JP4405908B2 - Electrolytic solution for driving electrolytic capacitors - Google Patents

Electrolytic solution for driving electrolytic capacitors Download PDF

Info

Publication number
JP4405908B2
JP4405908B2 JP2004380121A JP2004380121A JP4405908B2 JP 4405908 B2 JP4405908 B2 JP 4405908B2 JP 2004380121 A JP2004380121 A JP 2004380121A JP 2004380121 A JP2004380121 A JP 2004380121A JP 4405908 B2 JP4405908 B2 JP 4405908B2
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic solution
electrolytic capacitor
driving
cyanoethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004380121A
Other languages
Japanese (ja)
Other versions
JP2006186215A (en
Inventor
京子 蔵
晃啓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2004380121A priority Critical patent/JP4405908B2/en
Publication of JP2006186215A publication Critical patent/JP2006186215A/en
Application granted granted Critical
Publication of JP4405908B2 publication Critical patent/JP4405908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電解コンデンサの駆動用電解液(以下、単に電解液と称す)の改良に関するものであり、特に電解コンデンサのはんだリフロー耐熱安定性向上に関するものである。   The present invention relates to an improvement of an electrolytic solution for driving an electrolytic capacitor (hereinafter simply referred to as an electrolytic solution), and particularly relates to improvement of solder reflow heat stability of the electrolytic capacitor.

従来の低圧用アルミニウム電解コンデンサでは、γ−ブチロラクトンを主成分とする溶媒に、主電解質となるフタル酸の三級アミン塩またはそのイミダゾリニウム塩などを配合してなる電解液が用いられている(例えば、特許文献1参照)。   In a conventional low-voltage aluminum electrolytic capacitor, an electrolytic solution in which a tertiary amine salt of phthalic acid or an imidazolinium salt as a main electrolyte is blended with a solvent mainly composed of γ-butyrolactone is used. (For example, refer to Patent Document 1).

この種の電解コンデンサは、ケースの開口部を、全体がゴム製のゴムパッキング、あるいは樹脂板が貼られたゴムパッキングで封口した構造を有しており、ゴムパッキングを貫通する端子を基板のランドにはんだによって接続する。
特開平8−255731号公報
This type of electrolytic capacitor has a structure in which the opening of the case is entirely sealed with a rubber packing made of rubber or a rubber packing to which a resin plate is affixed. Connect with solder.
JP-A-8-255731

近年、鉛入りのはんだに代えて鉛フリーはんだが使用される傾向にあるが、鉛フリーはんだは、従来の鉛入りはんだに比べ融点が高いため、はんだリフロー温度を上昇させる必要がある。しかしながら、アルミニウム電解コンデンサでは、ケースの開口部をゴムパッキングで封口した構造が採用されているため、はんだリフロー温度を高めると、電解液からのガス発生によってケースの内圧が上昇し、その結果、ゴムパッキングが膨張するか、またはケース底が膨張して、電解コンデンサの高さ寸法値(ゴムパッキングの外側端面からケース底までの寸法)が増加するという問題点がある。このような寸法増加が発生すると、基板に実装した電解コンデンサの高さ寸法が増大し、基板の機器への搭載に支障が発生する他、電解コンデンサの信頼性も低下するため、好ましくない。   In recent years, lead-free solder tends to be used in place of lead-containing solder. However, lead-free solder has a higher melting point than conventional lead-containing solder, so it is necessary to increase the solder reflow temperature. However, since aluminum electrolytic capacitors have a structure in which the opening of the case is sealed with rubber packing, increasing the solder reflow temperature increases the internal pressure of the case due to gas generation from the electrolyte, resulting in rubber There is a problem that the packing expands or the case bottom expands to increase the height dimension value of the electrolytic capacitor (the dimension from the outer end face of the rubber packing to the case bottom). When such an increase in dimensions occurs, the height dimension of the electrolytic capacitor mounted on the substrate increases, which causes troubles in mounting the substrate on equipment, and also reduces the reliability of the electrolytic capacitor, which is not preferable.

以上の問題点に鑑みて、本発明の課題は、はんだリフロー温度が上昇しても高さ寸法の増大を発生させない電解コンデンサの駆動用電解液を提供することにある。   In view of the above problems, an object of the present invention is to provide an electrolytic solution for driving an electrolytic capacitor that does not increase in height even when the solder reflow temperature increases.

上記課題を解決するために、本発明では、γ−ブチロラクトンを主成分とする溶媒に、少なくとも、カルボン酸またはその塩が配合された電解コンデンサの駆動用電解液において、上記溶媒に対して、さらに、以下の化学式で示される1−シアノエチル−2−ウンデシルイミダゾールが配合されていることを特徴とする。   In order to solve the above problems, in the present invention, in an electrolytic solution for driving an electrolytic capacitor in which at least a carboxylic acid or a salt thereof is blended in a solvent mainly composed of γ-butyrolactone, 1-cyanoethyl-2-undecylimidazole represented by the following chemical formula is blended.

Figure 0004405908
Figure 0004405908

本発明において、1−シアノエチル−2−ウンデシルイミダゾールの配合量は、電解液全体に対して5〜15wt%の範囲であることが好ましい。配合量が5wt%未満では高さ寸法値抑制効果が小さく、配合量が15wt%を超えると、電解液の比抵抗が上昇し、製品のtanδの増大を招く傾向にある。   In this invention, it is preferable that the compounding quantity of 1-cyanoethyl-2-undecyl imidazole is the range of 5-15 wt% with respect to the whole electrolyte solution. When the blending amount is less than 5 wt%, the height dimension value suppressing effect is small, and when the blending amount exceeds 15 wt%, the specific resistance of the electrolytic solution increases, and the tan δ of the product tends to increase.

本発明において、上記カルボン酸としてはフタル酸を用い、その塩としては三級アミン塩またはイミダゾリニウム塩を用いることが好ましい。   In the present invention, phthalic acid is preferably used as the carboxylic acid, and a tertiary amine salt or imidazolinium salt is preferably used as the salt thereof.

フタル酸の三級アミン塩としては、フタル酸水素トリメチルアミン、フタル酸水素トリエチルアミン、フタル酸水素エチルジメチルアミン、フタル酸水素ジエチルメチルアミン等を例示することができる。   Examples of the tertiary amine salt of phthalic acid include trimethylamine hydrogen phthalate, triethylamine hydrogen phthalate, ethyldimethylamine hydrogen phthalate, and diethylmethylamine hydrogen phthalate.

また、イミダゾリウム塩としてはフタル酸水素テトラエチルイミダゾリウム、フタル酸水素テトラメチルイミダゾリニウム、フタル酸水素1,3−ジメチルイミダゾリニウム、フタル酸水素1−エチル−2,3−ジメチルイミダゾリニウム、フタル酸水素2−エチル−1,3−ジメチルイミダゾリニウム、フタル酸水素1,3,4−トリメチルイミダゾリニウム、フタル酸水素2−エチル−1,3−ジメチルイミダゾリニウム、フタル酸水素1.3−ジメチル−2−n−ペンチル等を例示することができる。   Examples of imidazolium salts include tetraethylimidazolium hydrogen phthalate, tetramethylimidazolium hydrogen phthalate, 1,3-dimethylimidazolinium hydrogen phthalate, and 1-ethyl-2,3-dimethylimidazolinium hydrogen phthalate. 2-ethyl-1,3-dimethylimidazolinium phthalate, hydrogen 1,3,4-trimethylimidazolinium phthalate, 2-ethyl-1,3-dimethylimidazolinium phthalate, hydrogen phthalate Examples thereof include 1.3-dimethyl-2-n-pentyl.

本発明では、電解液に1−シアノエチル−2−ウンデシルイミダゾールが配合され、この1−シアノエチル−2−ウンデシルイミダゾールは、γ−ブチロラクトンに比べて蒸気圧が低い。このため、はんだリフロー温度が高い場合でも、電解コンデンサの内部圧力の上昇を抑制することができるので、ケース底の膨張やゴムパッキングの膨張を防止でき、電解コンデンサの高さ寸法値の増加を防止することができる。   In the present invention, 1-cyanoethyl-2-undecylimidazole is blended in the electrolytic solution, and this 1-cyanoethyl-2-undecylimidazole has a lower vapor pressure than γ-butyrolactone. For this reason, even when the solder reflow temperature is high, the rise in the internal pressure of the electrolytic capacitor can be suppressed, so that expansion of the bottom of the case and expansion of the rubber packing can be prevented, and an increase in the height dimension value of the electrolytic capacitor can be prevented. can do.

本発明では、γ−ブチロラクトンを主成分とする溶媒に、少なくとも、カルボン酸またはその塩が配合された電解コンデンサの駆動用電解液において、上記溶媒に対して、さらに、上記の1−シアノエチル−2−ウンデシルイミダゾールを配合したことを特徴とする。
ここで、カルボン酸としてはフタル酸を用い、その塩としては三級アミン塩またはイミダゾリニウム塩を用いることが好ましい。カルボン酸としてフタル酸を用いれば、マレイン酸を用いた場合と比較して電解コンデンサのtanδの経時的な増大を抑えることができるからである。
また、1−シアノエチル−2−ウンデシルイミダゾールの配合量は、電解液全体に対して5〜15wt%までの範囲であることが好ましい。
In the present invention, in an electrolyte for driving an electrolytic capacitor in which at least a carboxylic acid or a salt thereof is blended in a solvent containing γ-butyrolactone as a main component, the 1-cyanoethyl-2 is further added to the solvent. -It is characterized by blending undecylimidazole.
Here, phthalic acid is preferably used as the carboxylic acid, and a tertiary amine salt or imidazolinium salt is preferably used as the salt thereof. This is because if phthalic acid is used as the carboxylic acid, an increase in tan δ of the electrolytic capacitor over time can be suppressed as compared with the case where maleic acid is used.
Moreover, it is preferable that the compounding quantity of 1-cyanoethyl-2-undecylimidazole is the range to 5-15 wt% with respect to the whole electrolyte solution.

このように構成した電解液は、それをコンデンサ素子に含浸した後、コンデンサ素子をケースに収納するとともに、ケースの開口部を、全体がゴム製のゴムパッキング、あるいは樹脂板が貼られたゴムパッキングで封口する。このように構成した電解コンデンサは、ゴムパッキングを貫通する端子を基板のランドにはんだ付けすることで接続する。   The electrolytic solution thus configured is impregnated in the capacitor element, and then the capacitor element is accommodated in the case, and the opening of the case is entirely made of rubber or rubber packing with a resin plate attached. Seal with. The electrolytic capacitor configured as described above is connected by soldering a terminal penetrating the rubber packing to a land of the substrate.

ここで、本形態の電解コンデンサでは、電解液に1−シアノエチル−2−ウンデシルイミダゾールが配合され、この1−シアノエチル−2−ウンデシルイミダゾールはγ−ブチロラクトンに比べて蒸気圧が低い。
このため、鉛フリーはんだを用いて実装したためにはんだリフロー温度が高い場合でも、電解コンデンサの内部圧力の上昇を抑制することができるので、ケース底の膨張やゴムパッキングの膨張を防止でき、電解コンデンサの高さ寸法値の増加を防止することができる。
Here, in the electrolytic capacitor of this embodiment, 1-cyanoethyl-2-undecylimidazole is blended in the electrolytic solution, and this 1-cyanoethyl-2-undecylimidazole has a lower vapor pressure than γ-butyrolactone.
For this reason, even if the solder reflow temperature is high because it is mounted using lead-free solder, the rise in the internal pressure of the electrolytic capacitor can be suppressed, so that expansion of the bottom of the case and expansion of the rubber packing can be prevented. It is possible to prevent an increase in the height dimension value.

以下、実施例に基づいて、本発明をより具体的に説明する。まず、表1に示す組成で電解液を調合し、その電解液を用いて、50WV/100μFのアルミニウム電解コンデンサを製作し、リフロー耐熱性試験を実施した。リフロー耐熱性試験としては、250℃31秒間放置後のアルミニウム電解コンデンサの高さ寸法値の変化を測定した。その測定結果を表1に示す。   Hereinafter, based on an Example, this invention is demonstrated more concretely. First, an electrolytic solution was prepared with the composition shown in Table 1, and a 50 WV / 100 μF aluminum electrolytic capacitor was manufactured using the electrolytic solution, and a reflow heat resistance test was performed. As a reflow heat resistance test, a change in the height dimension value of the aluminum electrolytic capacitor after being left at 250 ° C. for 31 seconds was measured. The measurement results are shown in Table 1.

Figure 0004405908
Figure 0004405908

表1に基づいて、まず、フタル酸の三級アミン塩としてフタル酸トリエチルアミンを用いた場合の実施例1〜8について説明する。1−シアノエチル−2−ウンデシルイミダゾールを配合していないもの(比較例1)と、例えば、1−シアノエチル−2−ウンデシルイミダゾールを10wt%配合したもの(実施例5)を比較すると、実施例5での寸法値変化率の方が極めて小さく、高さ寸法変化率を2%以下に抑制することできた。その他の実施例でも同様である。
但し、1−シアノエチル−2−ウンデシルイミダゾールの配合量が5wt%未満では高さ寸法値抑制効果が小さく(実施例1、2)、また、15wt%を超える場合(実施例8)では、電解液の比抵抗が上昇し、製品のtanδの増大を招くため、好ましくない。よって、1−シアノエチル−2−ウンデシルイミダゾールの配合量は5〜15wt%の範囲が好ましい。
Based on Table 1, first, Examples 1 to 8 in the case where triethylamine phthalate is used as the tertiary amine salt of phthalic acid will be described. When comparing the one not containing 1-cyanoethyl-2-undecylimidazole (Comparative Example 1) with the one containing 10 wt% of 1-cyanoethyl-2-undecylimidazole (Example 5), Example The dimension value change rate at 5 was much smaller, and the height dimension change rate could be suppressed to 2% or less. The same applies to other embodiments.
However, when the blending amount of 1-cyanoethyl-2-undecylimidazole is less than 5 wt%, the height dimension value suppressing effect is small (Examples 1 and 2), and when it exceeds 15 wt% (Example 8), electrolysis is performed. This is not preferable because the specific resistance of the liquid is increased and the tan δ of the product is increased. Therefore, the blending amount of 1-cyanoethyl-2-undecylimidazole is preferably in the range of 5 to 15 wt%.

また、フタル酸の三級アミン塩をフタル酸水素トリメチルアミンとした場合(実施例9〜15)、およびイミダゾリニウム塩として、フタル酸テトラエチルイミダゾリウムを用いた場合(実施例14〜21)でも上記と同様、1−シアノエチル−2−ウンデシルイミダゾールによる高さ寸法値抑制効果が見られた。   In addition, when the tertiary amine salt of phthalic acid is trimethylamine phthalate (Examples 9 to 15), and when imidazolinium salt is tetraethylimidazolium phthalate (Examples 14 to 21), Similarly, the height dimension value suppression effect by 1-cyanoethyl-2-undecylimidazole was seen.

尚、1−シアノエチル−2−ウンデシルイミダゾールを配合した効果は、上記実施例に限定されるものではなく、先に記載したフタル酸の三級アミン塩やそのイミダゾリニウム塩を単独または複数配合した電解液に用いても同等の効果があった。
In addition, the effect of blending 1-cyanoethyl-2-undecylimidazole is not limited to the above-described examples, and the above-described tertiary amine salt of phthalic acid or its imidazolinium salt is blended alone or in combination. Even when used in the electrolyte solution, the same effect was obtained.

Claims (3)

γ−ブチロラクトンを主成分とする溶媒に、少なくとも、カルボン酸またはその塩が配合された電解コンデンサの駆動用電解液において、
上記溶媒に対して、さらに、以下の化学式で示される1−シアノエチル−2−ウンデシルイミダゾールが配合されていることを特徴とする電解コンデンサの駆動用電解液。
Figure 0004405908
In an electrolytic solution for driving an electrolytic capacitor in which at least a carboxylic acid or a salt thereof is blended in a solvent containing γ-butyrolactone as a main component,
An electrolytic solution for driving an electrolytic capacitor, wherein 1-cyanoethyl-2-undecylimidazole represented by the following chemical formula is further blended with the solvent.
Figure 0004405908
請求項1において、1−シアノエチル−2−ウンデシルイミダゾールの配合量が、電解液全体に対して5〜15wt%の範囲であることを特徴とする電解コンデンサ用駆動用電解液。   2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the amount of 1-cyanoethyl-2-undecylimidazole is in the range of 5 to 15 wt% with respect to the entire electrolytic solution. 請求項1または請求項2において、カルボン酸がフタル酸であり、その塩が三級アミン塩またはイミダゾリニウム塩であることを特徴とする電解コンデンサの駆動用電解液。
3. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the carboxylic acid is phthalic acid, and the salt thereof is a tertiary amine salt or an imidazolinium salt.
JP2004380121A 2004-12-28 2004-12-28 Electrolytic solution for driving electrolytic capacitors Expired - Fee Related JP4405908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380121A JP4405908B2 (en) 2004-12-28 2004-12-28 Electrolytic solution for driving electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380121A JP4405908B2 (en) 2004-12-28 2004-12-28 Electrolytic solution for driving electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2006186215A JP2006186215A (en) 2006-07-13
JP4405908B2 true JP4405908B2 (en) 2010-01-27

Family

ID=36739094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380121A Expired - Fee Related JP4405908B2 (en) 2004-12-28 2004-12-28 Electrolytic solution for driving electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP4405908B2 (en)

Also Published As

Publication number Publication date
JP2006186215A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4900456B2 (en) Aluminum electrolytic capacitor
JP4405908B2 (en) Electrolytic solution for driving electrolytic capacitors
TWI420551B (en) Electrolytes and electrolytic capacitors using them
JP4405907B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH11126732A (en) Aluminium electrolytic capacitor
JP4637683B2 (en) Electrolytic solution for electrolytic capacitor drive
JPS6193610A (en) Electrolytic liquid for driving electrolytic capacitor
JP4460476B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4226123B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP4653595B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4039946B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2002217068A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the same
JP4468830B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2010171305A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same
JP3642195B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor using the same
JP4745471B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4834207B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4745470B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4555153B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP4458208B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2005327945A (en) Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using same
JP2000077271A (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP4555154B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP4458209B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2002280268A (en) Electrolyte for drive for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4405908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees