JP5408653B2 - Ozone generation method and ozone generation apparatus - Google Patents

Ozone generation method and ozone generation apparatus Download PDF

Info

Publication number
JP5408653B2
JP5408653B2 JP2009122731A JP2009122731A JP5408653B2 JP 5408653 B2 JP5408653 B2 JP 5408653B2 JP 2009122731 A JP2009122731 A JP 2009122731A JP 2009122731 A JP2009122731 A JP 2009122731A JP 5408653 B2 JP5408653 B2 JP 5408653B2
Authority
JP
Japan
Prior art keywords
anode
ozone
cathode
chamber
ozone generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009122731A
Other languages
Japanese (ja)
Other versions
JP2010270364A (en
Inventor
昌明 加藤
理恵 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2009122731A priority Critical patent/JP5408653B2/en
Publication of JP2010270364A publication Critical patent/JP2010270364A/en
Application granted granted Critical
Publication of JP5408653B2 publication Critical patent/JP5408653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンドを表面に有する電極を使用し、水を電気分解して、陽極よりオゾン、陰極より水素を発生させるオゾン生成方法及びオゾン生成装置に関するものである。   In the present invention, an anode and a cathode are adhered to both side surfaces of a solid polymer electrolyte membrane, a perfluorosulfonic acid cation exchange membrane is used as a solid polymer electrolyte membrane, and an electrode having conductive diamond on the surface is used as an anode In addition, the present invention relates to an ozone generation method and an ozone generation apparatus that electrolyze water to generate ozone from an anode and hydrogen from a cathode.

オゾンは自然界において酸化力が極めて強い物質として知られており、近年その強い酸化力を利用してさまざまな産業分野において使用用途が広がっている。例えばオゾンを利用した殺菌・脱色方法は上下水道施設において利用されている。オゾンが経時的に自己分解して無害な酸素となるため従来の薬品を使った殺菌・脱色方法と比較して残留薬品や反応生成物による二次汚染の心配が無く、後処理が容易であることが、強い殺菌・脱色能力に加えて評価されている。   Ozone is known as a substance having an extremely strong oxidizing power in nature. In recent years, ozone has been used in various industrial fields by utilizing the strong oxidizing power. For example, the sterilization / decolorization method using ozone is used in water and sewage facilities. Ozone self-decomposes over time and becomes harmless oxygen, so there is no worry of secondary contamination due to residual chemicals or reaction products compared to conventional chemical sterilization / decolorization methods, and post-treatment is easy. Has been evaluated in addition to its strong disinfection and decolorization ability.

オゾンを生成する方法としては、紫外線ランプ法、無声放電法、電気分解法が知られている。紫外線ランプ法は紫外線により酸素を励起してオゾンとする方法であり、比較的簡易な設備でオゾン発生を行うことが出来るが、発生量が少量であり、室内・車内の消臭等に広く利用されている。無声放電法は最も普及した一般的なオゾン発生方法であり、発生量の少ないオゾン発生器を用いた室内の消臭等の簡易的な用途から、数十kg/hの大型発生装置を用いた大規模な水処理用途まで、様々な用途に利用されている。無声放電法は、原料として酸素ガスや空気中の酸素を用い、放電によって酸素を励起して反応させオゾンとする方法である。   As a method for generating ozone, an ultraviolet lamp method, a silent discharge method, and an electrolysis method are known. The ultraviolet lamp method is a method that excites oxygen by ultraviolet rays to generate ozone, and it can generate ozone with relatively simple equipment, but the amount generated is small, and it is widely used for deodorizing indoors and cars. Has been. The silent discharge method is the most widespread general ozone generation method, and uses a large generator of several tens of kg / h for simple purposes such as indoor deodorization using a small amount of ozone generator. It is used for various purposes up to large-scale water treatment. The silent discharge method is a method in which oxygen gas or oxygen in the air is used as a raw material, and oxygen is excited by a discharge to react with ozone.

電気分解法は、水を電気分解することで陽極発生ガス中にオゾンを得る方法である。硫酸水溶液などの水溶液を電解することでもオゾン発生するが、パーフルオロスルホン酸陽イオン交換膜などで知られる固体高分子電解質を電解質として用いて超純水電解を行った場合、高濃度且つ高純度なオゾンが得られる特徴を有している。また、超純水を原料することと及び発生ガス中の不純物が極めて少ないことから、超純水電解オゾン水製造装置は半導体ウェハやLCD基板等の洗浄を行う精密洗浄分野において広く利用されている。   The electrolysis method is a method of obtaining ozone in the anode generation gas by electrolyzing water. Ozone is generated by electrolyzing an aqueous solution such as an aqueous sulfuric acid solution, but when ultrapure water electrolysis is performed using a solid polymer electrolyte known as a perfluorosulfonic acid cation exchange membrane as an electrolyte, the concentration and purity are high. It has a characteristic that it can produce ozone. In addition, since ultrapure water is used as a raw material and the impurities in the generated gas are extremely small, ultrapure water electrolysis ozone water production equipment is widely used in the precision cleaning field for cleaning semiconductor wafers, LCD substrates, etc. .

従来、電気分解法によるオゾン生成方法の陽極には、オゾンガス発生電流効率に優れることから、チタンなどの導電性多孔製金属上に電解めっきなどの方法により担持された二酸化鉛(PbO2)が利用されてきた。パーフルオロスルホン酸イオン交換膜を固体高分子電解質とし、二酸化鉛を陽極として室温下で超純水電解を行った場合、オゾン発生電流効率は通常は10−15%を示し、また高電流密度においては20%にも達する。経時的にパーフルオロスルホン酸イオン交換膜は消耗していくものの、その消耗は少なく、2年以上の連続電解を行っても安定したオゾン発生量及び安全性を保つことが出来る。 Conventionally, the anode of an ozone generation method by electrolysis has excellent ozone gas generation current efficiency, and therefore, lead dioxide (PbO 2 ) supported by a method such as electrolytic plating on a conductive porous metal such as titanium has been used. It has been. When ultrapure water electrolysis is performed at room temperature using a perfluorosulfonic acid ion exchange membrane as a solid polymer electrolyte and lead dioxide as an anode, the ozone generation current efficiency usually shows 10-15%, and at a high current density Reaches 20%. Although the perfluorosulfonic acid ion exchange membrane is consumed over time, the consumption is small and stable ozone generation and safety can be maintained even after continuous electrolysis for 2 years or more.

このように、二酸化鉛陽極は、高電流密度下や連続電解下においては高オゾン発生電流効率であり経時安定性にも優れているが、この二酸化鉛陽極は、還元環境において還元され変質しやすい特徴を有している。例えば、電解停止時においては、電解セル内に残存する水素等の還元性物質との反応や、二酸化鉛陽極の陰分極による電解還元反応により、電極表面の二酸化鉛が容易に水酸化鉛(Pb(OH)2)や酸化鉛(PbO)、鉛イオン(Pb2+)に還元される。これらは、何れもオゾン発生能力も電子導電性も持たないため、電解停止後の再稼動時にはオゾン発生能力が低下する現象が発生することとなる。 As described above, the lead dioxide anode has high ozone generation current efficiency and excellent stability over time under high current density and continuous electrolysis, but this lead dioxide anode is easily reduced and deteriorated in a reducing environment. Has characteristics. For example, when the electrolysis is stopped, the lead dioxide on the electrode surface is easily converted to lead hydroxide (Pb) by reaction with a reducing substance such as hydrogen remaining in the electrolysis cell or by electroreduction reaction by negative polarization of the lead dioxide anode. (OH) 2 ), lead oxide (PbO), and lead ions (Pb 2+ ). Since neither of these has an ozone generating ability or electronic conductivity, a phenomenon occurs in which the ozone generating ability is reduced during re-operation after the electrolysis is stopped.

従って、二酸化鉛電極を用いた電解オゾン発生装置においては、停止時の性能低下を避けるため、装置停止時には、電解セルに通常の電解電流の1/10〜1/1000の電流である保護電流を供給する機構を有している。この機構は、保護電流専用直流電源、蓄電池、及び制御システムで構成され、電解セルに瞬間的な無通電状態も発生しないように常時装置の状況を監視している。この機構により、二酸化鉛陽極は電解停止時においても還元環境に晒されることなく保護されるが、本機構の存在は電解オゾン発生装置の動作機構及び装置構成を複雑にし、装置価格を上昇させている。   Therefore, in an electrolytic ozone generator using a lead dioxide electrode, in order to avoid performance degradation at the time of stopping, when the apparatus is stopped, a protective current that is 1/10 to 1/1000 of the normal electrolytic current is applied to the electrolytic cell. It has a supply mechanism. This mechanism is composed of a direct current power source for protection current, a storage battery, and a control system, and constantly monitors the status of the apparatus so that an instantaneous non-energized state does not occur in the electrolysis cell. This mechanism protects the lead dioxide anode without being exposed to the reducing environment even when electrolysis is stopped. However, the existence of this mechanism complicates the operating mechanism and configuration of the electrolytic ozone generator and increases the price of the apparatus. Yes.

しかも、二酸化鉛陽極は鉛を多く含んでおり、近年、鉛の毒性および法的要請、例えば、ROHSガイドラインのために、鉛の使用は全工業用品において削減される方向である(非特許文献1参照)。   Moreover, the lead dioxide anode contains a lot of lead, and in recent years, due to the toxicity and legal requirements of lead, for example, the ROHS guidelines, the use of lead tends to be reduced in all industrial products (Non-Patent Document 1). reference).

一方、ホウ素などのドーパントを結晶構造中に付与することにより導電性を与えた導電性ダイヤモンドを陽極として水電解を行うことにより、二酸化鉛陽極よりもはるかに高い40%程度のオゾン発生電流効率が得られることがわかっている。また、導電性ダイヤモンド陽極は、化学的及び電気化学的な安定性に優れているため、二酸化鉛が還元により変質、劣化してしまう還元環境においても、性状及び電解特性に変化ない。従って二酸化鉛陽極を用いた電解オゾン発生装置において必須であった保護電流機構が必要なくなり、装置の簡易化が行われる。もちろん、導電性ダイヤモンドを構成する炭素及びホウ素は、ROHSガイドラインについて対象物質ではない。   On the other hand, by conducting water electrolysis using a conductive diamond imparted with conductivity by adding a dopant such as boron in the crystal structure as an anode, the ozone generation current efficiency is about 40% much higher than that of the lead dioxide anode. I know I can get it. In addition, since the conductive diamond anode is excellent in chemical and electrochemical stability, it does not change in properties and electrolytic characteristics even in a reducing environment in which lead dioxide is altered or deteriorated by reduction. Therefore, the protective current mechanism which is essential in the electrolytic ozone generator using the lead dioxide anode is not necessary, and the apparatus is simplified. Of course, carbon and boron constituting the conductive diamond are not subject to the ROHS guidelines.

しかるに、導電性ダイヤモンド電極は、非常に強い酸化能力を有しているため、従来の電解オゾン発生セルと同様の方法で導電性ダイヤモンド電極とパーフルオロスルホン酸イオン交換膜を接触させながら水電解を行うと、二酸化鉛電極の場合と比較してパーフルオロスルホン酸イオン交換膜の消耗する速度が100倍以上大きいことが明らかになった。電解による膜の急速な薄化は、陰極室で発生した水素ガスの陽極室への透過量の急増を引き起こし、短時間の電解でも陽極ガス中の水素濃度が水素の爆発下限界を超えるため、安定に電解動作できる期間が極めて短い電解セルとなってしまう。従って、導電性ダイヤモンド電極は優れたオゾン発生能力を有するものの、オゾン発生装置などに電解セルとして商業的に利用することが困難であった。   However, since the conductive diamond electrode has a very strong oxidizing ability, water electrolysis can be performed while contacting the conductive diamond electrode and the perfluorosulfonic acid ion exchange membrane in the same manner as the conventional electrolytic ozone generation cell. When it did, it became clear that the consumption speed | rate of a perfluorosulfonic-acid ion exchange membrane was 100 times or more large compared with the case of a lead dioxide electrode. The rapid thinning of the membrane by electrolysis causes a rapid increase in the amount of hydrogen gas generated in the cathode chamber to the anode chamber, and the hydrogen concentration in the anode gas exceeds the lower limit of hydrogen explosion even in short-time electrolysis. An electrolysis cell having a very short period during which stable electrolysis can be performed is obtained. Therefore, although the conductive diamond electrode has an excellent ozone generation capability, it has been difficult to commercially use it as an electrolytic cell in an ozone generator or the like.

従来、固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンド電極を使用し、水を電気分解して、陽極よりオゾン、陰極より水素を発生させるオゾン生成方法において、固体高分子電解質隔膜の消耗を抑制する方法として、陽極―陰極間に通電される電流値を、オゾンの発生に関する電流効率が極大となる電流値以下に制御するオゾン生成方法及びオゾン生成装置が提案されている(例えば、特許文献1及び特許文献2参照)。   Conventionally, an anode and a cathode are adhered to both sides of a solid polymer electrolyte membrane, a perfluorosulfonic acid cation exchange membrane is used as a solid polymer electrolyte membrane, a conductive diamond electrode is used as an anode, and water is electrolyzed. In the ozone generation method in which ozone is generated from the anode and hydrogen is generated from the cathode, as a method for suppressing the consumption of the solid polymer electrolyte membrane, the current efficiency between the anode and the cathode is expressed as current efficiency related to ozone generation. An ozone generation method and an ozone generation apparatus that control the current value to a maximum value or less have been proposed (see, for example, Patent Document 1 and Patent Document 2).

特許第4220978号公報Japanese Patent No. 4220978 特開2009−7655号公報JP 2009-7655 A

電気および電子機器における特定有害材料の使用の制限:2003年1月27日のEGガイドライン2002/95/EGRestrictions on the use of certain hazardous materials in electrical and electronic equipment: EG Guidelines 2002/95 / EG on January 27, 2003

然るに、上記従来の方法では、固体高分子電解質隔膜の消耗の抑制効果が十分ではなかった。   However, the conventional method described above is not sufficient in suppressing the consumption of the solid polymer electrolyte membrane.

本発明は、上記従来方法の欠点を解消し、固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンド電極を使用し、水を電気分解して、陽極よりオゾン、陰極より水素を生成させるオゾン生成方法において、パーフルオロスルホン酸陽イオン交換膜の消耗を抑え、安定に、長期間、高電流効率で、オゾンを生成することのできるオゾン生成方法およびオゾン生成装置を提供することを目的とする。   The present invention eliminates the disadvantages of the conventional methods described above, adheres the anode and cathode to both sides of the solid polymer electrolyte membrane, uses a perfluorosulfonic acid cation exchange membrane as the solid polymer electrolyte membrane, and conducts as the anode. In the ozone generation method that uses water-soluble diamond electrodes to electrolyze water to generate ozone from the anode and hydrogen from the cathode, the consumption of the perfluorosulfonic acid cation exchange membrane is suppressed, and stable, long-term, high current An object of the present invention is to provide an ozone generation method and an ozone generation apparatus capable of efficiently generating ozone.

導電性ダイヤモンドの酸化能力は、電極表面の電解反応に伴って発生するヒドロキシラジカル等のラジカル類に起因すると考えられている。ヒドロキシラジカルはオゾンよりも酸化力の高いラジカルとして知られており、その消失には一般にラジカルスカベンジャーと呼ばれる還元性物質が用いられる。従って、電解が行われ、ヒドロキシラジカル等のラジカル類の発生場所である陽極最表面へ、ラジカルスカベンジャーを適切に供給することによりラジカル類を消失させ、膜の消耗速度を抑制させることが、導電性ダイヤモンドを用いた電解オゾン発生装置において有効であることは想像できる。但し、陽極で発生し且つ産業分野において有用性の高いオゾンもラジカル類と同様に高い酸化力を有しており、多くの化学物質と反応して速やかに還元され酸素なる。   It is considered that the oxidation ability of conductive diamond is caused by radicals such as hydroxy radicals generated in accordance with the electrolytic reaction on the electrode surface. Hydroxyl radicals are known as radicals having higher oxidizing power than ozone, and a reducing substance called a radical scavenger is generally used for the disappearance. Therefore, electrolysis is performed, radicals are eliminated by appropriately supplying radical scavengers to the outermost surface of the anode where the radicals such as hydroxy radicals are generated, and the consumption rate of the film is suppressed. It can be imagined that it is effective in an electrolytic ozone generator using diamond. However, ozone generated at the anode and highly useful in the industrial field has high oxidizing power like radicals, and reacts with many chemical substances to be quickly reduced to oxygen.

従って、本電解方法においてパーフルオロスルホン酸陽イオン交換膜の消耗抑制目的に用いるラジカルスカベンジャーとしては、ラジカル類と反応してその活性を消失させる能力を有するのと同時に、オゾンやオゾン前駆体に対しては不活性であることが求められる。   Therefore, the radical scavenger used for the purpose of suppressing the consumption of the perfluorosulfonic acid cation exchange membrane in this electrolysis method has the ability to react with radicals and lose its activity, and at the same time, against ozone and ozone precursors. Are required to be inert.

このため、本発明においては、どの物質をラジカルスカベンジャーとして選定するか、及び選定した物質をどのように反応場に供給する事がパーフルオロスルホン酸陽イオン交換膜の消耗の抑制に対して最も効果的であるかについて、検討を行い、本発明を得るに至った。   For this reason, in the present invention, which substance is selected as the radical scavenger and how the selected substance is supplied to the reaction field is most effective in suppressing the consumption of the perfluorosulfonic acid cation exchange membrane. The present invention has been obtained by examining whether it is appropriate.

本発明は、上記の課題を解決するため、固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンドを表面に有する電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成方法において、陽極室に、水素及び有機物から選ばれた少なくとも一種類を供給したことを特徴とするオゾン生成方法を構成したことにある。 In order to solve the above problems, the present invention has an anode and a cathode in close contact with both sides of a solid polymer electrolyte membrane, uses a perfluorosulfonic acid cation exchange membrane as a solid polymer electrolyte membrane, and has a conductive property as an anode. By using an electrode having diamond on the surface, pure water is supplied to the anode chamber, and direct current is supplied between the positive and negative electrodes, thereby electrolyzing the water, generating ozone from the anode chamber, and generating hydrogen from the cathode chamber. in the ozone generating process of generating, in the anode chamber, lies in the configuration of an ozone generating method is characterized in that feeding at least one kind selected from water Moto及 beauty organics.

また、本発明による第2の課題解決手段は、前記陽極室に供給する水素の供給源として、前記陰極室で生成した水素ガス又は当該水素ガスが溶解した陰極液を使用し、当該陰極液を前記陽極室の外部より前記陽極室に供給したことを特徴とするオゾン生成方法を構成したことにある。   The second problem-solving means according to the present invention uses a hydrogen gas generated in the cathode chamber or a catholyte in which the hydrogen gas is dissolved as a supply source of hydrogen to be supplied to the anode chamber. The ozone generation method is characterized in that it is supplied to the anode chamber from the outside of the anode chamber.

また、本発明による第3の課題解決手段は、前記陰極室に、二酸化炭素および有機物から選ばれた少なくとも一種類を供給し、前記二酸化炭素、有機物から選ばれた少なくとも一種類を前記陰極室よりパーフルオロスルホン酸陽イオン交換膜を透過させて前記陽極室に供給するようオゾン生成方法を構成したことにある。   According to a third means for solving the problem of the present invention, at least one selected from carbon dioxide and organic matter is supplied to the cathode chamber, and at least one selected from carbon dioxide and organic matter is supplied from the cathode chamber. The ozone generation method is configured so as to be permeated through a perfluorosulfonic acid cation exchange membrane and supplied to the anode chamber.

また、本発明による第4の課題解決手段は、前記有機物としてアルコールを使用して、オゾン生成方法を構成したことにある。
したことにある。
According to a fourth aspect of the present invention, there is provided an ozone generation method using alcohol as the organic substance.
It is to have done.

また、本発明による第5の課題解決手段は、固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンドを表面に有する電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成方法に用いるオゾン生成装置おいて、陽極室に水素及び有機物から選ばれた少なくとも一種類を供給するようオゾン生成装置を構成したことにある。 The fifth problem-solving means according to the present invention is such that an anode and a cathode are adhered to both side surfaces of a solid polymer electrolyte membrane, a perfluorosulfonic acid cation exchange membrane is used as the solid polymer electrolyte membrane, and the conductive material is used as the anode. Using an electrode having a conductive diamond surface, pure water is supplied to the anode chamber, and direct current is supplied between the positive and negative electrodes to electrolyze the water and generate ozone from the anode chamber. keep ozone generator used in the ozone generating method for generating hydrogen, it lies in the structure of the ozone generator to supply at least one selected the anode chamber from the water Moto及 beauty organics.

また、本発明による第6の課題解決手段は、前記陽極室に供給する水素の供給源として、前記陰極室で生成した水素ガス又は当該水素ガスが溶解した陰極液を使用し、当該陰極液を前記陽極室の外部より前記陽極室に供給するようオゾン生成装置を構成したことにある。   The sixth problem-solving means according to the present invention uses hydrogen gas generated in the cathode chamber or a catholyte in which the hydrogen gas is dissolved as a supply source of hydrogen to be supplied to the anode chamber. The ozone generator is configured to supply the anode chamber from the outside of the anode chamber.

また、本発明による第7の課題解決手段は、前記陰極室に、二酸化炭素および有機物から選ばれた少なくとも一種類を供給し、前記二酸化炭素、有機物から選ばれた少なくとも一種類を前記陰極室よりパーフルオロスルホン酸陽イオン交換膜を透過させて前記陽極室に供給するようオゾン生成装置を構成したことにある。   According to a seventh means for solving the problem of the present invention, at least one selected from carbon dioxide and organic matter is supplied to the cathode chamber, and at least one selected from carbon dioxide and organic matter is supplied from the cathode chamber. The ozone generator is configured to transmit the perfluorosulfonic acid cation exchange membrane and supply it to the anode chamber.

また、本発明による第8の課題解決手段は、前記有機物としてアルコールを使用して、オゾン生成装置を構成したことにある。   The eighth problem-solving means according to the present invention resides in that an ozone generator is constructed using alcohol as the organic substance.

本発明によるオゾン生成方法及びオゾン生成装置によれば、固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンドを表面に有する電極を使用し、水を電気分解して、陽極よりオゾン、陰極より水素を生成させるオゾン生成方法において、パーフルオロスルホン酸陽イオン交換膜の消耗を抑え、安定に、長期間オゾンを生成することができる。   According to the ozone generation method and the ozone generation apparatus of the present invention, the anode and the cathode are brought into close contact with both sides of the solid polymer electrolyte membrane, a perfluorosulfonic acid cation exchange membrane is used as the solid polymer electrolyte membrane, and the anode is used as the anode. In an ozone generation method that uses an electrode with conductive diamond on the surface and electrolyzes water to generate ozone from the anode and hydrogen from the cathode, the consumption of the perfluorosulfonic acid cation exchange membrane is suppressed and stable. It can generate ozone for a long time.

本発明によるオゾン生成方法及びオゾン生成装置を実施するための電解セルの1例の構成を示す模式図。The schematic diagram which shows the structure of one example of the electrolysis cell for implementing the ozone production | generation method and ozone production | generation apparatus by this invention. 本発明によるオゾン生成方法及びオゾン生成装置を実施するための電解セルの他の例の構成を示す模式図。The schematic diagram which shows the structure of the other example of the electrolysis cell for implementing the ozone production | generation method and ozone production | generation apparatus by this invention. 本発明によるオゾン生成方法及びオゾン生成装置に使用する導電性ダイヤモンドを表面に有する陽極の1例の構成を示す表面図。The surface view which shows the structure of one example of the anode which has the conductive diamond used for the ozone production | generation method and ozone production | generation apparatus by this invention on the surface. 本発明によるオゾン生成方法及びオゾン生成装置に使用する導電性ダイヤモンドを表面に有する陽極の1例の構成を示す断面図。Sectional drawing which shows the structure of one example of the anode which has the conductive diamond used for the ozone production | generation method and ozone production | generation apparatus by this invention on the surface. 本発明によるオゾン生成方法の1実施例を示すブロック線図。The block diagram which shows one Example of the ozone production | generation method by this invention. 本発明によるオゾン生成方法の他の実施例を示すブロック線図。The block diagram which shows the other Example of the ozone production | generation method by this invention. 本発明によるオゾン生成方法の更に他の実施例を示すブロック線図。The block diagram which shows the further another Example of the ozone production | generation method by this invention. 本発明によるオゾン生成方法の更に他の実施例を示すブロック線図。The block diagram which shows the further another Example of the ozone production | generation method by this invention.

以下、本発明によるオゾン生成方法及びオゾン生成装置について、図面を参照しつつ、詳細に説明する。   Hereinafter, an ozone generation method and an ozone generation apparatus according to the present invention will be described in detail with reference to the drawings.

図1−1は、本発明によるオゾン生成方法及びオゾン生成装置を実施するための電解セルの1例の構成を示す模式図である。1は、陽極室排出口、2は、陰極室排出口、3は、陽極室、4は、陰極室、5は、陽極給電端子、6は、陰極給電端子、7は、陽極室供給口、8は、陰極室供給口、9は、パーフルオロスロホン酸陽イオン交換膜よりなる固体高分子電解室隔膜、10、導電性ダイヤモンド膜、11は、凸凹付p型シリコン基板、12は、貫通口、13は、陰極シート、14は、陰極集電体、15は、シール材、16は、締付ボルト、17は、ナット、18は、プレス板である。   FIG. 1-1 is a schematic diagram showing a configuration of an example of an electrolytic cell for carrying out an ozone generation method and an ozone generation apparatus according to the present invention. 1 is an anode chamber discharge port, 2 is a cathode chamber discharge port, 3 is an anode chamber, 4 is a cathode chamber, 5 is an anode feeding terminal, 6 is a cathode feeding terminal, 7 is an anode chamber feeding port, 8 is a cathode chamber supply port, 9 is a polymer electrolyte membrane diaphragm made of a perfluorosulphonic acid cation exchange membrane, 10 is a conductive diamond film, 11 is a p-type silicon substrate with irregularities, and 12 is a through-hole. Mouth, 13 is a cathode sheet, 14 is a cathode current collector, 15 is a sealing material, 16 is a fastening bolt, 17 is a nut, and 18 is a press plate.

陽極は、凸凹付p型シリコン基板11の表面に導電性ダイヤモンド膜10を有し、貫通口12が穿孔されており、陰極は、陰極シート13よりなり、この陽極及び陰極は、パーフルオロスルホン酸陽イオン交換膜よりなる固体高分子電解室隔膜9の両面に密着させ、いわゆるゼロギャップセルを構成した。陽極及び陰極はそれぞれ陽極室3、陰極室4に収められ、陽極室3、陰極室4はそれぞれ陽極室排出口1と陰極室排出口2及び陽極室供給口7と陰極室供給口8を有している。   The anode has a conductive diamond film 10 on the surface of the p-type silicon substrate 11 with unevenness, the through-hole 12 is perforated, the cathode is made of a cathode sheet 13, and the anode and the cathode are perfluorosulfonic acid. A so-called zero-gap cell was constructed by adhering to both surfaces of the polymer electrolyte membrane diaphragm 9 made of a cation exchange membrane. The anode and cathode are housed in an anode chamber 3 and a cathode chamber 4, respectively. The anode chamber 3 and the cathode chamber 4 have an anode chamber discharge port 1, a cathode chamber discharge port 2, an anode chamber supply port 7 and a cathode chamber supply port 8, respectively. doing.

各構成材料間の電気的コンタクト及び凸凹付p型シリコン基板11の表面に導電性ダイヤモンド膜10を有する陽極、陰極シート13よりなる陰極、陰極集電体14、パーフルオロスルホン酸陽イオン交換膜よりなる固体高分子電解室隔膜9の接合は、締付ボルト16、ナット17、プレス板18を用い、トルクにより押付けて行った。ボルト・ナットへのトルクは、3N・mとした。   From the electrical contact between the constituent materials and the anode having the conductive diamond film 10 on the surface of the p-type silicon substrate 11 with unevenness, the cathode made of the cathode sheet 13, the cathode current collector 14, and the perfluorosulfonic acid cation exchange membrane The solid polymer electrolysis chamber diaphragm 9 was joined by using a tightening bolt 16, a nut 17, and a press plate 18 by torque. The torque to the bolt and nut was 3 N · m.

純水を陽極室供給口7より陽極室3内に供給すると、この純水は、貫通口12等を通って導電性ダイヤモンド膜10、パーフルオロスルホン酸陽イオン交換膜よりなる固体高分子電解室隔膜9の接触面に供給され、電解反応が起こり、陽極室3内において、オゾンガスと酸素ガスと水素イオンが発生し、オゾンガスと酸素ガスは、陽極室排出口1から電解セル外へ排出され、水素イオンは、固体高分子電解室隔膜9を透過して陰極シート13の表面に達し、電子と結びついて、水素ガスとなり、陰極室排出口2より電解セル外へ排出される。   When pure water is supplied into the anode chamber 3 from the anode chamber supply port 7, the pure water passes through the through-hole 12 and the like, and the solid polymer electrolysis chamber comprising the conductive diamond membrane 10 and the perfluorosulfonic acid cation exchange membrane. Supplyed to the contact surface of the diaphragm 9, an electrolytic reaction occurs, ozone gas, oxygen gas, and hydrogen ions are generated in the anode chamber 3, and the ozone gas and oxygen gas are discharged from the anode chamber outlet 1 to the outside of the electrolytic cell, Hydrogen ions permeate the solid polymer electrolysis chamber diaphragm 9 to reach the surface of the cathode sheet 13, combine with electrons, become hydrogen gas, and are discharged from the cathode chamber outlet 2 to the outside of the electrolysis cell.

本発明において、水素、二酸化炭素及び有機物から選ばれた少なくとも一種類が、陽極室3の外部より、陽極室供給口7から純水と共に陽極室3内に供給される。   In the present invention, at least one selected from hydrogen, carbon dioxide, and organic matter is supplied into the anode chamber 3 from the outside of the anode chamber 3 together with pure water from the anode chamber supply port 7.

本発明においては、前記陽極室3に供給する水素の供給源として、前記陰極室4で生成した水素ガス又は当該水素ガスが溶解した陰極液を使用し、当該陰極液を前記陽極室3の外部より陽極室供給口7から純水と共に前記陽極室3に供給することができる。   In the present invention, a hydrogen gas generated in the cathode chamber 4 or a catholyte in which the hydrogen gas is dissolved is used as a hydrogen supply source to be supplied to the anode chamber 3, and the catholyte is supplied to the outside of the anode chamber 3. Further, it can be supplied to the anode chamber 3 together with pure water from the anode chamber supply port 7.

本発明においては、前記有機物としては、アルコールが使用できる。アルコールとしては、イソプロピルアルコール(IPA)、メタノール、エタノール等が好ましい。 In the present invention, alcohol can be used as the organic substance. As the alcohol, isopropyl alcohol (IPA), methanol, ethanol and the like are preferable.

また、本発明においては、前記陽極室3に供給する物質しては、水素、二酸化炭素及び有機物の他にヒドラジンその他の還元剤を使用することもできる。   Further, in the present invention, as the substance supplied to the anode chamber 3, hydrazine and other reducing agents can be used in addition to hydrogen, carbon dioxide and organic substances.

図1−2は、本発明によるオゾン生成方法及びオゾン生成装置を実施するための電解セルの他の例の構成を示す模式図であって、固体高分子電解室隔膜9として2枚のパーフルオロスルホン酸陽イオン交換膜を使用した例を示したものである。   FIG. 1-2 is a schematic diagram showing the configuration of another example of an electrolysis cell for carrying out the ozone generation method and the ozone generation apparatus according to the present invention. An example using a sulfonic acid cation exchange membrane is shown.

図2−1及び図2−2は、本発明によるオゾン生成方法及びオゾン生成装置に使用する導電性ダイヤモンドを表面に有する陽極の1例の構成を示す図であり、5cm角p型シリコン基板(3mmt)11の表面に、ダイシングにより表面に0.5mmピッチの凸凹を多数作製した後、裏面よりドリル加工を行い複数の貫通孔12を得た。シリコン表面にテクスチャ加工を施すために、35%フッ酸と70%硝酸を1:1で混合して調整したフッ硝酸溶液に室温下で5分間浸漬し、更に60℃の10%水酸化カリウム水溶液に5分間浸漬した。25は、凸部、26は、凹部である。
シリコン板を水洗し、乾燥した後、前処理としてダイヤモンドパウダーをイソプロピルアルコール内に入れ、基板を入れて超音波を印加することで種付け処理を行った。成膜方法としては2.45GHzでのマイクロ波プラズマCVD法を用いた。ガスとしてH2、CH4、B26を用い、それぞれの流量を800sccm、20sccm、0.2sccm導入し、ガス圧力を3.2kPaとした。マイクロ波プラズマCVDによりドーパントとしてホウ素を含む導電性ダイヤモンド膜10を成膜して作製した。尚、実電解面積となる凸部頂部の総面積は6.25cm2である。
FIGS. 2-1 and 2-2 are diagrams showing a configuration of an example of an anode having conductive diamond on the surface used for an ozone generation method and an ozone generation apparatus according to the present invention, and a 5 cm square p-type silicon substrate ( A large number of irregularities with a pitch of 0.5 mm were formed on the surface of the surface of 3 mmt) 11 by dicing, and then drilled from the back surface to obtain a plurality of through holes 12. In order to texture the silicon surface, it is immersed in a hydrofluoric acid solution prepared by mixing 35% hydrofluoric acid and 70% nitric acid at 1: 1 at room temperature for 5 minutes, and further 10% potassium hydroxide aqueous solution at 60 ° C. For 5 minutes. Reference numeral 25 denotes a convex portion, and 26 denotes a concave portion.
After the silicon plate was washed with water and dried, as a pretreatment, diamond powder was placed in isopropyl alcohol, a substrate was placed, and ultrasonic waves were applied to perform seeding treatment. As a film forming method, a microwave plasma CVD method at 2.45 GHz was used. H 2 , CH 4 , and B 2 H 6 were used as gases, and the flow rates were 800 sccm, 20 sccm, and 0.2 sccm, respectively, and the gas pressure was 3.2 kPa. A conductive diamond film 10 containing boron as a dopant was formed by microwave plasma CVD. In addition, the total area of the convex part top part used as an actual electrolysis area is 6.25 cm < 2 >.

導電性ダイヤモンド膜10を表面に有する陽極は、電極基体上に炭素源となる有機化合物の還元析出物であるダイヤモンドを担持して製造される。電極基体の材質及び形状は材質が導電性であれば特に限定されず、導電性シリコン、炭化珪素、チタン、ニオブ、モリブデン等から成る板状、メッシュ状あるいは例えばビビリ繊維焼結体である多孔性板等が使用でき、材質は熱膨張率が近い導電性シリコン、炭化珪素の使用が特に好ましい。又導電性ダイヤモンドと基体の密着性向上のため及び導電性ダイヤモンド膜の表面積を増加させ単位面積当たりの電流密度を下げるために、基体表面はある程度の粗さを有することが望ましい。   The anode having the conductive diamond film 10 on its surface is manufactured by supporting diamond, which is a reduced precipitate of an organic compound serving as a carbon source, on an electrode substrate. The material and shape of the electrode substrate are not particularly limited as long as the material is conductive. The electrode substrate is plate-like, mesh-like, or porous, for example, a vibrant fiber sintered body made of conductive silicon, silicon carbide, titanium, niobium, molybdenum or the like. It is particularly preferable to use conductive silicon or silicon carbide having a thermal expansion coefficient that can be used. In order to improve the adhesion between the conductive diamond and the substrate, and to increase the surface area of the conductive diamond film and reduce the current density per unit area, it is desirable that the substrate surface has a certain degree of roughness.

導電性ダイヤモンドを膜状にして使用する場合は、耐久性及びピンホール発生を少なくするために、膜厚を10μmから50μmとすることが望ましい。耐久性の面から100μm以上の自立膜も使用可能であるが、槽電圧が高くなり電解液温の制御が煩雑になるため好ましくない。   When conductive diamond is used in the form of a film, it is desirable that the film thickness be 10 μm to 50 μm in order to reduce durability and occurrence of pinholes. Although a self-supporting film having a thickness of 100 μm or more can be used from the viewpoint of durability, it is not preferable because the cell voltage becomes high and the control of the electrolyte temperature becomes complicated.

基体への導電性ダイヤモンドの担持法も特に限定されず従来法のうちの任意のものを使用できる。代表的な導電性ダイヤモンド製造方法としては熱フィラメントCVD(化学蒸着)法、マイクロ波プラズマCVD法、プラズマアークジェット法及び物理蒸着(PVD)法等があり、これらの中でも成膜速度が速いこと及び均一な膜を得やすいことからマイクロ波プラズマCVD法の使用が望ましい。
この他に超高圧で製造される合成ダイヤモンド粉末を樹脂等の結着剤を用いて基体に担持したダイヤモンド電極も使用可能である。
The method for supporting the conductive diamond on the substrate is not particularly limited, and any conventional method can be used. Typical conductive diamond production methods include a hot filament CVD (chemical vapor deposition) method, a microwave plasma CVD method, a plasma arc jet method, and a physical vapor deposition (PVD) method. The use of a microwave plasma CVD method is desirable because it is easy to obtain a uniform film.
In addition, a diamond electrode in which a synthetic diamond powder produced at an ultrahigh pressure is supported on a substrate by using a binder such as a resin can also be used.

マイクロ波プラズマCVD法は、メタン等の炭素源とボラン等のドーパント源を水素で希釈した混合ガスを、導波管でマイクロ波発信機と接続された導電性シリコンやアルミナ、炭化珪素等の導電性ダイヤモンドの成膜基板が設置された反応チャンバに導入し、反応チャンバ内にプラズマを発生させ、基板上に導電性ダイヤモンドを成長させる方法である。マイクロ波によるプラズマではイオンは殆ど振動せず、電子のみを振動させた状態で擬似高温を達成し、化学反応を促進させる効果を奏する。プラズマの出力は1〜5kWで、出力が大きいほど活性種を多く発生させることができ、ダイヤモンドの成長速度が増加する。プラズマを用いる利点は、大表面積の基体を用いて高速度でダイヤモンドを成膜できることである。   The microwave plasma CVD method uses a mixed gas obtained by diluting a carbon source such as methane and a dopant source such as borane with hydrogen as a conductive material such as conductive silicon, alumina, or silicon carbide connected to a microwave transmitter through a waveguide. This is a method in which a conductive diamond film is introduced into a reaction chamber where a substrate is installed, plasma is generated in the reaction chamber, and conductive diamond is grown on the substrate. In the plasma by microwaves, ions hardly vibrate, and a pseudo high temperature is achieved in a state where only electrons are vibrated, and the chemical reaction is promoted. The plasma output is 1 to 5 kW, and the larger the output, the more active species can be generated, and the growth rate of diamond increases. The advantage of using plasma is that diamond can be deposited at high speed using a substrate with a large surface area.

ダイヤモンドに導電性を付与するために、原子価の異なる元素を微量添加する。硼素やリンの含有率は好ましくは1〜100000ppm、更に好ましくは100〜10000ppmである。この添加元素の原料は毒性の少ない酸化硼素や五酸化二リンなどが使用できる。このように製造された基体上に担持された導電性ダイヤモンドは、チタン、ニオブ、タンタル、シリコン、カーボン、ニッケル、タングステンカーバイドなどの導電性材料から成る、平板、打抜き板、金網、粉末焼結体、金属繊維体、金属繊維焼結体等の形態を有する給電体に接続できる。   In order to impart conductivity to diamond, a small amount of elements having different valences are added. The content of boron or phosphorus is preferably 1 to 100,000 ppm, more preferably 100 to 10,000 ppm. As a raw material for this additive element, boron oxide, diphosphorus pentoxide, or the like having a low toxicity can be used. The conductive diamond supported on the substrate thus manufactured is a flat plate, stamped plate, wire mesh, powder sintered body made of a conductive material such as titanium, niobium, tantalum, silicon, carbon, nickel, tungsten carbide. In addition, it can be connected to a power feeding body having a form such as a metal fiber body or a metal fiber sintered body.

固体高分子電解室隔膜9に使用するパーフルオロスルホン酸陽イオン交換膜としては、市販のパーフルオロスルホン酸型陽イオン交換膜(商品名:ナフィオン117、デュポン社製、カタログ厚さ175μm)を使用し、煮沸純水に30分間浸漬し、含水による膨潤処理を行った。   As a perfluorosulfonic acid cation exchange membrane used for the polymer electrolyte membrane 9, a commercially available perfluorosulfonic acid cation exchange membrane (trade name: Nafion 117, manufactured by DuPont, catalog thickness 175 μm) is used. Then, it was immersed in boiling pure water for 30 minutes and swelled with water.

陰極シート13は、次のようにした製作した。PTFEディスパージョン(三井デュポンフロロケミカル株式会社31−J)と、白金担持カーボン触媒を水に分散させた分散液を混合した後、乾燥させ、これにソルベントナフサを加えて混練した後、圧延工程と乾燥工程及び焼成工程を経て、PTFE40%、白金担持カーボン触媒60%で膜厚120μm、空隙率55%の陰極シート13と得た。
また、厚さ2.5mmのステンレス繊維焼結体(東京製綱(株))を陰極集電体とした。
The cathode sheet 13 was manufactured as follows. PTFE dispersion (Mitsui Dupont Fluorochemical Co., Ltd. 31-J) and a dispersion of platinum-supported carbon catalyst dispersed in water were mixed, dried, kneaded with solvent naphtha added thereto, Through the drying step and the firing step, the cathode sheet 13 was obtained with PTFE 40%, platinum-supported carbon catalyst 60% in film thickness, and porosity of 55%.
Moreover, a 2.5 mm thick stainless steel fiber sintered body (Tokyo Seizuna Co., Ltd.) was used as the cathode current collector.

次に、本発明の実施例及び比較例を説明する。但し、本発明は、これらの実施例に限定されるものではない。   Next, examples and comparative examples of the present invention will be described. However, the present invention is not limited to these examples.

<実施例1>
図3−1に示すように、電解セル24を、オゾン側気液分離器19、水素側気液分離器20及び直流電源21と接続し、陽極室3には電解液である純水の冷却を行いながら供給し水電解を行った。電解電流は6.25Aとした。但し、電解セル24に使用するパーフルオロスルホン酸陽イオン交換膜からなる固体高分子電解質隔膜9は、図2−2に示すように、2枚重ねて使用した。
更に陽極室3に循環供給している水に水素ガスを0.5ml/min(陽極ガス発生量に対しておよそ2vol%)だけ混合して供給するようにし、純水電解を行ったところ、陽極22におけるオゾン発生電流効率は40%、陽極ガス中に含まれる水素ガス濃度は0.07vol%、セル電圧12Vであった。
<Example 1>
As shown in FIG. 3A, the electrolytic cell 24 is connected to an ozone side gas / liquid separator 19, a hydrogen side gas / liquid separator 20, and a DC power source 21, and the anode chamber 3 is cooled with pure water as an electrolyte. The water was electrolyzed while supplying. The electrolytic current was 6.25A. However, two solid polymer electrolyte membranes 9 made of perfluorosulfonic acid cation exchange membranes used in the electrolytic cell 24 were used in an overlapping manner as shown in FIG.
Furthermore, hydrogen water was mixed and supplied to the water circulatingly supplied to the anode chamber 3 by 0.5 ml / min (approximately 2 vol% with respect to the amount of generated anode gas), and pure water electrolysis was performed. The ozone generation current efficiency at 22 was 40%, the hydrogen gas concentration contained in the anode gas was 0.07 vol%, and the cell voltage was 12V.

この電解セル24に6.25Aを供給し続け、29hの連続電解を行ったところ、この期間中のオゾン発生電流効率は40−42%と大きな変動は無かった。29時間後に電解セル24を解体し、電解を行っている部分の膜の消耗厚さを調べたところ、12μmのみしか消耗しておらず、その消耗速度は0.4μm/hと遅かった。   When 6.25 A was continuously supplied to the electrolysis cell 24 and continuous electrolysis was performed for 29 hours, the ozone generation current efficiency during this period was not significantly changed as 40 to 42%. After 29 hours, the electrolytic cell 24 was disassembled, and the consumption thickness of the film where electrolysis was performed was examined. As a result, only 12 μm was consumed, and the consumption rate was as slow as 0.4 μm / h.

参考例2>
図3−1に示すように、電解セル24を、オゾン側気液分離器19、水素側気液分離器20及び直流電源21と接続し、陽極室3には電解液である純水の冷却を行いながら供給し水電解を行った。電解電流は6.25Aとした。但し、電解セル24に使用するパーフルオロスルホン酸陽イオン交換膜からなる固体高分子電解質隔膜9は、図2−2に示すように、2枚重ねて使用した。
更に陽極室3に循環供給している水に二酸化炭素ガスを0.5ml/min(陽極ガス発生量に対しておよそ2vol%)だけ混合して供給するようにし、純水電解を行ったところ、陽極23におけるオゾン発生電流効率は40%、陽極ガス中に含まれる水素ガス濃度は0.07vol%、セル電圧12Vであった。
< Reference Example 2>
As shown in FIG. 3A, the electrolytic cell 24 is connected to an ozone side gas / liquid separator 19, a hydrogen side gas / liquid separator 20, and a DC power source 21, and the anode chamber 3 is cooled with pure water as an electrolyte. The water was electrolyzed while supplying. The electrolytic current was 6.25A. However, two solid polymer electrolyte membranes 9 made of perfluorosulfonic acid cation exchange membranes used in the electrolytic cell 24 were used in an overlapping manner as shown in FIG.
Furthermore, when water supplied in circulation to the anode chamber 3 was mixed with carbon dioxide gas at 0.5 ml / min (approximately 2 vol% with respect to the amount of anode gas generated) and supplied, and pure water electrolysis was performed, The ozone generation current efficiency in the anode 23 was 40%, the hydrogen gas concentration contained in the anode gas was 0.07 vol%, and the cell voltage was 12V.

この電解セル24に6.25Aを供給し続け、29hの連続電解を行ったところ、この期間中のオゾン発生電流効率は40−42%と大きな変動は無かった。29h後に電解セルを解体し、電解を行っている部分の固体高分子電解質隔膜9を構成するパーフルオロスルホン酸陽イオン交換膜の消耗厚さを調べたところ、60μm消耗していたが、その消耗速度は2.1μm/hと遅かった。無添加電解に比較してパーフルオロスルホン酸陽イオン交換膜の消耗をより大きく抑制できることが示された。また二酸化炭素ガス添加によるオゾン発生への影響はないことが示された。   When 6.25 A was continuously supplied to the electrolysis cell 24 and continuous electrolysis was performed for 29 hours, the ozone generation current efficiency during this period was not significantly changed as 40 to 42%. After 29 hours, the electrolytic cell was disassembled, and when the consumption thickness of the perfluorosulfonic acid cation exchange membrane constituting the solid polymer electrolyte membrane 9 in the electrolysis part was examined, it was consumed by 60 μm. The speed was as slow as 2.1 μm / h. It was shown that the consumption of the perfluorosulfonic acid cation exchange membrane can be further suppressed as compared with the additive-free electrolysis. It was also shown that the addition of carbon dioxide gas had no effect on ozone generation.

<実施例3>
図3−2に示すように、電解セル24を、オゾン側気液分離器19、水素側気液分離器20及び直流電源21と接続し、陽極室3には電解液である純水の冷却を行いながら供給し水電解を行った。電解電流は6.25Aとした。但し、電解セル24に使用するパーフルオロスルホン酸陽イオン交換膜からなる固体高分子電解質隔膜9は、図2−2に示すように、2枚重ねて使用した。
<Example 3>
As shown in FIG. 3-2, the electrolytic cell 24 is connected to an ozone side gas-liquid separator 19, a hydrogen side gas-liquid separator 20, and a DC power source 21, and the anode chamber 3 is cooled with pure water as an electrolyte. The water was electrolyzed while supplying. The electrolytic current was 6.25A. However, two solid polymer electrolyte membranes 9 made of perfluorosulfonic acid cation exchange membranes used in the electrolytic cell 24 were used in an overlapping manner as shown in FIG.

更に、陽極室3に循環供給している水に陰極23で発生した水素ガスを2ml/min(陽極ガス発生量に対しておよそ8vol%)だけ混合して供給するようにし、純水電解を行ったところ、陽極22におけるオゾン発生電流効率は40%、陽極ガス中に含まれる水素ガス濃度は0.07vol%、セル電圧12Vであった。   Furthermore, pure water electrolysis is performed by mixing and supplying 2 ml / min (approximately 8 vol% of the amount of anode gas generated) of hydrogen gas generated at the cathode 23 to the water circulated and supplied to the anode chamber 3. As a result, the ozone generation current efficiency in the anode 22 was 40%, the hydrogen gas concentration contained in the anode gas was 0.07 vol%, and the cell voltage was 12V.

この電解セル24に6.25Aを供給し続け、29hの連続電解を行ったところ、この期間中のオゾン発生電流効率は40−42%と大きな変動は無かった。29時間後に電解セル24を解体し、陽極と接しているパーフルオロスルホン酸陽イオン交換膜の消耗厚さを調べたところ、6μmのみしか消耗しておらず、その消耗速度は0.2μm/hと遅かった。陰極と接しているパーフルオロスルホン酸陽イオン交換膜には消耗や劣化は認められなかった。   When 6.25 A was continuously supplied to the electrolysis cell 24 and continuous electrolysis was performed for 29 hours, the ozone generation current efficiency during this period was not significantly changed as 40 to 42%. After 29 hours, the electrolytic cell 24 was disassembled and the consumption thickness of the perfluorosulfonic acid cation exchange membrane in contact with the anode was examined. As a result, only 6 μm was consumed, and the consumption rate was 0.2 μm / h. It was late. The perfluorosulfonic acid cation exchange membrane in contact with the cathode was not consumed or deteriorated.

<実施例4>
図3−3に示すように、電解セル24を、オゾン側気液分離器19、水素側気液分離器20及び直流電源21と接続し、陽極室3には電解液である純水の冷却を行いながら供給し水電解を行った。電解電流は6.25Aとした。但し、電解セル24に使用するパーフルオロスルホン酸陽イオン交換膜からなる固体高分子電解質隔膜9は、図2−2に示すように、2枚重ねて使用した。
更に陽極室に循環供給している水にイソプロピルアルコールを0.5g/Lだけ、混合して供給するようにし、純水電解を行ったところ、陽極におけるオゾン発生電流効率は40%、陽極ガス中に含まれる水素ガス濃度は0.07vol%、セル電圧12Vであった。
<Example 4>
As shown in FIG. 3C, the electrolytic cell 24 is connected to the ozone side gas / liquid separator 19, the hydrogen side gas / liquid separator 20, and the DC power source 21, and the anode chamber 3 is cooled with pure water as an electrolyte. The water was electrolyzed while supplying. The electrolytic current was 6.25A. However, two solid polymer electrolyte membranes 9 made of perfluorosulfonic acid cation exchange membranes used in the electrolytic cell 24 were used in an overlapping manner as shown in FIG.
Furthermore, when 0.5 g / L of isopropyl alcohol was mixed and supplied to the water circulated and supplied to the anode chamber and pure water electrolysis was performed, the ozone generation current efficiency at the anode was 40%, and the anode gas The hydrogen gas concentration contained was 0.07 vol% and the cell voltage was 12V.

この電解セル24に6.25Aを供給し続け、29hの連続電解を行ったところ、この期間中のオゾン発生電流効率は40−42%と大きな変動は無かった。29時間後に電解セル24を解体し、電解を行っている部分の膜の消耗厚さを調べたところ、60μm消耗していたが、その消耗速度は2.1μm/hと遅かった。   When 6.25 A was continuously supplied to the electrolysis cell 24 and continuous electrolysis was performed for 29 hours, the ozone generation current efficiency during this period was not significantly changed as 40 to 42%. After 29 hours, the electrolytic cell 24 was disassembled, and the consumption thickness of the film where electrolysis was performed was examined. As a result, the consumption was 60 μm, but the consumption rate was as slow as 2.1 μm / h.

<実施例5>
図3−4に示すように、電解セル24を、オゾン側気液分離器19、水素側気液分離器20及び直流電源21と接続し、陽極室3には電解液である純水の冷却を行いながら供給し水電解を行った。電解電流は6.25Aとした。但し、電解セル24に使用するパーフルオロスルホン酸陽イオン交換膜からなる固体高分子電解質隔膜9は、図2−1に示すように、1枚で使用した。
更に陰極室3には二酸化炭素ガスを5ml/min供給した。電解初期の性能は、陽極22におけるオゾン発生電流効率は40%、陽極ガス中に含まれる水素ガス濃度は0.07vol%、セル電圧12Vであった。
<Example 5>
As shown in FIG. 3-4, the electrolytic cell 24 is connected to an ozone side gas-liquid separator 19, a hydrogen side gas-liquid separator 20, and a DC power source 21, and the anode chamber 3 is cooled with pure water as an electrolyte. The water was electrolyzed while supplying. The electrolytic current was 6.25A. However, the solid polymer electrolyte membrane 9 made of a perfluorosulfonic acid cation exchange membrane used in the electrolytic cell 24 was used as a single sheet as shown in FIG. 2-1.
Further, 5 ml / min of carbon dioxide gas was supplied to the cathode chamber 3. As for the initial performance, the ozone generation current efficiency at the anode 22 was 40%, the hydrogen gas concentration contained in the anode gas was 0.07 vol%, and the cell voltage was 12V.

この電解セル24に6.25Aを供給し続け、29hの連続電解を行ったところ、この期間中のオゾン発生電流効率は40−42%と大きな変動は無かった。29時間後に電解セル24を解体し、電解を行っている部分の膜の消耗厚さを調べたところ、40μm消耗していたが、その消耗速度は1.4μm/hと遅かった。   When 6.25 A was continuously supplied to the electrolysis cell 24 and continuous electrolysis was performed for 29 hours, the ozone generation current efficiency during this period was not significantly changed as 40 to 42%. After 29 hours, the electrolysis cell 24 was disassembled, and the consumption thickness of the film where electrolysis was performed was examined. As a result, it was consumed 40 μm, but the consumption rate was as slow as 1.4 μm / h.

<比較例1>
図3−1に示すように電解セル24を、オゾン側気液分離器19、水素側気液分離器20及び直流電源21と接続し、陽極室3には電解液である純水の冷却を行いながら供給し水電解を行った。電解電流は6.25Aとした。但し、電解セル24に使用するパーフルオロスルホン酸陽イオン交換膜9は、図2−2に示すように、2枚重ねて使用した。
陽極からは、オゾンと酸素の混合ガス、陰極からは水素ガスが生成し、陽極におけるオゾン発生電流効率は40%、陽極ガス中に含まれる水素ガス濃度は0.07Vol%、セル電圧13Vであった。
<Comparative Example 1>
As shown in FIG. 3A, the electrolytic cell 24 is connected to the ozone-side gas-liquid separator 19, the hydrogen-side gas-liquid separator 20, and the DC power source 21, and the anode chamber 3 is cooled with pure water as an electrolyte. Water electrolysis was performed while supplying. The electrolytic current was 6.25A. However, two perfluorosulfonic acid cation exchange membranes 9 used in the electrolytic cell 24 were used in an overlapping manner as shown in FIG.
A mixed gas of ozone and oxygen is generated from the anode, and hydrogen gas is generated from the cathode. The ozone generation current efficiency at the anode is 40%, the concentration of hydrogen gas contained in the anode gas is 0.07 Vol%, and the cell voltage is 13V. It was.

この電解セル24に6.25Aを供給し続け、29時間の連続電解を行ったところ、この期間中のオゾン発生電流効率は40−42%と大きな変動は無かった。また、陽極ガス中に含まれる水素ガス濃度もはっきりした上昇は認められず12時間後は0.07vol%、24時間後は0.09vol%、29時間後は0.10vol%とであった。但し、29時間後に電解セル24を解体し、陽極と接触して電解を行っている部分のパーフルオロスルホン酸陽イオン交換膜の消耗厚さを調べたところ、96μmも消耗しており、その消耗速度は3.3μm/hと速かった。2枚のパーフルオロスルホン酸陽イオン交換膜膜のうち、陰極と接触している側のパーフルオロスルホン酸陽イオン交換膜には、消耗や劣化は認められなかった。   When 6.25 A was continuously supplied to the electrolysis cell 24 and continuous electrolysis was performed for 29 hours, the ozone generation current efficiency during this period was not significantly changed as 40 to 42%. In addition, the hydrogen gas concentration contained in the anode gas was not clearly increased and was 0.07 vol% after 12 hours, 0.09 vol% after 24 hours, and 0.10 vol% after 29 hours. However, when the electrolytic cell 24 was disassembled after 29 hours and the consumption thickness of the perfluorosulfonic acid cation exchange membrane in contact with the anode for electrolysis was examined, it was consumed as much as 96 μm. The speed was as fast as 3.3 μm / h. Of the two perfluorosulfonic acid cation exchange membranes, the perfluorosulfonic acid cation exchange membrane on the side in contact with the cathode was not consumed or deteriorated.

然るに、この電解セル24に更に6.25Aを供給し続け、総計58時間の連続電解を行ったところ、この期間中のオゾン発生電流効率は40−42%と大きな変動は無かった。この時、陽極ガス中に含まれる水素ガス濃度の経時的な上昇も見られず、上記したように電解開始後29時間後で0.10vol%であったが、5時間後は0.10vol%であり、増加は認められなかった。但し、陽極に接しているパーフルオロスルホン酸陽イオン交換膜は経時的に厚さが減少し、0−29時間においてその消耗速度は3.3μm/h、29−58時間では3.3μm/hであり、陽イオン交換膜の消耗速度は変化せずに、陽イオン交換膜の消耗が進むことが示された。陽イオン交換膜の消耗量は、180μmであった。   However, when 6.25 A was further supplied to the electrolysis cell 24 and continuous electrolysis was performed for a total of 58 hours, the ozone generation current efficiency during this period did not vary greatly as 40-42%. At this time, the concentration of hydrogen gas contained in the anode gas was not increased with time, and was 0.10 vol% 29 hours after the start of electrolysis as described above, but after 0.10 vol% after 5 hours. No increase was observed. However, the thickness of the perfluorosulfonic acid cation exchange membrane in contact with the anode decreases with time, and the consumption rate is 3.3 μm / h in 0-29 hours and 3.3 μm / h in 29-58 hours. It was shown that the consumption rate of the cation exchange membrane does not change and the consumption of the cation exchange membrane proceeds. The consumption amount of the cation exchange membrane was 180 μm.

本発明によるオゾン生成方法及びオゾン生成装置によれば、パーフルオロスルホン酸陽イオン交換膜の消耗を抑え、安定に、長期間オゾンを生成することができ、オゾンを利用した殺菌・脱色方法は上下水道施設において利用することができる。   According to the ozone generation method and the ozone generation apparatus according to the present invention, the consumption of the perfluorosulfonic acid cation exchange membrane can be suppressed, ozone can be stably generated for a long time, and the sterilization / decolorization method using ozone is the above. It can be used in sewer facilities.

1:陽極室排出口
2:陰極室排出口
3:陽極室
4:陰極室
5:陽極給電端子
6:陰極給電端子
7:陽極室供給口
8:陰極室供給口
9:パーフルオロスロホン酸陽イオン交換膜よりなる固体高分子電解室隔膜
10:導電性ダイヤモンド膜
11:凸凹付p型シリコン基板
12:貫通口
13:陰極シート
14:陰極集電体
15:シール材
16:締付ボルト
17:ナット
18:プレス板
19:オゾン側気液分離器
20:水素側気液分離器
21:電解用直流電源
22:陽極
23:陰極
24:電解セル
25:凸部
26:凹部
1: Anode chamber outlet 2: Cathode chamber outlet 3: Anode chamber 4: Cathode chamber 5: Anode feeding terminal 6: Cathode feeding terminal 7: Anode chamber feeding port 8: Cathode chamber feeding port 9: Perfluorosulphonic acid positive Solid polymer electrolysis chamber diaphragm 10 made of an ion exchange membrane: conductive diamond film 11: p-type silicon substrate 12 with projections and depressions: through-hole 13: cathode sheet 14: cathode current collector 15: sealing material 16: clamping bolt 17: Nut 18: Press plate 19: Ozone side gas / liquid separator 20: Hydrogen side gas / liquid separator 21: DC power source for electrolysis 22: Anode 23: Cathode 24: Electrolysis cell 25: Convex part 26: Concave part

Claims (8)

固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンドを表面に有する電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成方法において、陽極室に、水素及び有機物から選ばれた少なくとも一種類を供給したことを特徴とするオゾン生成方法。 The anode and cathode are adhered to both sides of the solid polymer electrolyte membrane, a perfluorosulfonic acid cation exchange membrane is used as the solid polymer electrolyte membrane, and an electrode having conductive diamond on the surface is used as the anode. In the ozone generation method in which water is electrolyzed by supplying pure water to the cathode and supplying a direct current between the anode and cathode, ozone is generated from the anode chamber, and hydrogen is generated from the cathode chamber. ozone generating method is characterized in that feeding at least one kind selected from water Moto及 beauty organics. 固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンドを表面に有する電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成方法において、陽極室に供給する水素の供給源として、前記陰極室で生成した水素ガス又は当該水素ガスが溶解した陰極液を使用し、該陰極液を前記陽極室の外部より前記陽極室に供給したことを特徴とするオゾン生成方法。 The anode and cathode are adhered to both sides of the solid polymer electrolyte membrane, a perfluorosulfonic acid cation exchange membrane is used as the solid polymer electrolyte membrane, and an electrode having conductive diamond on the surface is used as the anode. Supplying pure water to the anode chamber by electrolyzing the water by supplying a direct current between the positive and negative electrodes, generating ozone from the anode chamber, and generating hydrogen from the cathode chamber as a source of hydrogen, using hydrogen gas or catholyte which the hydrogen gas has been dissolved were generated in the cathode chamber, characterized in that the catholyte is supplied to the anode chamber from the outside of the anode chamber ozone generation method. 固体高分子電解質隔膜の両側面に陽極及び陰極を密着させ、固体高分子電解質隔膜としてパーフルオロスルホン酸陽イオン交換膜を使用し、陽極として導電性ダイヤモンドを表面に有する電極を使用し、陽極室に純水を供給し、陽陰極間に直流電流を供給することによって、水を電気分解して、陽極室よりオゾンを生成させ、陰極室より水素を生成させるオゾン生成方法において、前記陰極室に、二酸化炭素および有機物から選ばれた少なくとも一種類を供給し、前記二酸化炭素、有機物から選ばれた少なくとも一種類を前記陰極室よりパーフルオロスルホン酸陽イオン交換膜を透過させて前記陽極室に供給することを特徴とするオゾン生成方法。 The anode and cathode are adhered to both sides of the solid polymer electrolyte membrane, a perfluorosulfonic acid cation exchange membrane is used as the solid polymer electrolyte membrane, and an electrode having conductive diamond on the surface is used as the anode. In an ozone generation method in which pure water is supplied to the cathode and a direct current is supplied between the positive and negative electrodes to electrolyze the water, thereby generating ozone from the anode chamber and generating hydrogen from the cathode chamber. Supplying at least one selected from carbon dioxide and organic matter, and supplying at least one selected from carbon dioxide and organic matter through the perfluorosulfonic acid cation exchange membrane from the cathode chamber to the anode chamber features and to Luo Zon generation method to. 前記有機物としてアルコールを使用したことを特徴とする請求項1又は3に記載のオゾン生成方法。   The ozone generation method according to claim 1 or 3, wherein alcohol is used as the organic substance. 陽極室に、水素及び有機物から選ばれた少なくとも一種類を供給することを特徴とする請求項1に記載のオゾン生成方法に用いるオゾン生成装置。 The anode compartment, an ozone generator used in the ozone generating method according to claim 1, characterized in providing at least one kind selected from water Moto及 beauty organics. 陽極室に供給する水素の供給源として、前記陰極室で生成した水素ガス又は当該水素ガスが溶解した陰極液を使用することを特徴とする請求項2に記載のオゾン生成方法に用いるオゾン生成装置。   The ozone generator used in the ozone generating method according to claim 2, wherein hydrogen gas generated in the cathode chamber or catholyte in which the hydrogen gas is dissolved is used as a supply source of hydrogen supplied to the anode chamber. . 前記陰極室に、二酸化炭素および有機物から選ばれた少なくとも一種類を供給し、前記二酸化炭素、有機物から選ばれた少なくとも一種類を前記陰極室よりパーフルオロスルホン酸陽イオン交換膜を透過させて前記陽極室に供給することを特徴とする請求項3に記載のオゾン生成方法に使用するオゾン生成装置。   Supplying at least one selected from carbon dioxide and organic matter to the cathode chamber, allowing at least one selected from carbon dioxide and organic matter to pass through a perfluorosulfonic acid cation exchange membrane from the cathode chamber, and The ozone generation apparatus used for the ozone generation method according to claim 3, wherein the ozone generation apparatus is supplied to the anode chamber. 前記有機物としてアルコールを使用したことを特徴とする請求項1又は3に記載のオゾン生成方法に使用するオゾン生成装置。   4. An ozone generator for use in the ozone generation method according to claim 1, wherein alcohol is used as the organic substance.
JP2009122731A 2009-05-21 2009-05-21 Ozone generation method and ozone generation apparatus Active JP5408653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122731A JP5408653B2 (en) 2009-05-21 2009-05-21 Ozone generation method and ozone generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122731A JP5408653B2 (en) 2009-05-21 2009-05-21 Ozone generation method and ozone generation apparatus

Publications (2)

Publication Number Publication Date
JP2010270364A JP2010270364A (en) 2010-12-02
JP5408653B2 true JP5408653B2 (en) 2014-02-05

Family

ID=43418621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122731A Active JP5408653B2 (en) 2009-05-21 2009-05-21 Ozone generation method and ozone generation apparatus

Country Status (1)

Country Link
JP (1) JP5408653B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144779A (en) * 2011-01-12 2012-08-02 Kobe Steel Ltd Method for production of electrolysis electrode
JP2012144778A (en) * 2011-01-12 2012-08-02 Kobe Steel Ltd Electrolysis electrode and device for generating ozone using the electrolysis electrode
GB2490912B (en) * 2011-05-17 2015-12-23 A Gas Internat Ltd Electrode assembly and an electrochemical cell comprising the same
GB2557182B (en) 2016-11-29 2020-02-12 Roseland Holdings Ltd Electrode and electrochemical cell comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339089A (en) * 2001-05-18 2002-11-27 Shinko Plant Kensetsu Kk Method for producing electrolytic ozone water and apparatus therefor
JP2006145141A (en) * 2004-11-22 2006-06-08 Nomura Micro Sci Co Ltd Method and device for manufacturing ozone ice
JP2007308738A (en) * 2006-05-16 2007-11-29 Chlorine Eng Corp Ltd Ozone production method
JP4909648B2 (en) * 2006-06-06 2012-04-04 クロリンエンジニアズ株式会社 Circulating ozone water production apparatus and method of operating the apparatus
JP5096054B2 (en) * 2007-06-29 2012-12-12 東海旅客鉄道株式会社 Ozone generation method

Also Published As

Publication number Publication date
JP2010270364A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5480542B2 (en) Conductive diamond electrode and ozone generator using conductive diamond electrode
JP5457810B2 (en) Ozone generator
CA2630792C (en) Diamond electrode, method for producing same, and electrolytic cell
JP2011117052A5 (en)
TWI467057B (en) Cleaning method by electrolytic sulfuric acid and manufacturing method of semiconductor device
JP5096054B2 (en) Ozone generation method
JP5320173B2 (en) Sulfuric acid electrolysis method
CN108611655B (en) Electrode unit and electrode composed of same
JP5408653B2 (en) Ozone generation method and ozone generation apparatus
CN104759272A (en) Membrane electrode of membrane electrode low-voltage electrolysis type ozone generator and manufacturing method for positive and negative electrodes of membrane electrode low-voltage electrolysis type ozone generator
Sui et al. Enhanced photocatalytic activity for the degradation of rhodamine B by integrating salinity gradient power into a photocatalytic fuel cell
Park et al. Three-dimensionally interconnected titanium foam anode for an energy-efficient zero gap-type chlor-alkali electrolyzer
JP5207529B2 (en) Sulfuric acid electrolytic tank and sulfuric acid recycling type cleaning system using sulfuric acid electrolytic tank
JP2010007151A5 (en)
Pushkarev et al. Electrochemical generation of ozone in a system with a solid polymer electrolyte
Li et al. Ozone water production using a SPE electrolyzer equipped with boron doped diamond electrodes
JP4406312B2 (en) Diamond electrode for electrolysis
JP2004237165A (en) Method and apparatus for treating organic compound-containing water
CN115433955B (en) Three-electrode low-voltage electrolytic ozone generating device
Ansari et al. Synthesis and Evaluation of Pva/Chitosan Membrane and Modified Graphite Electrodes for Enhanced Wastewater Remediation In A Microbial Fuel Cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

R150 Certificate of patent or registration of utility model

Ref document number: 5408653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250