JP4405857B2 - Adsorbent - Google Patents

Adsorbent Download PDF

Info

Publication number
JP4405857B2
JP4405857B2 JP2004168506A JP2004168506A JP4405857B2 JP 4405857 B2 JP4405857 B2 JP 4405857B2 JP 2004168506 A JP2004168506 A JP 2004168506A JP 2004168506 A JP2004168506 A JP 2004168506A JP 4405857 B2 JP4405857 B2 JP 4405857B2
Authority
JP
Japan
Prior art keywords
suction
carbon
porous carbon
adsorbent
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004168506A
Other languages
Japanese (ja)
Other versions
JP2005347689A (en
Inventor
川 真 史 山
波 浩 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanken Seal Seiko Co Ltd
Original Assignee
Tanken Seal Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanken Seal Seiko Co Ltd filed Critical Tanken Seal Seiko Co Ltd
Priority to JP2004168506A priority Critical patent/JP4405857B2/en
Publication of JP2005347689A publication Critical patent/JP2005347689A/en
Application granted granted Critical
Publication of JP4405857B2 publication Critical patent/JP4405857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

この発明は、対象物を吸引保持するための吸着体に関する。   The present invention relates to an adsorbent for sucking and holding an object.

半導体製造で用いられる半導体ウェーハや、液晶製造で用いられる薄板状のガラス基板等の製造工程に用いられる装置には、半導体ウェーハやガラス基板を固定するための真空吸着装置が備えられており、その固定治具として吸着パッドと称する吸着体が使用されている。   Devices used for manufacturing processes such as semiconductor wafers used in semiconductor manufacturing and thin glass substrates used in liquid crystal manufacturing are equipped with vacuum suction devices for fixing semiconductor wafers and glass substrates. An adsorbent called a suction pad is used as a fixing jig.

半導体製造や液晶製造の分野では最近、大型化が進んでおり、例えば550×650mmのサイズの基板を製造するラインが本格的な稼動に入ってきている他、650×830mmの基板の開発、さらに次世代では、700×900mm程度の大きな基板も採用されると言われている。基板の大型化により吸着パッドも大型化が必要となっている。   Recently, in the field of semiconductor manufacturing and liquid crystal manufacturing, the size has been increasing. For example, a line for manufacturing a substrate having a size of 550 × 650 mm has been put into full-scale operation, development of a substrate of 650 × 830 mm, In the next generation, it is said that a large substrate of about 700 × 900 mm is also adopted. As the size of the substrate increases, the size of the suction pad also needs to be increased.

この吸着パッドとして、従来はステンレス等の鉄系材料に貫通孔を施したものが使用されていたが、上記したように吸着パッドの大型化に伴い、重量が大きくなりすぎ、駆動に要するエネルギーが大きくなるという問題があった。   Conventionally, a suction pad with a through hole made of an iron-based material such as stainless steel has been used. However, as the suction pad becomes larger as described above, the weight becomes too large and the energy required for driving is reduced. There was a problem of getting bigger.

そのため、大型装置には、軽く且つ寸法安定性が良く、大型化しやすいポーラスセラミックを用いた吸着パッドが使用されるようになってきている(文献1)。   For this reason, suction pads using porous ceramics that are light, have good dimensional stability, and are easy to increase in size have come to be used (Reference 1).

特開平6−8086号JP-A-6-8086

しかし、多孔質セラミックを用いた吸着パッドは導電性を有しておらず、近年の精密な製造工程には適合しなくなってきている問題がある。
例えば、吸着パッドに半導体ウェーハを固定してダイシングを行う場合には、ダイシングに先立って、上下動の制御(Z軸制御)を行う際の基準位置を定める作業が行われており、導電性を持たせた切削ブレードが吸着パッドに接触することにより、切削ブレードから吸着パッドへ電流が流れ、位置を記憶して半導体ウェーハの切り込み深さを精密に制御することが行われている。また、半導体ウェーハなどの場合には、この他にも種々の位置決め等が必要である。
このような工程には、導電性のないポーラスセラミックの吸着パッドは、上記したような位置決め制御の障害になる場合がある。
本発明は上記従来技術の問題を解決することを目的とする。
However, the suction pad using the porous ceramic does not have conductivity, and there is a problem that it is not suitable for the recent precise manufacturing process.
For example, when dicing with a semiconductor wafer fixed to the suction pad, prior to dicing, work to determine the reference position for performing vertical movement control (Z-axis control) is performed, and conductivity is reduced. When the held cutting blade comes into contact with the suction pad, a current flows from the cutting blade to the suction pad, the position is stored, and the cutting depth of the semiconductor wafer is precisely controlled. In the case of a semiconductor wafer or the like, various positioning and the like are necessary.
In such a process, a non-conductive porous ceramic suction pad may become an obstacle to positioning control as described above.
The object of the present invention is to solve the problems of the prior art.

上記目的を達成するために、本発明は、吸引手段に接続され、対象物を吸引保持するための吸着体であって、対象物を吸引保持する吸着面と、前記吸引手段により吸引される吸引面とを有する板状の通気性を有するポーラスカーボンと、該ポーラスカーボンの前記吸着面と吸引面以外の部分を塞いで当該部分を不通気とする不通気体と、前記吸引面に連通し、吸引手段に接続される吸引口と、を備え
前記ポーラスカーボンが自己焼結性炭素で形成され、該自己焼結性炭素の骨格表面が熱硬化性樹脂で被膜されている、ことを特徴とする。また請求項2の発明においては、前記ポーラスカーボンが自己焼結性炭素で形成され、該自己焼結性炭素の骨格表面がガラス状カーボンで被膜されている、ことを特徴とする。
以上の構成において、板状のポーラスカーボンを主体に構成されるため、軽量で、構造が簡単で且つ導電性を有する吸着体を提供することが可能である。また、該ポーラスカーボンは熱硬化性樹脂又はガラス状カーボンで被膜されているため、発塵を抑制することができる、などの効果がある。
前記不通気体は、前記板状のポーラスカーボンに封孔処理を施した封孔処理部とすることが可能である。
また板状のポーラスカーボンを支持する支持材を用いて、不通気体としても良く、この場合前記吸着面と連続する不通気面を有し、該不通気面を形成する部材が不通気カーボンであることが好ましい。
In order to achieve the above-mentioned object, the present invention is an adsorption body for sucking and holding an object, which is connected to a suction means, and a suction surface for sucking and holding the object, and suction sucked by the suction means A plate-shaped porous carbon having a surface, a non-breathing body that blocks the portion other than the adsorption surface and the suction surface of the porous carbon to make the portion non-ventilated, and communicates with the suction surface for suction. A suction port connected to the means ,
The porous carbon is formed of self-sinterable carbon, and the skeleton surface of the self-sinterable carbon is coated with a thermosetting resin. The invention of claim 2 is characterized in that the porous carbon is formed of self-sinterable carbon, and the skeleton surface of the self-sinterable carbon is coated with glassy carbon.
In the above configuration, since the plate-shaped porous carbon is mainly used, it is possible to provide an adsorbent that is lightweight, has a simple structure, and has conductivity. Further, since the porous carbon is coated with a thermosetting resin or glassy carbon, there is an effect that dust generation can be suppressed.
The air-impermeable body can be a sealing treatment portion obtained by subjecting the plate-like porous carbon to a sealing treatment.
Further, a support material that supports the plate-like porous carbon may be used as an air-impermeable body. In this case, the air-permeable surface is continuous with the adsorption surface, and the member that forms the air-impermeable surface is an air-impermeable carbon. It is preferable.

本発明の吸着体は、導電性を有し、軽量で大型化が可能である効果がある。   The adsorbent of the present invention has conductivity and is effective in being lightweight and capable of being enlarged.

以下本発明の実施形態を説明する。
<第1実施形態>
図1において、この吸着パッドXはポーラスカーボン板1を主体に構成されている。ポーラスカーボン板1は板状をなしており、基台7上に装着されている。該ポーラスカーボン板1の表面は対象物を吸着する吸着面2になっており、裏面は吸引面3になっている。
Embodiments of the present invention will be described below.
<First Embodiment>
In FIG. 1, the suction pad X is mainly composed of a porous carbon plate 1. The porous carbon plate 1 has a plate shape and is mounted on a base 7. The surface of the porous carbon plate 1 is an adsorption surface 2 for adsorbing an object, and the back surface is an attraction surface 3.

ポーラスカーボン板1の裏面は基台7に当接し、基台7にはポーラスカーボン板1の裏面に接触しない空隙5が設けられ、該空隙5に相当するポーラスカーボン板1の裏面部分が吸引面3になっている。
空隙5に連通して、吸引口6が形成され、この吸引口6にポンプなどの吸引手段(図示せず)を接続して、吸引を行うようになっている。
The back surface of the porous carbon plate 1 abuts on the base 7, and the base 7 is provided with a gap 5 that does not contact the back surface of the porous carbon plate 1. It is three.
A suction port 6 is formed in communication with the gap 5, and suction means (not shown) such as a pump is connected to the suction port 6 to perform suction.

ポーラスカーボン板1の側端面20と表面及び裏面の縁部には封孔処理部4が形成され、この部分が不通気になっている。また、前記吸引面3を除いたポーラスカーボン板1の裏面も基台7に密着して不通気になっている。
以上の構成により、吸着面2と吸引面3のみが通気部分となり、吸引口6から空隙5を介して吸引面3を吸引すると、吸着面2が吸着部として機能し、吸着面2に対象物を吸着保持することができるようになっている。
A sealing treatment portion 4 is formed on the side end face 20 of the porous carbon plate 1 and the edge portions of the front and back surfaces, and this portion is impermeable. Further, the back surface of the porous carbon plate 1 excluding the suction surface 3 is also in close contact with the base 7 and is impermeable.
With the above configuration, only the suction surface 2 and the suction surface 3 serve as ventilation portions, and when the suction surface 3 is sucked from the suction port 6 through the gap 5, the suction surface 2 functions as a suction portion, and the suction surface 2 has an object. Can be adsorbed and held.

前記封孔処理部4は、熱硬化性樹脂をハケ等で塗布、または布等に染み込ませて塗布し、硬化処理をさせ、気孔へ樹脂を染みこませることにより形成できる。また、硬化処理後、700℃以上で炭化処理を行っても良い。   The sealing treatment section 4 can be formed by applying a thermosetting resin with a brush or the like, or by soaking in a cloth or the like, applying a curing treatment, and soaking the resin into the pores. Moreover, you may carbonize at 700 degreeC or more after a hardening process.

上記構成の吸着パッドXは、ポーラスカーボン板1に基台7を装着した極めて簡単な構成であるため、軽量化が可能となる。また、単一材で形成されるため熱膨張差による歪み、変形、剥離がなくなる。   Since the suction pad X having the above-described configuration has a very simple configuration in which the base 7 is mounted on the porous carbon plate 1, the weight can be reduced. In addition, since it is formed of a single material, distortion, deformation, and peeling due to a difference in thermal expansion are eliminated.

吸着材と外枠とで構成した吸着パッドの場合、異種材料で形成されることによる熱膨張率の相違があり、そのため吸着部が外れたり、歪みが発生したりする。また、熱膨張差や硬度差による研削加工歪み等により外枠と吸着部とに段差が生じて平坦度が悪くなったり、吸着力が低下する、等の欠点があるが、上記構成の場合、これらの欠点を排除できる。   In the case of a suction pad composed of an adsorbent and an outer frame, there is a difference in coefficient of thermal expansion due to the formation of different materials, so that the suction part is detached or distortion occurs. In addition, there is a disadvantage that the outer frame and the suction part are stepped due to grinding distortion due to thermal expansion difference or hardness difference and the flatness is deteriorated, or the suction force is reduced. These drawbacks can be eliminated.

更に封孔処理部4の熱硬化性樹脂のコーティングはハケ塗りするため非常に作業性に優れている上、任意の位置をコーティング出来る。
また、遮蔽膜として従来使用されているフッ素コーティングは浸透せず、コーティング層が厚くなるため、エアーリークの発生やコストがかかってしまう。また、導電性がない等の問題があるが、上記構成ではこのような問題点は解決される。
Furthermore, since the coating of the thermosetting resin in the sealing treatment part 4 is brushed, it is very excellent in workability and can be coated at an arbitrary position.
In addition, the fluorine coating conventionally used as a shielding film does not penetrate and the coating layer becomes thick, so that air leakage occurs and costs are increased. Moreover, although there exists a problem of lack of electroconductivity, such a problem is solved with the said structure.

以上説明したように、図1に示す吸着パッドXによれば、吸着面2がカーボンであるから、カーボンの導電性を利用し、ワークや切削工具の位置決めを電気的に制御することが出来る。   As described above, according to the suction pad X shown in FIG. 1, since the suction surface 2 is made of carbon, the positioning of the workpiece and the cutting tool can be electrically controlled using the conductivity of the carbon.

また上記吸着パッドXはポーラスカーボン板1の表面のみの単一材質で吸着面2が形成されるため、吸着面2の段差はなく、熱による膨張が発生しても膨張率の差がないため、極めて長期的に平坦度を維持することができる。また吸着部2に摩耗により歪みが発生した場合、単一材料で構成されているため、精度良く研磨加工をすることが出来る。また、カーボンは耐薬品製に優れているため、腐食環境下でも使用することが出来る。   Further, since the suction pad 2 is formed of a single material only on the surface of the porous carbon plate 1, the suction pad 2 has no step difference, and there is no difference in expansion coefficient even if heat expansion occurs. The flatness can be maintained for a very long time. Further, when the suction part 2 is distorted due to wear, it is made of a single material, so that it can be polished with high accuracy. Moreover, since carbon is excellent in chemical resistance, it can be used even in a corrosive environment.

さらに、部品点数の削減と外枠を使用しないことから、軽量化する事ができる。
また熱硬化性樹脂はハケで塗布できるため、任意の箇所に塗布出来、封孔処理部4を自由に設定でき、作業性に優れており、安価で仕上げる事が出来る。更に吸引口6などのエアー周りは基台7に持たせることにより、形状を簡潔にまとめることが出来る。
Furthermore, since the number of parts is reduced and the outer frame is not used, the weight can be reduced.
Further, since the thermosetting resin can be applied by brushing, it can be applied to any location, the sealing treatment portion 4 can be freely set, and the workability is excellent, so that it can be finished at low cost. Further, by providing the base 7 with air around the suction port 6 and the like, the shape can be simply summarized.

<第2実施形態>
次に他の実施形態を説明する。
図2に示すように、この実施形態の吸着パッドX’ではポーラスカーボン板1は容器10に収納されている。容器10は側面部8と底面部9とから構成され、ポーラスカーボン板1の吸着面2を露出し、また側端面20を塞ぎ、裏面の吸引面3以外の部分を塞いで不通気とするようになっている。
<Second Embodiment>
Next, another embodiment will be described.
As shown in FIG. 2, the porous carbon plate 1 is accommodated in a container 10 in the suction pad X ′ of this embodiment. The container 10 is composed of a side surface portion 8 and a bottom surface portion 9 so that the adsorption surface 2 of the porous carbon plate 1 is exposed, the side end surface 20 is blocked, and the portions other than the suction surface 3 on the back surface are blocked so as not to be ventilated. It has become.

側面部8は、ポーラスカーボン板1と同じカーボンからなり、該カーボンに予め熱硬化性樹脂で封孔処理をして不通気としてあり、吸着面2に連続する表面が不通気面80となっている。   The side surface portion 8 is made of the same carbon as the porous carbon plate 1, and the carbon is sealed with a thermosetting resin in advance to make it non-ventilated, and the surface continuous to the adsorption surface 2 becomes the air non-permeable surface 80. Yes.

また、底面部9はステンレスからなり、空隙5と吸引口6を形成してある。空隙5に対応するポーラスカーボン板1の裏面が吸引面3となっている。また吸引口6は真空ポンプなどの吸引装置(図示せず)に接続されるように構成されている。   Further, the bottom surface portion 9 is made of stainless steel, and a gap 5 and a suction port 6 are formed. The back surface of the porous carbon plate 1 corresponding to the gap 5 is the suction surface 3. The suction port 6 is configured to be connected to a suction device (not shown) such as a vacuum pump.

ポーラスカーボン板1の気孔率は40%であり、また容器10に接着或いは焼き嵌め法により結合されている。また結合後に、吸着面2と側面部8の表面である不通気面80に研磨加工を施し、平坦度を数μm以下にしてある。   The porous carbon plate 1 has a porosity of 40% and is bonded to the container 10 by bonding or shrink fitting. Further, after bonding, the non-venting surface 80 which is the surface of the suction surface 2 and the side surface portion 8 is polished so that the flatness is several μm or less.

以上の構成の吸着パッドX’は、ポーラスカーボン板1と側面部8が同一の材料であるため、熱膨張差はほぼ0となり、熱による膨張が発生しても、吸着面2と不通気面80に段差が生ずることがなく、長期的に平坦度を維持することができる。また、吸着面2と不通気面80は、カーボンの導電性を有するため、ワークや切削工具の位置決めを電気的に制御することが出来る。また、カーボンは耐薬品製に優れているため、腐食環境下でも使用することが出来る。   In the suction pad X ′ having the above configuration, since the porous carbon plate 1 and the side surface portion 8 are made of the same material, the difference in thermal expansion is almost zero, and even if expansion due to heat occurs, the suction surface 2 and the non-venting surface. There is no step in 80, and the flatness can be maintained for a long time. Moreover, since the adsorption | suction surface 2 and the air-impermeable surface 80 have the electroconductivity of carbon, the positioning of a workpiece | work or a cutting tool can be electrically controlled. Moreover, since carbon is excellent in chemical resistance, it can be used even in a corrosive environment.

なお、図2の実施形態では、側面部8と底面部9を別体としたが、図3に示すように、容器10全体を一体的に不通気性カーボンで形成してもよい。この構成においても、図2の実施形態と同様な効果を得られる。   In the embodiment of FIG. 2, the side surface portion 8 and the bottom surface portion 9 are separated from each other. However, as shown in FIG. Even in this configuration, the same effect as the embodiment of FIG. 2 can be obtained.

<ポーラスカーボン板1の材料>
一般的なポーラスカーボンは、コークス粒とピッチの炭化物を結合材とした2元系の組織構造の多孔体であり、半導体ウェーハ等の対象物を吸着、開放させるときの加圧減圧の繰り返し動作により、破損したり発塵したりする等の可能性がある。
即ちカーボンの硬さが100Hvであるのに対して、吸着対象物であるシリコンウェーハの硬さは一般的に600Hv、またガラス基板が950Hvである。
そのため、シリコンウェーハやガラス基板の吸着、開放をポーラスカーボンの上で繰り返すことにより、吸着面にシリコンウェーハやガラス基板の吸着痕や接触傷や摩耗が発生し、吸着力が低下する。また、摩耗により、摩耗粉が発生し、シリコンウェーハやガラス基板を汚染する可能性がある。
<Material of porous carbon plate 1>
General porous carbon is a porous body with a binary system structure in which coke grains and pitch carbides are used as a binder, and by repeated operations of pressure and pressure reduction when objects such as semiconductor wafers are adsorbed and released. There is a possibility of damage or dust generation.
That is, the hardness of carbon is 100 Hv, whereas the hardness of a silicon wafer as an object to be adsorbed is generally 600 Hv, and the glass substrate is 950 Hv.
Therefore, by repeating the adsorption and release of the silicon wafer and the glass substrate on the porous carbon, adsorption marks, contact scratches and wear of the silicon wafer and the glass substrate are generated on the adsorption surface, and the adsorption power is reduced. In addition, wear may generate wear powder, which may contaminate the silicon wafer or the glass substrate.

そのため、ポーラスカーボン板1の材料として、自己焼結性炭素で形成され、その気孔率が10〜50vol%である、ポーラスカーボンを用いるのが好ましい。該ポーラスカーボンに、熱硬化性樹脂を含浸硬化させ、自己焼結性炭素で出来た骨格表面を熱硬化性樹脂で被膜しても良い。また前記ポーラスカーボンに、熱硬化性樹脂を含浸硬化し、炭化処理を行い、自己焼結性炭素で出来た骨格表面をガラス状カーボンで被膜しても良い。この構成により、軽量且つ導電性を維持しつつ、充分な強度を持ち、発塵を抑えることが可能になる。   Therefore, it is preferable to use porous carbon, which is formed of self-sintering carbon and has a porosity of 10 to 50 vol%, as the material of the porous carbon plate 1. The porous carbon may be impregnated and cured with a thermosetting resin, and the surface of the skeleton made of self-sintering carbon may be coated with the thermosetting resin. Alternatively, the porous carbon may be impregnated and cured with a thermosetting resin, carbonized, and a skeleton surface made of self-sintering carbon may be coated with glassy carbon. With this configuration, it is possible to have sufficient strength and suppress dust generation while maintaining light weight and conductivity.

以下材料について詳細に説明する。
自己焼結性炭素は、ピッチバインダーを添加せずに、成形後焼結することで炭素粉末同士が強固に焼結して高強度カーボン材料となる炭素粉末であり、原料粒子自体が強固な結合力を示すため、気孔率の大きい多孔体であっても高強度なポーラスカーボンを得ることができる。
Hereinafter, the materials will be described in detail.
Self-sintering carbon is a carbon powder that can be sintered after molding without adding a pitch binder to form a high-strength carbon material, and the raw material particles themselves are strongly bonded. In order to show force, high strength porous carbon can be obtained even with a porous body having a large porosity.

しかし、強度の高い自己焼結性炭素材料で作られたポーラスカーボンでもプレス成形時による局部的な不均一により、局部的に見ると粒子が脱落しやすい部分もあり、加圧減圧の繰り返し応力により、その部分に炭素の脱落が微量発生し、発塵する可能性もある。   However, even with porous carbon made of high-strength self-sintering carbon material, due to local non-uniformity due to press molding, there are some parts where particles tend to fall off locally, and due to repeated stress of pressure and pressure reduction , There is a possibility that a small amount of carbon drops off in that part and dust is generated.

そこで粉塵の発生を防ぐ方法として、熱硬化性樹脂またはガラス状カーボンで被膜することが望ましい。
被膜する方法は自己焼結性炭素材料で形成されたポーラスカーボンへ真空含浸装置を用い、濃度調整した熱硬化性樹脂を真空含浸させる。真空含浸後に加圧含浸しても良いが樹脂濃度が低いため、含浸液の粘度は1P以下となり、特に加圧する必要はない。
Therefore, as a method for preventing the generation of dust, it is desirable to coat with a thermosetting resin or glassy carbon.
As a method of coating, a porous carbon formed of a self-sintering carbon material is vacuum impregnated with a thermosetting resin whose concentration is adjusted using a vacuum impregnation apparatus. Although pressure impregnation may be performed after vacuum impregnation, the viscosity of the impregnating liquid is 1 P or less because the resin concentration is low, and it is not necessary to pressurize in particular.

熱硬化性樹脂として、フェノール樹脂、フラン樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アリル樹脂、アルキド樹脂、ウレタン樹脂、シリコン樹脂等があり、いずれでも良いが、接着強度が高く、半導体使用液にも充分に耐える耐薬品性を有し、さらに安価であることが望ましく、接着強度が高く、耐薬品性にも優れ、比較的安価なフェノール樹脂またはエポキシ樹脂が良い。   Thermosetting resins include phenolic resin, furan resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, allyl resin, alkyd resin, urethane resin, silicone resin, etc. It is desirable to use a phenolic resin or an epoxy resin that has chemical resistance enough to withstand a semiconductor solution and that is inexpensive and has high adhesive strength and chemical resistance that is relatively inexpensive.

濃い濃度の熱硬化性樹脂をポーラスカーボンへ含浸硬化すると、ポーラスカーボンの気孔の一部または全部を塞いでしまい性能が著しく低下するため、熱硬化性樹脂を溶媒で薄める必要がある。含浸樹脂濃度を10wt%以下に希釈すると被覆層部は1μm以下に薄くすることが可能となる。更に言うなら、含浸前の気孔率を殆ど低下させない3〜4wt%の濃度が望ましい。   If a porous carbon is impregnated and cured with a high concentration of thermosetting resin, some or all of the pores of the porous carbon are blocked and the performance is significantly reduced. Therefore, it is necessary to dilute the thermosetting resin with a solvent. When the impregnating resin concentration is diluted to 10 wt% or less, the coating layer portion can be thinned to 1 μm or less. In other words, a concentration of 3 to 4 wt% that hardly lowers the porosity before impregnation is desirable.

溶媒は熱硬化性樹脂が溶解する有機溶剤が条件となる。有機溶剤としてアセトン、エタノール、イソプロピルアルコール、メタノール、ベンジン等が挙げられるが、汎用性、安全性、安価な物が良い。例えば、フェノール樹脂を使用した場合はエタノール、イソプロピルアルコールが望ましい。   The solvent is required to be an organic solvent in which the thermosetting resin dissolves. Examples of the organic solvent include acetone, ethanol, isopropyl alcohol, methanol, benzine, and the like, but versatile, safe and inexpensive materials are preferable. For example, when phenol resin is used, ethanol and isopropyl alcohol are desirable.

真空含浸後、含浸樹脂の硬化処理および有機溶剤の除去処理を行う。例えば、フェノール樹脂に溶媒としてエタノールを使用した場合、特に温度指定はないが、180℃程度に加温することにより、エタノールを除去すると共に、フェノール樹脂を完全に硬化させる事が出来る。   After the vacuum impregnation, the impregnating resin is cured and the organic solvent is removed. For example, when ethanol is used as a solvent for the phenol resin, the temperature is not particularly specified, but by heating to about 180 ° C., the ethanol can be removed and the phenol resin can be completely cured.

ガラス状カーボンは熱硬化性樹脂を炭化させて生成させるため、熱硬化性樹脂の炭化率が高い方が炭化させる熱硬化性樹脂の濃度を低くすることが出来、内部まで均一にガラス状炭素にすることが出来る。   Since glassy carbon is produced by carbonizing a thermosetting resin, the higher the carbonization rate of the thermosetting resin, the lower the concentration of the thermosetting resin that can be carbonized, and the glassy carbon can be uniformly distributed to the inside. I can do it.

炭化させる熱硬化性樹脂を特定する必要はないが、その中でも炭化率が高く比較的安価なフェノール樹脂が望ましい。炭化処理は樹脂の炭化温度以上で実施する必要がある。例えば、フェノール樹脂の場合、不活性な雰囲気下で800℃以上で焼成することで、炭化する事が出来る。   Although it is not necessary to specify the thermosetting resin to be carbonized, among them, a phenol resin having a high carbonization rate and relatively inexpensive is desirable. The carbonization treatment needs to be performed at a temperature higher than the carbonization temperature of the resin. For example, in the case of a phenol resin, it can be carbonized by firing at 800 ° C. or higher in an inert atmosphere.

この様に、自己焼結性炭素で出来たポーラスカーボンの自己焼結性炭素の骨格の表面を熱硬化性樹脂から低熱膨張であるガラス状カーボンへ変化させることにより、周囲の環境での温度変化に対しても吸着面の平面度を維持できる。   In this way, by changing the surface of the self-sintering carbon skeleton of porous carbon made of self-sintering carbon from thermosetting resin to glassy carbon with low thermal expansion, temperature changes in the surrounding environment Also, the flatness of the suction surface can be maintained.

以下実施例を示す。
<実施例1〜4>
○カーボンの製造工程
平均粒径20μmに調整した自己焼結性炭素粉をφ120mmの金型を用い油圧プレスで成形圧0.4、0.5、0.7、0.8t/cm2でそれぞれ成形し、φ120×0×10mmの円板成形体を得た。その円板成形体を非酸化雰囲気で昇温速度30℃/hrで1000℃まで昇温して、30分保持し放冷した。
得られた焼結体をφ100×0×5mmに加工後、十分に洗浄し、ポーラスカーボンを得た。加工物に対しアルキメデス法により開気孔を測定した結果、開気孔率はそれぞれ、50、40、20、10vol%であった。このポーラスカーボンを超音波洗浄機でアセトンを用い10分間洗浄し、充分に乾燥させた。得られたポーラスカーボンは真空含浸装置を用い、真空条件下で1時間脱気した後、エタノールを溶媒に4wt%に調整したレゾール型フェノール樹脂を投入し、充分に含浸させた。続いて乾燥炉にて昇温速度10℃/hrで200℃まで昇温して、30分保持することにより、溶媒に使用したエタノールを除去するとともに、フェノール樹脂を加熱硬化させた。この処理でポーラスカーボンの骨格がフェノール樹脂で被膜された。上記工程で得た吸着パッド用ポーラスカーボンをアルキメデス法により開気孔を測定した結果、開気孔率はそれぞれ、50、40、20、10vol%であった。ここで得られた自己焼結性炭素の骨格表面を熱硬化性樹脂で被膜した吸着パッド用ポーラスカーボンを実施例1,2,3,4の材料とした。
Examples are shown below.
<Examples 1-4>
○ Production process of carbon Self-sintering carbon powder adjusted to an average particle size of 20 μm is formed by a hydraulic press using a mold of φ120 mm at a molding pressure of 0.4, 0.5, 0.7, 0.8 t / cm 2 , respectively. It shape | molded and obtained the disk molded object of (phi) 120 * 0 * 10mm. The disk compact was heated to 1000 ° C. at a temperature rising rate of 30 ° C./hr in a non-oxidizing atmosphere, held for 30 minutes and allowed to cool.
The obtained sintered body was processed into φ100 × 0 × 5 mm and then thoroughly washed to obtain porous carbon. As a result of measuring open pores by the Archimedes method for the workpiece, the open pore ratios were 50, 40, 20, and 10 vol%, respectively. This porous carbon was washed with acetone for 10 minutes with an ultrasonic washing machine and sufficiently dried. The obtained porous carbon was deaerated using a vacuum impregnation apparatus for 1 hour under a vacuum condition, and then a resol type phenol resin adjusted to 4 wt% in ethanol was added thereto and sufficiently impregnated. Subsequently, the temperature was raised to 200 ° C. at a rate of temperature rise of 10 ° C./hr in a drying furnace and held for 30 minutes, thereby removing ethanol used for the solvent and heating and curing the phenol resin. By this treatment, the porous carbon skeleton was coated with a phenol resin. As a result of measuring the open pores of the porous carbon for the adsorption pad obtained in the above step by Archimedes method, the open pore ratios were 50, 40, 20, and 10 vol%, respectively. The porous carbon for suction pads obtained by coating the skeleton surface of the self-sintering carbon obtained here with a thermosetting resin was used as the material of Examples 1, 2, 3, and 4.

<実施例5〜8>
平均粒径20μmに調整した自己焼結性炭素粉をφ120mmの金型を用い油圧プレスで成形圧0.4、0.5、0.7、0.8t/cm2でそれぞれ成形し、φ120×0×10mmの円板成形体を得た。その円板成形体を非酸化雰囲気で昇温速度30℃/hrで1000℃まで昇温して、30分保持し放冷した。
得られた焼結体をφ100×0×5mmに加工後、十分に洗浄し、ポーラスカーボンを得た。加工物に対しアルキメデス法により開気孔を測定した結果、開気孔率はそれぞれ、50、40、20、10vol%であった。このポーラスカーボンを超音波洗浄機でアセトンを用い10分間洗浄し、充分に乾燥させた。
得られたポーラスカーボンは真空含浸装置を用い、真空条件下で1時間脱気した後、エタノールを溶媒に4wt%に調整したレゾール型フェノール樹脂を投入し、充分に含浸させた。続いて乾燥炉にて昇温速度10℃/hrで200℃まで昇温して、30分保持することにより、溶媒に使用したエタノールを除去するとともに、フェノール樹脂を加熱硬化させた。更に、フェノール樹脂で被膜された吸着パッド用ポーラスカーボンを非酸化雰囲気で昇温速度30℃/hrで900℃まで昇温して、30分保持することにより、フェノール樹脂を炭化処理してガラス状カーボンとした。この炭化処理により、フェノール樹脂が炭化され、吸着パッド用ポーラスカーボンの自己焼結性炭素の骨格表面をガラス状カーボンで被膜した。上記工程で得た吸着パッド用ポーラスカーボンをアルキメデス法により開気孔を測定した結果、開気孔率はそれぞれ、50、40、20、10vol%だった。ここで得られた自己焼結性炭素の骨格表面にガラス状カーボンを被膜した吸着パット用ポーラスカーボンを実施例5,6,7,8の材料とした。
<Examples 5 to 8>
Self-sintering carbon powder adjusted to an average particle size of 20 μm was molded by a hydraulic press using a mold of φ120 mm at a molding pressure of 0.4, 0.5, 0.7, 0.8 t / cm 2 , and φ120 × A disk molded body of 0 × 10 mm was obtained. The disk compact was heated to 1000 ° C. at a temperature rising rate of 30 ° C./hr in a non-oxidizing atmosphere, held for 30 minutes and allowed to cool.
The obtained sintered body was processed into φ100 × 0 × 5 mm and then thoroughly washed to obtain porous carbon. As a result of measuring open pores by the Archimedes method for the workpiece, the open pore ratios were 50, 40, 20, and 10 vol%, respectively. This porous carbon was washed with acetone for 10 minutes with an ultrasonic washing machine and sufficiently dried.
The obtained porous carbon was deaerated using a vacuum impregnation apparatus for 1 hour under a vacuum condition, and then a resol type phenol resin adjusted to 4 wt% in ethanol was added thereto and sufficiently impregnated. Subsequently, the temperature was raised to 200 ° C. at a rate of temperature rise of 10 ° C./hr in a drying furnace and held for 30 minutes, thereby removing ethanol used for the solvent and heating and curing the phenol resin. Furthermore, the porous carbon for the adsorption pad coated with the phenol resin is heated to 900 ° C. at a temperature increase rate of 30 ° C./hr in a non-oxidizing atmosphere and held for 30 minutes, so that the phenol resin is carbonized to be glassy. Carbon. By this carbonization treatment, the phenol resin was carbonized, and the skeleton surface of the self-sintering carbon of the porous carbon for the adsorption pad was coated with glassy carbon. As a result of measuring the open pores of the porous carbon for the adsorption pad obtained in the above step by the Archimedes method, the open pore ratios were 50, 40, 20, and 10 vol%, respectively. The porous carbon for adsorbent pads obtained by coating glass-like carbon on the surface of the self-sintering carbon skeleton obtained here was used as the material of Examples 5, 6, 7, and 8.

<実験方法>
上記で得たポーラスカーボン板を用いて図3に示す吸着パッドXを製作した。吸着面2は研磨にて平面度1μm以下に整えた。
<Experiment method>
A suction pad X shown in FIG. 3 was manufactured using the porous carbon plate obtained above. The adsorption surface 2 was adjusted to a flatness of 1 μm or less by polishing.

次に図4に示す通り、吸着パッドXの吸引口6と真空ポンプPとをバルブ11および圧力計14を介して接続しテスト装置とした。   Next, as shown in FIG. 4, the suction port 6 of the suction pad X and the vacuum pump P were connected via a valve 11 and a pressure gauge 14 to obtain a test apparatus.

吸着パッドX単独で(吸着パッドに何も吸着させない状態で)バルブ11を開き、バルブ12およびバルブ13を閉じて真空ポンプPを起動させ、吸着パッドX単独の圧力(吸着パッドの抵抗)を測定した後、吸着パッドXに平面度が1μm以下のφ150mmのガラス板Bを吸着させ、ガラス吸着時の圧力を測定した。吸着力はガラス吸着時と未吸着時との差圧×吸着面積として表し、30kgf以上を合格とした。更にバルブ11を閉じ、バルブ13を開くことにより窒素ボンベ15から圧力調整弁16で制御された0.4MPaGの窒素によりガラス板を開放することが出来る。   The suction pad X alone (in a state where nothing is sucked by the suction pad) is opened, the valve 12 and the valve 13 are closed, the vacuum pump P is started, and the pressure of the suction pad X alone (the resistance of the suction pad) is measured. Then, a φ150 mm glass plate B having a flatness of 1 μm or less was adsorbed to the adsorption pad X, and the pressure during glass adsorption was measured. The adsorptive power is expressed as differential pressure x adsorption area between glass adsorption and non-adsorption, and 30 kgf or more was accepted. Further, by closing the valve 11 and opening the valve 13, the glass plate can be opened from the nitrogen cylinder 15 by 0.4 MPaG nitrogen controlled by the pressure regulating valve 16.

発塵量の評価はガラスBの吸着を1分間、ガラスBの開放を1分間の作業を1000回繰り返し行い、その時の発塵量をパーティクルカウンタ17により吸着部の表面上に存在する0.5μm以上の大きさの塵の数を測定し、352000個/m以下を合格とした。 Evaluation of the dust generation amount is performed by repeating the work of adsorbing glass B for 1 minute and opening glass B for 1 minute 1000 times, and the dust generation amount at that time is 0.5 μm present on the surface of the adsorbing portion by particle counter 17. The number of dusts of the above size was measured, and 352,000 / m 3 or less was accepted.

結果を表1に示す。
いずれの実施例においても、優れた吸着力を示し、発塵もなかった。
The results are shown in Table 1.
In any of the examples, excellent adsorbing power was exhibited and no dust was generated.

Figure 0004405857
Figure 0004405857

<保護膜の形成>
ポーラスカーボン板1の吸着面2に保護膜を形成して、吸着面2の強化と発塵の防止をはかることも可能である。該保護膜は、導電性を有し、表面硬さが600Hv以上、10μm以下の厚さを有するものとする。また材質としては、DLC、TiN、TiCN、TiAlN、TiCrN、CrN、Crの中の1つの保護膜とすることができる。
<Formation of protective film>
It is also possible to form a protective film on the adsorption surface 2 of the porous carbon plate 1 to strengthen the adsorption surface 2 and prevent dust generation. The protective film is conductive and has a surface hardness of 600 Hv or more and 10 μm or less. Moreover, as a material, it can be set as one protective film in DLC, TiN, TiCN, TiAlN, TiCrN, CrN, and Cr.

特にTiN、TiCN、TiAlN、TiCrN、CrNは良導体であり、また水素添加量の多いDLCは導電性を有し、硬さが1800以上と硬いため、傷や摩耗の心配がなく、より好ましい。   In particular, TiN, TiCN, TiAlN, TiCrN, and CrN are good conductors, and DLC with a large amount of hydrogen addition has electrical conductivity and has a hardness of 1800 or more, so that there is no fear of scratches or wear, which is more preferable.

また前記保護膜は、10μmを超えて形成すると気孔の一部または全部が塞がり、通気量と吸着力が低下し、シリコンウェーハまたはガラス基板を強固に固定することが出来ず吸着パッドとして性能が満足できない。保護膜の厚みが薄い方が気孔の塞がりが少なくなり、シリコンウェーハやガラス基板を強固に固定出来ることができるため、保護膜はより薄い方が望ましい。そのため保護膜は10μm以下とするのが望ましい。   Further, if the protective film is formed to exceed 10 μm, part or all of the pores are blocked, the air flow rate and the adsorption force are reduced, and the silicon wafer or the glass substrate cannot be firmly fixed and the performance as an adsorption pad is satisfied. Can not. The thinner the protective film, the less clogging of the pores, and the silicon wafer or the glass substrate can be firmly fixed. Therefore, the thinner protective film is desirable. Therefore, the protective film is desirably 10 μm or less.

上記構成の保護膜を施した吸着パッドは、通気性、吸着力、導電性を維持しつつ、摩耗や発塵或いは形状変化を抑制することができる。   The suction pad to which the protective film having the above configuration is applied can suppress wear, dust generation, or shape change while maintaining air permeability, suction power, and conductivity.

上記保護膜は吸着面2を研磨して、所定の平面度にした上で、形成するのが望ましい。   The protective film is preferably formed after the adsorption surface 2 is polished to a predetermined flatness.

この保護膜は、シリコンウェーハの硬さより高い600Hv以上とする。好ましくはガラス基板の硬さより高い1000Hv以上がよい。
また保護膜としては高硬さの方が望ましいが、保護膜の内部応力により膜が安定せず、剥離してしまうため硬さは10000Hvを上限とする。
This protective film is 600 Hv or higher, which is higher than the hardness of the silicon wafer. Preferably it is 1000 Hv or higher, which is higher than the hardness of the glass substrate.
Although better high hardness is desired as a protective film, film is not stabilized by the internal stress of the protective film, the hardness since peeled off is the upper limit of the 10000Hv.

また、保護膜の厚さは、10μm以下が望ましい。10μmを超えると気孔の一部または全部を塞いでしまい、通気性が悪くなり、十分な吸着力を維持できないためである。また、保護膜が薄い方が気孔の塞がりを抑え、良好な吸着力を維持出来る。特に薄さの下限の制限はない。   The thickness of the protective film is preferably 10 μm or less. This is because if it exceeds 10 μm, part or all of the pores are blocked, the air permeability is deteriorated, and sufficient adsorption power cannot be maintained. In addition, the thinner the protective film, the more the pores can be prevented from being blocked and the good adsorption power can be maintained. There is no particular lower limit on the thinness.

以下実施例を説明する。
1.ポーラスカーボン
平均粒径20μmに調整した自己焼結性炭素粉をφ120mmの金型を用い油圧プレスで成形圧0.5t/cm2で成形し、φ120×0×10mmの円板成形体を得た。その円板成形体を非酸化雰囲気で昇温速度30℃/hrで1000℃まで昇温して、30分保持し放冷した。
焼結して得られた焼結体をφ100×0×5mm、平面度を1μmに加工後、十分に洗浄し、ポーラスカーボンを得た。加工物に対しアルキメデス法により開気孔を測定した結果、開気孔率は40%であった。
Examples will be described below.
1. Porous carbon Self-sintering carbon powder adjusted to an average particle size of 20 μm was molded by a hydraulic press with a molding pressure of 0.5 t / cm 2 using a mold of φ120 mm to obtain a disk molded body of φ120 × 0 × 10 mm. The disk compact was heated to 1000 ° C. at a temperature rising rate of 30 ° C./hr in a non-oxidizing atmosphere, held for 30 minutes and allowed to cool.
The sintered body obtained by sintering was processed to φ100 × 0 × 5 mm and the flatness to 1 μm, and then washed sufficiently to obtain porous carbon. As a result of measuring open pores by the Archimedes method on the workpiece, the open porosity was 40%.

2.保護膜
このポーラスカーボンの吸着面に下記表2に示す保護膜をコーティングし、その硬さをダイナミック超微小硬さ計で測定したところ、表2に示す硬さであった。
2. Protective film coated with a protective film shown in Table 2 on the attracting surface of the porous carbon was measured for its hardness a dynamic ultra microhardness tester, was hardness shown in Table 2.

3.吸着パッドX
上記保護膜を施した各ポーラスカーボンを用いて図3に示す吸着パッドXを製作し、図5に示すように吸引口6と真空ポンプPとをバルブ11及び圧力計14を介して接続し、テスト装置とした。
3. Suction pad X
The suction pad X shown in FIG. 3 is manufactured using each porous carbon to which the protective film is applied, and the suction port 6 and the vacuum pump P are connected via the valve 11 and the pressure gauge 14 as shown in FIG. A test device was used.

4.試験方法
吸着パッドX単独で(吸着パッドに何も吸着させない状態で)バルブ11を開き、バルブ12とバルブ13を閉じて真空ポンプ6を起動させ、吸着パッドX単独の圧力(吸着パッドの抵抗)を測定した後、吸着パッドXに平面度が1μm以下のφ150mmのガラス板Bを吸着させ、ガラス吸着時の圧力を測定した。ガラス板の開放はバルブ11を閉じ、バルブ13を開いて行った。
ガラス板Bの吸着と開放を10,000回以上実施し、10,000回以上後の吸着パッドXの評価を行った結果を表2に示す。実施例11乃至16については、表2に示す通り、ガラス板Bと吸着面1に摩耗や傷の痕跡はなく、平面度もテスト前と同じ1μm以下を示した。吸着力の評価方法はガラス吸着時と未吸着時との差圧×吸着面積を吸着力として、吸着力30kgf以上を合格とし、合格となった。
4). Test method With the suction pad X alone (with no adsorption on the suction pad), the valve 11 is opened, the valve 12 and the valve 13 are closed, the vacuum pump 6 is started, and the pressure of the suction pad X alone (the resistance of the suction pad) After the measurement, the glass plate B having a flatness of 1 μm or less and having a flatness of 1 μm or less was adsorbed on the suction pad X, and the pressure at the time of glass adsorption was measured. The glass plate was opened by closing the valve 11 and opening the valve 13.
Table 2 shows the results of the adsorption and release of the glass plate B performed 10,000 times or more and the evaluation of the adsorption pad X after 10,000 times or more. In Examples 11 to 16, as shown in Table 2, there was no trace of wear or scratches on the glass plate B and the suction surface 1, and the flatness was 1 μm or less, the same as before the test. The evaluation method of the adsorption force was determined by passing the adsorption force of 30 kgf or more with the difference pressure between the glass adsorption time and the non-adsorption time x adsorption area as the adsorption force, and passing.

Figure 0004405857
Figure 0004405857

本発明の一実施形態を示す概略正断面図。1 is a schematic front sectional view showing an embodiment of the present invention. 本発明の他の実施形態を示す概略正断面図。The general | schematic front sectional view which shows other embodiment of this invention. 本発明の更に他の実施形態を示す概略正断面図。The general | schematic front sectional view which shows other embodiment of this invention. 本発明の試験装置の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the test apparatus of this invention. 本発明の試験装置の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the test apparatus of this invention.

符号の説明Explanation of symbols

1:ポーラスカーボン板、2:吸着面、3:吸引面、4:封孔処理部、5:空隙、6:吸引口、7:基台、8:側面部、9:底面部、10:容器、20:側端面、80:不通気面。 1: porous carbon plate, 2: adsorption surface, 3: suction surface, 4: sealing treatment part, 5: gap, 6: suction port, 7: base, 8: side part, 9: bottom part, 10: container , 20: side end surface, 80: air-impermeable surface.

Claims (11)

吸引手段に接続され、対象物を吸引保持するための吸着体であって、
対象物を吸引保持する吸着面と、前記吸引手段により吸引される吸引面とを有する板状の通気性を有するポーラスカーボンと、
該ポーラスカーボンの前記吸着面と吸引面以外の部分を塞いで当該部分を不通気とする不通気体と、
前記吸引面に連通し、吸引手段に接続される吸引口と、を備え
前記ポーラスカーボンが自己焼結性炭素で形成され、該自己焼結性炭素の骨格表面が熱硬化性樹脂で被膜されている、
ことを特徴とする吸着体。
An adsorbent that is connected to a suction means and sucks and holds an object,
Plate-like porous carbon having a suction surface for sucking and holding an object and a suction surface sucked by the suction means;
An impervious body that blocks parts other than the adsorption surface and the suction surface of the porous carbon to make the part impervious;
A suction port that communicates with the suction surface and is connected to the suction means.
The porous carbon is formed of self-sinterable carbon, and the skeleton surface of the self-sinterable carbon is coated with a thermosetting resin.
An adsorbent characterized by that.
吸引手段に接続され、対象物を吸引保持するための吸着体であって、
対象物を吸引保持する吸着面と、前記吸引手段により吸引される吸引面とを有する板状の通気性を有するポーラスカーボンと、
該ポーラスカーボンの前記吸着面と吸引面以外の部分を塞いで当該部分を不通気とする不通気体と、
前記吸引面に連通し、吸引手段に接続される吸引口と、を備え
前記ポーラスカーボンが自己焼結性炭素で形成され、該自己焼結性炭素の骨格表面がガラス状カーボンで被膜されている、
ことを特徴とする吸着体。
An adsorbent that is connected to a suction means and sucks and holds an object,
Plate-like porous carbon having a suction surface for sucking and holding an object and a suction surface sucked by the suction means;
An impervious body that blocks parts other than the adsorption surface and the suction surface of the porous carbon to make the part impervious;
A suction port that communicates with the suction surface and is connected to the suction means.
The porous carbon is formed of self-sinterable carbon, and the skeleton surface of the self-sinterable carbon is coated with glassy carbon.
An adsorbent characterized by that.
前記不通気体が、前記板状のポーラスカーボンを支持する支持材であり、
前記吸着面と連続する不通気面を有し、
該不通気面を形成する部材が不通気カーボンである、
請求項1又は2に記載の吸着体。
The air-impermeable body is a support material for supporting the plate-like porous carbon;
Having an air-impermeable surface continuous with the adsorption surface;
The member forming the air-impermeable surface is an air-impermeable carbon.
The adsorbent according to claim 1 or 2 .
吸引手段に接続され、対象物を吸引保持するための吸着体であって、
対象物を吸引保持する吸着面と、前記吸引手段により吸引される吸引面とを有する板状の通気性を有するポーラスカーボンと、
該ポーラスカーボンの前記吸着面と吸引面以外の部分に施された封孔処理部と、
前記吸引面に連通し、吸引手段に接続される吸引口と、を備え、
前記ポーラスカーボンが自己焼結性炭素で形成され、該自己焼結性炭素の骨格表面が熱硬化性樹脂で被膜されている、
ことを特徴とする吸着体。
An adsorbent that is connected to a suction means and sucks and holds an object,
Plate-like porous carbon having a suction surface for sucking and holding an object and a suction surface sucked by the suction means;
A sealing treatment portion applied to a portion other than the adsorption surface and the suction surface of the porous carbon;
A suction port connected to the suction means and connected to the suction surface;
The porous carbon is formed of self-sinterable carbon, and the skeleton surface of the self-sinterable carbon is coated with a thermosetting resin.
An adsorbent characterized by that.
吸引手段に接続され、対象物を吸引保持するための吸着体であって、
対象物を吸引保持する吸着面と、前記吸引手段により吸引される吸引面とを有する板状の通気性を有するポーラスカーボンと、
該ポーラスカーボンの前記吸着面と吸引面以外の部分に施された封孔処理部と、
前記吸引面に連通し、吸引手段に接続される吸引口と、を備え、
前記ポーラスカーボンが自己焼結性炭素で形成され、該自己焼結性炭素の骨格表面がガラス状カーボンで被膜されている、
ことを特徴とする吸着体。
An adsorbent that is connected to a suction means and sucks and holds an object,
Plate-like porous carbon having a suction surface for sucking and holding an object and a suction surface sucked by the suction means;
A sealing treatment portion applied to a portion other than the adsorption surface and the suction surface of the porous carbon;
A suction port connected to the suction means and connected to the suction surface;
The porous carbon is formed of self-sinterable carbon, and the skeleton surface of the self-sinterable carbon is coated with glassy carbon.
An adsorbent characterized by that.
吸引手段に接続され、対象物を吸引保持するための吸着体であって、
表面が対象物を吸引保持する吸着面であり、裏面の一部が前記吸引手段により吸引される吸引面である板状のポーラスカーボンと、
該ポーラスカーボンの前記吸着面と前記吸引面以外の部分を塞ぐように、該ポーラスカーボンを収納支持する不通気性の支持体と、を備え、
該支持体が;
前記板状のポーラスカーボンの側端面を覆い、前記吸着面と連続する不通気面を有するカーボン材からなる側面部と、
前記板状のポーラスカーボンの裏面の吸引面以外の部分を覆い、且つ該吸引面を露出する空隙と、該空隙に連通し吸引手段に接続される吸引口とを備えた底面部と、を備え、
前記ポーラスカーボンが自己焼結性炭素で形成され、該自己焼結性炭素の骨格表面が熱硬化性樹脂で被膜されている、
ことを特徴とする吸着体。
An adsorbent that is connected to a suction means and sucks and holds an object,
Plate-like porous carbon whose front surface is a suction surface for sucking and holding an object and whose back surface is a suction surface sucked by the suction means;
An air-impermeable support for accommodating and supporting the porous carbon so as to block the portion other than the suction surface and the suction surface of the porous carbon,
The support;
A side surface portion made of a carbon material that covers a side end surface of the plate-like porous carbon and has an air-impermeable surface continuous with the adsorption surface;
A bottom surface portion that covers a portion other than the suction surface on the back surface of the plate-like porous carbon and exposes the suction surface; and a bottom surface portion that is connected to the suction means and communicates with the space. ,
The porous carbon is formed of self-sinterable carbon, and the skeleton surface of the self-sinterable carbon is coated with a thermosetting resin.
An adsorbent characterized by that.
吸引手段に接続され、対象物を吸引保持するための吸着体であって、
表面が対象物を吸引保持する吸着面であり、裏面の一部が前記吸引手段により吸引される吸引面である板状のポーラスカーボンと、
該ポーラスカーボンの前記吸着面と前記吸引面以外の部分を塞ぐように、該ポーラスカーボンを収納支持する不通気性の支持体と、を備え、
該支持体が;
前記板状のポーラスカーボンの側端面を覆い、前記吸着面と連続する不通気面を有するカーボン材からなる側面部と、
前記板状のポーラスカーボンの裏面の吸引面以外の部分を覆い、且つ該吸引面を露出する空隙と、該空隙に連通し吸引手段に接続される吸引口とを備えた底面部と、を備え、
前記ポーラスカーボンが自己焼結性炭素で形成され、該自己焼結性炭素の骨格表面がガラス状カーボンで被膜されている、
ことを特徴とする吸着体。
An adsorbent that is connected to a suction means and sucks and holds an object,
Plate-like porous carbon whose front surface is a suction surface for sucking and holding an object and whose back surface is a suction surface sucked by the suction means;
An air-impermeable support for accommodating and supporting the porous carbon so as to block the portion other than the suction surface and the suction surface of the porous carbon,
The support;
A side surface portion made of a carbon material that covers a side end surface of the plate-like porous carbon and has an air-impermeable surface continuous with the adsorption surface;
A bottom surface portion that covers a portion other than the suction surface on the back surface of the plate-like porous carbon and exposes the suction surface; and a bottom surface portion that is connected to the suction means and communicates with the space. ,
The porous carbon is formed of self-sinterable carbon, and the skeleton surface of the self-sinterable carbon is coated with glassy carbon.
An adsorbent characterized by that.
前記側面部と底面部が一体の不通気性カーボン材からなる、
請求項の吸着体。
The side part and the bottom part are made of an integral air-impermeable carbon material,
The adsorbent according to claim 7 .
前記ポーラスカーボンの気孔率が10〜50vol%である、
請求項1又は2又は3又は4又は5又は6又は7又は8に記載の吸着体。
The porosity of the porous carbon is 10 to 50 vol%.
The adsorbent according to claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 .
前記吸着面に、導電性を有し、表面硬さが600Hv以上、10μm以下の厚さを有する保護膜を形成した、
請求項1又は2又は3又は4又は5又は6又は7又は8又は9に記載の吸着体。
A protective film having conductivity and a surface hardness of 600 Hv or more and 10 μm or less was formed on the adsorption surface.
The adsorbent according to claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 .
前記保護膜が、DLC、TiN、TiCN、TiAlN、TiCrN、CrN、Crの中の1つの保護膜である、
請求項10の吸着体。
The protective film is one protective film among DLC, TiN, TiCN, TiAlN, TiCrN, CrN, and Cr.
The adsorbent according to claim 10.
JP2004168506A 2004-06-07 2004-06-07 Adsorbent Expired - Fee Related JP4405857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168506A JP4405857B2 (en) 2004-06-07 2004-06-07 Adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168506A JP4405857B2 (en) 2004-06-07 2004-06-07 Adsorbent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009230291A Division JP4724770B2 (en) 2009-10-02 2009-10-02 Adsorbent

Publications (2)

Publication Number Publication Date
JP2005347689A JP2005347689A (en) 2005-12-15
JP4405857B2 true JP4405857B2 (en) 2010-01-27

Family

ID=35499741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168506A Expired - Fee Related JP4405857B2 (en) 2004-06-07 2004-06-07 Adsorbent

Country Status (1)

Country Link
JP (1) JP4405857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211099A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Vacuum chuck member and method of manufacturing vacuum chuck

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956302B2 (en) * 2007-07-05 2012-06-20 株式会社タンケンシールセーコウ Carbon adsorbent and method for producing the same
JP2009032984A (en) * 2007-07-27 2009-02-12 Myotoku Ltd Floating conveying unit
JP2010067783A (en) * 2008-09-10 2010-03-25 Tokyo Seimitsu Co Ltd Semiconductor wafer suction holder and semiconductor wafer backside grinder
JP5463025B2 (en) * 2008-12-02 2014-04-09 株式会社タンケンシールセーコウ Vacuum suction pad and vacuum suction device
JP2010239026A (en) * 2009-03-31 2010-10-21 Tokyo Electron Ltd Substrate holding member and liquid treatment apparatus
KR101534357B1 (en) 2009-03-31 2015-07-06 도쿄엘렉트론가부시키가이샤 Substrate support device and substrate support method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211099A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Vacuum chuck member and method of manufacturing vacuum chuck

Also Published As

Publication number Publication date
JP2005347689A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
CN100467210C (en) Vacuum chuck and suction board
JP4942364B2 (en) Electrostatic chuck, wafer holding member, and wafer processing method
TWI636499B (en) Metal honing pad, manufacturing method thereof, and catalyst-supporting chemical processing method
JP4724770B2 (en) Adsorbent
JP5730071B2 (en) Adsorption member
JP4405857B2 (en) Adsorbent
JP2004306254A (en) Vacuum chuck
JP2006287162A (en) Composite electrode plate, its usage, and plasma etching device mounted therewith
JPH11243135A (en) Vacuum chucking board
JP4681255B2 (en) Porous carbon
JP4545536B2 (en) Vacuum suction jig
JP4956302B2 (en) Carbon adsorbent and method for producing the same
JP4703590B2 (en) Vacuum adsorption apparatus and adsorption method using the same
JP2003197725A (en) Vacuum chuck
JP2004009165A (en) Sucking chuck
JP2004283936A (en) Vacuum sucking device
JP2005279789A (en) Vacuum chuck for grinding/polishing
JP6805324B2 (en) Laminated top plate of workpiece carriers in micromechanical and semiconductor processing
JP4519457B2 (en) Substrate fixing device for processing and manufacturing method thereof
JP2007180102A (en) Suction body and manufacturing method thereof
JP4480071B2 (en) Porous material for suction pad
JP3746948B2 (en) Wafer polisher table
JP6597437B2 (en) Electrostatic chuck device
EP4258055A1 (en) Member for exposure device, manufacturing method for member for exposure device, and composite member for exposure device
JP2005279844A (en) Wafer suction plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151113

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees