JP4406275B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4406275B2
JP4406275B2 JP2003419554A JP2003419554A JP4406275B2 JP 4406275 B2 JP4406275 B2 JP 4406275B2 JP 2003419554 A JP2003419554 A JP 2003419554A JP 2003419554 A JP2003419554 A JP 2003419554A JP 4406275 B2 JP4406275 B2 JP 4406275B2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerator
compression
case
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003419554A
Other languages
Japanese (ja)
Other versions
JP2005180738A (en
Inventor
稔 天明
潤 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Electronics Holdings Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Electronics Holdings Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2003419554A priority Critical patent/JP4406275B2/en
Publication of JP2005180738A publication Critical patent/JP2005180738A/en
Application granted granted Critical
Publication of JP4406275B2 publication Critical patent/JP4406275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、ボールジョイント構造の2段圧縮機を備えた冷蔵庫に関する。   The present invention relates to a refrigerator provided with a two-stage compressor having a ball joint structure.

従来より、蒸発温度の異なる蒸発器を備えた冷凍サイクルに、2段圧縮をなす密閉型往復運動式圧縮機を用いた冷蔵庫が考えられている(例えば、特許文献1参照)。
この場合、一方の蒸発器から吐出された冷媒は、圧縮機の概略図である図4に示すように、第1吸込み管114を介して圧縮機110の第1圧縮部112aに、他方の蒸発器から吐出した冷媒は第2吸込み管116を介して圧縮機110の第2圧縮部112bに流れるようになっている。
Conventionally, a refrigerator using a hermetic reciprocating compressor that performs two-stage compression in a refrigeration cycle having evaporators with different evaporation temperatures has been considered (see, for example, Patent Document 1).
In this case, the refrigerant discharged from one evaporator is evaporated to the first compressor 112a of the compressor 110 via the first suction pipe 114 as shown in FIG. 4 which is a schematic diagram of the compressor. The refrigerant discharged from the container flows through the second suction pipe 116 to the second compression portion 112b of the compressor 110.

この圧縮機110は密閉ケース111内に、第1圧縮部112aと第2圧縮部112bが互いに対向し、かつボールジョイント構造により連接状態で収容されていて、これらの圧縮部は同一モータ113を駆動源としている。   In the compressor 110, a first compression part 112a and a second compression part 112b face each other in a sealed case 111 and are connected in a connected state by a ball joint structure, and these compression parts drive the same motor 113. As a source.

具体的には、シリンダ130a,130bの内部にピストン131a,131bを往復自在に収納し、このピストン131a,131bを、モータ113の中心軸に対して偏心させた回転軸部に接続したコンロッド133a,133bと連結している。この連結構造は、コンロッド133a,133bの先端に球部134a,134bを設け、この球部134a,134bをピストン131a,131b内部に挿入した後に、かしめ加工により球受部132a,132bを形成して球部134a,134bを保持し、それぞれが係合するようになっている。   Specifically, pistons 131a and 131b are housed in cylinders 130a and 130b in a reciprocating manner, and connecting rods 133a and 131b are connected to rotating shafts that are eccentric with respect to the central axis of the motor 113. It is connected to 133b. In this connection structure, ball portions 134a and 134b are provided at the tips of connecting rods 133a and 133b, and the ball portions 134a and 132b are formed by caulking after the ball portions 134a and 134b are inserted into the pistons 131a and 131b. The ball portions 134a and 134b are held and are engaged with each other.

低圧の圧縮部、例えば第1圧縮部112aで冷媒ガスの吸込み行程を行うときには、中間圧の圧縮部、例えば第2圧縮部112bで冷媒ガスを圧縮して吐出する圧縮行程を行うなど、それぞれの圧縮部112a,112bは、逆の作用をなす。第1蒸発器からの冷媒ガスは、第1吸込み管114を介して第1圧縮部112aに吸込まれ、1段目の圧縮がなされる。この冷媒ガスは、ケース内吐出管115から密閉ケース111内に吐出される。   When the refrigerant gas suction process is performed by the low pressure compression unit, for example, the first compression unit 112a, the compression process for compressing and discharging the refrigerant gas by the intermediate pressure compression unit, for example, the second compression unit 112b, is performed. The compression units 112a and 112b perform the reverse operation. The refrigerant gas from the first evaporator is sucked into the first compression part 112a through the first suction pipe 114, and the first stage compression is performed. This refrigerant gas is discharged into the sealed case 111 from the discharge pipe 115 in the case.

上記密閉ケース111内では、上記ケース内吐出管115から吐出された冷媒ガスと、第2吸込み管116から導入される冷媒ガスとが混合し、ケース内吸込み管117を介して第2圧縮部112bに導入される。この第2圧縮部112bにおいて、2段目の圧縮がなされ、第2吐出管118から圧縮機110外部の冷凍サイクルへ吐出されるようになっている。
特開2003−239854号公報
In the sealed case 111, the refrigerant gas discharged from the in-case discharge pipe 115 and the refrigerant gas introduced from the second suction pipe 116 are mixed, and the second compression unit 112b is connected via the in-case suction pipe 117. To be introduced. In the second compression unit 112b, the second-stage compression is performed and discharged from the second discharge pipe 118 to the refrigeration cycle outside the compressor 110.
JP 2003-239854 A

このような2段圧縮をなすボールジョイント構造の圧縮機を用いた冷蔵庫は、圧縮工程においては、球部134a,134bがピストン131a,131bを圧縮方向に押し出すため、球受部132aに負荷がかかることはないが、吸込み工程においては、ピストン131a,131bを吸込み方向へ引き戻すため、特に吸込み開始直後には、球部134a,134bが球受部132a,132bを押圧して、大きな負荷(例えば、10kg以上)を与えることになる。   In the refrigerator using the ball joint structure compressor that performs such two-stage compression, the ball portions 132a and 134b push the pistons 131a and 131b in the compression direction in the compression step, and thus the load is applied to the ball receiving portion 132a. However, in the suction process, since the pistons 131a and 131b are pulled back in the suction direction, particularly immediately after the start of the suction, the ball portions 134a and 134b press the ball receiving portions 132a and 132b, and a large load (for example, 10 kg or more).

また、第1圧縮部112aにより圧縮された冷媒ガスはケース111内に吐出されており、ケース内は中間圧に保持されているため、吸込み工程の際には、ケース111内圧力の方がシリンダ130a,130b内圧力よりも、例えば0.05〜0.2MPa程度高くなる。このため、ピストン131a,131bは圧縮方向に押圧され、球受部132a,132bの受ける負荷は大きくなる。   In addition, since the refrigerant gas compressed by the first compression unit 112a is discharged into the case 111, and the inside of the case is held at an intermediate pressure, the pressure inside the case 111 is greater in the cylinder during the suction process. For example, the pressure is higher by about 0.05 to 0.2 MPa than the internal pressure of 130a and 130b. For this reason, piston 131a, 131b is pressed by the compression direction, and the load which ball receiving part 132a, 132b receives becomes large.

この場合、一般的には、球部134a,134bの移動速度や、ケース111内とシリンダ130a,130b内の圧力差(例えば、0.05〜0.2MPa)等に基づいて、上記した負荷にも耐えうるように球受部132a,132bの強度を設計することが考えられる。   In this case, generally, the load described above is based on the moving speed of the ball portions 134a and 134b, the pressure difference between the case 111 and the cylinders 130a and 130b (for example, 0.05 to 0.2 MPa), and the like. It is conceivable to design the strength of the ball receiving portions 132a and 132b so that it can withstand.

しかしながら、冷却運転方法によっては、想定していたケース111内とシリンダ130a,130b内の圧力差よりも高くなってしまうことがあり、この場合、図5に示すように、球受部132a,132bの受ける負荷が想定していた負荷よりも大きくなるため、球受部132a,132bのかしめ部分が緩み、球部134a,134bが抜けてしまうなどの破損を生じることがある。   However, depending on the cooling operation method, the pressure difference between the assumed case 111 and the cylinders 130a and 130b may be higher. In this case, as shown in FIG. Since the load received by the ball becomes larger than the assumed load, the caulking portions of the ball receiving portions 132a and 132b may be loosened and the ball portions 134a and 134b may come off.

特に、球部134a,134bと球受部132a,132bの間には成形上、若干の隙間が存在する場合には、かしめ部分のスプリングバックは避けられず、繰り返しかしめ部に衝撃が与えられることにより、隙間が拡大して上記のような破損が生じることになる。   In particular, when there is a slight gap between the ball portions 134a and 134b and the ball receiving portions 132a and 132b, the springback of the caulking portion is unavoidable and the impact is repeatedly applied to the crimping portion. As a result, the gap is enlarged and the above-described breakage occurs.

そこで、本発明は上記問題点を考慮して、ケース内とシリンダ内の圧力差が所定値よりも高くなることを防止して、圧縮部の破損を解消するボールジョイント構造の2段圧縮機を備えた冷蔵庫を提供することを目的とする。   Therefore, in consideration of the above problems, the present invention provides a two-stage compressor having a ball joint structure that prevents the pressure difference between the case and the cylinder from becoming higher than a predetermined value and eliminates damage to the compression portion. It aims at providing the refrigerator provided.

上記課題を解決するために、本発明による冷蔵庫は、外箱と内箱の間に断熱材を充填させ冷凍室と冷蔵室を有する冷蔵庫本体と、この冷蔵庫本体内に配設され蒸発温度の異なる冷凍室用蒸発器および冷蔵室用蒸発器と、前記冷凍室用蒸発器または前記冷蔵室用蒸発器に流れる冷媒流量を可変する流量調節装置と、ケース内に第1圧縮部と第2圧縮部とを有し、前記第1圧縮部は前記冷凍室用蒸発器で蒸発した冷媒ガスを圧縮して前記ケース内に吐出し、前記第2圧縮部は前記冷蔵室用蒸発器で蒸発し前記ケース内に吸込まれた冷媒ガスと前記第1圧縮部から吐出した冷媒ガスとを圧縮して前記ケース外に吐出するとともに、前記第1圧縮部および前記第2圧縮部の圧縮はボールジョイント構造により接続されたそれぞれのピストンが回転軸の回転に連動して往復運動により行う圧縮機とを備え、前記冷凍室用蒸発器と前記冷蔵室用蒸発器は前記流量調節装置を介して並列に接続され、前記流量切替装置による冷媒の流し方は、少なくとも前記冷凍室用蒸発器と前記冷蔵室用蒸発器に冷媒を流す全開モードと、前記冷凍室用蒸発器のみに冷媒を流すF冷却モードとを有しているが、前記冷蔵室用蒸発器のみに冷媒を流すR冷却モードを有していないことを特徴とする。 In order to solve the above-described problems, a refrigerator according to the present invention includes a refrigerator body having a freezer compartment and a refrigerator compartment filled with a heat insulating material between an outer box and an inner box, and a different evaporation temperature provided in the refrigerator body. A freezer compartment evaporator and a refrigerator compartment evaporator, a flow rate adjusting device for changing a flow rate of refrigerant flowing through the freezer compartment evaporator or the refrigerator compartment evaporator, and a first compressor and a second compressor in the case The first compression unit compresses the refrigerant gas evaporated in the freezer evaporator and discharges it into the case, and the second compression unit evaporates in the refrigerator evaporator and the case The refrigerant gas sucked in and the refrigerant gas discharged from the first compression part are compressed and discharged out of the case, and the compression of the first compression part and the second compression part is connected by a ball joint structure. each piston is the axis of rotation In conjunction with the rolling and a compressor which performs a reciprocating motion, the refrigerator compartment evaporator and the freezer compartment evaporator is connected in parallel via the flow rate control device, the way flow of the refrigerant by the flow rate switching device Has at least a full-open mode in which a refrigerant flows through the freezer compartment evaporator and the refrigerator compartment evaporator, and an F cooling mode in which the refrigerant flows only through the freezer compartment evaporator. It is characterized by not having the R cooling mode in which the refrigerant flows only to the evaporator.

上記発明によれば、ケース内の圧力が各シリンダ内の圧力よりも所定値以上高くなることを防止して、圧縮部の破損を解消するボールジョイント構造の2段圧縮機を備えた冷蔵庫を提供することができる。   According to the above invention, there is provided a refrigerator provided with a two-stage compressor having a ball joint structure that prevents the pressure in the case from being higher than the pressure in each cylinder by a predetermined value or more and eliminates breakage of the compression portion. can do.

以下、図面に基づき本発明の1実施例について説明する。本発明に係る冷蔵庫の縦断面図である図2に示すように、冷蔵庫本体1は外箱2aと内箱2bの間に断熱材2cを充填させた矩形箱状の断熱箱体2内に、上段から順に、冷蔵室3、野菜室4、切替室5、冷凍室6を有して構成されている。なお、特に図示しないが製氷室を切替室5と併設させている。本体1の前面開口部には、上段から順に、各貯蔵室3〜6をそれぞれ開閉自在に閉塞する扉7〜10を設けている。   An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 2 which is a longitudinal sectional view of the refrigerator according to the present invention, the refrigerator main body 1 has a rectangular box-shaped heat insulation box 2 filled with a heat insulating material 2c between the outer box 2a and the inner box 2b. In order from the top, it has a refrigerator compartment 3, a vegetable compartment 4, a switching chamber 5, and a freezer compartment 6. Although not shown in particular, an ice making chamber is provided with the switching chamber 5. The front opening of the main body 1 is provided with doors 7 to 10 that sequentially close the storage chambers 3 to 6 in an openable manner.

冷蔵室3および野菜室4は、ほぼ1〜5度の温度帯に保持され、それぞれを仕切板11により区画されている。野菜室4の背面には、第2蒸発器である冷蔵室用冷却器27(以下、Rエバと称する。)を設けており、その上部には、冷蔵室用ファン28(以下、Rファンと称する。)を設けている。このRファン28が運転されると、Rエバ27により生成された冷気が冷蔵室3および野菜室4に供給されて各室を冷却し、冷却し終えた冷気は再びRエバ27に戻されて熱交換するようになっている。   The refrigerator compartment 3 and the vegetable compartment 4 are maintained in a temperature range of approximately 1 to 5 degrees, and each is partitioned by a partition plate 11. On the back of the vegetable compartment 4, a refrigerator 27 (hereinafter referred to as "R EVA"), which is a second evaporator, is provided, and in the upper part thereof, a refrigerator compartment fan 28 (hereinafter referred to as "R fan"). Provided). When the R fan 28 is operated, the cold air generated by the R evaporator 27 is supplied to the refrigerator compartment 3 and the vegetable compartment 4 to cool each chamber, and the cooled cold air is returned to the R evaporator 27 again. It is designed to exchange heat.

一方、冷凍室6と切替室5は、それぞれ断熱仕切壁16により区画されており、冷凍室6は―18〜―25度の温度帯に保持され、切替室5は、設定された種々の温度帯に保持されるように制御されている。切替室5および冷凍室6の背面には、Rエバ27より蒸発温度の低く設定した第1蒸発器である冷凍室用冷却器32(以下、Fエバと称する。)を設け、その上部には、冷凍室用ファン33(以下、Fファンと称する。)を設けている。   On the other hand, the freezer compartment 6 and the switching chamber 5 are each partitioned by a heat insulating partition wall 16, the freezer compartment 6 is maintained in a temperature range of −18 to −25 degrees, and the switching chamber 5 has various set temperatures. It is controlled to be held in the belt. On the back surfaces of the switching chamber 5 and the freezer compartment 6, there is provided a freezer compartment cooler 32 (hereinafter referred to as F evaporator), which is a first evaporator whose evaporation temperature is set lower than that of the R evaporator 27, and the upper part thereof. A freezer compartment fan 33 (hereinafter referred to as F fan) is provided.

このFファン33が運転されると、Fエバ32により生成された冷気が切替室5および冷凍室6に供給されて各室を冷却し、冷却し終えた冷気は再びFエバ32によって熱交換されるようになっている。 When the F fan 33 is operated, the cold air generated by the F EVA 32 is supplied to the switching chamber 5 and the freezing chamber 6 to cool each chamber, and the cooled cold air is again heat-exchanged by the F EVA 32. It has become so.

本体1の背面底部には機械室36を設けており、内部には圧縮機40、この圧縮機40を放熱する放熱ファン38(以下、Cファンと称する)などを設けている。   A machine room 36 is provided at the bottom of the back surface of the main body 1, and a compressor 40 and a heat radiating fan 38 (hereinafter referred to as a C fan) for radiating heat from the compressor 40 are provided therein.

本発明に係る冷凍サイクルは、概略図である図3に示すように、圧縮機40の吐出側には凝縮器37を接続しており、流量調節装置39を介して、第1キャピラリチューブ34(以下、Fキャピラリチューブとする)とFエバ32とアキュームレータ35を順に接続した配管と、第2キャピラリチューブ29(以下、Rキャピラリチューブとする)とRエバ27を接続した配管を並列に接続している。   In the refrigeration cycle according to the present invention, as shown in FIG. 3 which is a schematic diagram, a condenser 37 is connected to the discharge side of the compressor 40, and the first capillary tube 34 ( (Hereinafter referred to as F capillary tube), a pipe connecting F evaporator 32 and accumulator 35 in order, and a pipe connecting second capillary tube 29 (hereinafter referred to as R capillary tube) and R evaporator 27 are connected in parallel. Yes.

後述するが、Fエバ32およびアキュームレータ35の出口側は第1吸込み管55を介して圧縮機40の第1圧縮部42aと、Rエバ27の出口側は第2吸込み管56を介して圧縮機40のケース41内とそれぞれ接続している。   As will be described later, the outlet side of the F evaporator 32 and the accumulator 35 is connected to the first compression portion 42a of the compressor 40 via the first suction pipe 55, and the outlet side of the R evaporator 27 is connected to the compressor via the second suction pipe 56. 40 cases 41 are connected to each other.

上記流量調節装置39は、ステッピングモータの回転により弁開口を可変して、Fエバ32とRエバ27に流れる冷媒流量を調節するとともに、流路の切替え、全閉、全開などもできるようになっている。なお、流量調節装置39は、上記構成に限られず、ソレノイドを用いた構成など種々の変更が可能である。   The flow rate adjusting device 39 can change the valve opening by the rotation of the stepping motor to adjust the flow rate of the refrigerant flowing through the F-evaluator 32 and the R-evaluator 27, and can also change the flow path, be fully closed, and fully open. ing. The flow rate adjusting device 39 is not limited to the above configuration, and various changes such as a configuration using a solenoid can be made.

次に、圧縮機の具体的な構成について説明する。圧縮機の概略図である図1に示すように、41は縦型の密閉ケースであり、この密閉ケース41内の上下方向ほぼ中間部には、フレーム41aがケース41側壁に取付け固定されている。このフレーム41aの上部側には圧縮部42が載設され、下部側には電動機構部43が設けられている。   Next, a specific configuration of the compressor will be described. As shown in FIG. 1, which is a schematic diagram of the compressor, 41 is a vertical sealing case, and a frame 41a is attached and fixed to the side wall of the case 41 at a substantially middle portion in the vertical direction in the sealing case 41. . The compression part 42 is mounted on the upper side of the frame 41a, and the electric mechanism part 43 is provided on the lower side.

上記圧縮部42は、ここでは、いわゆるレシプロ式圧縮機が採用されており、図の右側に位置する第1圧縮部42aと、左側に位置する第2圧縮42bとを備えている。   Here, the compression unit 42 employs a so-called reciprocating compressor, and includes a first compression unit 42 a located on the right side of the drawing and a second compression 42 b located on the left side.

フレーム41aの中心には枢支孔を設けており、この枢支孔に回転軸44が回転自在に設けられている。この回転軸44の上端部には、フレーム41a上面に載る鍔部44aが一体に設けられ、さらに鍔部44aの上部には、回転軸44の中心軸とは所定量偏心する中心軸をもった偏心軸部44bが一体に形成されている。   A pivot hole is provided at the center of the frame 41a, and a rotation shaft 44 is rotatably provided in the pivot hole. The upper end portion of the rotating shaft 44 is integrally provided with a flange portion 44a mounted on the upper surface of the frame 41a, and the upper portion of the flange portion 44a has a central axis that is eccentric from the central axis of the rotating shaft 44 by a predetermined amount. The eccentric shaft portion 44b is integrally formed.

回転軸44が回転駆動すると、鍔部44aはフレーム41a上面に摺接状態で回転し、かつ上記偏心軸部44bは回転軸44中心に対して偏心して回転することになる。   When the rotating shaft 44 is driven to rotate, the flange portion 44a rotates in a sliding contact with the upper surface of the frame 41a, and the eccentric shaft portion 44b rotates eccentrically with respect to the center of the rotating shaft 44.

上記第1圧縮部42aと上記第2圧縮部42bは、互いに、フレーム41aの上面に載置されている。各圧縮部42a,42bは、上記偏心軸部44bを介してほぼ180°対向する位置に配置されており、それぞれ軸方向に対して水平に配置されたシリンダ45a,45bを備えている。   The first compression part 42a and the second compression part 42b are placed on the upper surface of the frame 41a. Each compression part 42a, 42b is arrange | positioned in the position which opposes substantially 180 degrees via the said eccentric shaft part 44b, and is provided with cylinder 45a, 45b each arrange | positioned horizontally with respect to the axial direction.

このシリンダ45a,45bの内部は、ピストン46a,46bが往復動自在に収容される圧縮室47a,47bとなっている。上記ピストン46a,46bには、コンロッド48a,48bの一端がそれぞれ接続されており、このコンロッド48a,48bを介してピストン46a,46bは上記偏心軸部44bと連結している。   Inside the cylinders 45a and 45b are compression chambers 47a and 47b in which pistons 46a and 46b are reciprocally accommodated. One ends of connecting rods 48a and 48b are connected to the pistons 46a and 46b, respectively, and the pistons 46a and 46b are connected to the eccentric shaft portion 44b via the connecting rods 48a and 48b.

コンロッド48a,48bの先端には球部kを形成しており、ピストン46a,46bの内側にかしめ加工により形成された球受部mにより球部kを係合して保持するボールジョイント式の接続している。なお、球部kと球受部mは、コンロッド48a,48bとピストン46a,46bに対して、それぞれ逆に設けられてもよい。   Ball joints k are formed at the tips of the connecting rods 48a and 48b, and a ball joint type connection that engages and holds the ball k by a ball receiving portion m formed by caulking inside the pistons 46a and 46b. is doing. In addition, the sphere part k and the sphere receiving part m may be provided opposite to the connecting rods 48a and 48b and the pistons 46a and 46b, respectively.

上記コンロッド48a,48bの他端は、上記偏心軸部44bに回転自在に嵌め合う端部49a,49bを形成しており、偏心軸部44bに対して二重嵌め合い構造をなしている。   The other ends of the connecting rods 48a and 48b form end portions 49a and 49b that are rotatably fitted to the eccentric shaft portion 44b, and have a double-fitting structure with respect to the eccentric shaft portion 44b.

第1圧縮部42aの右壁には、Fエバ32で蒸発し気化した冷媒ガスを吸込む第1吸込み口50aを設けており、第1吸込み管55と接続している。また、ケース41内にこの圧縮部42aで圧縮した冷媒ガスを吐出する第1吐出口51aを設けている。   A first suction port 50 a that sucks the refrigerant gas evaporated and vaporized by the F-evapor 32 is provided on the right wall of the first compression portion 42 a and is connected to the first suction pipe 55. A first discharge port 51a for discharging the refrigerant gas compressed by the compression unit 42a is provided in the case 41.

一方、第2吸込み管56はケース41と直接接続されており、ケース41内はRエバ27からの冷媒ガスと第1圧縮部42aで圧縮された冷媒ガスとの混合ガスとなり、第2圧縮部42bの左壁には、この混合ガスを吸込む第2吸込み口50bと、この圧縮部42bで圧縮した冷媒ガスを凝縮器37側に吐出する吐出口51bを設けている。   On the other hand, the second suction pipe 56 is directly connected to the case 41, and the inside of the case 41 becomes a mixed gas of the refrigerant gas from the R-eva 27 and the refrigerant gas compressed by the first compression part 42a. The left wall of 42b is provided with a second suction port 50b for sucking the mixed gas and a discharge port 51b for discharging the refrigerant gas compressed by the compression unit 42b to the condenser 37 side.

このような圧縮部42に対し、上記電動機構部43は、上記回転軸44のフレーム41aから下方に吐出する部位に嵌着されるロータ52と、このロータ52の周面と狭小の間隙を存する内周面を備え、上記フレーム41aから適宜な手段で垂設固定されるステータ53とからなる。   With respect to such a compression part 42, the electric mechanism part 43 has a rotor 52 fitted in a portion that discharges downward from the frame 41 a of the rotating shaft 44, and a narrow gap from the peripheral surface of the rotor 52. The stator 53 has an inner peripheral surface and is suspended and fixed from the frame 41a by appropriate means.

次に、流量調節装置39の操作により両エバ32,27ともに冷媒を流した状態(全開モード)における上記圧縮機40の圧縮運転について説明する。電動機構部43に通電して回転軸44を回転駆動させると、偏心軸部44bが偏心して回転し、この回転に応じて、第1圧縮部42aと第2圧縮部42bのピストン46a,46bが同一方向に往復運動をする。   Next, the compression operation of the compressor 40 in a state (full open mode) in which the refrigerant flows through both the evaporators 32 and 27 by the operation of the flow control device 39 will be described. When the electric mechanism portion 43 is energized to rotate the rotation shaft 44, the eccentric shaft portion 44b rotates eccentrically, and the pistons 46a, 46b of the first compression portion 42a and the second compression portion 42b respond to this rotation. Reciprocate in the same direction.

各圧縮部42a,42bは、180°対向する位置に配置されていることから、各ピストン46a,46bはそれぞれの圧縮室47a,47bにおいて互いに逆の行程をなす。   Since each compression part 42a, 42b is arrange | positioned in the position which opposes 180 degrees, each piston 46a, 46b makes a mutually reverse process in each compression chamber 47a, 47b.

例えば、第1圧縮部42aにおいて圧縮室47aにおいて圧縮室47aに冷媒ガスを吸込む吸込み行程を行うときには、第2圧縮部42bにおいては圧縮して高圧化したガスを吐出する吐出行程を行う。 For example, when the first compression unit 42a performs the suction stroke of sucking the refrigerant gas into the compression chamber 47a in the compression chamber 47a, the second compression unit 42b performs the discharge stroke of discharging the compressed and high pressure gas.

Fエバ32からの冷媒ガス(例えば、0.06MPa)は、第1圧縮部42aに吸込まれ圧縮行程により高圧化し、ケース41内に吐出される。一方、Rエバ27からの冷媒ガス(例えば、0.14MPa)は、第2吸込口56を介してケース41内に吸込まれ、前記高圧化された冷媒ガスと混合状態となり(以下、混合ガスと称する)、ケース41内はRエバ27からの冷媒ガスとほぼ同圧の中間圧(例えば、0.14MPa)となる。この中間圧の冷媒ガスは、第2圧縮部42bに吸込まれて圧縮行程により高圧化(例えば、0.
5MPa)し、凝縮器37側へ吐出されて冷凍サイクルを循環する。
Refrigerant gas (for example, 0.06 MPa) from the F-evapor 32 is sucked into the first compression part 42a, is increased in pressure by the compression stroke, and is discharged into the case 41. On the other hand, the refrigerant gas (for example, 0.14 MPa) from the R evaporator 27 is sucked into the case 41 via the second suction port 56 and is mixed with the high-pressure refrigerant gas (hereinafter referred to as mixed gas). The inside of the case 41 has an intermediate pressure (for example, 0.14 MPa) that is substantially the same pressure as the refrigerant gas from the R-eva 27. The intermediate-pressure refrigerant gas is sucked into the second compression portion 42b and is increased in pressure by the compression stroke (for example, 0. 0.
5 MPa) and discharged to the condenser 37 side to circulate the refrigeration cycle.

このような構成によれば、吸込み工程において、第1圧縮部42aにはFエバ32からの冷媒ガスが導入され、第2圧縮部42bには混合ガスが導入されることから、各シリンダ45a,45bとケース41内との圧力差は、ほぼ所定値、例えば、0.2MPa以下に保持され、連結部である球受部mに多大な負荷がかからないため、球部kが抜けてしまうなどの破損を防止することができる。   According to such a configuration, in the suction process, the refrigerant gas from the F EVA 32 is introduced into the first compression unit 42a, and the mixed gas is introduced into the second compression unit 42b. The pressure difference between 45b and the inside of the case 41 is maintained at a substantially predetermined value, for example, 0.2 MPa or less, and a large load is not applied to the ball receiving portion m that is a connecting portion, so that the ball portion k is removed. Breakage can be prevented.

しかし、冷却運転方法には、流量調節弁29により、上述した同時に両エバ32,27に冷媒を流す全開モードの他に、2以上の蒸発器を備えた冷蔵庫の冷媒の流し方には、例えば、Fエバ32のみに冷媒を流して冷凍室を冷却するF冷却モードや、Rエバ27のみに冷媒を流して冷蔵室を冷却するR冷却モード、ポンプダウンなど両エバ32,27に冷媒を流さず一定時間圧縮機42を運転する全閉モードなどが存在するため、それぞれの冷却モードについても検証する。   However, in the cooling operation method, in addition to the above-described full-open mode in which the refrigerant is caused to flow to both the evaporators 32 and 27 by the flow rate control valve 29, the refrigerant flowing in the refrigerator having two or more evaporators is, for example, The refrigerant is supplied to both the evaporators 32 and 27, such as the F cooling mode in which the refrigerant is supplied only to the F-evapor 32 and the freezer is cooled, the R cooling mode in which the refrigerant is supplied only to the R-eve 27 and the refrigerator is cooled. Since there is a fully closed mode in which the compressor 42 is operated for a certain period of time, each cooling mode is also verified.

F冷却モードの場合には、第1圧縮部42aにおいて冷媒ガスを吸込みケース41内に吐出するため、このシリンダ45a内の吸込み工程時の圧力は、ケース41内の圧力と同等以下となり、球受部mに多大な負荷をかけることはない。一方、第2圧縮部42bにおいては、ケース41内の冷媒ガスをさらに圧縮するため、ケース41内の圧力よりも低くなることはない。よって、F冷却モードでは、ボールジョイントが破損する恐れはない。   In the F cooling mode, the refrigerant gas is sucked into the suction case 41 in the first compression section 42a, so that the pressure in the suction process in the cylinder 45a is equal to or less than the pressure in the case 41, and the ball receiver No great load is applied to the part m. On the other hand, in the 2nd compression part 42b, since the refrigerant gas in case 41 is further compressed, it does not become lower than the pressure in case 41. FIG. Therefore, there is no possibility that the ball joint is damaged in the F cooling mode.

R冷却モードの場合には、第1圧縮部42aに冷媒ガスが流れないため、圧縮および吸込み行程を繰り返すと、シリンダ45a内の圧力が低下し、やがて真空状態となる。ケース41内には、Rエバ27を冷却し終えた中間圧の冷媒ガスが吸込まれるため、シリンダ45a内とケース41内の圧力差が大きくなり、特にRエバ27の除霜後や電源投入時などには、Rエバ27からの冷媒ガス温度が高いため、上記圧力差が所定値(例えば、0.2MPa)以上になることがある。この場合、最も球受部mに負荷がかかる吸込み工程の際には、通常よりも大きいケース41内の圧力によって、シリンダ45aが吸込み方向とは逆に押圧されるため、球受部mに継続して多大な負荷がかかり、やがて緩みが発生し、球部kが抜けるなどしてボールジョイントが破損する恐れが生じる。   In the R cooling mode, the refrigerant gas does not flow into the first compression portion 42a. Therefore, when the compression and suction strokes are repeated, the pressure in the cylinder 45a decreases and eventually becomes a vacuum state. Since the intermediate pressure refrigerant gas that has cooled the R-eva 27 is sucked into the case 41, the pressure difference between the cylinder 45a and the case 41 becomes large, especially after the defrosting of the R-eva 27 and when the power is turned on. In some cases, the refrigerant gas temperature from the R-eva 27 is high, so the pressure difference may become a predetermined value (for example, 0.2 MPa) or more. In this case, during the suction process in which the load is most applied to the ball receiving portion m, the cylinder 45a is pressed in the direction opposite to the suction direction due to the pressure in the case 41 that is larger than usual, so that the ball receiving portion m continues. As a result, a great load is applied, and the ball joint is likely to be broken due to the loosening of the ball k and the ball part k coming off.

一方、第2圧縮部42bには、ケース41内の冷媒ガスを圧縮するため、ケース41内の圧力よりも低くなることはない。よって、R冷却モードでは、第1圧縮部42aが破損する恐れがある。   On the other hand, since the refrigerant gas in the case 41 is compressed in the second compression part 42b, it does not become lower than the pressure in the case 41. Therefore, in the R cooling mode, the first compression portion 42a may be damaged.

全閉モードの場合には、第1圧縮部42a、ケース41内および第2圧縮部42bに冷媒ガスは流れないため、圧縮行程を繰り返すうちにそれぞれ圧力が低下して真空状態となるが、ケース41内においても真空状態となるため、圧力差が生じることはない。   In the fully closed mode, the refrigerant gas does not flow into the first compression part 42a, the case 41, and the second compression part 42b. 41 is in a vacuum state, there is no pressure difference.

したがって、冷蔵庫の冷却運転において、流量調節装置39により第1圧縮部42aに冷媒を吸込ませずに、ケース41内のみに冷媒を吸込ませる冷却運転、本実施例ではR冷却モードを行わないようにすることにより、ケース41内と圧縮部内42a,42bの圧力が所定値以上高くなることを防止し、もって、球受部mに多大な負荷をかけることをなくして、ボールジョイント構造の連結部の破損問題を解消できる。   Therefore, in the cooling operation of the refrigerator, the cooling operation in which the refrigerant is sucked only into the case 41 without sucking the refrigerant into the first compression portion 42a by the flow rate adjusting device 39, and the R cooling mode is not performed in this embodiment. By doing so, it is possible to prevent the pressure in the case 41 and the compression parts 42a and 42b from becoming higher than a predetermined value, so that a great load is not applied to the ball receiving part m, and the connection part of the ball joint structure The damage problem can be solved.

また、R冷却モードを行わないことにしても、全開モードにより冷蔵室3を冷却するため、適温に保持することができるとともに、冷蔵室3のみが急激に温度上昇した際に、例えば圧縮機42を最大回転数で運転させて、冷凍室6温度が目標温度よりも下降しても、冷凍室6に貯蔵された食品の保存には何ら影響を与えることがない。この場合、流路調節弁39の調節により、Fエバ32への流量を減少させて冷凍室6の冷却を抑制することにより、省電力運転とすることもできる。   Even if the R cooling mode is not performed, since the refrigerator compartment 3 is cooled in the fully open mode, it can be kept at an appropriate temperature, and when only the refrigerator compartment 3 is rapidly increased in temperature, for example, the compressor 42 Even if the temperature of the freezer compartment 6 is lowered below the target temperature by operating at a maximum rotational speed, the preservation of the food stored in the freezer compartment 6 is not affected at all. In this case, by adjusting the flow path control valve 39, the flow rate to the F-evapor 32 can be reduced to suppress the cooling of the freezer compartment 6 so that the power saving operation can be performed.

逆に、冷凍室6のみが温度上昇した場合には、F冷却モードを使用して冷凍室6のみの冷却を行うことができるため、不要に冷蔵室3の室内温度を下降させて食品を凍結させてしまうなどの不具合を防止することができるとともに、F冷却モード中にRファン28を回転させてRエバ27と室内の空気を熱交換させることにより、Rエバ27に付着した霜を溶かして室内の湿度を保持したり除霜運転を行うことができる。   On the other hand, when only the freezer compartment 6 rises in temperature, only the freezer compartment 6 can be cooled using the F cooling mode, so that the food in the refrigerator compartment 3 is unnecessarily lowered to freeze food. In addition, the frost attached to the R-evaporator 27 is melted by rotating the R fan 28 and exchanging heat between the R-evaporator 27 and the room air during the F-cooling mode. The indoor humidity can be maintained and the defrosting operation can be performed.

次に、本発明の他の実施例について説明する。上述したように全開モードの通常状態では、ケース41内と各圧縮部42a,42b内の圧力が所定値以上になることはないが、例えば、夏場や冷蔵室3に高負荷の食品が投入されると、庫内温度が上昇してRエバ27の熱交換が促進されるため、ケース41内に吸込まれる冷媒ガス温度が上昇する。この場合、この温度上昇に伴い冷媒ガスの圧力は上昇することから、ケース41内と第1圧縮部42a内の圧力が所定値(例えば、0.2MPa)以上になる恐れがある。   Next, another embodiment of the present invention will be described. As described above, in the normal state of the fully open mode, the pressure in the case 41 and the compression parts 42a and 42b does not exceed a predetermined value. For example, a high-load food is thrown into the summertime or the refrigerator compartment 3. Then, the internal temperature rises and heat exchange of the R-eva 27 is promoted, so that the refrigerant gas temperature sucked into the case 41 rises. In this case, since the pressure of the refrigerant gas increases with this temperature rise, the pressure in the case 41 and the first compression part 42a may become a predetermined value (for example, 0.2 MPa) or more.

よって、ケース41内と第1圧縮部42aの圧力差が所定値よりも大きい場合は、第2蒸発器であるRエバ27により生成された冷気を室内に送風するRファン28を停止または回転数を減少させることにより、Rエバ27の熱交換を抑制し、ケース41内に吸込まれる冷媒ガスの温度を下げて、シリンダ45a内の圧力を降下させることができるため、ケース41内の圧力が第1圧縮部42aの圧力よりも高くなることを防止することができる。   Therefore, when the pressure difference between the inside of the case 41 and the first compressor 42a is larger than a predetermined value, the R fan 28 that blows the cold air generated by the R evaporator 27 that is the second evaporator into the room is stopped or rotated. By reducing the pressure, the heat exchange of the R-eva 27 can be suppressed, the temperature of the refrigerant gas sucked into the case 41 can be lowered, and the pressure in the cylinder 45a can be lowered. It can prevent becoming higher than the pressure of the 1st compression part 42a.

なお、圧力差を検知する方法としては、ケース41内と第1圧縮部42aに圧力センサや温度センサを設けることにより検知してもよいが、構造上、第1圧縮部42a内に圧力センサを取り付けることが困難であることから、Fエバ32やRエバ27の入口または出口配管に温度センサを取り付けたり、圧力センサを取り付けることは容易であるため、蒸発温度を検知したり各エバから吐出する冷媒の圧力により検知することが好ましい。さらには、蒸発冷蔵室3温度が所定値、例えば5℃以上に到達した場合には、室内の負荷が大きく蒸発温度も高くなっていると判断して、前記圧力差が所定値以上あるとみなしてもよい。   In addition, as a method of detecting the pressure difference, it may be detected by providing a pressure sensor or a temperature sensor in the case 41 and the first compression part 42a. However, due to the structure, the pressure sensor is provided in the first compression part 42a. Since it is difficult to attach, it is easy to attach a temperature sensor or pressure sensor to the inlet or outlet piping of the F-evaluator 32 or R-evaluator 27, so that the evaporating temperature is detected or discharged from each evaporator. It is preferable to detect by the pressure of the refrigerant. Further, when the temperature of the evaporative refrigerator compartment 3 reaches a predetermined value, for example, 5 ° C. or more, it is determined that the load in the room is large and the evaporation temperature is high, and the pressure difference is regarded as being equal to or greater than the predetermined value. May be.

また、Rファン27の停止や回転数の減少の他に、全開モードからF冷却モードに切替えることにより、Rエバ27からの冷媒ガスの吸込みを遮断して、ケース41内の圧力上昇を防止してもよい。   In addition to stopping the R fan 27 and reducing the number of rotations, switching from the fully open mode to the F cooling mode blocks the suction of refrigerant gas from the R evaporator 27 and prevents the pressure inside the case 41 from rising. May be.

一方、例えば冬場など、Fエバ32の熱交換が促進されない場合には、第1圧縮部42aに吸込まれる冷媒ガスの温度が低くなり、シリンダ45a内の圧力が低下する。また、ケース41内に吐出される冷媒ガスの圧力はほぼ一定であるため、シリンダ45a内の冷媒ガスの圧力が低下したとしても、ケース41内の圧力は変化しないため、ケース41内と第1圧縮部42a内の圧力差が所定値(例えば、0.2MPa)以上になる恐れがある。   On the other hand, when the heat exchange of the F EVA 32 is not promoted, for example, in winter, the temperature of the refrigerant gas sucked into the first compression portion 42a is lowered, and the pressure in the cylinder 45a is lowered. Further, since the pressure of the refrigerant gas discharged into the case 41 is substantially constant, even if the pressure of the refrigerant gas in the cylinder 45a is reduced, the pressure in the case 41 does not change. There is a possibility that the pressure difference in the compression part 42a becomes a predetermined value (for example, 0.2 MPa) or more.

よって、ケース41内と第1圧縮部42aの圧力差が所定値よりも大きい場合は、第1蒸発器であるFエバ32により生成された冷気を室内に送風するFファン33を運転または回転数を増加させることにより、Fエバ33の熱交換が促進されて第1圧縮部42aに吸込まれる冷媒ガスの温度を上げて、シリンダ45a内の圧力を上昇させることができるため、第1圧縮部42a内とケース41内との圧力差を所定値以下に保持することができる。   Therefore, when the pressure difference between the case 41 and the first compressor 42a is larger than a predetermined value, the F fan 33 that blows the cold air generated by the F evaporator 32 serving as the first evaporator into the room is operated or rotated. By increasing the temperature of the refrigerant gas sucked into the first compression part 42a by promoting the heat exchange of the F EVA 33, so that the pressure in the cylinder 45a can be increased. The pressure difference between 42a and the case 41 can be kept below a predetermined value.

なお、本実施例においては、上述した圧力差を検知する方法の他に、冷凍室6温度が所定値、例えば−25℃以下に到達した場合には、圧力差が所定値以上あると判断してもよい。   In this embodiment, in addition to the above-described method for detecting the pressure difference, when the freezer compartment 6 temperature reaches a predetermined value, for example, −25 ° C. or less, it is determined that the pressure difference is equal to or greater than the predetermined value. May be.

次に、本発明のさらに他の実施例について説明する。一般に、冷凍室6を開扉した場合には、庫外への冷気リークを防止するためFファン33の回転を停止させているが、Fファン33の回転を停止させるとFエバ32の熱交換が行われないため、Fエバ32からの冷媒ガス温度が低くなり、シリンダ45a内の圧力が低下する。この場合には、上述したようにケース41内と第1圧縮部42a内との圧力差が所定値以上になる場合がある。   Next, still another embodiment of the present invention will be described. In general, when the freezer compartment 6 is opened, the rotation of the F fan 33 is stopped in order to prevent cold air leakage to the outside of the refrigerator, but when the rotation of the F fan 33 is stopped, the heat exchange of the F EVA 32 is performed. Is not performed, the refrigerant gas temperature from the F-evapor 32 is lowered, and the pressure in the cylinder 45a is lowered. In this case, as described above, the pressure difference between the case 41 and the first compression portion 42a may be a predetermined value or more.

そこで、Fファン33の回転を所定時間以上、例えば3分以上停止させた場合または低速回転で運転させていた場合には、第1圧縮部42a内とケース41内との圧力差が所定値以上になっていると見做して、Fファン33を強制的に回転または回転数を増加させることにより、Fエバ32の熱交換を促進させて、第1圧縮部42aに吸込まれる冷媒ガスの圧力を上昇させることができる。もって、ケース41内と第1圧縮部42aとの圧力差を所定値以下に保持することができるため、球部kが抜けるなどのボールジョイントの破損を防止することができる。   Therefore, when the rotation of the F fan 33 is stopped for a predetermined time or more, for example, for 3 minutes or more, or when the F fan 33 is operated at a low speed, the pressure difference between the first compression portion 42a and the case 41 is a predetermined value or more. As a result, the F fan 33 is forcibly rotated or the number of rotations is increased, thereby promoting the heat exchange of the F EVA 32 and the refrigerant gas sucked into the first compression section 42a. The pressure can be increased. Accordingly, since the pressure difference between the case 41 and the first compression portion 42a can be maintained at a predetermined value or less, it is possible to prevent the ball joint from being damaged such as the ball portion k coming off.

なお、上述したようにFファン33の回転の他に、全開モードからF冷却モードに切替えてもよい。   In addition to the rotation of the F fan 33 as described above, the fully open mode may be switched to the F cooling mode.

また、本実施例においては、一実施例として所定値を0.2MPaと定めたが、球受部mの強度などにより、適宜変更できることは言うまでもない。   In the present embodiment, the predetermined value is set to 0.2 MPa as one embodiment, but it is needless to say that the predetermined value can be appropriately changed depending on the strength of the ball receiving portion m.

本発明は、ケース内と各シリンダ内の圧力差が所定値よりも高くなることを防止して、圧縮部の破損を解消することができ、ボールジョイント構造の2段圧縮機を備えた様々な冷蔵庫に適応可能である。   The present invention can prevent the pressure difference between the case and each cylinder from becoming higher than a predetermined value, eliminate the breakage of the compression section, and various types of two-stage compressors having a ball joint structure. Applicable to refrigerator.

本発明の圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the compressor of this invention. 本発明の冷蔵庫を示す縦断面図である。It is a longitudinal cross-sectional view which shows the refrigerator of this invention. 本発明の冷凍サイクルを示す概略図である。It is the schematic which shows the refrigerating cycle of this invention. 従来の冷蔵庫の圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the compressor of the conventional refrigerator. 図4のボールジョイント構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the ball joint structure of FIG.

符号の説明Explanation of symbols

1…冷蔵庫本体 3…冷蔵室 6…冷凍室
27…Rエバ 28…Rファン 32…Fエバ
33…Fファン 39…流量調節装置 40…圧縮機
41…ケース 42…圧縮部 42a…第1圧縮部
42b…第2圧縮部 45a,b…シリンダ 46a,b…ピストン
48a,b…コンロッド k…球部 m…球受部
DESCRIPTION OF SYMBOLS 1 ... Refrigerator main body 3 ... Refrigeration room 6 ... Freezer room 27 ... R Eva 28 ... R fan 32 ... F Eva 33 ... F Fan 39 ... Flow control device 40 ... Compressor 41 ... Case 42 ... Compression part 42a ... 1st compression part 42b ... 2nd compression part 45a, b ... Cylinder 46a, b ... Piston 48a, b ... Connecting rod k ... Ball part m ... Ball receiving part

Claims (4)

外箱と内箱の間に断熱材を充填させ冷凍室と冷蔵室を有する冷蔵庫本体と、この冷蔵庫本体内に配設され蒸発温度の異なる冷凍室用蒸発器および冷蔵室用蒸発器と、前記冷凍室用蒸発器または前記冷蔵室用蒸発器に流れる冷媒流量を可変する流量調節装置と、ケース内に第1圧縮部と第2圧縮部とを有し、前記第1圧縮部は前記冷凍室用蒸発器で蒸発した冷媒ガスを圧縮して前記ケース内に吐出し、前記第2圧縮部は前記冷蔵室用蒸発器で蒸発し前記ケース内に吸込まれた冷媒ガスと前記第1圧縮部から吐出した冷媒ガスとを圧縮して前記ケース外に吐出するとともに、前記第1圧縮部および前記第2圧縮部の圧縮はボールジョイント構造により接続されたそれぞれのピストンが回転軸の回転に連動して往復運動により行う圧縮機とを備え、
前記冷凍室用蒸発器と前記冷蔵室用蒸発器は前記流量調節装置を介して並列に接続され、
前記流量切替装置による冷媒の流し方は、少なくとも前記冷凍室用蒸発器と前記冷蔵室用蒸発器に冷媒を流す全開モードと、前記冷凍室用蒸発器のみに冷媒を流すF冷却モードとを有しているが、前記冷蔵室用蒸発器のみに冷媒を流すR冷却モードを有していないことを特徴とする冷蔵庫。
A refrigerator body having a freezing room and a refrigeration room filled with a heat insulating material between an outer box and an inner box, an evaporator for a freezing room and an evaporator for a refrigeration room disposed in the refrigerator body and having different evaporation temperatures, A flow rate adjusting device that varies a flow rate of refrigerant flowing in the freezer compartment evaporator or the refrigerator compartment evaporator; and a first compression portion and a second compression portion in the case, wherein the first compression portion is the freezer compartment The refrigerant gas evaporated by the evaporator is compressed and discharged into the case, and the second compression part is evaporated from the refrigerator gas evaporator and sucked into the case from the first compression part. The discharged refrigerant gas is compressed and discharged out of the case, and the compression of the first compression part and the second compression part is performed in conjunction with the rotation of the rotation shaft of each piston connected by a ball joint structure. With a reciprocating compressor,
The freezer compartment evaporator and the refrigerator compartment evaporator are connected in parallel via the flow rate control device,
The flow rate of the refrigerant by the flow rate switching device includes at least a full-open mode in which the refrigerant flows to the freezer evaporator and the refrigerator refrigerator, and an F cooling mode in which the refrigerant flows only to the freezer evaporator. However, the refrigerator does not have an R cooling mode in which a refrigerant is allowed to flow only through the refrigerator-use evaporator.
ケース内と第1圧縮部内の圧力差が所定値よりも大きい場合は、冷蔵室用蒸発器により生成された冷気を室内に送風する冷蔵室用ファンを停止または回転数を低下させることを特徴とする請求項1に記載の冷蔵庫。   When the pressure difference between the case and the first compression unit is larger than a predetermined value, the refrigerator for cooling room that blows cold air generated by the evaporator for the refrigerator into the room is stopped or the number of rotations is reduced. The refrigerator according to claim 1. ケース内と第1圧縮部内の圧力差が所定値よりも大きい場合は、冷凍室用蒸発器により生成された冷気を室内に送風する冷凍室用ファンを運転または回転数を増加させることを特徴とする請求項1に記載の冷蔵庫。   When the pressure difference between the case and the first compression unit is greater than a predetermined value, the freezer compartment fan that blows cool air generated by the freezer evaporator into the room is operated or the number of rotations is increased. The refrigerator according to claim 1. ケース内と第1圧縮部内の圧力差が所定値よりも大きい場合は、冷凍室用蒸発器のみに冷媒を流すF冷却モードを行うことを特徴とする請求項1に記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein when the pressure difference between the case and the first compression unit is larger than a predetermined value, the F cooling mode in which the refrigerant is allowed to flow only to the freezer evaporator is performed.
JP2003419554A 2003-12-17 2003-12-17 refrigerator Expired - Fee Related JP4406275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419554A JP4406275B2 (en) 2003-12-17 2003-12-17 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419554A JP4406275B2 (en) 2003-12-17 2003-12-17 refrigerator

Publications (2)

Publication Number Publication Date
JP2005180738A JP2005180738A (en) 2005-07-07
JP4406275B2 true JP4406275B2 (en) 2010-01-27

Family

ID=34781417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419554A Expired - Fee Related JP4406275B2 (en) 2003-12-17 2003-12-17 refrigerator

Country Status (1)

Country Link
JP (1) JP4406275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162930B2 (en) * 2007-03-15 2013-03-13 パナソニック株式会社 refrigerator
CN110864467A (en) * 2018-08-28 2020-03-06 艾默生环境优化技术(苏州)有限公司 Refrigerant circulation system

Also Published As

Publication number Publication date
JP2005180738A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
TWI257472B (en) Refrigerator
JP3630632B2 (en) refrigerator
US20100251735A1 (en) Refrigerator, and method for controlling operation of the same
US20060130512A1 (en) Cooling-cycle device and cold/hot water dispenser comprising the same
US20160047368A1 (en) Sealed compressor and refrigeration device
JP4406275B2 (en) refrigerator
JP4300712B2 (en) refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
WO2015011906A1 (en) Sealed compressor and refrigeration device
JP2006010278A (en) Refrigerator
JP2005214483A (en) Refrigerator
JP3410408B2 (en) refrigerator
JP2005134080A (en) Refrigerator
JP2005214489A (en) Refrigerator
JP4284789B2 (en) refrigerator
JP3960349B1 (en) Compressor and vending machine
JP2004170041A (en) Refrigerator
KR100711637B1 (en) Compressor
JP2005188784A (en) Refrigerator
JP3430159B2 (en) refrigerator
JP4240715B2 (en) Refrigeration equipment
JP2016169605A (en) Compressor and refrigerator using the same
KR100747845B1 (en) Refrigerator
US20230146651A1 (en) Use of composition as refrigerant in compressor, compressor, and refrigeration cycle apparatus
KR200437948Y1 (en) A Refrigerant Pipe's Structure Of A Compressor For Refrigerator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050427

RD04 Notification of resignation of power of attorney

Effective date: 20050620

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20061107

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090326

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A131 Notification of reasons for refusal

Effective date: 20090717

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20091106

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees