参照)。   <Comparative Example 5> Treatment was performed under the same conditions as in Example 1 except that ordinary titanium on which an anodized film was not formed was buried in a carbon source powder and heat-treated in a nitrogen atmosphere. An electrode reaction characteristic test was performed on the comparative material TE5 obtained after the treatment (see FIG. 6).

図2のSEM像に示すように、比較例2の比較材料TE2と比較して実施例1の導電性材料EX1でも多孔質構造が保持されている。さらに、導電性材料EX1では、多孔質構造の孔壁部分のコントラストが異なっており、窒化チタン、炭化チタンまたは炭窒化チタンと思われる複数の反応相が形成されていることがわかる。なお、比較例3の比較材料TE3では、多孔質構造は保持されているが、窒化チタンと思われる反応相は見られなかった。   As shown in the SEM image of FIG. 2, the porous structure is also retained in the conductive material EX1 of Example 1 as compared with the comparative material TE2 of Comparative Example 2. Furthermore, in the conductive material EX1, it can be seen that the contrast of the pore wall portion of the porous structure is different, and a plurality of reaction phases that are considered to be titanium nitride, titanium carbide, or titanium carbonitride are formed. Note that, in the comparative material TE3 of Comparative Example 3, the porous structure was maintained, but no reaction phase that was considered to be titanium nitride was observed.

図3に示すように、X線回折では、実施例1の導電性材料EX1については、炭窒化チタンTi(C,N)に対応した回折角度(X線の入射方向と反射方向のなす角度2θ)で強い回折強度のピークが観察され、炭窒化チタンTi(C,N)が形成されていることが確認できた。一方、比較例3の比較材料TE3では、酸化チタンTiO2に対応する回折角度(X線の入射方向と反射方向のなす角度2θ)で強い回折強度のピークが観察され、比較例2の比較材料TE2とほぼ同じ結果となった。したがって、図2、図3の結果より、導電性材料EX1では、炭素源粉末に埋没して処理することにより、処理対象物の表面の金属酸化物(酸化チタン)が、多孔質構造を保持した状態で金属炭窒化物(炭窒化チタン)に置換できることが確認できる。   As shown in FIG. 3, in the X-ray diffraction, for the conductive material EX1 of Example 1, the diffraction angle corresponding to titanium carbonitride Ti (C, N) (the angle 2θ formed by the X-ray incident direction and the reflection direction) ), A strong diffraction intensity peak was observed, confirming the formation of titanium carbonitride Ti (C, N). On the other hand, in the comparative material TE3 of Comparative Example 3, a strong diffraction intensity peak is observed at a diffraction angle corresponding to titanium oxide TiO2 (angle 2θ formed by the incident direction of X-rays and the reflection direction). And almost the same result. Therefore, from the results of FIG. 2 and FIG. 3, in the conductive material EX1, the metal oxide (titanium oxide) on the surface of the object to be processed retained the porous structure by being buried in the carbon source powder and processed. It can be confirmed that it can be replaced with metal carbonitride (titanium carbonitride) in the state.

EPMA分析では、酸素、窒素、炭素、アルミニウムの各元素について分析した。図4に示すように、実施例1の導電性材料EX1、実施例2の導電性材料EX2の表面に窒素や炭素が存在していることがわかる。また、導電性材料EX1、EX2には、アルミニウムも存在しており、炭素源粉末中の炭素粉末及び炭素鋼粉末によって同粉末中の酸化アルミニウムが還元されて、多孔質構造中にアルミニウムが拡散されたことも確認できる。導電性材料EX1と導電性材料EX2を比較すると、導電性材料EX1の方が酸素の分布が少なく、窒素、炭素、アルミニウムが多く存在していることがわかる。これにより、加熱処理の温度が高い方が、処理対象物の多孔質構造の金属酸化物(酸化チタン)の還元、及び金属炭窒化物(炭窒化チタン)の形成、アルミニウムの拡散、を促進することができるといえる。   In the EPMA analysis, each element of oxygen, nitrogen, carbon, and aluminum was analyzed. As shown in FIG. 4, it can be seen that nitrogen and carbon are present on the surfaces of the conductive material EX1 of Example 1 and the conductive material EX2 of Example 2. In addition, aluminum is also present in the conductive materials EX1, EX2, and the aluminum oxide in the powder is reduced by the carbon powder and the carbon steel powder in the carbon source powder, and the aluminum is diffused in the porous structure. It can also be confirmed. Comparing the conductive material EX1 and the conductive material EX2, it can be seen that the conductive material EX1 has less oxygen distribution and more nitrogen, carbon, and aluminum. Thereby, the one where the temperature of heat processing is higher accelerates | stimulates the reduction | restoration of the metal oxide (titanium oxide) of the porous structure of a process target object, formation of metal carbonitride (titanium carbonitride), and the spreading | diffusion of aluminum. It can be said that it is possible.

図5に示すように、表面電気抵抗率の測定結果の表では、実施例1〜4の導電性材料EX1〜EX4は、比較例2の比較材料TE2と比較して表面電気抵抗率が著しく小さくなっており、チタンTE1や白金TE4とほぼ同じ程度となっている。なお、図5の表の表面電気抵抗率は、リミッタ電圧を90Vとして測定した数値である。これにより、本発明の製造方法で得られる導電性材料は高い電気伝導性を有することが確認できる。   As shown in FIG. 5, in the table of the measurement results of the surface electrical resistivity, the conductive materials EX1 to EX4 of Examples 1 to 4 have a significantly smaller surface electrical resistivity than the comparative material TE2 of Comparative Example 2. It is about the same as titanium TE1 and platinum TE4. Note that the surface electrical resistivity in the table of FIG. 5 is a numerical value measured with a limiter voltage of 90V. Thereby, it can confirm that the electroconductive material obtained with the manufacturing method of this invention has high electrical conductivity.

電極反応特性試験では、比較的低電位で反応が生じるヘキサシアノ鉄(III)イオン−ヘキサシアノ鉄(II)イオン間の電子授受反応を利用した。ヘキサシアノ鉄(III)酸カリウムとヘキサシアノ鉄(II)酸カリウムを0.01mol/lの濃度になるように調整した溶液に、1mol/l(100倍の濃度)の水酸化ナトリウムを加えたものを準備する。この溶液に電極として陽極にニッケル板を、陰極にはそれぞれ実施例1の導電性材料EX1、比較例1、比較例5の比較材料TE1、TE5をセットして電圧を印加し、そのときに流れる電流値を測定した。電圧は1.6〜2.0Vまで0.1Vずつ変化させて測定した。その結果が図6のグラフである。図6に示すように、表面が多孔質構造となっている導電性材料EX1の方が、多孔質構造を有しない比較材料TE1、TE5のものよりも、同じ電圧で流れる電流が大きいことがわかる。比較材料TE5では、チタン表面に炭窒化チタン層が形成されているが、多孔質構造でないので表面積が比較的小さくなり、電極性能が劣る。これにより、本実施例では電極性能として優れた導電性材料を得ることができたことがわかる。   In the electrode reaction characteristic test, an electron transfer reaction between hexacyanoiron (III) ions and hexacyanoiron (II) ions that generate a reaction at a relatively low potential was used. A solution prepared by adding 1 mol / l (100 times concentration) sodium hydroxide to a solution prepared by adjusting potassium hexacyanoferrate (III) and potassium hexacyanoferrate (II) to a concentration of 0.01 mol / l prepare. In this solution, a nickel plate is used as an anode as an electrode, and a conductive material EX1 of Example 1 and comparative materials TE1 and TE5 of Comparative Example 1 and Comparative Example 5 are set as a cathode, respectively, and a voltage is applied and flows at that time. The current value was measured. The voltage was measured while changing by 0.1 V from 1.6 to 2.0 V. The result is the graph of FIG. As shown in FIG. 6, it can be seen that the conductive material EX1 having a porous surface has a larger current flowing at the same voltage than those of the comparative materials TE1 and TE5 having no porous structure. . In the comparative material TE5, a titanium carbonitride layer is formed on the titanium surface, but since it is not a porous structure, the surface area becomes relatively small and the electrode performance is inferior. Thereby, it turns out that the electroconductive material excellent in electrode performance was able to be obtained in the present Example.

さらに、実施例1の導電性材料EX1を腐食性が高いフッ酸を含む水溶液中に浸けて耐食性試験を行った。導電性材料EX1はフッ酸を含む水溶液中でもほとんど劣化せず、優れた耐食性を示すことが確認できた。これにより、導電性材料は腐食性が高い電解溶液中でも長期間利用でき、電池、オゾン水生成装置、電気分解装置の電極として実用できる。   Further, the conductive material EX1 of Example 1 was immersed in an aqueous solution containing highly corrosive hydrofluoric acid to conduct a corrosion resistance test. It was confirmed that the conductive material EX1 hardly deteriorates even in an aqueous solution containing hydrofluoric acid and exhibits excellent corrosion resistance. Thereby, the conductive material can be used for a long time even in an electrolytic solution having high corrosiveness, and can be practically used as an electrode of a battery, an ozone water generator, or an electrolyzer.

以上説明した本発明の導電性材料の製造方法は、上記した実施形態、実施例のみの構成に限定されるものではなく、請求の範囲に記載した本発明の本質を逸脱しない範囲において、任意の改変を行ってもよい。   The manufacturing method of the conductive material of the present invention described above is not limited to the configurations of the above-described embodiments and examples, and any method is possible without departing from the essence of the present invention described in the claims. Modifications may be made.

本発明の導電性材料の製造方法は、例えば、電極や半導体基板等の高い導電性を要求される材料に適用できる。   The method for producing a conductive material of the present invention can be applied to a material requiring high conductivity such as an electrode or a semiconductor substrate.

10 処理対象物
12 炭素源粉末
16 加熱炉
17 処理室
18 ガスボンベ
S 閉鎖空間(窒素ガス雰囲気)
10 Processing object 12 Carbon source powder 16 Heating furnace 17 Processing chamber 18 Gas cylinder S Closed space (nitrogen gas atmosphere)

Claims (4)

表面が金属酸化物の多孔質構造からなる処理対象物を、炭素粉末と、鉄、ニッケル、コバルト、鉄合金、ニッケル合金、コバルト合金の少なくとも1種の粉末と、を含む平均粒径が数μm〜数百μm程度のマイクロメートルオーダの炭素源粉末中に埋没させた状態で、窒素ガス雰囲気中で800℃から1100℃の間の温度で加熱処理し、該多孔質構造の金属酸化物を、金属窒化物、金属炭化物又は金属炭窒化物で置換し、処理対象物の多孔質構造を保持した導電性材料を得ることを特徴とする導電性材料の製造方法。 The average particle size of the object to be processed having a porous structure of metal oxide on the surface, including carbon powder and at least one powder of iron, nickel, cobalt, iron alloy, nickel alloy, and cobalt alloy is several μm. In a state of being embedded in a carbon source powder having a micrometer order of about several hundred μm , heat treatment is performed at a temperature between 800 ° C. and 1100 ° C. in a nitrogen gas atmosphere. A method for producing a conductive material, comprising replacing a metal nitride, metal carbide or metal carbonitride to obtain a conductive material having a porous structure of the object to be treated. 処理対象物を埋没させる炭素源粉末に、酸化アルミニウム粉末や酸化チタン粉末等の金属酸化物粉末を混合し、前記加熱処理することにより、多孔質構造の金属酸化物の表面にアルミニウムやチタン等の酸化物粉末を構成する金属を拡散させることを特徴とする請求項記載の導電性材料の製造方法。 By mixing the metal source powder such as aluminum oxide powder and titanium oxide powder with the carbon source powder for burying the object to be treated, and by performing the heat treatment, the surface of the porous metal oxide such as aluminum or titanium is mixed. method for producing a conductive material according to claim 1, wherein the diffusing metal of the oxide powder. 金属母材を陽極酸化皮膜処理することにより、表面が金属酸化物の多孔質構造からなる処理対象物を形成することを特徴とする請求項1又は2記載の導電性材料の製造方法。 The method for producing a conductive material according to claim 1 or 2 , wherein the metal base material is subjected to an anodic oxide film treatment to form an object to be treated having a porous structure of metal oxide on the surface. 処理対象物の金属酸化物は、酸化チタン、酸化ジルコニウム、酸化アルミニウムのいずれか1種であることを特徴とする請求項1ないしのいずれかに記載の導電性材料の製造方法。 The method for producing a conductive material according to any one of claims 1 to 3 , wherein the metal oxide to be treated is any one of titanium oxide, zirconium oxide, and aluminum oxide.
JP2012209047A 2012-09-24 2012-09-24 Manufacturing method of conductive material Expired - Fee Related JP6082935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209047A JP6082935B2 (en) 2012-09-24 2012-09-24 Manufacturing method of conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209047A JP6082935B2 (en) 2012-09-24 2012-09-24 Manufacturing method of conductive material

Publications (2)

Publication Number Publication Date
JP2014062306A JP2014062306A (en) 2014-04-10
JP6082935B2 true JP6082935B2 (en) 2017-02-22

Family

ID=50617794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209047A Expired - Fee Related JP6082935B2 (en) 2012-09-24 2012-09-24 Manufacturing method of conductive material

Country Status (1)

Country Link
JP (1) JP6082935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513056A (en) * 2016-11-28 2017-03-22 南京工业大学 Preparation method of hybrid material, hybrid material and application of hybrid material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110140247B (en) * 2016-12-28 2022-08-19 日本制铁株式会社 Titanium material, separator, cell unit, and solid polymer fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921950B2 (en) * 1976-05-14 1984-05-23 松下電器産業株式会社 Manufacturing method of aluminum composite material
JPS62270760A (en) * 1986-05-16 1987-11-25 Seiko Instr & Electronics Ltd Production of external parts
JPH0196005A (en) * 1987-10-09 1989-04-14 Nippon Rejibon Kk Production of titanium nitride
JP4405694B2 (en) * 2001-07-16 2010-01-27 株式会社アライドマテリアル Titanium carbonitride powder and method for producing the same
JP4817218B2 (en) * 2004-06-28 2011-11-16 富士電機リテイルシステムズ株式会社 Metal nitride member and method for manufacturing metal nitride member
WO2011092998A1 (en) * 2010-01-29 2011-08-04 国立大学法人熊本大学 Method for treatment of metal surface, and surface-modified metal product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513056A (en) * 2016-11-28 2017-03-22 南京工业大学 Preparation method of hybrid material, hybrid material and application of hybrid material
CN106513056B (en) * 2016-11-28 2018-10-12 南京工业大学 A kind of preparation method of hybrid material and hybrid material, application

Also Published As

Publication number Publication date
JP2014062306A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
Stiber et al. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components
Zhang et al. Ultrafine metal nanoparticles/N‐doped porous carbon hybrids coated on carbon fibers as flexible and binder‐free water splitting catalysts
Hu et al. Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media
Song et al. Infiltrated NiCo alloy nanoparticle decorated perovskite oxide: a highly active, stable, and antisintering anode for direct‐ammonia solid oxide fuel cells
Song et al. Outstanding oxygen evolution reaction performance of nickel iron selenide/stainless steel mat for water electrolysis
Wang et al. Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis: Preliminary studies of the oxygen-reduction reaction
Wu et al. Hierarchical polyelemental nanoparticles as bifunctional catalysts for oxygen evolution and reduction reactions
Tegou et al. Rotating disc electrode studies of borohydride oxidation at Pt and bimetallic Pt–Ni and Pt–Co electrodes
Kwong et al. High-performance iron (III) oxide electrocatalyst for water oxidation in strongly acidic media
Panek et al. Ni+ Ti composite layers as cathode materials for electrolytic hydrogen evolution
Myung et al. Nanoparticle TiN-coated type 310S stainless steel as bipolar plates for polymer electrolyte membrane fuel cell
Lačnjevac et al. Deposition of Pd nanoparticles on the walls of cathodically hydrogenated TiO2 nanotube arrays via galvanic displacement: A novel route to produce exceptionally active and durable composite electrocatalysts for cost-effective hydrogen evolution
Ring et al. From bad electrochemical practices to an environmental and waste reducing approach for the generation of active hydrogen evolving electrodes
Kjartansdóttir et al. Electrochemical investigation of surface area effects on PVD Al-Ni as electrocatalyst for alkaline water electrolysis
Zhang et al. Titanium‑boron doped diamond composite: A new anode material
Kim et al. Electrodeposition of ruthenium oxide on ferritic stainless steel bipolar plate for polymer electrolyte membrane fuel cells
Shibata et al. Effect of Heat Treatment on Catalytic Activity for Oxygen Reduction Reaction of TaO x N y∕ Ti Prepared by Electrophoretic Deposition
Jović et al. Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC
Elias et al. Magnetoelectrodeposition of Ni–W alloy coatings for enhanced hydrogen evolution reaction
Inguanta et al. Fabrication of metal nano-structures using anodic alumina membranes grown in phosphoric acid solution: Tailoring template morphology
Ahmed et al. Iron–nickel nanoparticles as bifunctional catalysts in water electrolysis
Oh et al. Enhanced stability and electrocatalytic activity of graphene on copper-nickel alloys for hydrogen production from wastewater
Liu et al. Cathode plasma electrolytic deposition of Al2O3 coatings doped with SiC particles
JP6082935B2 (en) Manufacturing method of conductive material
Ha et al. Industrial-scale efficient alkaline water electrolysis achieved with sputtered NiFeV-oxide thin film electrodes for green hydrogen production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161216

R150 Certificate of patent or registration of utility model

Ref document number: 6082935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees