JP4555154B2 - Electrolytic solution for electrolytic capacitor and electrolytic capacitor - Google Patents

Electrolytic solution for electrolytic capacitor and electrolytic capacitor Download PDF

Info

Publication number
JP4555154B2
JP4555154B2 JP2005152829A JP2005152829A JP4555154B2 JP 4555154 B2 JP4555154 B2 JP 4555154B2 JP 2005152829 A JP2005152829 A JP 2005152829A JP 2005152829 A JP2005152829 A JP 2005152829A JP 4555154 B2 JP4555154 B2 JP 4555154B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrolytic
electrolytic solution
capacitor
benzothiazolone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005152829A
Other languages
Japanese (ja)
Other versions
JP2006332279A (en
Inventor
英俊 原
晃啓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005152829A priority Critical patent/JP4555154B2/en
Publication of JP2006332279A publication Critical patent/JP2006332279A/en
Application granted granted Critical
Publication of JP4555154B2 publication Critical patent/JP4555154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電解コンデンサの駆動用電解液(以下、単に電解液と称す)、および電解コンデンサの改良に関するものであり、特にはんだフロー/リフローでのアルミニウム電解コンデンサの耐熱性を改善する電解液に関するものである。   The present invention relates to an electrolytic solution for driving an electrolytic capacitor (hereinafter simply referred to as an electrolytic solution) and an electrolytic capacitor, and more particularly to an electrolytic solution for improving the heat resistance of an aluminum electrolytic capacitor in solder flow / reflow. Is.

従来、低圧用アルミニウム電解コンデンサでは、γ−ブチロラクトンを主溶媒とし、フタル酸トリエチルアミンなどのフタル酸の三級アミン塩やフタル酸テトラエチルイミダゾリニウムなどのイミダゾリニウム塩を主溶質として配合された電解液が使用されている(例えば、特許文献1参照)。
特開平8−255731号公報
Conventionally, aluminum electrolytic capacitors for low pressures are composed of γ-butyrolactone as the main solvent and a tertiary amine salt of phthalic acid such as triethylamine phthalate or an imidazolinium salt such as tetraethylimidazolinium phthalate as the main solute. A liquid is used (see, for example, Patent Document 1).
JP-A-8-255731

近年、地球環境保全対策の一環として、はんだの鉛フリー化が進められている。鉛フリーはんだは従来の鉛入りはんだに比べ融点が高いため、鉛フリーはんだを用いる場合には、フロー/リフローの温度を鉛入りはんだを用いた場合より高く設定する必要がある。このため、鉛フリーはんだを用いたフロー/リフロー工程にし、アルミニウム電解コンデンサを基板実装したとき、その熱により電解液の蒸気圧が上昇し、アルミニウム電解コンデンサの内圧が上昇する。その結果、封口部や圧力弁に大きな圧力が加わって封口部や圧力弁が外側に膨らむことがあり、このような膨らみは、製品の高さ寸法を増大させるという問題点がある。   In recent years, lead-free solder has been promoted as part of global environmental conservation measures. Since lead-free solder has a higher melting point than conventional lead-containing solder, when lead-free solder is used, the flow / reflow temperature must be set higher than when lead-containing solder is used. Therefore, when a flow / reflow process using lead-free solder is performed and the aluminum electrolytic capacitor is mounted on the substrate, the vapor pressure of the electrolytic solution increases due to the heat, and the internal pressure of the aluminum electrolytic capacitor increases. As a result, a large pressure is applied to the sealing portion and the pressure valve, and the sealing portion and the pressure valve may swell outward, and such a bulge increases the height of the product.

以上の問題点に鑑みて、本発明の課題は、鉛フリーはんだの使用などに起因してフロー/リフローの温度を高く設定した場合においても高さ寸法が変化することを回避可能なアルミニウム電解コンデンサの駆動用電解液およびアルミニウム電解コンデンサを提供することにある。   In view of the above problems, an object of the present invention is to provide an aluminum electrolytic capacitor capable of avoiding a change in height even when the flow / reflow temperature is set high due to the use of lead-free solder. An electrolytic solution for driving and an aluminum electrolytic capacitor are provided.

上記課題を解決するために、本発明に係るアルミニウム電解コンデンサでは、γ−ブチロラクトンを主溶媒とし、少なくとも、有機カルボン酸またはその塩と、以下の化学式で示される2(3H)−ベンゾチアゾロンとが配合され、2(3H)−ベンゾチアゾロンの配合量が、電解液全体に対して5〜10wt%である電解液が用いられていることを特徴とする。 In order to solve the above problems, in the aluminum electrolytic capacitor according to the present invention, γ-butyrolactone is used as a main solvent, and at least an organic carboxylic acid or a salt thereof and 2 (3H) -benzothiazolone represented by the following chemical formula are blended. In addition , an electrolytic solution in which the blending amount of 2 (3H) -benzothiazolone is 5 to 10 wt% with respect to the entire electrolytic solution is used.

Figure 0004555154
Figure 0004555154

配合量が5.0wt%未満では、耐熱試験やフロー/リフローに起因する高さ寸法の変化を抑制する効果が小さい。これに対して、配合量が10.0wt%を超える場合は、高温負荷試験後におけるtanδの絶対値が大きいという傾向がある。   When the blending amount is less than 5.0 wt%, the effect of suppressing the change in height due to the heat resistance test or flow / reflow is small. On the other hand, when the blending amount exceeds 10.0 wt%, the absolute value of tan δ after the high temperature load test tends to be large.

本発明において、前記有機カルボン酸としては、アジピン酸、セバシン酸、アゼライン酸、安息香酸、フタル酸、マレイン酸等を例示することができる。   In the present invention, examples of the organic carboxylic acid include adipic acid, sebacic acid, azelaic acid, benzoic acid, phthalic acid, maleic acid and the like.

また、前記有機カルボン酸の塩としては、アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミン等の一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等の四級アンモニウム塩等を例示することができる。   Examples of the salt of the organic carboxylic acid include ammonium salts, primary amine salts such as methylamine, ethylamine, and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine, and diethylamine, trimethylamine, and diethylmethylamine. And tertiary amine salts such as ethyldimethylamine and triethylamine, and quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium.

本発明において、初期の抵抗値あるいは高温信頼性という観点からすれば、前記有機カルボン酸またはその塩としては、フタル酸の三級アミン塩およびフタル酸のイミダゾリニウム塩のうちの少なくとも一方を用いることが好ましい。   In the present invention, from the viewpoint of initial resistance value or high temperature reliability, the organic carboxylic acid or a salt thereof is at least one of a tertiary amine salt of phthalic acid and an imidazolinium salt of phthalic acid. It is preferable.

γ−ブチロラクトンを主溶媒とし、2(3H)−ベンゾチアゾロンを配合した本発明による電解液は、従来の電解液に比べ蒸気圧が低い。このため、鉛フリーはんだを使用するためにフロー/リフローの温度設定を高めた場合でも、アルミニウム電解コンデンサの内部圧力の上昇を抑制でき、アルミニウム電解コンデンサの高さ寸法の増大を抑えることができる。   The electrolytic solution according to the present invention containing γ-butyrolactone as a main solvent and 2 (3H) -benzothiazolone has a lower vapor pressure than the conventional electrolytic solution. For this reason, even when the flow / reflow temperature setting is increased because lead-free solder is used, an increase in the internal pressure of the aluminum electrolytic capacitor can be suppressed, and an increase in the height of the aluminum electrolytic capacitor can be suppressed.

本発明を実施例に基づき、より具体的に説明する。まず、表1に示す組成で電解液を調合した後、φ8×11.5mmL、定格50V/100μFのアルミニウム電解コンデンサを各20個作製した。次に、鉛フリーはんだを使用したフロー/リフローでの耐熱性を評価するために、実施例と従来例の製品各10個を280℃の恒温槽中に2分間放置(耐熱試験)した後、室温で放冷し、耐熱試験前後における製品高さの変化率を調査した。その結果を表1に示す。
また、残りの各10個については、tanδの初期値を計測した後、105℃の恒温槽中で定格電圧を2000時間印加し、しかる後にtanδを測定した。その結果を表1に示す。
The present invention will be described more specifically based on examples. First, after preparing an electrolytic solution with the composition shown in Table 1, 20 aluminum electrolytic capacitors each having a diameter of 8 × 11.5 mmL and a rating of 50V / 100 μF were prepared. Next, in order to evaluate the heat resistance in the flow / reflow using lead-free solder, each of the 10 products of the example and the conventional example was left in a constant temperature bath at 280 ° C. for 2 minutes (heat resistance test). The product was allowed to cool at room temperature, and the rate of change in product height before and after the heat resistance test was investigated. The results are shown in Table 1.
Further, for each of the remaining 10 pieces, after measuring the initial value of tan δ, a rated voltage was applied for 2000 hours in a thermostat at 105 ° C., and then tan δ was measured. The results are shown in Table 1.

Figure 0004555154
Figure 0004555154

表1に示すように、2(3H)−ベンゾチアゾロンを添加しない従来例1、2に係るアルミニウム電解コンデンサは、耐熱試験により、高さ寸法が8〜10%増大した。これに対して、2(3H)−ベンゾチアゾロンを配合した実施例1〜6に係るアルミニウム電解コンデンサは、耐熱試験後の製品高さの変化率が、従来例より著しく小さい。   As shown in Table 1, the aluminum electrolytic capacitors according to Conventional Examples 1 and 2 to which 2 (3H) -benzothiazolone was not added increased in height by 8 to 10% by the heat resistance test. On the other hand, the aluminum electrolytic capacitors according to Examples 1 to 6 blended with 2 (3H) -benzothiazolone have a remarkably smaller change rate of the product height after the heat resistance test than the conventional example.

ここで、2(3H)−ベンゾチアゾロンの配合量は、電解液全体に対して5.0〜10.0wt%の範囲が好ましい。配合量が5.0wt%未満では、耐熱試験での高さ寸法変化を抑制する効果が少ない。これに対して、配合量が10.0wt%を超える場合は、高温負荷試験での2000時間後におけるtanδの絶対値が大きい傾向にあり、低インピーダンス特性が求められるアルミニウム電解コンデンサの用途には不向きとなる。   Here, the blending amount of 2 (3H) -benzothiazolone is preferably in the range of 5.0 to 10.0 wt% with respect to the entire electrolytic solution. When the blending amount is less than 5.0 wt%, the effect of suppressing the change in the height dimension in the heat resistance test is small. On the other hand, when the blending amount exceeds 10.0 wt%, the absolute value of tan δ after 2000 hours in the high temperature load test tends to be large, which is not suitable for the use of an aluminum electrolytic capacitor requiring low impedance characteristics. It becomes.

なお、上記実施例では、有機カルボン酸またはその塩としては、フタル酸の三級アミン塩、フタル酸のイミダゾリニウム塩を用いたが、先に例示した他の有機カルボン酸またその塩を用いた場合でも、2(3H)−ベンゾチアゾロンを添加すれば耐熱性を向上することができる。
また、副溶媒として、エチレングリコール、プロピレングリコール等のグリコール類、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミド等のアミド類、エチレンカーボネート、プロピレンカーボネート、イソブチレンカーボネート等の炭酸類、アセトニトリル等のニトリル類、ジメチルスルホキシド等のオキシド類、エーテル類、ケトン類、エステル類、スルホラン、スルホラン誘導体、水等の公知の溶媒を混合することができる。
さらに、特性改善のため、その他の溶質として、リン酸化合物、ホウ酸化合物、多価アルコール類、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコールのランダム共重合体およびブロック共重合体に代表される高分子化合物、ニトロ化合物等の公知の溶質を溶解することができる。
In the above examples, as the organic carboxylic acid or a salt thereof, a tertiary amine salt of phthalic acid or an imidazolinium salt of phthalic acid was used. However, other organic carboxylic acids or salts thereof exemplified above were used. Even in such a case, the heat resistance can be improved by adding 2 (3H) -benzothiazolone.
In addition, as cosolvents, glycols such as ethylene glycol and propylene glycol, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethyl Amides such as acetamide, N-ethylacetamide, N, N-diethylacetamide, hexamethylphosphoric amide, carbonates such as ethylene carbonate, propylene carbonate, isobutylene carbonate, nitriles such as acetonitrile, oxides such as dimethyl sulfoxide, Known solvents such as ethers, ketones, esters, sulfolane, sulfolane derivatives and water can be mixed.
Furthermore, as other solutes for improving properties, phosphoric acid compounds, boric acid compounds, polyhydric alcohols, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyoxyethylene polyoxypropylene glycol random copolymers and block copolymers Known solutes such as polymer compounds represented by coalescence, nitro compounds and the like can be dissolved.

Claims (2)

γ−ブチロラクトンを主成分とする溶媒に、少なくとも、有機カルボン酸またはその塩と、以下の化学式で示される2(3H)−ベンゾチアゾロンとを配合し
前記2(3H)−ベンゾチアゾロンの配合量が、電解液全体に対して5〜10wt%であることを特徴とする電解コンデンサの駆動用電解液。
Figure 0004555154
In a solvent containing γ-butyrolactone as a main component, at least an organic carboxylic acid or a salt thereof and 2 (3H) -benzothiazolone represented by the following chemical formula are blended :
2. The electrolytic solution for driving an electrolytic capacitor, wherein the blending amount of 2 (3H) -benzothiazolone is 5 to 10 wt% with respect to the entire electrolytic solution.
Figure 0004555154
請求項1記載の駆動用電解液を用いたことを特徴とする電解コンデンサ。   An electrolytic capacitor using the driving electrolytic solution according to claim 1.
JP2005152829A 2005-05-25 2005-05-25 Electrolytic solution for electrolytic capacitor and electrolytic capacitor Expired - Fee Related JP4555154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152829A JP4555154B2 (en) 2005-05-25 2005-05-25 Electrolytic solution for electrolytic capacitor and electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152829A JP4555154B2 (en) 2005-05-25 2005-05-25 Electrolytic solution for electrolytic capacitor and electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006332279A JP2006332279A (en) 2006-12-07
JP4555154B2 true JP4555154B2 (en) 2010-09-29

Family

ID=37553663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152829A Expired - Fee Related JP4555154B2 (en) 2005-05-25 2005-05-25 Electrolytic solution for electrolytic capacitor and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4555154B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114206A (en) * 1985-11-14 1987-05-26 旭硝子株式会社 Electrolyte for electrolytic capacitor
JPS63293911A (en) * 1987-05-27 1988-11-30 Nichicon Corp Electrolyte for driving aluminum electrolytic capacitor
JP2003142088A (en) * 2001-11-07 2003-05-16 Daiwa Kasei Kenkyusho:Kk Electrode material for secondary battery by plating method and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114206A (en) * 1985-11-14 1987-05-26 旭硝子株式会社 Electrolyte for electrolytic capacitor
JPS63293911A (en) * 1987-05-27 1988-11-30 Nichicon Corp Electrolyte for driving aluminum electrolytic capacitor
JP2003142088A (en) * 2001-11-07 2003-05-16 Daiwa Kasei Kenkyusho:Kk Electrode material for secondary battery by plating method and its manufacturing method

Also Published As

Publication number Publication date
JP2006332279A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4555154B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP4555153B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP4637683B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4460476B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4039946B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4653595B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4589148B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4468830B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4520286B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4271526B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2006186217A (en) Electrolyte for driving aluminium electrolytic capacitor
JP4555152B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3963775B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4637701B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4612248B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4441400B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4150249B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4541230B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4404761B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4090907B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4641455B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2009054691A (en) Electrolytic solution for driving electrolytic capacitor
JP2006186208A (en) Driving electrolyte of electrolytic capacitor
JP2006156707A (en) Electrolytic liquid for driving electrolytic capacitor
JP2004235593A (en) Electrolyte for driving electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4555154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees