JP3410408B2 - refrigerator - Google Patents

refrigerator

Info

Publication number
JP3410408B2
JP3410408B2 JP31056799A JP31056799A JP3410408B2 JP 3410408 B2 JP3410408 B2 JP 3410408B2 JP 31056799 A JP31056799 A JP 31056799A JP 31056799 A JP31056799 A JP 31056799A JP 3410408 B2 JP3410408 B2 JP 3410408B2
Authority
JP
Japan
Prior art keywords
cooling
refrigerant
evaporator
compartment
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31056799A
Other languages
Japanese (ja)
Other versions
JP2001133111A (en
Inventor
泰樹 浜野
義人 木村
哲哉 斎藤
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP31056799A priority Critical patent/JP3410408B2/en
Publication of JP2001133111A publication Critical patent/JP2001133111A/en
Application granted granted Critical
Publication of JP3410408B2 publication Critical patent/JP3410408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator in which energy can be saved and the quantity of refrigerant can be reduced by cooling a refrigeration compartment and a freezing compartment while switching thereby enhancing the efficiency of a cooling system. SOLUTION: In a cooling cycle where the quantity of refrigerant required for cooling a refrigeration compartment 4 is lower as compared with the quantity of refrigerant required for cooling a freezing compartment 6, a compressor 1 is operated (pump down) under a state where the outlet side of a condenser 2 is closed by a channel control means 12 for a predetermined time immediately before cooling is switched from the freezing compartment 6 to the refrigeration compartment 4 and cooling of the refrigeration compartment 4 is started after refrigerant standing in a second evaporator 5 is purged to the condenser 2 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍室と冷蔵室と
を互いに独立に冷却を行う冷却システムの高効率化と冷
媒量削減および安全性向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for cooling a freezer compartment and a refrigerating compartment independently of each other, to improve efficiency, reduce the amount of refrigerant, and improve safety.

【0002】[0002]

【従来の技術】図19に従来の冷却サイクル並びに冷蔵
庫の一例として、特公昭62−22396号公報に開示
されている冷蔵庫の冷却サイクル図を示す。
2. Description of the Related Art FIG. 19 shows a cooling cycle diagram of a refrigerator disclosed in Japanese Patent Publication No. 62-22396, as an example of a conventional cooling cycle and a refrigerator.

【0003】1は圧縮機、2は凝縮器、3は冷蔵室4内
に配設された第一の蒸発器であり、5は冷凍室6内に配
設された第二の蒸発器である。
Reference numeral 1 is a compressor, 2 is a condenser, 3 is a first evaporator arranged in a refrigerating compartment 4, and 5 is a second evaporator arranged in a freezing compartment 6. .

【0004】7は冷蔵室冷却用である第一の蒸発器3の
冷媒回路上流側に配設された第一のキャピラリであり、
8は冷凍室冷却用である第二の蒸発器5の冷媒回路上流
側に配設された第二のキャピラリであり、9は冷凍室冷
却用の第二の蒸発器5の下流側に設けた逆止弁である。
Reference numeral 7 denotes a first capillary disposed upstream of the refrigerant circuit of the first evaporator 3 for cooling the refrigerating chamber,
Reference numeral 8 is a second capillary arranged on the upstream side of the refrigerant circuit of the second evaporator 5 for cooling the freezing compartment, and 9 is provided on the downstream side of the second evaporator 5 for cooling the freezing compartment. It is a check valve.

【0005】10は第一の蒸発器3の冷媒回路下流側に
配設された第一の開閉弁であり、11は第二のキャピラ
リ8の冷媒回路上流側に設けられた第二の開閉弁であ
る。
Reference numeral 10 is a first on-off valve provided on the downstream side of the refrigerant circuit of the first evaporator 3, and 11 is a second on-off valve provided on the upstream side of the refrigerant circuit of the second capillary 8. Is.

【0006】以上のように構成された従来例の冷蔵庫に
ついて、以下その動作を説明する。
The operation of the conventional refrigerator constructed as described above will be described below.

【0007】冷凍サイクルの運転は以下のように行われ
る。まず圧縮機1により圧縮された冷媒が凝縮器2で凝
縮液化される。凝縮された冷媒は第一のキャピラリ7も
しくは第二のキャピラリ8で減圧されて、それぞれ第一
の蒸発器3、第二の蒸発器5へ流入、蒸発気化された
後、再び圧縮機1へと吸入される。
The operation of the refrigeration cycle is performed as follows. First, the refrigerant compressed by the compressor 1 is condensed and liquefied by the condenser 2. The condensed refrigerant is decompressed by the first capillary 7 or the second capillary 8, flows into the first evaporator 3 and the second evaporator 5, respectively, and is evaporated and vaporized, and then again flows into the compressor 1. Inhaled.

【0008】冷媒が蒸発気化することにより比較的低温
となった第一の蒸発器3、第二の蒸発器5と冷蔵室4,
冷凍室6の空気が熱交換することにより各室が冷却され
る。
The first evaporator 3, the second evaporator 5 and the refrigerating chamber 4, which have a relatively low temperature due to the evaporation and vaporization of the refrigerant.
Each room is cooled by heat exchange of the air in the freezing room 6.

【0009】冷蔵庫の冷却運転は図示しない各室の温度
検知手段と制御手段により以下のように行われる。
The cooling operation of the refrigerator is performed as follows by the temperature detecting means and control means of each room (not shown).

【0010】冷蔵室4,冷凍室6の各温度検知手段が所
定値以上の温度上昇を検知すると圧縮機1が起動し、冷
凍サイクルの運転が行われる。冷蔵室4の温度検知手段
が所定値以下となるまで第一の開閉弁10が開放とな
り、第二の開閉弁11は閉止となる。
When the temperature detecting means of the refrigerating room 4 and the freezing room 6 detect a temperature increase of a predetermined value or more, the compressor 1 is started and the refrigerating cycle is operated. The first opening / closing valve 10 is opened and the second opening / closing valve 11 is closed until the temperature detecting means of the refrigerating chamber 4 becomes equal to or lower than a predetermined value.

【0011】これにより冷媒は第二の蒸発器5には流入
することなく、第一の蒸発器3へのみ流れる。このとき
の冷凍サイクルの蒸発温度の設定は、冷蔵室4の温度設
定が5℃程度に対して−5〜0℃であり、通常の−30
〜−25℃の蒸発温度に対して2〜2.5倍の成績係数
で圧縮機の運転が可能である。
As a result, the refrigerant does not flow into the second evaporator 5 but flows only into the first evaporator 3. The setting of the evaporation temperature of the refrigerating cycle at this time is -5 to 0 ° C. with respect to the temperature setting of the refrigerating chamber 4 of about 5 ° C.
The compressor can be operated with a coefficient of performance of 2 to 2.5 times the evaporation temperature of -25 ° C.

【0012】冷蔵室4が冷却されて温度が低下し、温度
検知手段が所定値以下を検知すると、第一の開閉弁10
が閉止し、第二の開閉弁11が開放となる。
When the refrigerating chamber 4 is cooled and the temperature drops, and the temperature detecting means detects a temperature below a predetermined value, the first opening / closing valve 10
Is closed and the second on-off valve 11 is opened.

【0013】これにより冷媒は第二の蒸発器5へと流入
し、冷凍室6の冷却が行われる。このときの冷凍サイク
ルの蒸発温度は冷凍室の温度設定が−18℃程度に対し
通常の蒸発温度(−30〜−25℃)で冷却される。
As a result, the refrigerant flows into the second evaporator 5, and the freezer compartment 6 is cooled. The evaporation temperature of the refrigerating cycle at this time is cooled at a normal evaporation temperature (-30 to -25 ° C) with respect to the temperature setting of the freezing chamber of about -18 ° C.

【0014】以上のように冷蔵室4と冷凍室6とを蒸発
器への冷媒供給時間を分配して、交互に繰り返し冷却す
るので、冷蔵室4冷却時は独立的に冷媒を第一の蒸発器
へと循環させることで低圧圧力調整弁が不要で高蒸発温
度(−5〜0℃)が可能であり、圧縮機1の圧縮比を小
さくでき、高い成績係数で運転を行い効率化を図るもの
である。
As described above, the refrigerating chamber 4 and the freezing chamber 6 are alternately cooled repeatedly by distributing the refrigerant supply time to the evaporator. Therefore, when the refrigerating chamber 4 is cooled, the first refrigerant is independently evaporated. By circulating it to the reactor, a low-pressure pressure regulating valve is not required, and a high evaporation temperature (-5 to 0 ° C) is possible, the compression ratio of the compressor 1 can be made small, and operation is performed with a high coefficient of performance to improve efficiency. It is a thing.

【0015】さらに、逆止弁9は冷蔵室4冷却中の蒸発
温度が高いので、第二の蒸発器5に冷媒が流れ込むのを
防止するものである。
Further, since the check valve 9 has a high evaporation temperature during cooling of the refrigerating chamber 4, it prevents the refrigerant from flowing into the second evaporator 5.

【0016】また、冷凍室6の冷却を行う場合、冷蔵室
4の冷却中に比較して冷媒量が少なくてすむので、通常
は冷媒量過多となる。しかしながら第一の開閉弁10が
第一の蒸発器3の下流側に設けてあり、これを閉止する
ので第一の蒸発器3に冷媒を溜め込むことが可能であ
り、冷媒量調節ができる。
Further, when the freezing chamber 6 is cooled, the amount of the refrigerant is smaller than that during the cooling of the refrigerating chamber 4, so that the amount of the refrigerant is usually excessive. However, since the first opening / closing valve 10 is provided on the downstream side of the first evaporator 3 and is closed, it is possible to store the refrigerant in the first evaporator 3 and adjust the amount of the refrigerant.

【0017】[0017]

【発明が解決しようとする課題】上記従来の冷蔵庫にあ
っては、冷蔵室4と冷凍室6とを蒸発器への冷媒供給時
間を分配して、交互に繰り返し冷却することで冷蔵室4
冷却時の冷凍サイクルを圧縮機1の成績係数がよい比較
的高蒸発温度(−5〜0℃)で運転することを可能とし
ている。
In the above-mentioned conventional refrigerator, the refrigerating compartment 4 and the freezing compartment 6 are alternately cooled repeatedly by distributing the refrigerant supply time to the evaporator.
The refrigeration cycle during cooling can be operated at a relatively high evaporation temperature (−5 to 0 ° C.) with a good coefficient of performance of the compressor 1.

【0018】しかし、冷凍室6内に配設された第二の蒸
発器5の蒸発温度(−30〜−25℃)は、冷蔵室4内
に配設された第一の蒸発器3の蒸発温度(−5〜0℃)
と比較してかなり低い温度であり圧力も低い状態となっ
ている。
However, the evaporation temperature (−30 to −25 ° C.) of the second evaporator 5 arranged in the freezing chamber 6 is equal to that of the first evaporator 3 arranged in the refrigerating chamber 4. Temperature (-5 to 0 ° C)
Compared with, the temperature is considerably lower and the pressure is also lower.

【0019】また、冷蔵室4の冷却中は冷蔵室4内に配
設された第一の蒸発器3の温度は−5〜0℃であるが、
冷凍室6内の温度は例えば約−18℃と低いために冷凍
室6内に配設された第二の蒸発器5の温度も約−18℃
程度であり、第一の蒸発器3の温度と比較して第二の蒸
発器5の温度がかなり低いため、圧力も低い状態となっ
ているので、第二の蒸発器5に滞留した冷媒は第二の蒸
発器5から流出しにくい。その結果、第一の蒸発器3に
充分な冷媒が供給されず、冷媒循環量不足となり冷蔵室
4の冷却効率が低下することとなる。
While the refrigerating compartment 4 is being cooled, the temperature of the first evaporator 3 arranged in the refrigerating compartment 4 is -5 to 0 ° C.
Since the temperature in the freezer compartment 6 is as low as about -18 ° C, the temperature of the second evaporator 5 arranged in the freezer compartment 6 is also about -18 ° C.
Since the temperature of the second evaporator 5 is considerably lower than the temperature of the first evaporator 3, the pressure is also low, so that the refrigerant accumulated in the second evaporator 5 is It is difficult for the second evaporator 5 to flow out. As a result, a sufficient amount of refrigerant is not supplied to the first evaporator 3, the amount of refrigerant circulation becomes insufficient, and the cooling efficiency of the refrigerating chamber 4 decreases.

【0020】特に、冷蔵室4の冷却を行う場合の必要冷
媒量が冷凍室6の冷却を行う場合の必要冷媒量と比較し
て同等あるいは多い場合は、冷蔵室4の冷却時におい
て、冷凍室6内に配設された低温,低圧の第二の蒸発器
5に滞留した冷媒を第一の蒸発器3から全て回収しなけ
ればならないため、第一の蒸発器3に充分な冷媒が供給
されず、冷媒循環量不足となり冷蔵室4の冷却効率が低
下する傾向は強くなる。
In particular, when the required refrigerant amount for cooling the refrigerating chamber 4 is equal to or larger than the required refrigerant amount for cooling the freezing chamber 6, the refrigerating chamber 4 is cooled when the refrigerating chamber 4 is cooled. Since the refrigerant accumulated in the low-temperature, low-pressure second evaporator 5 disposed inside 6 must be completely recovered from the first evaporator 3, sufficient refrigerant is supplied to the first evaporator 3. However, the refrigerant circulation amount becomes insufficient, and the cooling efficiency of the refrigerating chamber 4 tends to decrease.

【0021】また、上記した冷蔵室4の冷却時の冷媒循
環量不足による冷却効率低下を防止する施策として、第
一の蒸発器3の出口側または第二の蒸発器5の出口側に
冷媒貯留手段を設け、必要以上に冷媒を封入する方法が
考えられるが、この方法では冷却サイクル内に存在する
冷媒量が増大するため、可燃性自然冷媒を用いる場合に
は冷媒漏洩時の危険性が高く問題がある。
Further, as a measure for preventing the cooling efficiency from decreasing due to the shortage of the circulating amount of the refrigerant when the refrigerating chamber 4 is cooled, the refrigerant is stored at the outlet side of the first evaporator 3 or the outlet side of the second evaporator 5. A method of providing a means and enclosing the refrigerant more than necessary is conceivable, but since the amount of the refrigerant existing in the cooling cycle increases in this method, when a flammable natural refrigerant is used, the risk of refrigerant leakage is high. There's a problem.

【0022】本発明は、以上のような従来の課題を解決
するもので、冷蔵室と冷凍室の冷却を切り替えて行う冷
却システムの効率向上を行うことで、省エネルギーが可
能である冷蔵庫を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a refrigerator capable of energy saving by improving the efficiency of a cooling system which switches between cooling of a refrigerating room and a freezing room. The purpose is to

【0023】また、上記の結果より冷媒を効率よく利用
することができるので冷媒量を削減でき、特に可燃性自
然冷媒(イソブタンまたはプロパン等)を用いる場合に
は、その冷媒量削減により、冷媒漏洩時の安全性を高め
ることが可能な冷蔵庫を提供することを目的とする。
Further, from the above results, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced, and particularly when a flammable natural refrigerant (isobutane, propane, etc.) is used, the refrigerant leakage is caused by the reduction of the refrigerant amount. It is an object of the present invention to provide a refrigerator that can improve the safety of time.

【0024】[0024]

【課題を解決するための手段】この目的を達成するため
に本発明の冷蔵庫は、低圧容器型の圧縮機と、凝縮器
と、流路制御手段と、第一の減圧手段と、冷蔵室内に配
設された第一の蒸発器と、第一の送風手段と、第二の減
圧手段と、冷凍室内に配設された第二の蒸発器と、第二
の送風手段と、逆止弁とよりなる冷凍サイクルと、前記
冷凍サイクルに封入された可燃性自然冷媒とを備え、前
記圧縮機と前記凝縮器と前記流路制御手段と前記第一の
減圧手段と前記第一の蒸発器とで冷蔵室側冷却回路を形
成するとともに、前記第一の減圧手段と前記第一の蒸発
器に並列となるように前記第二の減圧手段と前記第二の
蒸発器と前記逆止弁とを接続し、前記圧縮機と前記凝縮
器と前記流路制御手段と前記第二の減圧手段と前記第二
の蒸発器と前記逆止弁とで冷凍室側冷却回路を形成し、
前記流路制御手段により各冷却回路への冷媒の流れを切
り替えることで前記冷蔵室と前記冷凍室の冷却を互いに
独立して行うものであり前記第一の蒸発器を構成する
配管内の容量が前記第二の蒸発器を構成する配管内の容
量と比較して小容量とすることにより、前記冷蔵室を冷
却するための前記冷蔵室冷却回路に必要な冷媒量を前記
冷凍室を冷却するための前記冷凍室側冷却回路に必要な
冷媒量と比較して少なくし、前記第二の蒸発器に滞留し
た冷媒の一部が回収されれば前記第一の蒸発器により前
記冷蔵室を冷却するのに必要な冷媒量が確保されるよう
にしたことを特徴とする。
To achieve this object, a refrigerator according to the present invention comprises a low-pressure container type compressor, a condenser, a flow path control means, a first pressure reducing means, and a refrigerating chamber. A first evaporator provided, a first blower, a second depressurizer, a second evaporator provided in the freezer compartment, a second blower, and a check valve . A refrigeration cycle consisting of
A refrigerating-room-side cooling circuit is formed by the compressor, the condenser, the flow path control unit, the first decompression unit, and the first evaporator, which includes a flammable natural refrigerant enclosed in a refrigeration cycle. In addition, the second pressure reducing means and the second evaporator and the check valve are connected in parallel to the first pressure reducing means and the first evaporator, and the compressor and the A freezer compartment cooling circuit is formed by a condenser, the flow path control means, the second pressure reducing means, the second evaporator, and the check valve,
Independently of each other row Umono cooling of the freezing chamber and the refrigerating chamber by switching the flow of refrigerant to the cooling circuit by the flow path control means, the said first evaporator
The volume in the pipe is the volume in the pipe forming the second evaporator.
The amount of refrigerant required for the refrigerating compartment cooling circuit for cooling the refrigerating compartment is smaller than that for the refrigerating compartment side cooling circuit for cooling the refrigerating compartment. small comb as compared to, and retained in the second evaporator
If some of the refrigerant is recovered, it will be recovered by the first evaporator.
To ensure the required amount of refrigerant to cool the refrigerator compartment
Characterized in that the.

【0025】また、冷凍室側冷却回路から冷蔵室側冷却
回路に切り替わる直前に、所定時間のあいだ流路制御手
段により凝縮器の出口側を閉止した状態で圧縮機を運転
することを特徴とする。
Further, from the cooling circuit on the freezing room side to the cooling on the refrigerating room side.
Just before switching to the circuit, the flow path control
Operate the compressor with the outlet side of the condenser closed by stages
Characterized in that it.

【0026】また、第二の蒸発器の除霜を定期的に行う
除霜ヒータを設け、冷凍室の冷却から冷蔵室の冷却に切
り替わる直前に、所定時間のあいだ流路制御手段により
凝縮器の出口側を閉止した状態で圧縮機を運転する際
に、前記除霜ヒータに通電することを特徴とする。
Further, a defrost heater for periodically defrosting the second evaporator is provided, and immediately before the cooling of the freezing compartment is switched to the cooling of the refrigerating compartment, the flow passage control means is used for a predetermined period of time to control the condenser. The defrost heater is energized when the compressor is operated with the outlet side closed.

【0027】さらに、冷凍室の冷却から冷蔵室の冷却に
切り替わる直前に、所定時間のあいだ流路制御手段によ
り凝縮器の出口側を閉止した状態で圧縮機を運転する際
に、除霜ヒータに断続的に通電することを特徴とする。
Further, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, when the compressor is operated with the outlet side of the condenser closed by the flow path control means for a predetermined time, the defrost heater is used. It is characterized by intermittently energizing.

【0028】また、冷凍室の冷却から冷蔵室の冷却に切
り替わる直前に、所定時間のあいだ流路制御手段により
凝縮器の出口側を閉止した状態で圧縮機を運転する際
に、第二の送風手段を運転することを特徴とする。
Further, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, when the compressor is operated with the outlet side of the condenser closed by the flow path control means for a predetermined time, the second blower It is characterized by driving means.

【0029】また、第一の減圧手段による減圧量が0.
2MPa〜0.5MPaであることを特徴とする。
Further, the pressure reduction amount by the first pressure reducing means is 0.
It is characterized by being 2 MPa to 0.5 MPa.

【0030】さらに、冷凍室の冷却から冷蔵室の冷却に
切り替わる直前に、所定時間のあいだ流路制御手段によ
り凝縮器の出口側を閉止した状態で圧縮機を運転した
後、冷蔵室の冷却を開始する際、所定時間のあいだ圧縮
機を通常の回転数より高い回転数で運転することを特徴
とする。
Further, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means, and then the refrigerating compartment is cooled. When starting, the compressor is characterized by operating at a rotational speed higher than a normal rotational speed for a predetermined time.

【0031】また、冷凍室の冷却から冷蔵室の冷却に切
り替わる直前に、所定時間のあいだ流路制御手段により
凝縮器の出口側を閉止した状態で圧縮機を運転した後、
冷蔵室の冷却を開始する際、所定時間のあいだ除霜ヒー
タに通電することを特徴とする。
Immediately before switching from cooling of the freezing compartment to cooling of the refrigerating compartment, after the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means,
When the cooling of the refrigerating room is started, the defrosting heater is energized for a predetermined time.

【0032】また、冷凍室の冷却から冷蔵室の冷却に切
り替わる直前に、所定時間のあいだ流路制御手段により
凝縮器の出口側を閉止した状態で圧縮機を運転した後、
冷蔵室の冷却を開始する際、所定時間のあいだ除霜ヒー
タに断続的に通電することを特徴とする。
Immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means,
When the cooling of the refrigerating room is started, the defrosting heater is intermittently energized for a predetermined time.

【0033】さらに、冷凍室の冷却から冷蔵室の冷却に
切り替わる直前に、所定時間のあいだ流路制御手段によ
り凝縮器の出口側を閉止した状態で圧縮機を運転した
後、冷蔵室の冷却を開始する際、所定時間のあいだ第二
の送風手段を運転することを特徴とする。
Further, immediately before the cooling of the freezing compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means, and then the refrigerating compartment is cooled. When starting, the second air blowing means is operated for a predetermined time.

【0034】[0034]

【0035】この本発明によれば、冷蔵室と冷凍室の冷
却を切り替えて行う冷却システムの冷媒量削減と効率向
上を行うことで、省エネルギーが可能である冷蔵庫を提
供することができる。
According to the present invention, it is possible to provide a refrigerator capable of saving energy by reducing the amount of refrigerant and improving the efficiency of a cooling system which switches cooling between a refrigerating room and a freezing room.

【0036】また、上記の結果より冷媒を効率よく利用
することができるので冷媒量を削減でき、特に可燃性自
然冷媒を用いる場合には、その冷媒量削減により、冷媒
漏洩時の安全性を高めることが可能な冷蔵庫を提供する
ことができる。
Further, from the above results, the refrigerant can be used efficiently, so that the amount of the refrigerant can be reduced, and especially when a flammable natural refrigerant is used, the reduction of the amount of the refrigerant enhances the safety at the time of refrigerant leakage. It is possible to provide a refrigerator that can.

【0037】[0037]

【発明の実施の形態】本発明の請求項1に記載の発明
は、低圧容器型の圧縮機と、凝縮器と、流路制御手段
と、第一の減圧手段と、冷蔵室内に配設された第一の蒸
発器と、第一の送風手段と、第二の減圧手段と、冷凍室
内に配設された第二の蒸発器と、第二の送風手段と、逆
止弁とよりなる冷凍サイクルと、前記冷凍サイクルに封
入された可燃性自然冷媒とを備え、前記圧縮機と前記凝
縮器と前記流路制御手段と前記第一の減圧手段と前記第
一の蒸発器とで冷蔵室側冷却回路を形成するとともに、
前記第一の減圧手段と前記第一の蒸発器に並列となるよ
うに前記第二の減圧手段と前記第二の蒸発器と前記逆止
弁とを接続し、前記圧縮機と前記凝縮器と前記流路制御
手段と前記第二の減圧手段と前記第二の蒸発器と前記逆
止弁とで冷凍室側冷却回路を形成し、前記流路制御手段
により各冷却回路への冷媒の流れを切り替えることで前
記冷蔵室と前記冷凍室の冷却を互いに独立して行うもの
であり前記第一の蒸発器を構成する配管内の容量が前
記第二の蒸発器を構成する配管内の容量と比較して小容
量とすることにより、前記冷蔵室を冷却するための前記
冷蔵室冷却回路に必要な冷媒量を前記冷凍室を冷却する
ための前記冷凍室側冷却回路に必要な冷媒量と比較して
少なくし、前記第二の蒸発器に滞留した冷媒の一部が回
収されれば前記第一の蒸発器により前記冷蔵室を冷却す
るのに必要な冷媒量が確保されるようにしたことを特徴
とする。また、請求項2に記載の発明は、冷凍室側冷却
回路から冷蔵室側冷却回路に切り替わる直前に、所定時
間のあいだ流路制御手段により凝縮器の出口側を閉止し
た状態で圧縮機を運転することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is arranged in a low pressure container type compressor, a condenser, a flow path control means, a first pressure reducing means, and a refrigerating chamber. a first evaporator, the first blowing means, and a second pressure reducing means, and a second evaporator disposed in the freezing chamber, the more the second blowing means, a check valve refrigeration Cycle and seal in the refrigeration cycle
With a flammable natural refrigerant entered, together with the compressor, the condenser, the flow path control means, the first pressure reducing means and the first evaporator to form a refrigerating compartment side cooling circuit,
The second pressure reducing means, the second evaporator and the check valve are connected so as to be in parallel with the first pressure reducing means and the first evaporator, and the compressor and the condenser are connected. A cooling chamber side cooling circuit is formed by the flow path control means, the second pressure reducing means, the second evaporator, and the check valve, and the flow of refrigerant to each cooling circuit is controlled by the flow path control means. row independently of one another a cooling of the freezing chamber and the refrigerating chamber by switching Umono
And the capacity in the pipe that constitutes the first evaporator is
Small volume compared to the capacity in the piping that makes up the second evaporator
The amount of the refrigerant compares the amount of refrigerant required for the refrigerating compartment cooling circuit for cooling the refrigerating compartment with the amount of refrigerant required for the freezing compartment side cooling circuit for cooling the freezing compartment. /> small comb, part of the refrigerant staying in the second evaporator times
Once collected, cool the refrigerating compartment with the first evaporator.
It is characterized in that the amount of refrigerant required for cooling is secured . Further, the invention according to claim 2 is the cooling on the freezer compartment side.
Just before switching from the circuit to the refrigerating room side cooling circuit, at a predetermined time
During that time, the outlet side of the condenser is closed by the flow path control means.
It is characterized in that the compressor is operated in a closed state.

【0038】以上の構成により、冷凍室の冷却から冷蔵
室の冷却に切り替わる直前に、所定時間のあいだ流路制
御手段により凝縮器の出口側を閉止した状態で圧縮機を
運転し、強制的に低圧側から高圧側に冷媒を移動させる
というポンプダウンを行うことで、低温,低圧の第二の
蒸発器に滞留していた冷媒を凝縮器側(高圧側)に追い
出すことが可能となる。ポンプダウンした後の冷蔵室の
冷却においては、速やかに第一の蒸発器に冷媒が供給さ
れるので冷媒循環量不足にならず、冷蔵室の冷却効率を
向上することが可能となる。
With the above configuration, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means to forcefully operate the compressor. By performing pump down in which the refrigerant is moved from the low pressure side to the high pressure side, the refrigerant that has accumulated in the low temperature and low pressure second evaporator can be expelled to the condenser side (high pressure side). In the cooling of the refrigerating chamber after pumping down, the refrigerant is quickly supplied to the first evaporator, so that the refrigerant circulation amount does not become insufficient and the cooling efficiency of the refrigerating chamber can be improved.

【0039】冷蔵室を冷却するための必要冷媒量が冷凍
室を冷却するための必要冷媒量と比較して少なければ、
低温,低圧の第二の蒸発器に滞留した冷媒の一部を回収
すれば、冷蔵室を冷却するための必要冷媒量を確保でき
るため、ポンプダウンの効率を向上することができ、冷
蔵室の冷却効率を向上することで省エネルギー化が可能
となる。
If the required amount of refrigerant for cooling the refrigerating chamber is smaller than that required for cooling the freezing chamber,
By recovering a part of the refrigerant that has accumulated in the low-temperature, low-pressure second evaporator, it is possible to secure the required amount of refrigerant for cooling the refrigerating chamber, so that the efficiency of pump down can be improved and the refrigerating chamber Energy can be saved by improving the cooling efficiency.

【0040】また、上記の結果より冷媒を効率よく利用
することができるので冷媒量を削減でき、特に可燃性自
然冷媒、すなわちイソブタンやプロパン等の冷媒を用い
る場合には、その冷媒量削減により、冷媒漏洩時の安全
性を高めることが可能となる。
Further, from the above results, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced, and particularly when a flammable natural refrigerant, that is, a refrigerant such as isobutane or propane is used, the reduction of the refrigerant amount causes It is possible to enhance the safety when the refrigerant leaks.

【0041】[0041]

【0042】また、冷却システムにおいて蒸発器を構成
する配管内の容量が小さいほど、必要冷媒量が減少する
傾向があるため、第一の蒸発器を構成する配管内の容量
が第二の蒸発器を構成する配管内の容量と比較して小容
量である場合には、冷蔵室を冷却するための必要冷媒量
が冷凍室を冷却するための必要冷媒量と比較して少ない
傾向となり、低温,低圧の第二の蒸発器に滞留した冷媒
の一部を回収すれば、冷蔵室を冷却するための必要冷媒
量を確保できるため、ポンプダウンの効率を向上するこ
とができ、冷蔵室の冷却効率を向上することで省エネル
ギー化が可能となる。
In the cooling system, the smaller the capacity of the pipe forming the evaporator is, the more the amount of required refrigerant tends to decrease. Therefore, the capacity of the pipe forming the first evaporator is smaller than that of the second evaporator. When the capacity is small compared to the capacity in the piping that constitutes the, the amount of refrigerant required to cool the refrigerating compartment tends to be smaller than the amount of refrigerant required to cool the freezing compartment, By recovering a part of the refrigerant that has accumulated in the low-pressure second evaporator, it is possible to secure the required amount of refrigerant for cooling the refrigerating chamber, which can improve the efficiency of pump down and the cooling efficiency of the refrigerating chamber. It is possible to save energy by improving.

【0043】請求項3に記載の発明は、第二の蒸発器の
除霜を定期的に行う除霜ヒータを設け、冷凍室の冷却か
ら冷蔵室の冷却に切り替わる直前に、所定時間のあいだ
流路制御手段により凝縮器の出口側を閉止した状態で圧
縮機を運転(ポンプダウン)する際に、除霜ヒータに通
電することを特徴とする。
According to a third aspect of the present invention, a defrosting heater for periodically defrosting the second evaporator is provided, and the flow is performed for a predetermined time immediately before switching from cooling the freezing chamber to cooling the refrigerating chamber. The defrost heater is energized when the compressor is operated (pump down) with the outlet side of the condenser closed by the path control means.

【0044】ポンプダウン時に、第二の蒸発器の除霜を
行う除霜ヒータに通電することにより、ポンプダウン中
の第二の蒸発器の温度及び圧力の低下を抑えることがで
きるためポンプダウンの効率を向上させることが可能と
なる。
By energizing the defrost heater for defrosting the second evaporator at the time of pump down, it is possible to suppress the decrease in temperature and pressure of the second evaporator during pump down. It is possible to improve efficiency.

【0045】請求項4に記載の発明は、冷凍室の冷却か
ら冷蔵室の冷却に切り替わる直前に、所定時間のあいだ
流路制御手段により凝縮器の出口側を閉止した状態で圧
縮機を運転(ポンプダウン)する際に、除霜ヒータに断
続的に通電することを特徴とする。
According to the fourth aspect of the invention, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow passage control means ( When the pump is down), the defrost heater is intermittently energized.

【0046】ポンプダウン時に、第二の蒸発器の除霜を
行う除霜ヒータに通電することにより、ポンプダウン中
の第二の蒸発器の温度及び圧力の低下を抑えることがで
きるためポンプダウンの効率を向上させることが可能と
なるが、例えば冷凍室内及び冷蔵室内の温度差が小さい
場合のように、負荷状態によってはポンプダウン中に連
続して通電しなくてもポンプダウンが有効に働く場合が
ある。このような場合には、ポンプダウン中の除霜ヒー
タの通電を、例えばデューティ制御等により断続的に行
うことにより、ポンプダウン中の除霜ヒータによる消費
電力を低減することが可能となる。
By energizing the defrosting heater for defrosting the second evaporator at the time of pump down, it is possible to suppress the decrease in temperature and pressure of the second evaporator during pump down. It is possible to improve efficiency, but when the pump down works effectively without continuous energization during the pump down depending on the load condition, for example, when the temperature difference between the freezing room and the refrigerating room is small. There is. In such a case, it is possible to reduce power consumption by the defrost heater during pump down by intermittently energizing the defrost heater during pump down by, for example, duty control.

【0047】請求項5に記載の発明は、冷凍室の冷却か
ら冷蔵室の冷却に切り替わる直前に、所定時間のあいだ
流路制御手段により凝縮器の出口側を閉止した状態で圧
縮機を運転(ポンプダウン)する際に、第二の送風手段
を運転することを特徴とする。
According to the fifth aspect of the invention, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow passage control means ( The second blowing means is operated when the pump is down).

【0048】ポンプダウン時に、第二の送風手段を運転
することにより、ポンプダウン中の第二の蒸発器の温度
及び圧力の低下を抑えることができるためポンプダウン
の効率を向上させることが可能となる。
By operating the second blowing means during the pump down, it is possible to suppress the temperature and pressure drop of the second evaporator during the pump down, so that the efficiency of the pump down can be improved. Become.

【0049】請求項6に記載の発明は、第一の減圧手段
による減圧量が0.2MPa〜0.5MPaであること
を特徴とする。
The invention according to claim 6 is characterized in that the pressure reduction amount by the first pressure reducing means is 0.2 MPa to 0.5 MPa.

【0050】第一の減圧手段による減圧量を程度の通常
の減圧量(0.6MPa程度)より小さい0.2MPa
〜0.5MPaとすることで冷媒が第一の減圧手段を通
過する際の抵抗が小さく、冷媒が流れ易くなり、ポンプ
ダウン後に冷蔵室の冷却を行う際、ポンプダウンにより
高圧側(凝縮器側)に追い出された冷媒が、抵抗の小さ
い第一の減圧手段を介して第一の蒸発器に速やかに移動
するため冷媒循環量不足にならず、冷蔵室の冷却効率向
上が可能となる。
The decompression amount by the first decompression means is 0.2 MPa, which is smaller than the ordinary decompression amount (about 0.6 MPa).
By setting the pressure to 0.5 MPa, the resistance when the refrigerant passes through the first pressure reducing means is small, the refrigerant easily flows, and when the refrigerating chamber is cooled after the pump is down, the high pressure side (condenser side) is caused by the pump down. ), The refrigerant expelled to (4) rapidly moves to the first evaporator via the first pressure reducing means having a small resistance, so that the refrigerant circulation amount does not become insufficient and the cooling efficiency of the refrigerating chamber can be improved.

【0051】請求項7に記載の発明は、冷凍室の冷却か
ら冷蔵室の冷却に切り替わる直前に、所定時間のあいだ
流路制御手段により凝縮器の出口側を閉止した状態で圧
縮機を運転(ポンプダウン)した後、冷蔵室の冷却を開
始する際、所定時間のあいだ圧縮機を通常の回転数より
高い回転数で運転することを特徴とする。
In the seventh aspect of the invention, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means ( When the cooling of the refrigerating chamber is started after the pump down), the compressor is operated at a rotation speed higher than the normal rotation speed for a predetermined time.

【0052】ポンプダウン後に冷蔵室の冷却を行う際、
所定時間のあいだ圧縮機を通常の回転数より高い回転数
で運転することにより、ポンプダウンにより高圧側(凝
縮器側)に追い出された冷媒を強い力で多量に第一の蒸
発器に押し出すことができるため、冷媒循環量不足にな
らず、冷蔵室の冷却効率向上が可能となる。
When cooling the refrigerating chamber after pumping down,
By operating the compressor at a higher rotational speed than the normal rotational speed for a specified time, a large amount of the refrigerant displaced to the high pressure side (condenser side) due to pump down is pushed out to the first evaporator with a strong force. As a result, it is possible to improve the cooling efficiency of the refrigerating compartment without causing a shortage of the refrigerant circulation amount.

【0053】請求項8に記載の発明は、冷凍室の冷却か
ら冷蔵室の冷却に切り替わる直前に、所定時間のあいだ
流路制御手段により凝縮器の出口側を閉止した状態で圧
縮機を運転(ポンプダウン)した後、冷蔵室の冷却を開
始する際、所定時間のあいだ除霜ヒータに通電すること
を特徴とする。
In the eighth aspect of the invention, immediately before the cooling of the freezing compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means ( After the pump is down), when the cooling of the refrigerating chamber is started, the defrost heater is energized for a predetermined time.

【0054】ポンプダウンにより冷蔵室を冷却するのに
必要な冷媒量を低温,低圧の第二の蒸発器から回収しき
れない場合、ポンプダウン後に冷蔵室の冷却を行う際、
所定時間のあいだ除霜ヒータに通電することにより、冷
蔵室の冷却中に第二の蒸発器の温度及び圧力の上昇を促
進できるため、第二の蒸発器に滞留した冷媒を回収する
効率を向上させることができ、第一の蒸発器の冷媒循環
量不足の時間を短縮し、冷蔵室の冷却効率向上が可能な
冷蔵庫を提供できる。
When the amount of refrigerant required to cool the refrigerating compartment by pump down cannot be recovered from the low-temperature, low-pressure second evaporator, when the refrigerating compartment is cooled after pump down,
By energizing the defrost heater for a predetermined time, the temperature and pressure of the second evaporator can be increased during cooling of the refrigerating chamber, thus improving the efficiency of collecting the refrigerant accumulated in the second evaporator. Therefore, it is possible to provide the refrigerator in which the time for which the refrigerant circulation amount of the first evaporator is insufficient can be shortened and the cooling efficiency of the refrigerating room can be improved.

【0055】請求項9に記載の発明は、冷凍室の冷却か
ら冷蔵室の冷却に切り替わる直前に、所定時間のあいだ
流路制御手段により凝縮器の出口側を閉止した状態で圧
縮機を運転(ポンプダウン)した後、冷蔵室の冷却を開
始する際、所定時間のあいだ断続的に除霜ヒータに通電
することを特徴とする。
According to the ninth aspect of the present invention, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow passage control means ( When the cooling of the refrigerating chamber is started after the pump down), the defrosting heater is energized intermittently for a predetermined time.

【0056】ポンプダウンにより冷蔵室を冷却するのに
必要な冷媒量を低温,低圧の第二の蒸発器から回収しき
れない場合、ポンプダウン後に冷蔵室の冷却を行う際、
除霜ヒータに通電することにより、冷蔵室の冷却中に第
二の蒸発器の温度及び圧力の上昇を促進できるため、第
二の蒸発器に停留した冷媒を回収する効率を向上させる
ことができ、第一の蒸発器の冷媒循環量不足の時間を短
縮することができるが、例えば冷凍室内及び冷蔵室内の
温度差が小さい場合のように、負荷状態によってはポン
プダウン後の冷蔵室の冷却時に所定時間のあいだ連続し
て通電しなくても、冷媒循環量不足の時間が充分に短い
場合がある。このような場合には、ポンプダウン後の冷
蔵室の冷却時の除霜ヒータの通電を、例えばデューティ
制御等により断続的に行うことにより、除霜ヒータによ
る消費電力を低減することが可能となる。
When the amount of refrigerant required to cool the refrigerating compartment by pumping down cannot be recovered from the low-temperature, low-pressure second evaporator, when cooling the refrigerating compartment after pumping down,
By energizing the defrost heater, the temperature and pressure of the second evaporator can be increased during the cooling of the refrigerating chamber, so that the efficiency of collecting the refrigerant staying in the second evaporator can be improved. , It is possible to shorten the time of the refrigerant circulation amount shortage of the first evaporator, but when cooling the refrigerating chamber after pump down depending on the load condition, for example, when the temperature difference between the freezing chamber and the refrigerating chamber is small. Even if the electricity is not continuously applied for a predetermined time, the time of insufficient circulation of the refrigerant may be sufficiently short. In such a case, it is possible to reduce power consumption by the defrost heater by intermittently energizing the defrost heater during cooling of the refrigerating chamber after pump down, for example, by duty control. .

【0057】請求項10に記載の発明は、冷凍室の冷却
から冷蔵室の冷却に切り替わる直前に、所定時間のあい
だ流路制御手段により凝縮器の出口側を閉止した状態で
圧縮機を運転(ポンプダウン)した後、冷蔵室の冷却を
開始する際、所定時間のあいだ第二の送風手段を運転す
ることを特徴とする。
According to the tenth aspect of the invention, immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow passage control means ( When the cooling of the refrigerating chamber is started after the pump down), the second blowing means is operated for a predetermined time.

【0058】ポンプダウンにより冷蔵室を冷却するのに
必要な冷媒量を低温,低圧の第二の蒸発器から回収しき
れない場合、ポンプダウン後に冷蔵室の冷却を行う際、
所定時間のあいだ第二の送風手段を運転することによ
り、冷蔵室の冷却中に第二の蒸発器の温度及び圧力の上
昇を促進できるため、第二の蒸発器に滞留した冷媒を回
収する効率を向上させることができ、第一の蒸発器の冷
媒循環量不足の時間を短縮し、冷蔵室の冷却効率向上が
可能な冷蔵庫を提供できる。
When the amount of refrigerant required to cool the refrigerating compartment by pumping down cannot be recovered from the low-temperature, low-pressure second evaporator, when cooling the refrigerating compartment after pumping down,
By operating the second blowing means for a predetermined time, the temperature and pressure of the second evaporator can be increased during the cooling of the refrigerating chamber, so that the efficiency of collecting the refrigerant accumulated in the second evaporator can be improved. It is possible to provide a refrigerator in which the cooling efficiency of the refrigerating compartment can be improved by shortening the time for which the refrigerant circulation amount of the first evaporator is insufficient.

【0059】[0059]

【0060】[0060]

【0061】以下、本発明の実施の形態について図1か
ら図18を用いて説明する。なお、従来例と同一構成に
ついては同一符号を付し、その詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 18. The same components as those of the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0062】(実施の形態1)図1は本発明の一実施の
形態による冷蔵庫の冷却サイクル図、図2は同実施の形
態による流路制御手段の概略断面図、図3は同実施の形
態による第一の蒸発器の冷媒封入量特性図、図4は同実
施の形態による第二の蒸発器の冷媒封入量特性図、図5
は同実施の形態による冷蔵庫の運転タイムチャートであ
る。
(Embodiment 1) FIG. 1 is a cooling cycle diagram of a refrigerator according to an embodiment of the present invention, FIG. 2 is a schematic sectional view of a flow path control means according to the embodiment, and FIG. 3 is the same embodiment. 5 is a characteristic diagram of the amount of refrigerant enclosed in the first evaporator according to FIG. 4, FIG. 4 is a characteristic diagram of the amount of enclosed refrigerant in the second evaporator according to the same embodiment, FIG.
3 is an operation time chart of the refrigerator according to the same embodiment.

【0063】圧縮機1と、凝縮器2と、流路制御手段1
2と、第一の減圧手段7と、冷蔵室4内に配設された第
一の蒸発器3と、第一の送風手段13と、第二の減圧手
段8と、冷凍室6内に配設された第二の蒸発器5と、第
二の送風手段14と、逆止弁9とを備え、圧縮機1と凝
縮器2と第一の減圧手段7と第一の蒸発器3とで冷蔵室
側冷却回路を形成するとともに、第一の減圧手段7と第
一の蒸発器3に並列となるように第二の減圧手段8と第
二の蒸発器5と逆止弁9とを接続し、圧縮機1と凝縮器
2と第二の減圧手段8と第二の蒸発器5と逆止弁9とで
冷凍室側冷却回路を形成している。
Compressor 1, condenser 2, flow path control means 1
2, the first decompression means 7, the first evaporator 3 arranged in the refrigerating compartment 4, the first air blowing means 13, the second decompression means 8, and the freezing compartment 6. The second evaporator 5 provided, the second blowing means 14, and the check valve 9 are provided, and the compressor 1, the condenser 2, the first pressure reducing means 7, and the first evaporator 3 are provided. A refrigerating chamber side cooling circuit is formed and the second pressure reducing means 8, the second evaporator 5 and the check valve 9 are connected so as to be in parallel with the first pressure reducing means 7 and the first evaporator 3. Then, the compressor 1, the condenser 2, the second pressure reducing means 8, the second evaporator 5, and the check valve 9 form a freezer compartment cooling circuit.

【0064】15は冷蔵庫箱体であり、上方部に比較的
高温の区画である冷蔵室4を、下方部に比較的低温の区
画である冷凍室6を配置してあり、例えばウレタンのよ
うな断熱材で周囲と断熱して構成している。食品等の収
納物の出し入れは図示しない断熱ドアを介して行われ
る。
A refrigerator box 15 has a refrigerating compartment 4 which is a relatively high temperature compartment in the upper part and a freezing compartment 6 which is a relatively low temperature compartment in the lower part, such as urethane. It is configured to insulate the surroundings with a heat insulating material. Items such as foods are taken in and out via a heat insulating door (not shown).

【0065】圧縮機1と凝縮器2と流路制御手段12は
可燃性自然冷媒を使用した場合に安全性向上の面から冷
蔵庫箱体15内での配管接続箇所削減のために機械室1
6に配設されている。
The compressor 1, the condenser 2, and the flow path control means 12 are used in the machine room 1 to reduce the number of pipe connection points in the refrigerator box 15 from the viewpoint of improving safety when using a flammable natural refrigerant.
6 are arranged.

【0066】冷蔵室4と冷凍室6には区画内温度を検出
する図示しない温度検出手段をそれぞれ設けてあり、圧
縮機1と流路制御手段12と第一の送風手段13と第二
の送風手段14を制御する図示しない制御手段とを備え
ている。
The refrigerating chamber 4 and the freezing chamber 6 are respectively provided with temperature detecting means (not shown) for detecting the temperature inside the compartment, and the compressor 1, the flow path controlling means 12, the first air blowing means 13 and the second air blowing are provided. The control means (not shown) for controlling the means 14 is provided.

【0067】図2に示すように、流路制御手段12は三
方弁であり、凝縮器2から第二の減圧手段8への冷媒の
流れを遮断し、第一の減圧手段7への冷媒の流れを開放
(第一の状態)し、冷蔵室側冷却回路を形成する第一の
位置17と、凝縮器2から第一の減圧手段7への冷媒の
流れを遮断し、第二の減圧手段8への冷媒の流れを開放
(第二の状態)し、冷凍室側冷却回路を形成する第二の
位置18と、凝縮器2の出口側を閉止することにより第
一の減圧手段7と第二の減圧手段8への冷媒の流れをと
もに遮断し、冷却サイクルの高圧側と低圧側を遮断(第
三の状態)する第三の位置19とを備えている。回転軸
20に偏芯して固定されたシール部材21がシリンダ2
2内を回転移動し、第一,第二,第三の位置にそれぞれ
停止することで各位置に接続された配管を閉止するもの
である。回転は図示しない駆動手段と伝達手段により行
われる。各位置への位置決めは、例えばパルスモーター
の駆動パルスにより制御される。
As shown in FIG. 2, the flow path control means 12 is a three-way valve, which shuts off the flow of the refrigerant from the condenser 2 to the second pressure reducing means 8 and allows the refrigerant to flow to the first pressure reducing means 7. The flow is opened (first state) to shut off the flow of the refrigerant from the condenser 2 to the first pressure reducing means 7 and the first position 17 forming the refrigerating chamber side cooling circuit, and the second pressure reducing means. The second position 18 which forms the freezer compartment side cooling circuit by opening the flow of the refrigerant to 8 (the second state) and the outlet side of the condenser 2 to close the first decompression means 7 and the first decompression means 7. It is provided with a third position 19 that shuts off both the flow of the refrigerant to the second pressure reducing means 8 and shuts off the high pressure side and the low pressure side of the cooling cycle (the third state). The seal member 21, which is eccentrically fixed to the rotary shaft 20, has a cylinder 2
The pipes connected to the respective positions are closed by rotationally moving in 2 and stopping at the first, second, and third positions, respectively. The rotation is performed by drive means and transmission means (not shown). Positioning at each position is controlled by, for example, a drive pulse of a pulse motor.

【0068】冷蔵室4を冷却するための冷蔵室側冷却回
路の必要冷媒量について図3を用いて説明する。
The required amount of refrigerant in the refrigerating compartment side cooling circuit for cooling the refrigerating compartment 4 will be described with reference to FIG.

【0069】図3は、例えば外気温度が30℃程度にお
いて、流路制御手段12を第一の状態とし、冷蔵室4を
冷却するための冷蔵室側冷却回路を形成し、圧縮機1及
び第一の送風手段13を連続して運転させた状態で、冷
蔵室側冷却回路に封入する冷媒量(冷媒封入量)を変化
させた場合の安定時における第一の蒸発器3の冷媒入口
温度,冷媒出口温度、及び冷蔵室4の庫内温度の関係を
表す。
In FIG. 3, for example, when the outside air temperature is about 30 ° C., the flow path control means 12 is set to the first state, a refrigerating compartment side cooling circuit for cooling the refrigerating compartment 4 is formed, and the compressor 1 and the first refrigerating compartment are formed. The refrigerant inlet temperature of the first evaporator 3 at the time of stability when the amount of refrigerant to be enclosed in the refrigerating chamber-side cooling circuit (refrigerant enclosure amount) is changed in a state in which one blower 13 is continuously operated, The relationship between the refrigerant outlet temperature and the temperature inside the refrigerator compartment 4 is shown.

【0070】冷媒封入量が40gの場合は、第一の蒸発
器3の冷媒出口温度が冷媒入口温度と比較して高く、冷
媒循環量が不足している状態であり、冷蔵室4の冷却効
率が悪く、冷蔵室4の庫内温度も高い状態となってい
る。
When the refrigerant charge amount is 40 g, the refrigerant outlet temperature of the first evaporator 3 is higher than the refrigerant inlet temperature, and the refrigerant circulation amount is insufficient, so that the cooling efficiency of the refrigerating chamber 4 is low. The inside temperature of the refrigerating compartment 4 is also high.

【0071】冷媒封入量が50gにおいて、第一の蒸発
器3の冷媒入口温度と冷媒出口温度は同等の温度とな
り、冷媒循環量が過不足のない状態であり、冷蔵室4の
冷却効率が良く、冷蔵室4の庫内温度も低い状態となっ
ている。
When the refrigerant charge amount is 50 g, the refrigerant inlet temperature and the refrigerant outlet temperature of the first evaporator 3 are equal to each other, the refrigerant circulation amount is in a proper state, and the cooling efficiency of the refrigerating chamber 4 is good. The temperature inside the refrigerator compartment 4 is also low.

【0072】一般的には、圧縮機1の起動時等の過渡運
転状態における圧縮機1への液バック現象を防止するた
めに、第一の蒸発器3の冷媒出口側には冷媒貯留手段が
設けられる。冷媒封入量が60g〜80gのあいだは、
冷媒封入量としては過封入の状態であるが、この冷媒貯
留手段による貯留効果(余裕度)により、第一の蒸発器
3の冷媒入口温度と冷媒出口温度は同等の温度を保ち、
冷蔵室4の冷却効率が良く、冷蔵室4の庫内温度も低い
状態を保つ。冷媒封入量が90gをこえると、冷媒貯留
手段による貯留効果(余裕度)以上の冷媒が存在するこ
とになり、圧縮機1に液冷媒が吸入されるという液バッ
ク現象を起こし、第一の蒸発器3の蒸発温度は上昇し、
冷蔵室4の冷却効率も悪化する。
Generally, in order to prevent the liquid back phenomenon to the compressor 1 in a transient operation state such as when the compressor 1 is started, a refrigerant storage means is provided on the refrigerant outlet side of the first evaporator 3. It is provided. While the amount of refrigerant enclosed is 60g-80g,
Although the amount of refrigerant to be filled is in an overfilled state, the refrigerant inlet temperature and the refrigerant outlet temperature of the first evaporator 3 maintain the same temperature due to the storage effect (margin) by this refrigerant storage means.
The cooling efficiency of the refrigerating compartment 4 is good, and the temperature inside the refrigerating compartment 4 is kept low. When the amount of the refrigerant filled exceeds 90 g, there exists a refrigerant having a storage effect (margin) of the refrigerant storage means or more, and a liquid back phenomenon that the liquid refrigerant is sucked into the compressor 1 occurs, resulting in the first evaporation. The evaporation temperature of vessel 3 rises,
The cooling efficiency of the refrigerating compartment 4 also deteriorates.

【0073】冷蔵室4を冷却するための冷蔵室側冷却回
路の冷媒循環量が過不足のない状態における冷媒封入量
(この場合は50g)を冷蔵室4を冷却するための必要
冷媒量とする。
The amount of enclosed refrigerant (50 g in this case) in a state where there is no excess or deficiency of the refrigerant circulation amount in the refrigerating compartment side cooling circuit for cooling the refrigerating compartment 4 is set as the required refrigerant quantity for cooling the refrigerating compartment 4. .

【0074】図4は、例えば外気温度が30℃程度にお
いて、流路制御手段12を第二の状態とし、冷凍室6を
冷却するための冷凍室側冷却回路を形成し、圧縮機1及
び第二の送風手段14を連続して運転させた状態で、冷
凍室側冷却回路に封入する冷媒量(冷媒封入量)を変化
させた場合の安定時における第二の蒸発器5の冷媒入口
温度,冷媒出口温度、及び冷凍室6の庫内温度の関係を
表す。
In FIG. 4, for example, when the outside air temperature is about 30 ° C., the flow path control means 12 is set to the second state to form the freezing compartment side cooling circuit for cooling the freezing compartment 6, the compressor 1 and the first compartment. Refrigerant inlet temperature of the second evaporator 5 at the stable time when the amount of refrigerant to be enclosed in the freezer compartment cooling circuit (refrigerant enclosure amount) is changed in a state in which the second blowing means 14 is continuously operated, The relationship between the refrigerant outlet temperature and the temperature inside the freezer compartment 6 is shown.

【0075】冷媒封入量が70gの場合は、第二の蒸発
器5の冷媒出口温度が冷媒入口温度と比較して高く、冷
媒循環量が不足している状態であり、冷凍室5の冷却効
率が悪く、冷凍室5の庫内温度も高い状態となってい
る。
When the refrigerant charge amount is 70 g, the refrigerant outlet temperature of the second evaporator 5 is higher than the refrigerant inlet temperature, and the refrigerant circulation amount is insufficient, so that the cooling efficiency of the freezer compartment 5 is low. The temperature inside the freezer compartment 5 is also high.

【0076】冷媒封入量が80gにおいて、第二の蒸発
器5の冷媒入口温度と冷媒出口温度は同等の温度とな
り、冷媒循環量が過不足のない状態であり、冷凍室6の
冷却効率が良く、冷凍室6の庫内温度も低い状態となっ
ている。
When the refrigerant charge amount is 80 g, the refrigerant inlet temperature and the refrigerant outlet temperature of the second evaporator 5 become equal to each other, the refrigerant circulation amount is not excessive, and the cooling efficiency of the freezer compartment 6 is good. The temperature inside the freezer compartment 6 is also low.

【0077】一般的には、圧縮機1の起動時等の過渡運
転状態における圧縮機1への液バック現象を防止するた
めに、第二の蒸発器5の冷媒出口側には冷媒貯留手段が
設けられる。冷媒封入量が90g〜110gのあいだ
は、冷媒封入量としては過封入の状態であるが、この冷
媒貯留手段による貯留効果(余裕度)により、第二の蒸
発器5の冷媒入口温度と冷媒出口温度は同等の温度を保
ち、冷凍室6の冷却効率が良く、冷凍室6の庫内温度も
低い状態を保つ。冷媒封入量が120gをこえると、冷
媒貯留手段による貯留効果(余裕度)以上の冷媒が存在
することになり、圧縮機1に液冷媒が吸入されるという
液バック現象を起こし、第二の蒸発器5の蒸発温度は上
昇し、冷凍室6の冷却効率も悪化する。
Generally, in order to prevent a liquid back phenomenon to the compressor 1 in a transient operation state such as when the compressor 1 is started, a refrigerant storage means is provided on the refrigerant outlet side of the second evaporator 5. It is provided. While the amount of enclosed refrigerant is between 90 g and 110 g, the amount of enclosed refrigerant is over-enclosed, but due to the storage effect (margin) of this refrigerant storage means, the refrigerant inlet temperature and the refrigerant outlet of the second evaporator 5 The same temperature is maintained, the cooling efficiency of the freezing compartment 6 is good, and the internal temperature of the freezing compartment 6 is kept low. When the amount of the filled refrigerant exceeds 120 g, there is more refrigerant than the storage effect (margin) by the refrigerant storage means, which causes a liquid back phenomenon in which the liquid refrigerant is sucked into the compressor 1 and the second evaporation. The evaporation temperature of the container 5 rises and the cooling efficiency of the freezer compartment 6 deteriorates.

【0078】冷凍室6を冷却するための冷凍室側冷却回
路の冷媒循環量が過不足のない状態における冷媒封入量
(この場合は80g)を冷凍室6を冷却するための必要
冷媒量とする。
The amount of enclosed refrigerant (80 g in this case) in a state in which there is no excess or deficiency of the refrigerant circulation amount in the freezing compartment side cooling circuit for cooling the freezing compartment 6 is the required amount of refrigerant for cooling the freezing compartment 6. .

【0079】上記したように、冷蔵室4を冷却するため
の必要冷媒量(この例では50g)が冷凍室6を冷却す
るための必要冷媒量(この例では80g)と比較して少
ないことを特徴とする。
As described above, the required refrigerant amount for cooling the refrigerating chamber 4 (50 g in this example) is smaller than the required refrigerant amount for cooling the freezing chamber 6 (80 g in this example). Characterize.

【0080】以上のように構成された冷蔵庫について、
冷蔵室4と冷凍室6の冷却のタイミングについて図5の
タイムチャートを元に説明する。
With respect to the refrigerator configured as described above,
The timing of cooling the refrigerating room 4 and the freezing room 6 will be described based on the time chart of FIG.

【0081】冷凍室6の冷却中は、流路制御手段12は
第二の状態であり、第二の蒸発器5へと冷媒が流れ、第
二の送風手段14は運転している。
During cooling of the freezing compartment 6, the flow path control means 12 is in the second state, the refrigerant flows to the second evaporator 5, and the second blowing means 14 is operating.

【0082】圧縮機1の運転により吐出された高温高圧
の冷媒は、凝縮器2により凝縮液化し、流路制御手段1
2を経て第二の減圧手段8で減圧された後、第二の蒸発
器5へと流入し、第二の送風手段14の運転により、冷
凍室6内の空気と熱交換することで、第二の蒸発器5内
の冷媒は蒸発気化し、熱交換された空気は、より低温の
空気となり冷凍室6の冷却を行う。
The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 1 is condensed and liquefied by the condenser 2, and the flow path control means 1
After being depressurized by the second depressurizing means 8 via 2, it flows into the second evaporator 5, and by exchanging heat with the air in the freezing compartment 6 by the operation of the second air blowing means 14, The refrigerant in the second evaporator 5 is vaporized and vaporized, and the heat-exchanged air becomes cooler air to cool the freezer compartment 6.

【0083】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設置された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T01)。
When the temperature detecting means of the refrigerating compartment 4 detects that the temperature exceeds the predetermined temperature set in advance during the cooling of the freezing compartment 6, the flow path controlling means 12 becomes the third state and the condenser 2
The exit side of is closed (T01).

【0084】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で圧縮機1は運転するというポンプダウ
ンしており、第一の送風手段13及び第二の送風手段1
4は停止している。
At this time, the compressor 1 is operated so that the high pressure side and the low pressure side of the cooling cycle are cut off, and the first blower means 13 and the second blower means 1 are operated.
4 is stopped.

【0085】ポンプダウンを所定の時間(Ta0)行っ
た後、流路制御手段12は第一の状態となり第一の蒸発
器3に冷媒が流れ、第一の送風手段13を運転する(T
02)。
After pumping down for a predetermined time (Ta0), the flow path control means 12 enters the first state, the refrigerant flows into the first evaporator 3, and the first blowing means 13 is operated (T
02).

【0086】冷媒は、圧縮機1,凝縮器2,流路制御手
段12を経て第一の減圧手段7で減圧された後、第一の
蒸発器3へと流入し、第一の送風手段13の運転によ
り、冷蔵室4内の空気と熱交換することで、第一の蒸発
器3内の冷媒は蒸発気化し、熱交換された空気は、より
低温の空気となり冷蔵室4の冷却を行う。
The refrigerant is decompressed by the first decompression means 7 via the compressor 1, the condenser 2 and the flow path control means 12, then flows into the first evaporator 3, and the first blowing means 13 is provided. By exchanging heat with the air in the refrigerating compartment 4, the refrigerant in the first evaporator 3 is evaporated and vaporized, and the heat-exchanged air becomes cooler air to cool the refrigerating compartment 4. .

【0087】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T03)。
When the temperature detecting means in the freezer compartment 6 detects that the temperature exceeds the preset temperature while the refrigerating compartment 4 is being cooled, the flow path control means 12 is in the second state and the second evaporator is set. Refrigerant flows in 5, the first air blower 13 is stopped, the second air blower 14 is operated, and cooling of the freezer compartment 6 is started (T03).

【0088】冷媒は、圧縮機1,凝縮器2,第二の開閉
弁11を経て第二の減圧手段8で減圧された後、第二の
蒸発器5へと流入し、第二の送風手段14の運転によ
り、冷凍室6内の空気と熱交換することで、第二の蒸発
器5内の冷媒は蒸発気化し、熱交換された空気は、より
低温の空気となり冷凍室6の冷却を行う。
The refrigerant is decompressed by the second decompression means 8 via the compressor 1, the condenser 2 and the second on-off valve 11, and then flows into the second evaporator 5, where the second blowing means is provided. By performing heat exchange with the air in the freezer compartment 6 by the operation of 14, the refrigerant in the second evaporator 5 is vaporized and evaporated, and the heat-exchanged air becomes cooler air to cool the freezer compartment 6. To do.

【0089】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T04)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first air blowing means 13 and the second air blowing means 14 are stopped, and the compressor 1 is stopped (T04).

【0090】以上述べたように、冷凍室6の冷却から冷
蔵室4の冷却に切り替わる直前に、流路制御手段12を
第三の状態とし、凝縮器2の出口側を閉止した状態で圧
縮機1を運転し、強制的に冷媒を低圧側から高圧側に移
動させるというポンプダウンを行うことで、第二の蒸発
器5に滞留していた冷媒を凝縮器2側(高圧側)に追い
出すことが可能となる。ポンプダウンした後、流路制御
手段12を第一の状態とすることにより、速やかに第一
の蒸発器3に冷媒が供給されるので冷媒循環量不足にな
らず、効率よく冷蔵室4を冷却することが可能となる。
As described above, immediately before the cooling of the freezer compartment 6 is switched to the cooling of the refrigerating compartment 4, the flow path control means 12 is set to the third state and the compressor 2 is closed with the outlet side of the condenser 2 closed. By driving pump 1 to forcibly move the refrigerant from the low pressure side to the high pressure side, the refrigerant accumulated in the second evaporator 5 is expelled to the condenser 2 side (high pressure side). Is possible. After pumping down, by setting the flow path control means 12 to the first state, the refrigerant is quickly supplied to the first evaporator 3, so that the refrigerant circulation amount does not become insufficient and the refrigerating chamber 4 is efficiently cooled. It becomes possible to do.

【0091】冷蔵室4の冷却時における必要冷媒量が冷
凍室6の冷却時における必要冷媒量と比較して少なけれ
ば、低温,低圧の第二の蒸発器5に滞留した冷媒の一部
を回収すれば、冷蔵室4を冷却するための必要冷媒量を
確保できるため、ポンプダウンの効率を向上することが
でき、冷蔵室4の冷却効率を向上することで省エネルギ
ー化が可能となる。
If the amount of refrigerant required for cooling the refrigerating chamber 4 is smaller than the amount of refrigerant required for cooling the freezing chamber 6, a part of the refrigerant accumulated in the low-temperature, low-pressure second evaporator 5 is recovered. By doing so, the required amount of refrigerant for cooling the refrigerating chamber 4 can be secured, so that the efficiency of pump down can be improved, and the cooling efficiency of the refrigerating chamber 4 can be improved, thus enabling energy saving.

【0092】なお、流路制御手段12は三方弁とした
が、第一の減圧手段7、第二の減圧手段8の入口側にそ
れぞれ二方弁を設置しても同等の効果が得られる。
Although the flow path control means 12 is a three-way valve, the same effect can be obtained by installing a two-way valve on the inlet side of each of the first pressure reducing means 7 and the second pressure reducing means 8.

【0093】(実施の形態2)図6(a)は他の実施の
形態による第一の蒸発器の正面図、図6(b)は同実施
の形態による第二の蒸発器の正面図である。
(Second Embodiment) FIG. 6A is a front view of a first evaporator according to another embodiment, and FIG. 6B is a front view of a second evaporator according to the same embodiment. is there.

【0094】図6に示すように、第一の蒸発器3を構成
する配管の長さをL1、内径をD1、内容量をV1と
し、第二の蒸発器5を構成する配管の長さをL2、内径
をD2、内容量をV2とすると、第一の蒸発器3、第二
の蒸発器5を構成する配管の内容量はそれぞれV1=1
/4πD12L1,V2=1/4πD22L2であらわさ
れ、第一の蒸発器3の配管の内容量V1と第二の蒸発器
5の配管の内容量V2はV1<V2となるように構成さ
れている。
As shown in FIG. 6, the length of the pipe forming the first evaporator 3 is L1, the inner diameter is D1, the internal volume is V1, and the length of the pipe forming the second evaporator 5 is When L2, the inner diameter is D2, and the internal volume is V2, the internal volumes of the pipes forming the first evaporator 3 and the second evaporator 5 are V1 = 1, respectively.
/ 4πD1 2 L1, V2 = 1 / 4πD2 2 L2, and the internal volume V1 of the pipe of the first evaporator 3 and the internal volume V2 of the pipe of the second evaporator 5 are V1 <V2. Has been done.

【0095】冷却システムにおいて蒸発器を構成する配
管内の容量が小さいほど、必要冷媒量が減少する傾向が
あるため、第一の蒸発器3を構成する配管内の容量が第
二の蒸発器5を構成する配管内の容量と比較して小容量
である場合には、冷蔵室4を冷却するための必要冷媒量
が冷凍室6を冷却するための必要冷媒量と比較して少な
い傾向となり、低温,低圧の第二の蒸発器5に滞留した
冷媒の一部を回収すれば、冷蔵室4を冷却するのに必要
な冷媒量を確保できるため、ポンプダウンの効率を向上
することができ、冷蔵室4の冷却効率を向上することで
省エネルギー化が可能となる。
In the cooling system, the smaller the capacity of the pipe forming the evaporator is, the more the amount of required refrigerant tends to decrease. Therefore, the capacity of the pipe forming the first evaporator 3 becomes smaller than that of the second evaporator 5. When the capacity is small compared to the capacity in the piping that constitutes, the amount of refrigerant required to cool the refrigerating chamber 4 tends to be smaller than the amount of refrigerant required to cool the freezing chamber 6, By recovering a part of the refrigerant that has accumulated in the low-temperature, low-pressure second evaporator 5, the amount of refrigerant necessary for cooling the refrigerating chamber 4 can be secured, and therefore the efficiency of pump down can be improved. Energy can be saved by improving the cooling efficiency of the refrigerator compartment 4.

【0096】また、上記の結果より冷媒を効率よく利用
することができるので冷媒量を削減でき、特に可燃性自
然冷媒(イソブタンまたはプロパン等)を用いる場合に
は、その冷媒量削減により、冷媒漏洩時の安全性を高め
ることが可能となる。
Further, from the above results, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced. Especially when a flammable natural refrigerant (isobutane, propane, etc.) is used, the amount of the refrigerant can be reduced to prevent the refrigerant leakage. It is possible to improve the safety of time.

【0097】(実施の形態3)図7は本発明の他の実施
の形態による冷蔵庫の冷却サイクル図、図8は同実施の
形態による冷蔵庫の運転タイムチャートである。
(Third Embodiment) FIG. 7 is a cooling cycle diagram of a refrigerator according to another embodiment of the present invention, and FIG. 8 is an operation time chart of the refrigerator according to the same embodiment.

【0098】23は第二の蒸発器5の除霜を定期的に行
う除霜ヒータである。
Reference numeral 23 is a defrost heater for periodically defrosting the second evaporator 5.

【0099】以上のように構成された冷蔵庫について、
冷蔵室4と冷凍室6の冷却のタイミングについて図8の
タイムチャートを元に説明する。
With respect to the refrigerator configured as described above,
The timing of cooling the refrigerating room 4 and the freezing room 6 will be described based on the time chart of FIG.

【0100】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T11)。
When the temperature detecting means of the refrigerating compartment 4 detects that the temperature exceeds the preset predetermined temperature during the cooling of the freezing compartment 6, the flow path controlling means 12 becomes the third state and the condenser 2
The exit side of is closed (T11).

【0101】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で、圧縮機1は運転(ポンプダウン)し
ており、第一の送風手段13及び第二の送風手段14は
停止し、除霜ヒータ23は通電している。
At this time, the compressor 1 is in operation (pump down) with the high pressure side and the low pressure side of the cooling cycle cut off, and the first blowing means 13 and the second blowing means 14 are stopped. The defrost heater 23 is energized.

【0102】ポンプダウンを所定の時間(Ta1)行っ
た後、除霜ヒータ23の通電を終了し、流路制御手段1
2は第一の状態となり第一の蒸発器3に冷媒が流れ、第
一の送風手段13を運転し、冷蔵室4の冷却を開始する
(T12)。
After pumping down for a predetermined time (Ta1), energization of the defrost heater 23 is terminated, and the flow path control means 1
2 becomes the first state, the refrigerant flows into the first evaporator 3, the first blower 13 is operated, and cooling of the refrigerating chamber 4 is started (T12).

【0103】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T13)。
When the temperature detecting means in the freezer compartment 6 detects that the temperature exceeds the preset temperature while the refrigerating compartment 4 is being cooled, the flow path control means 12 is set to the second state and the second evaporator is set. Refrigerant flows in 5, the first blower 13 is stopped, the second blower 14 is operated, and cooling of the freezer compartment 6 is started (T13).

【0104】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T14)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first blowing means 13 and the second blowing means 14 are stopped, and the compressor 1 is stopped (T14).

【0105】以上述べたように、ポンプダウン時に、除
霜ヒータ23に通電することにより、ポンプダウン中の
第二の蒸発器5の温度及び圧力の低下を抑えることがで
きるためポンプダウンの効率を向上させ、冷蔵室4の冷
却効率を向上することで省エネルギー化が可能となる。
As described above, by energizing the defrost heater 23 at the time of pump down, it is possible to suppress a decrease in temperature and pressure of the second evaporator 5 during pump down, so that pump down efficiency is improved. Energy can be saved by improving the cooling efficiency of the refrigerating chamber 4.

【0106】また、冷媒を効率よく利用することができ
るので冷媒量を削減でき、特に可燃性自然冷媒(イソブ
タンまたはプロパン等)を用いる場合には、その冷媒量
削減により、冷媒漏洩時の安全性を高めることが可能と
なる。
Further, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced, and particularly when a flammable natural refrigerant (isobutane, propane, etc.) is used, the reduction of the amount of the refrigerant ensures safety at the time of refrigerant leakage. It becomes possible to raise.

【0107】(実施の形態4)図9は本発明の他の実施
の形態による冷蔵庫の運転タイムチャートである。
(Embodiment 4) FIG. 9 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【0108】冷蔵室4と冷凍室6の冷却のタイミングに
ついて図9のタイムチャートを元に説明する。
The timing of cooling the refrigerating room 4 and the freezing room 6 will be described with reference to the time chart of FIG.

【0109】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T21)。
When the temperature detecting means in the refrigerating compartment 4 detects that the temperature exceeds the preset predetermined temperature while the freezing compartment 6 is being cooled, the flow path controlling means 12 enters the third state.
The exit side of is closed (T21).

【0110】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で、圧縮機1は運転(ポンプダウン)し
ており、第一の送風手段13及び第二の送風手段14は
停止し、除霜ヒータ23はデューティ制御等により断続
的に通電している。
At this time, the compressor 1 is in operation (pump down) with the high pressure side and the low pressure side of the cooling cycle cut off, and the first blower 13 and the second blower 14 are stopped. The defrosting heater 23 is energized intermittently by duty control or the like.

【0111】ポンプダウンを所定の時間(Ta2)行っ
た後、除霜ヒータ23の通電を終了し、流路制御手段1
2は第一の状態となり第一の蒸発器3に冷媒が流れ、第
一の送風手段13を運転し、冷蔵室4の冷却を開始する
(T22)。
After the pump is down for a predetermined time (Ta2), the energization of the defrost heater 23 is terminated, and the flow path control means 1
2 becomes the first state, the refrigerant flows into the first evaporator 3, the first blower 13 is operated, and cooling of the refrigerating chamber 4 is started (T22).

【0112】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T23)。
When the temperature detecting means of the freezing compartment 6 detects that the temperature exceeds the preset temperature while the refrigerating compartment 4 is being cooled, the flow path controlling means 12 is set to the second state and the second evaporator is set. Refrigerant flows through 5, the first blower 13 is stopped, the second blower 14 is operated, and cooling of the freezer compartment 6 is started (T23).

【0113】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T24)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first air blowing means 13 and the second air blowing means 14 are stopped, and the compressor 1 is stopped (T24).

【0114】ポンプダウン時に、除霜ヒータ23に通電
することにより、ポンプダウン中の第二の蒸発器5の温
度及び圧力の低下を抑えることができるためポンプダウ
ンの効率を向上させることが可能となるが、例えば冷凍
室6内及び冷蔵室4内の温度差が小さい場合のように、
負荷状態によってはポンプダウン中に連続して通電しな
くてもポンプダウンが有効に働く場合がある。このよう
な場合には、ポンプダウン中の除霜ヒータ23の通電
を、例えばデューティ制御等により断続的に行うことに
より、ポンプダウン中の除霜ヒータ23による消費電力
を低減することが可能となる。
By energizing the defrosting heater 23 when the pump is down, it is possible to suppress a decrease in the temperature and pressure of the second evaporator 5 during the pump down, so that it is possible to improve the efficiency of the pump down. However, for example, when the temperature difference between the freezer compartment 6 and the refrigerator compartment 4 is small,
Depending on the load condition, pump down may work effectively without continuous energization during pump down. In such a case, by energizing the defrost heater 23 during pump down intermittently by, for example, duty control, it is possible to reduce power consumption by the defrost heater 23 during pump down. .

【0115】また、冷媒を効率よく利用することができ
るので冷媒量を削減でき、特に可燃性自然冷媒(イソブ
タンまたはプロパン等)を用いる場合には、その冷媒量
削減により、冷媒漏洩時の安全性を高めることが可能と
なる。
Further, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced, and particularly when a flammable natural refrigerant (isobutane, propane, etc.) is used, the reduction of the amount of the refrigerant ensures safety at the time of refrigerant leakage. It becomes possible to raise.

【0116】(実施の形態5)図10は本発明の他の実
施の形態による冷蔵庫の運転タイムチャートである。
(Fifth Embodiment) FIG. 10 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【0117】冷蔵室4と冷凍室6の冷却のタイミングに
ついて図10のタイムチャートを元に説明する。
The timing of cooling the refrigerator compartment 4 and the freezer compartment 6 will be described with reference to the time chart of FIG.

【0118】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T31)。
When the temperature detecting means of the refrigerating compartment 4 detects that the temperature exceeds the predetermined temperature set during the cooling of the freezing compartment 6, the flow path controlling means 12 becomes the third state and the condenser 2
The outlet side of is closed (T31).

【0119】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で、圧縮機1は運転(ポンプダウン)し
ており、第一の送風手段13は停止し、第二の送風手段
14は運転している。
At this time, the compressor 1 is in operation (pump down) with the high pressure side and the low pressure side of the cooling cycle cut off, the first blowing means 13 is stopped, and the second blowing means 14 is operated. Is driving.

【0120】ポンプダウンを所定の時間(Ta3)行っ
た後、流路制御手段12は第一の状態となり第一の蒸発
器3に冷媒が流れ、第一の送風手段13を運転し、第二
の送風手段14は停止し、冷蔵室4の冷却を開始する
(T32)。
After pumping down for a predetermined time (Ta3), the flow path control means 12 enters the first state, the refrigerant flows into the first evaporator 3, the first blower means 13 is operated, and the second The air blowing means 14 is stopped and cooling of the refrigerating compartment 4 is started (T32).

【0121】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T33)。
When the temperature detecting means in the freezer compartment 6 detects that the temperature exceeds the preset temperature while the refrigerating compartment 4 is being cooled, the flow path control means 12 is in the second state and the second evaporator is set. Refrigerant flows into 5, the first air blower 13 is stopped, the second air blower 14 is operated, and cooling of the freezer compartment 6 is started (T33).

【0122】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T34)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first air blowing means 13 and the second air blowing means 14 are stopped, and the compressor 1 is stopped (T34).

【0123】ポンプダウン時に、第二の送風手段14を
運転することにより、ポンプダウン中の第二の蒸発器5
の温度及び圧力の低下を抑えることができるためポンプ
ダウンの効率を向上させ、冷蔵室4の冷却効率を向上す
ることで省エネルギー化が可能となる。
When the pump is down, the second blowing means 14 is operated so that the second evaporator 5 during the pump down is operated.
Since it is possible to prevent the temperature and pressure from decreasing, the efficiency of pump down can be improved, and the cooling efficiency of the refrigerating chamber 4 can be improved to save energy.

【0124】また、冷媒を効率よく利用することができ
るので冷媒量を削減でき、特に可燃性自然冷媒(イソブ
タンまたはプロパン等)を用いる場合には、その冷媒量
削減により、冷媒漏洩時の安全性を高めることが可能と
なる。
Further, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced. Particularly, when a flammable natural refrigerant (isobutane, propane, etc.) is used, the reduction of the refrigerant amount reduces the safety at the time of refrigerant leakage. It becomes possible to raise.

【0125】(実施の形態6)図11は本発明の他の実
施の形態による冷蔵庫の冷却サイクル図、図12は同実
施の形態による冷蔵庫の運転タイムチャートである。
(Sixth Embodiment) FIG. 11 is a cooling cycle diagram of a refrigerator according to another embodiment of the present invention, and FIG. 12 is an operation time chart of the refrigerator according to the same embodiment.

【0126】図11に示すように、第一の減圧手段7に
よる減圧量R1は0.2MPa〜0.5MPa、通常の
減圧量である第二の減圧手段8による減圧量R2は0.
6MPa程度でありR1<R2という構成になってい
る。
As shown in FIG. 11, the pressure reduction amount R1 by the first pressure reduction means 7 is 0.2 MPa to 0.5 MPa, and the pressure reduction amount R2 by the second pressure reduction means 8, which is a normal pressure reduction amount, is 0.
The pressure is about 6 MPa, and R1 <R2.

【0127】冷蔵室4と冷凍室6の冷却のタイミングに
ついて図12のタイムチャートを元に説明する。
The timing of cooling the refrigerator compartment 4 and the freezer compartment 6 will be described with reference to the time chart of FIG.

【0128】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T41)。
When the temperature detecting means of the refrigerating compartment 4 detects that the temperature exceeds the predetermined temperature set during the cooling of the freezing compartment 6, the flow path controlling means 12 enters the third state.
The exit side of is closed (T41).

【0129】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で、圧縮機1は運転(ポンプダウン)し
ており、第一の送風手段13及び第二の送風手段14は
停止している。
At this time, the compressor 1 is in operation (pump down) with the high pressure side and the low pressure side of the cooling cycle cut off, and the first blower 13 and the second blower 14 are stopped. ing.

【0130】ポンプダウンを所定の時間(Ta4)行っ
た後、流路制御手段12は第一の状態となり第一の蒸発
器3に冷媒が流れ、第一の送風手段13を運転し、冷蔵
室4の冷却を開始する(T42)。
After pumping down for a predetermined time (Ta4), the flow path control means 12 enters the first state, the refrigerant flows into the first evaporator 3, the first air blowing means 13 is operated, and the refrigerating chamber is operated. The cooling of No. 4 is started (T42).

【0131】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T43)。
When the temperature detecting means in the freezer compartment 6 detects that the temperature exceeds the preset temperature while the refrigerating compartment 4 is being cooled, the flow path control means 12 is in the second state and the second evaporator is set. Refrigerant flows through 5, the first blower 13 is stopped, the second blower 14 is operated, and cooling of the freezer compartment 6 is started (T43).

【0132】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T4)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first air blowing means 13 and the second air blowing means 14 are stopped, and the compressor 1 is stopped (T4).

【0133】第一の減圧手段7による減圧量を第二の減
圧手段8のような通常の減圧量(0.6MPa程度)よ
り小さい0.2MPa〜0.5MPaものとすることで
冷媒が第一の減圧手段7を通過する際の抵抗が小さく、
冷媒が流れ易くなり、ポンプダウン後に冷蔵室4の冷却
を行う際、ポンプダウンにより高圧側(凝縮器側)に追
い出された冷媒が、抵抗の小さい第一の減圧手段7を介
して第一の蒸発器3に速やかに移動するため冷媒循環量
不足にならず、冷蔵室4の冷却効率を向上することで省
エネルギー化が可能となる。
By setting the decompression amount by the first decompression means 7 to 0.2 MPa to 0.5 MPa which is smaller than the usual decompression amount (about 0.6 MPa) like the second decompression means 8, the first refrigerant is made to flow. The resistance when passing through the pressure reducing means 7 is small,
When the refrigerating chamber 4 is cooled after the pump down because the refrigerant easily flows, the refrigerant driven to the high pressure side (condenser side) by the pump down passes through the first pressure reducing means 7 having a low resistance to the first pressure reducing means 7. Since the refrigerant quickly moves to the evaporator 3, the refrigerant circulation amount does not become insufficient, and the energy efficiency can be saved by improving the cooling efficiency of the refrigerating chamber 4.

【0134】また、冷媒を効率よく利用することができ
るので冷媒量を削減でき、特に可燃性自然冷媒(イソブ
タンまたはプロパン等)を用いる場合には、その冷媒量
削減により、冷媒漏洩時の安全性を高めることが可能と
なる。
Further, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced. Especially, when a flammable natural refrigerant (isobutane, propane, etc.) is used, the reduction in the amount of the refrigerant ensures safety at the time of refrigerant leakage. It becomes possible to raise.

【0135】尚、ここでいう減圧手段の減圧量は、減圧
手段の入口に窒素ガスにより1.2MPa(12kgf
・cm2G)の圧力をかけた場合における減圧手段の入
口と出口の圧力差(差圧)とする。
The decompression amount of the decompression means here is 1.2 MPa (12 kgf) by nitrogen gas at the inlet of the decompression means.
-The pressure difference (differential pressure) between the inlet and the outlet of the pressure reducing means when a pressure of cm 2 G) is applied.

【0136】また、減圧量が0.2MPa〜0.5MP
aの状態では、減圧手段による窒素ガスの流量は12L
/min〜30L/minである。
Further, the pressure reduction amount is 0.2 MPa to 0.5 MP.
In the state of a, the flow rate of nitrogen gas by the pressure reducing means is 12 L.
/ Min to 30 L / min.

【0137】(実施の形態7)図13は本発明の他の実
施の形態による冷蔵庫の冷却サイクル図、図14は同実
施の形態による冷蔵庫の運転タイムチャートである。
(Embodiment 7) FIG. 13 is a cooling cycle diagram of a refrigerator according to another embodiment of the present invention, and FIG. 14 is an operation time chart of the refrigerator according to the embodiment.

【0138】24は能力可変型の圧縮機である。Reference numeral 24 is a variable capacity compressor.

【0139】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T51)。
When the temperature detecting means of the refrigerating compartment 4 detects that the temperature exceeds the predetermined temperature set during the cooling of the freezing compartment 6, the flow path controlling means 12 becomes the third state and the condenser 2
The exit side of is closed (T51).

【0140】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で、圧縮機1は運転(ポンプダウン)し
ており、第一の送風手段13及び第二の送風手段14は
停止している。
At this time, the compressor 1 is in operation (pump down) with the high pressure side and the low pressure side of the cooling cycle cut off, and the first blower 13 and the second blower 14 are stopped. ing.

【0141】ポンプダウンを所定の時間(Ta5)行っ
た後、流路制御手段12は第一の状態となり第一の蒸発
器3に冷媒が流れ、第一の送風手段13を運転し、冷蔵
室4の冷却を開始する(T52)。
After pumping down for a predetermined time (Ta5), the flow path control means 12 is in the first state, the refrigerant flows into the first evaporator 3, the first air blowing means 13 is operated, and the refrigerating chamber is operated. The cooling of No. 4 is started (T52).

【0142】冷蔵室の冷却を開始すると同時に、圧縮機
1は通常の回転数より高い回転数で所定の時間(Tb
0)のあいだ運転する。
At the same time when the cooling of the refrigerating chamber is started, the compressor 1 is rotated at a rotational speed higher than the normal rotational speed for a predetermined time (Tb
Drive during 0).

【0143】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T53)。
When the temperature detecting means of the freezer compartment 6 detects that the temperature exceeds the preset temperature while the refrigerating compartment 4 is being cooled, the flow path control means 12 is in the second state and the second evaporator is set. Refrigerant flows through 5, the first air blower 13 is stopped, the second air blower 14 is operated, and cooling of the freezer compartment 6 is started (T53).

【0144】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T54)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first air blowing means 13 and the second air blowing means 14 are stopped, and the compressor 1 is stopped (T54).

【0145】ポンプダウン後に冷蔵室4の冷却を行う
際、所定時間のあいだ圧縮機1を通常の回転数より高い
回転数で運転することにより、ポンプダウンにより高圧
側(凝縮器側)に追い出された冷媒を強い力で多量に第
一の蒸発器3に押し出すことができるため、冷媒循環量
不足にならず、冷蔵室4の冷却効率を向上することで省
エネルギー化が可能となる。
When the refrigerating chamber 4 is cooled after the pump is down, the compressor 1 is driven to a high speed side (condenser side) by pumping down by operating the compressor 1 at a higher speed than the normal speed for a predetermined time. Since a large amount of the refrigerant can be pushed out to the first evaporator 3 with a strong force, the refrigerant circulation amount does not become insufficient, and the cooling efficiency of the refrigerating chamber 4 is improved, so that energy can be saved.

【0146】また、冷媒を効率よく利用することができ
るので冷媒量を削減でき、特に可燃性自然冷媒(イソブ
タンまたはプロパン等)を用いる場合には、その冷媒量
削減により、冷媒漏洩時の安全性を高めることが可能と
なる。
Further, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced. Particularly, when a flammable natural refrigerant (isobutane, propane, etc.) is used, the reduction of the amount of the refrigerant ensures safety at the time of refrigerant leakage. It becomes possible to raise.

【0147】(実施の形態8)図15は本発明の他の実
施の形態による冷蔵庫の運転タイムチャートである。
(Embodiment 8) FIG. 15 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【0148】冷蔵室4と冷凍室6の冷却のタイミングに
ついて図15のタイムチャートを元に説明する。
The timing of cooling the refrigerator compartment 4 and the freezer compartment 6 will be described with reference to the time chart of FIG.

【0149】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T61)。
When the temperature detecting means of the refrigerating compartment 4 detects that the temperature exceeds the preset temperature while the freezing compartment 6 is being cooled, the flow path controlling means 12 becomes the third state and the condenser 2
The outlet side of is closed (T61).

【0150】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で、圧縮機1は運転(ポンプダウン)し
ており、第一の送風手段13及び第二の送風手段14は
停止している。
At this time, the compressor 1 is operating (pump down) with the high pressure side and the low pressure side of the cooling cycle disconnected, and the first blower 13 and the second blower 14 are stopped. ing.

【0151】ポンプダウンを所定の時間(Ta6)行っ
た後、流路制御手段12は第一の状態となり第一の蒸発
器3に冷媒が流れ、第一の送風手段13を運転し、冷蔵
室4の冷却を開始する(T62)。
After pumping down for a predetermined time (Ta6), the flow path control means 12 enters the first state, the refrigerant flows into the first evaporator 3, the first blower means 13 is operated, and the refrigerating chamber is operated. The cooling of No. 4 is started (T62).

【0152】冷蔵室の冷却を開始すると同時に、除霜ヒ
ータ23を所定の時間(Tb1)のあいだ通電する。
At the same time when the cooling of the refrigerating chamber is started, the defrosting heater 23 is energized for a predetermined time (Tb1).

【0153】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T63)。
When the temperature detecting means of the freezer compartment 6 detects that the temperature exceeds the preset predetermined temperature while the refrigerating compartment 4 is being cooled, the flow path control means 12 becomes the second state and the second evaporator. Refrigerant flows into 5, the first blower 13 is stopped, the second blower 14 is operated, and cooling of the freezer compartment 6 is started (T63).

【0154】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T64)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first blower 13 and the second blower 14 are stopped, and the compressor 1 is stopped (T64).

【0155】ポンプダウンにより冷蔵室4を冷却するの
に必要な冷媒量を低温,低圧の第二の蒸発器5から回収
しきれない場合、ポンプダウン後に冷蔵室4の冷却を行
う際、所定時間のあいだ除霜ヒータ23に通電すること
により、冷蔵室4の冷却中に第二の蒸発器5の温度及び
圧力の上昇を促進できるため、第二の蒸発器5に滞留し
た冷媒を回収する効率を向上させることができ、第一の
蒸発器3の冷媒循環量不足の時間を短縮し、冷蔵室4の
冷却効率を向上することで省エネルギー化が可能とな
る。
When the amount of refrigerant required to cool the refrigerating compartment 4 by pumping down cannot be completely recovered from the low-temperature, low-pressure second evaporator 5, when the refrigerating compartment 4 is cooled after the pumping down, a predetermined time is required. By energizing the defrost heater 23 during that period, the temperature and pressure of the second evaporator 5 can be increased during the cooling of the refrigerating chamber 4, so that the efficiency of collecting the refrigerant accumulated in the second evaporator 5 can be improved. Can be improved, the time for which the refrigerant circulation amount of the first evaporator 3 is insufficient and the cooling efficiency of the refrigerating chamber 4 are improved, and energy can be saved.

【0156】また、冷媒を効率よく利用することができ
るので冷媒量を削減でき、特に可燃性自然冷媒(イソブ
タンまたはプロパン等)を用いる場合には、その冷媒量
削減により、冷媒漏洩時の安全性を高めることが可能と
なる。
Further, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced. Especially, when a flammable natural refrigerant (isobutane, propane, etc.) is used, by reducing the amount of the refrigerant, safety at the time of refrigerant leakage can be improved. It becomes possible to raise.

【0157】(実施の形態9)図16は本発明の他の実
施の形態による冷蔵庫の運転タイムチャートである。
(Ninth Embodiment) FIG. 16 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【0158】冷蔵室4と冷凍室6の冷却のタイミングに
ついて図16のタイムチャートを元に説明する。
The timing of cooling the refrigerator compartment 4 and the freezer compartment 6 will be described with reference to the time chart of FIG.

【0159】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T71)。
When the temperature detecting means of the refrigerating compartment 4 detects that the temperature exceeds the preset temperature during the cooling of the freezing compartment 6, the flow path controlling means 12 becomes the third state and the condenser 2
The exit side of is closed (T71).

【0160】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で、圧縮機1は運転(ポンプダウン)し
ており、第一の送風手段13及び第二の送風手段14は
停止している。
At this time, the compressor 1 is in operation (pump down) with the high pressure side and the low pressure side of the cooling cycle cut off, and the first blowing means 13 and the second blowing means 14 are stopped. ing.

【0161】ポンプダウンを所定の時間(Ta7)行っ
た後、流路制御手段12は第一の状態となり第一の蒸発
器3に冷媒が流れ、第一の送風手段13を運転し、冷蔵
室4の冷却を開始する(T72)。
After pumping down for a predetermined time (Ta7), the flow path control means 12 enters the first state, the refrigerant flows into the first evaporator 3, the first air blowing means 13 is operated, and the refrigerating chamber is operated. The cooling of No. 4 is started (T72).

【0162】冷蔵室の冷却を開始すると同時に、除霜ヒ
ータ23を所定の時間(Tb2)のあいだデューティ制
御等により断続的に通電する。
At the same time when the cooling of the refrigerating chamber is started, the defrosting heater 23 is intermittently energized by a duty control or the like for a predetermined time (Tb2).

【0163】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T73)。
When the temperature detecting means in the freezer compartment 6 detects that the temperature exceeds the preset temperature while the refrigerating compartment 4 is being cooled, the flow path control means 12 is in the second state and the second evaporator is set. Refrigerant flows into 5, the first blower 13 is stopped, the second blower 14 is operated, and cooling of the freezer compartment 6 is started (T73).

【0164】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T74)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first blower 13 and the second blower 14 are stopped, and the compressor 1 is stopped (T74).

【0165】ポンプダウンにより冷蔵室4を冷却するの
に必要な冷媒量を低温,低圧の第二の蒸発器5から回収
しきれない場合、ポンプダウン後に冷蔵室4の冷却を行
う際、除霜ヒータ23に通電することにより、冷蔵室4
の冷却中に第二の蒸発器5の温度及び圧力の上昇を促進
できるため、第二の蒸発器5に滞留した冷媒を回収する
効率を向上させることができ、第一の蒸発器の冷媒循環
量不足の時間を短縮することができるが、例えば冷凍室
6内及び冷蔵室4内の温度差が小さい場合のように、負
荷状態によってはポンプダウン後の冷蔵室4の冷却時に
所定時間のあいだ連続して通電しなくても、冷媒循環量
不足の時間が充分に短い場合がある。このような場合に
は、ポンプダウン後の冷蔵室4の冷却時の除霜ヒータ2
3の通電を、例えばデューティ制御等により断続的に行
うことにより、除霜ヒータ23による消費電力を低減す
ることが可能となる。
When the amount of refrigerant required to cool the refrigerating compartment 4 by pumping down cannot be recovered from the low-temperature, low-pressure second evaporator 5, defrosting is performed when cooling the refrigerating compartment 4 after pumping down. By energizing the heater 23, the refrigerator compartment 4
Since the temperature and the pressure of the second evaporator 5 can be increased during the cooling of the second evaporator, the efficiency of collecting the refrigerant accumulated in the second evaporator 5 can be improved, and the refrigerant circulation of the first evaporator can be improved. It is possible to shorten the time of the amount shortage, but depending on the load condition, for example, when the temperature difference between the freezing compartment 6 and the refrigerating compartment 4 is small, the refrigerating compartment 4 may be cooled for a predetermined time depending on the load condition. Even if the electricity is not continuously applied, the shortage time of the refrigerant circulation amount may be sufficiently short. In such a case, the defrost heater 2 when cooling the refrigerating chamber 4 after pump down
It is possible to reduce the power consumption by the defrost heater 23 by intermittently energizing 3 by, for example, duty control.

【0166】また、冷媒を効率よく利用することができ
るので冷媒量を削減でき、特に可燃性自然冷媒(イソブ
タンまたはプロパン等)を用いる場合には、その冷媒量
削減により、冷媒漏洩時の安全性を高めることが可能と
なる。
Further, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced, and particularly when a flammable natural refrigerant (isobutane, propane, etc.) is used, the reduction in the amount of the refrigerant ensures safety at the time of refrigerant leakage. It becomes possible to raise.

【0167】(実施の形態10)図17は本発明の他の
実施の形態による冷蔵庫の運転タイムチャートである。
(Embodiment 10) FIG. 17 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【0168】冷蔵室4と冷凍室6の冷却のタイミングに
ついて図17のタイムチャートを元に説明する。
Timing of cooling the refrigerating room 4 and the freezing room 6 will be described with reference to the time chart of FIG.

【0169】冷凍室6の冷却中に冷蔵室4の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第三の状態となり凝縮器2
の出口側を閉止する(T81)。
When the temperature detecting means of the refrigerating compartment 4 detects that the temperature exceeds the preset temperature during cooling of the freezing compartment 6, the flow path controlling means 12 enters the third state.
The exit side of is closed (T81).

【0170】この時、冷却サイクルの高圧側と低圧側は
遮断された状態で、圧縮機1は運転(ポンプダウン)し
ており、第一の送風手段13及び第二の送風手段14は
停止している。
At this time, the compressor 1 is in operation (pump down) with the high pressure side and the low pressure side of the cooling cycle cut off, and the first blower 13 and the second blower 14 are stopped. ing.

【0171】ポンプダウンを所定の時間(Ta8)行っ
た後、流路制御手段12は第一の状態となり第一の蒸発
器3に冷媒が流れ、第一の送風手段13を運転し、冷蔵
室4の冷却を開始する(T82)。
After pumping down for a predetermined time (Ta8), the flow path control means 12 enters the first state, the refrigerant flows into the first evaporator 3, the first air blowing means 13 is operated, and the refrigerating chamber is operated. The cooling of No. 4 is started (T82).

【0172】冷蔵室の冷却を開始すると同時に、第二の
送風手段14を所定の時間(Tb3)のあいだ運転す
る。
At the same time when the cooling of the refrigerating room is started, the second blowing means 14 is operated for a predetermined time (Tb3).

【0173】冷蔵室4の冷却中に冷凍室6の温度検知手
段が予め設定された所定の温度を越えていることを検知
すると、流路制御手段12は第二の状態となり第二の蒸
発器5に冷媒が流れ、第一の送風手段13を停止し、第
二の送風手段14を運転し、冷凍室6の冷却を開始する
(T83)。
When the temperature detecting means of the freezer compartment 6 detects that the temperature exceeds the preset predetermined temperature while the refrigerating compartment 4 is being cooled, the flow path control means 12 becomes the second state and the second evaporator. Refrigerant flows into 5, the first blower 13 is stopped, the second blower 14 is operated, and cooling of the freezer compartment 6 is started (T83).

【0174】以上の動作を繰り返し、流路制御手段12
により冷媒の流れを切り替えることで冷蔵室4と冷凍室
6を交互に冷却し、冷蔵室4と冷凍室6の温度検知手段
が予め設定された所定の温度より低いことを検知する
と、流路制御手段は第一の状態となり、第一の送風手段
13と第二の送風手段14をともに停止し、圧縮機1を
停止する(T84)。
The above operation is repeated to repeat the flow path control means 12
The flow of the refrigerant is switched to switch the refrigerating chamber 4 and the freezing chamber 6 alternately, and when the temperature detecting means of the refrigerating chamber 4 and the freezing chamber 6 detects that the temperature is lower than a preset predetermined temperature, the flow path control is performed. The means becomes the first state, both the first blowing means 13 and the second blowing means 14 are stopped, and the compressor 1 is stopped (T84).

【0175】ポンプダウンにより冷蔵室4を冷却するの
に必要な冷媒量を低温,低圧の第二の蒸発器5から回収
しきれない場合、ポンプダウン後に冷蔵室4の冷却を行
う際、所定時間のあいだ第二の送風手段14を運転する
ことにより、冷蔵室4の冷却中に第二の蒸発器5の温度
及び圧力の上昇を促進できるため、第二の蒸発器5に滞
留した冷媒を回収する効率を向上させることができ、第
一の蒸発器5の冷媒循環量不足の時間を短縮し、冷蔵室
4の冷却効率を向上することで省エネルギー化が可能と
なる。
When the amount of refrigerant required to cool the refrigerating compartment 4 by pumping down cannot be completely recovered from the low-temperature, low-pressure second evaporator 5, when the refrigerating compartment 4 is cooled after the pumping down, a predetermined time is required. By operating the second blower 14 during that period, the temperature and pressure of the second evaporator 5 can be increased during the cooling of the refrigerating chamber 4, so that the refrigerant accumulated in the second evaporator 5 is recovered. Efficiency can be improved, the time for which the circulation amount of the refrigerant in the first evaporator 5 is insufficient can be shortened, and the cooling efficiency of the refrigerating chamber 4 can be improved, whereby energy can be saved.

【0176】また、冷媒を効率よく利用することができ
るので冷媒量を削減でき、特に可燃性自然冷媒(イソブ
タンまたはプロパン等)を用いる場合には、その冷媒量
削減により、冷媒漏洩時の安全性を高めることが可能と
なる。
Further, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced. Particularly, when a flammable natural refrigerant (isobutane, propane, etc.) is used, the reduction in the amount of the refrigerant ensures safety at the time of refrigerant leakage. It becomes possible to raise.

【0177】(実施の形態11)図18は本発明の他の
実施の形態による冷蔵庫の冷却サイクル図である。
(Embodiment 11) FIG. 18 is a cooling cycle diagram of a refrigerator according to another embodiment of the present invention.

【0178】25は低圧容器型の圧縮機である。Reference numeral 25 is a low-pressure container type compressor.

【0179】冷却サイクルの冷媒に図示しない可燃性自
然冷媒(イソブタンまたはプロパン等)を用いている。
An unillustrated flammable natural refrigerant (isobutane, propane, etc.) is used as the refrigerant of the cooling cycle.

【0180】ポンプダウンの効率を向上し、冷蔵室4の
冷却効率を向上することで、冷媒量を削減でき、特に可
燃性自然冷媒(イソブタンまたはプロパン等)を用いる
場合には、その冷媒量削減により、冷媒漏洩時の安全性
を高めることが可能となる。
The amount of refrigerant can be reduced by improving the efficiency of pump down and the cooling efficiency of the refrigerating chamber 4, and particularly when a flammable natural refrigerant (isobutane or propane) is used, the amount of refrigerant can be reduced. As a result, it is possible to enhance the safety when the refrigerant leaks.

【0181】[0181]

【発明の効果】以上のように本発明によれば、冷蔵室と
冷凍室の冷却を切り替えて行う冷却システムの冷媒量削
減と効率向上を行うことで、省エネルギーが可能である
冷蔵庫を提供することができる。
As described above, according to the present invention, it is possible to provide a refrigerator capable of saving energy by reducing the amount of refrigerant and improving the efficiency of a cooling system which switches between cooling of a refrigerating room and a freezing room. You can

【0182】また、上記の結果より冷媒を効率よく利用
することができるので冷媒量を削減でき、特に可燃性自
然冷媒(イソブタンまたはプロパン等)を用いる場合に
は、その冷媒量削減により、冷媒漏洩時の安全性を高め
ることが可能な冷蔵庫を提供することができる。
Further, from the above results, since the refrigerant can be efficiently used, the amount of the refrigerant can be reduced. Especially, when a flammable natural refrigerant (isobutane, propane, etc.) is used, the refrigerant leakage is reduced by reducing the amount of the refrigerant. It is possible to provide a refrigerator that can improve the safety of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態による冷蔵庫の冷却サイ
クル図
FIG. 1 is a cooling cycle diagram of a refrigerator according to an embodiment of the present invention.

【図2】同実施の形態による流路制御手段の概略断面図FIG. 2 is a schematic sectional view of a flow path control means according to the same embodiment.

【図3】同実施の形態による第一の蒸発器の冷媒封入量
特性図
FIG. 3 is a characteristic diagram of the amount of refrigerant enclosed in the first evaporator according to the same embodiment.

【図4】同実施の形態による第二の蒸発器の冷媒封入量
特性図
FIG. 4 is a characteristic diagram of the amount of refrigerant enclosed in the second evaporator according to the same embodiment.

【図5】同実施の形態による冷蔵庫の運転タイムチャー
FIG. 5 is an operation time chart of the refrigerator according to the same embodiment.

【図6】本発明の他の実施の形態による第一,第二の蒸
発器の正面図
FIG. 6 is a front view of first and second evaporators according to another embodiment of the present invention.

【図7】本発明の他の実施の形態による冷蔵庫の冷却サ
イクル図
FIG. 7 is a cooling cycle diagram of a refrigerator according to another embodiment of the present invention.

【図8】同実施の形態による冷蔵庫の運転タイムチャー
FIG. 8 is an operation time chart of the refrigerator according to the same embodiment.

【図9】本発明の他の実施の形態による冷蔵庫の運転タ
イムチャート
FIG. 9 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【図10】本発明の他の実施の形態による冷蔵庫の運転
タイムチャート
FIG. 10 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【図11】本発明の他の実施の形態による冷蔵庫の冷却
サイクル図
FIG. 11 is a cooling cycle diagram of a refrigerator according to another embodiment of the present invention.

【図12】同実施の形態による冷蔵庫の運転タイムチャ
ート
FIG. 12 is an operation time chart of the refrigerator according to the same embodiment.

【図13】本発明の他の実施の形態による冷蔵庫の冷却
サイクル図
FIG. 13 is a cooling cycle diagram of a refrigerator according to another embodiment of the present invention.

【図14】同実施の形態による冷蔵庫の運転タイムチャ
ート
FIG. 14 is an operation time chart of the refrigerator according to the same embodiment.

【図15】本発明の他の実施の形態による冷蔵庫の運転
タイムチャート
FIG. 15 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【図16】本発明の他の実施の形態による冷蔵庫の運転
タイムチャート
FIG. 16 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【図17】本発明の他の実施の形態による冷蔵庫の運転
タイムチャート
FIG. 17 is an operation time chart of a refrigerator according to another embodiment of the present invention.

【図18】本発明の他の実施の形態による冷蔵庫の冷却
サイクル図
FIG. 18 is a cooling cycle diagram of a refrigerator according to another embodiment of the present invention.

【図19】従来の冷蔵庫の冷却サイクル図FIG. 19 is a cooling cycle diagram of a conventional refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 第一の蒸発器 4 冷蔵室 5 第二の蒸発器 6 冷凍室 7 第一の減圧手段 8 第二の減圧手段 9 逆止弁 10 第一の開閉弁 11 第二の開閉弁 12 流路制御手段 13 第一の送風手段 14 第二の送風手段 15 冷蔵庫箱体 16 機械室 17 第一の位置 18 第二の位置 19 第三の位置 20 回転軸 21 シール部材 22 シリンダ 23 除霜ヒータ 24 能力可変型の圧縮機 25 低圧容器型の圧縮機 1 compressor 2 condenser 3 first evaporator 4 Refrigerator 5 Second evaporator 6 freezer 7 First decompression means 8 Second decompression means 9 Check valve 10 First on-off valve 11 Second on-off valve 12 Flow path control means 13 First blower 14 Second blowing means 15 Refrigerator box 16 Machine room 17 First position 18 Second position 19 Third position 20 rotation axis 21 Seal member 22 cylinders 23 Defrost heater 24 Variable capacity compressor 25 Low pressure container type compressor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−108376(JP,A) 特開 平4−43262(JP,A) 特開 平7−190582(JP,A) 特開 平7−120130(JP,A) 特開 昭58−88561(JP,A) 特開 平9−113103(JP,A) 特開 平11−148761(JP,A) 特開 平10−148413(JP,A) 特開 平11−237162(JP,A) 特開 平11−248271(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25D 11/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-58-108376 (JP, A) JP-A-4-43262 (JP, A) JP-A-7-190582 (JP, A) JP-A-7- 120130 (JP, A) JP 58-88561 (JP, A) JP 9-113103 (JP, A) JP 11-148761 (JP, A) JP 10-148413 (JP, A) JP-A-11-237162 (JP, A) JP-A-11-248271 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25D 11/02

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 低圧容器型の圧縮機と、凝縮器と、流路
制御手段と、第一の減圧手段と、冷蔵室内に配設された
第一の蒸発器と、第一の送風手段と、第二の減圧手段
と、冷凍室内に配設された第二の蒸発器と、第二の送風
手段と、逆止弁とよりなる冷凍サイクルと、前記冷凍サ
イクルに封入された可燃性自然冷媒とを備え、前記圧縮
機と前記凝縮器と前記流路制御手段と前記第一の減圧手
段と前記第一の蒸発器とで冷蔵室側冷却回路を形成する
とともに、前記第一の減圧手段と前記第一の蒸発器に並
列となるように前記第二の減圧手段と前記第二の蒸発器
と前記逆止弁とを接続し、前記圧縮機と前記凝縮器と前
記流路制御手段と前記第二の減圧手段と前記第二の蒸発
器と前記逆止弁とで冷凍室側冷却回路を形成し、前記流
路制御手段により各冷却回路への冷媒の流れを切り替え
ることで前記冷蔵室と前記冷凍室の冷却を互いに独立し
て行うものであり前記第一の蒸発器を構成する配管内
の容量が前記第二の蒸発器を構成する配管内の容量と比
較して小容量とすることにより、前記冷蔵室を冷却する
ための前記冷蔵室冷却回路に必要な冷媒量を前記冷凍室
を冷却するための前記冷凍室側冷却回路に必要な冷媒量
と比較して少なくし、前記第二の蒸発器に滞留した冷媒
の一部が回収されれば前記第一の蒸発器により前記冷蔵
室を冷却するのに必要な冷媒量が確保されるようにした
ことを特徴とする冷蔵庫。
1. A low-pressure container type compressor, a condenser, a flow path control means, a first pressure reducing means, a first evaporator arranged in a refrigerating chamber, and a first air blowing means. A second refrigeration cycle including a second decompression means, a second evaporator provided in the freezing chamber, a second blowing means, and a check valve ;
A refrigerating chamber side cooling circuit is formed by the compressor, the condenser, the flow path control means, the first pressure reducing means, and the first evaporator. Together with the first pressure reducing means and the first evaporator, the second pressure reducing means, the second evaporator, and the check valve are connected in parallel to each other, and the compressor and the condenser are connected. Forming a refrigerating compartment side cooling circuit with the cooler, the flow path control means, the second decompression means, the second evaporator and the check valve, and the flow path control means of the refrigerant to each cooling circuit. independently of each other row Umono cooling of the freezing chamber and the refrigerating chamber by switching the flow, the pipe constituting the first evaporator
The capacity of the second evaporator and the capacity in the piping that constitutes the second evaporator
Compared with the amount of refrigerant required for the refrigerating compartment cooling circuit for cooling the freezing compartment, the amount of refrigerant required for the refrigerating compartment cooling circuit for cooling the refrigerating compartment is small by comparison. small comb and the refrigerant staying in the second evaporator
If a part of the
A refrigerator characterized in that an amount of refrigerant required to cool a room is ensured .
【請求項2】 冷凍室側冷却回路から冷蔵室側冷却回路
に切り替わる直前に、所定時間のあいだ流路制御手段に
より凝縮器の出口側を閉止した状態で圧縮機を運転する
ことを特徴とする請求項1に記載の冷蔵庫。
2. A freezer compartment cooling circuit to a refrigerator compartment cooling circuit
Just before switching to the
Operate the compressor with the outlet side of the condenser closed
The refrigerator according to claim 1, wherein the refrigerator is a refrigerator.
【請求項3】 第二の蒸発器の除霜を定期的に行う除霜
ヒータを設け、冷凍室の冷却から冷蔵室の冷却に切り替
わる直前に、所定時間のあいだ流路制御手段により凝縮
器の出口側を閉止した状態で圧縮機を運転する際に、前
記除霜ヒータに通電することを特徴とする請求項2に記
載の冷蔵庫。
3. A defrost heater for periodically defrosting the second evaporator is provided, and immediately before the cooling of the freezing compartment is switched to the cooling of the refrigerating compartment, the condenser of the condenser is controlled by the flow path control means for a predetermined time. The refrigerator according to claim 2 , wherein the defrost heater is energized when the compressor is operated with the outlet side closed.
【請求項4】 冷凍室の冷却から冷蔵室の冷却に切り替
わる直前に、所定時間のあいだ流路制御手段により凝縮
器の出口側を閉止した状態で圧縮機を運転する際に、除
霜ヒータに断続的に通電することを特徴とする請求項2
に記載の冷蔵庫。
4. The defrost heater is used when the compressor is operated with the outlet side of the condenser closed by the flow path control means for a predetermined time immediately before switching from cooling of the freezer compartment to cooling of the refrigerating compartment. 3. The power is applied intermittently.
Refrigerator described in.
【請求項5】 冷凍室の冷却から冷蔵室の冷却に切り替
わる直前に、所定時間のあいだ流路制御手段により凝縮
器の出口側を閉止した状態で圧縮機を運転する際に、第
二の送風手段を運転することを特徴とする請求項2から
請求項4のいずれか一項に記載の冷蔵庫。
5. When the compressor is operated with the outlet side of the condenser closed by the flow path control means for a predetermined time immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment, the second blower is provided. From the claim 2 , characterized in that it drives the means.
The refrigerator according to claim 4 .
【請求項6】 第一の減圧手段による減圧量が0.2M
Pa以上0.5MPa以下であることを特徴とする請求
項2から請求項5のいずれか一項に記載の冷蔵庫。
6. The decompression amount by the first decompression means is 0.2M.
Claims characterized in that it is not less than Pa and not more than 0.5 MPa
The refrigerator according to any one of claims 2 to 5 .
【請求項7】 圧縮機は能力可変型であり、冷凍室の冷
却から冷蔵室の冷却に切り替わる直前に、所定時間のあ
いだ流路制御手段により凝縮器の出口側を閉止した状態
で圧縮機を運転した後、冷蔵室の冷却を開始する際、所
定時間のあいだ圧縮機を通常の回転数より高い回転数で
運転することを特徴とする請求項2から請求項6のいず
れか一項に記載の冷蔵庫。
7. The compressor has a variable capacity type, and the compressor is operated in a state in which the outlet side of the condenser is closed by the flow path control means for a predetermined time immediately before the cooling of the freezer compartment is switched to the cooling of the refrigerating compartment. 7. When the cooling of the refrigerating compartment is started after the operation, the compressor is operated at a rotational speed higher than a normal rotational speed for a predetermined time, and the compressor is operated according to any one of claims 2 to 6. Refrigerator.
【請求項8】 冷凍室の冷却から冷蔵室の冷却に切り替
わる直前に、所定時間のあいだ流路制御手段により凝縮
器の出口側を閉止した状態で圧縮機を運転した後、冷蔵
室の冷却を開始する際、所定時間のあいだ除霜ヒータに
通電することを特徴とする請求項2から請求項7のいず
れか一項に記載の冷蔵庫。
8. The cooling of the refrigerating compartment is performed immediately after the cooling of the freezing compartment is switched to the cooling of the refrigerating compartment, after the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow passage control means. The refrigerator according to any one of claims 2 to 7 , wherein when starting, the defrost heater is energized for a predetermined time.
【請求項9】 冷凍室の冷却から冷蔵室の冷却に切り替
わる直前に、所定時間のあいだ流路制御手段により凝縮
器の出口側を閉止した状態で圧縮機を運転した後、冷蔵
室の冷却を開始する際、所定時間のあいだ除霜ヒータに
断続的に通電することを特徴とする請求項2から請求項
のいずれか一項に記載の冷蔵庫。
9. Immediately before switching from cooling of the freezing compartment to cooling of the refrigerating compartment, the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means, and then the refrigerating compartment is cooled. when starting, claim claim 2, wherein the intermittently energized during defrosting heater for a predetermined time
The refrigerator according to 7 any one of.
【請求項10】 冷凍室の冷却から冷蔵室の冷却に切り
替わる直前に、所定時間のあいだ流路制御手段により凝
縮器の出口側を閉止した状態で圧縮機を運転した後、冷
蔵室の冷却を開始する際、所定時間のあいだ第二の送風
手段を運転することを特徴とする請求項2から請求項9
のいずれか一項に記載の冷蔵庫。
10. The cooling of the refrigerating compartment is performed immediately after the cooling of the freezing compartment is switched to the cooling of the refrigerating compartment, after the compressor is operated for a predetermined time while the outlet side of the condenser is closed by the flow path control means. When starting, the 2nd ventilation means is operated for a predetermined time, The Claim 2 to Claim 9 characterized by the above-mentioned.
The refrigerator according to any one of 1.
JP31056799A 1999-11-01 1999-11-01 refrigerator Expired - Fee Related JP3410408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31056799A JP3410408B2 (en) 1999-11-01 1999-11-01 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31056799A JP3410408B2 (en) 1999-11-01 1999-11-01 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001141249A Division JP3430159B2 (en) 2001-05-11 2001-05-11 refrigerator

Publications (2)

Publication Number Publication Date
JP2001133111A JP2001133111A (en) 2001-05-18
JP3410408B2 true JP3410408B2 (en) 2003-05-26

Family

ID=18006804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31056799A Expired - Fee Related JP3410408B2 (en) 1999-11-01 1999-11-01 refrigerator

Country Status (1)

Country Link
JP (1) JP3410408B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654539B2 (en) * 2001-06-19 2011-03-23 パナソニック株式会社 refrigerator
US20100043463A1 (en) * 2005-06-27 2010-02-25 Fleming Mark A Refrigerator or freezer with enhanced efficiency
JP5162930B2 (en) * 2007-03-15 2013-03-13 パナソニック株式会社 refrigerator
JP5443935B2 (en) * 2009-10-09 2014-03-19 株式会社東芝 refrigerator
US8640471B2 (en) * 2010-06-14 2014-02-04 Lg Electronics Inc. Control method for refrigerator
JP2016044856A (en) * 2014-08-21 2016-04-04 パナソニックIpマネジメント株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2001133111A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
CN1289033B (en) Refrigerator
KR101155497B1 (en) Heat pump type speed heating apparatus
CN102102933B (en) The method of refrigerator and its operation of control
US20160313054A1 (en) Refrigerator and method for controlling a refrigerator
KR101962129B1 (en) Refrigerator
JP4624223B2 (en) Refrigeration system
JP2004037065A (en) Operation control method of refrigeration system provided with two evaporators
CN104990295B (en) Air conditioner controlling device, air conditioner and air-conditioner control method
JP4178646B2 (en) refrigerator
JP3410408B2 (en) refrigerator
JP2000121178A (en) Cooling cycle and refrigerator
JP3576040B2 (en) Cooling systems and refrigerators
JP3847499B2 (en) Two-stage compression refrigeration system
TWI235814B (en) Refrigerating equipment
JP3430159B2 (en) refrigerator
JP4284789B2 (en) refrigerator
JP3746753B2 (en) Refrigeration apparatus for vehicle having two cold storages, and control method thereof
JP5901775B2 (en) Refrigeration equipment
EP2781863A2 (en) Method for controlling refrigerator
KR20120003224A (en) Refrigerant circulation system for refrigerating apparatus
JP2003207250A (en) Refrigerator
JP4108003B2 (en) Refrigeration system
JP2007085720A (en) Refrigeration system
JP2005076961A (en) Refrigeration system
JP2001201194A (en) Cold storage system with deep freezer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees