JP4403288B2 - Regulator circuit - Google Patents

Regulator circuit Download PDF

Info

Publication number
JP4403288B2
JP4403288B2 JP2000331841A JP2000331841A JP4403288B2 JP 4403288 B2 JP4403288 B2 JP 4403288B2 JP 2000331841 A JP2000331841 A JP 2000331841A JP 2000331841 A JP2000331841 A JP 2000331841A JP 4403288 B2 JP4403288 B2 JP 4403288B2
Authority
JP
Japan
Prior art keywords
output
circuit
fet
nch
regulator circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000331841A
Other languages
Japanese (ja)
Other versions
JP2002140122A (en
Inventor
功 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2000331841A priority Critical patent/JP4403288B2/en
Publication of JP2002140122A publication Critical patent/JP2002140122A/en
Application granted granted Critical
Publication of JP4403288B2 publication Critical patent/JP4403288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器の電圧レギュレータや電源制御用ICに関し、特に携帯機器などの電源として用いられる電圧レギュレータや電源制御用ICに関する。
【0002】
【従来の技術】
近年、携帯電話やビデオカメラなどに代表される各種携帯機器が市場に出回っている。これらの携帯機器はバッテリー電源によって駆動されるため、小型、軽量で且つ低消費電力であることが要求される。
これらの携帯機器を構成する回路内で、定電圧を供給するレギュレータ回路には、上記要求と、部品点数が少ない、電源に重畳するリップル電圧に対してレギュレータ回路がこのリップル電圧を圧縮する特性、いわゆる電源リップル除去率が大きいことが要求される。このため、携帯機器の定電圧回路としてはシリーズレギュレータ回路が主に用いられる。
【0003】
図4は従来技術によるシリーズレギュレータ回路2の一例である。図4において、レギュレータ回路2は、基準電圧発生回路VRと、この基準電圧発生回路VRの基準電圧Vrefを受け, レギュレータ回路2の出力電圧V0を抵抗R2,R3 で分圧した負帰還信号Vfとの差を増幅する演算増幅器Q1と、この演算増幅器出力V1を増幅するソース電極を電源0V(Vss) に接続し, ドレイン回路に抵抗R1を有し,レベルシフト動作をして中間増幅回路Amp を形成する第1Nチャンネル電界効果トランジスタT1(以下、Nch-FET-(Tx;Txは部材符号) と略称する)と、この中間増幅回路出力V2をソース電極を電源電圧Vdd に接続し, ドレイン回路に負帰還回路を形成する前記抵抗R2,R3 の分圧回路と、負荷回路Lとを接続する第1Pチャンネル電界効果トランジスタT3(以下、Pch-FET-T(x)と略称する)と、を備えて構成される。
【0004】
かかる構成により、定常状態においては、Pch-FET-T3は、負荷回路Lと、抵抗R2,R3 の分圧回路に電流を供給している。また、負荷回路Lに並列に容量Cが接続され、出力電圧V0のリップル成分を吸収する機能を果たし、負荷電圧V0までに充電されている。また、抵抗R2,R3 で分圧された帰還電圧Vfは、演算増幅器Q1に負帰還され、入力された基準電圧Vrefと等しくなる様に、即ち、レギュレータ回路2の出力電圧V0は, この基準電圧Vref×(1+R2/R3) と等しくなる様に負帰還制御される。
【0005】
次に、負荷回路Lへの負荷電流ILが増加したとき、出力電圧V0が低下し、従って分圧回路R2,R3 の分圧電圧Vfも低下するので、演算増幅器Q1の出力電圧V1が高くなり、Nch-FET-T1のゲート電圧が高くなり、Nch-FET-T1のドレイン電流が増加する。この結果、Pch-FET-T3のソース・ゲート間電圧も増加し、Pch-FET-T3のドレイン電流が増加して、出力電圧V0が定常出力電圧の状態を維持する様に負帰還動作が働く。即ち、このシリーズレギュレータ回路2は、負帰還回路構成とすることにより、負荷電流の増減による出力電圧V0の変化を定常状態と同じ、元の出力電圧V0を保持する様に動作する。
【0006】
しかし、Pch-FET-T3は、定格負荷電流時の出力電圧降下をできるだけ小さくするために、電界効果トランジスタT3の形状寸法がかなり大きく選択されている。この結果、Pch-FET-T3自体の飽和出力電流は、一般的には定格負荷電流の数十倍の電流が流せれる様に設計されている。
しかしながら、このシリーズレギュレータの負荷回路における故障、例えば、負荷回路Lの短絡事故、負荷回路Lの配線間のショート事故あるいは容量C内部での短絡破壊などの発生により、出力電圧回路が電源0V回路Vss へ短絡されたとき、後述する図5に図示する様に、過大な電流ILが電源Vdd から電源0V回路Vss に流れ続ける。この結果、発熱が生じる。また、最悪の場合、発煙、発火を起こす危険性もある。
【0007】
図5において、図5の(A) は横軸に出力電圧V0を、縦軸に出力電流ILをとり、例えば、出力電圧V0=3V、定格負荷電流IL=1xの場合を示す。この場合では、負荷抵抗Lが定格値よりも小さくなると、負荷電流ILは定格値(1x)を越えて増加するが、出力電圧V0は略3Vを維持する。負荷抵抗Lが更に小さくなり負荷電流ILが定格値(1x)の2倍以上に増加すると、Pch-FET-T3が飽和出力電流状態となり、Pch-FET-T3の飽和による負帰還回路のループゲイン低下により、出力電圧V0の定電圧性が維持できなくなり、電圧V0が降下する。出力段を形成する電界効果トランジスタT3の最大消費電力は、負荷抵抗Lが短絡したときであり、例えば図示例の短絡時最大負荷電流ILが定格値(1x)の(2.5x)のとき、(Vdd) ×(2.5x)となり、Pch-FET-T3およびその周辺部品の熱的破壊に危険性もある。また、図5の(B) はこのシリーズレギュレータの起動特性を図示し、出力電圧の立ち上がり特性trは、数μsec 程度で立ち上がっている。
【0008】
次に、負荷の短絡保護回路を内蔵する従来技術のシリーズレギュレータ回路3を図6〜図8を用いて説明する。図6において、レギュレータ回路3は、図4で述べたレギュレータ回路2に対して、次の3点が変更・追加されている。即ち、 (1) 抵抗R1とNch-FET-T1からなる中間増幅回路Amp が、共通にソース接地された出力電流容量の大きい第1Nch-FET-T1と、出力電流容量の小さい第2Nch-FET-T2と、この両Nch-FET-T1,T2 の増幅出力を切り換えるスイッチ素子SWと、このスイッチSWを経由していずれかのNch-FET-T1,T2 の増幅出力電流を電源電圧Vdd からの電圧降下として検出する抵抗R1と、からなる出力制限手段を有する中間増幅回路Amp と、
(2) この中間増幅回路出力V2を検出し,ゲート電極を前記中間増幅回路出力V2に接続し、ソース電極を電源電圧Vdd に接続し、ドレイン電極と電源0V間に抵抗R4を接続する第2Pch-FET-T4と、この第2Pch-FET-T4のドレイン電極にゲート電極とドレイン電極を短絡して接続され, ソース電極をレギュレータ回路出力V0に接続する第3Nch-FET-T5と、ソース電極をレギュレータ回路出力V0に接続し,ゲート電極を第3Nch-FET-T5のゲート電極と接続する第4Nch-FET-T6と、この第4Nch-FET-T6のドレイン電極と電源電圧Vdd との間に接続される抵抗R5と、この抵抗R5の両端にソース電極とゲート電極をそれぞれ接続し,ドレイン電極を中間増幅回路出力V2に接続してクランプ回路を形成する第3Pch-FET-T7 と、を備えて構成される第1出力制限回路Clamp と、
(3) 出力回路の出力電圧V0の低下を検知して、前記出力制限手段に制御信号V4を出力して過負荷保護動作を行う過負荷検出回路(コンパレータQ2)と、
を備えて構成される点にある。
【0009】
かかる構成により、負荷抵抗Lが減少し出力回路が過負荷状態に入ると、出力電圧V0が小さくなるに従って、レギュレータ回路出力V0の動作は、負荷状態によって次の3通りの動作をする。即ち、
(A) 定格負荷範囲内またはこれをやや越える範囲内では、演算増幅器Q1と中間増幅回路Amp と出力回路を構成するPch-FET-T3とからなる前向き増幅器回路は、いずれも飽和することなく、高いループゲインで負帰還ループを構成するので、レギュレータ回路3の出力VOは一定の値を保持することができる。
【0010】
(B) 次に、第1出力制限回路Clamp の動作を説明する。定格値を越えて負荷電流が増加していくと、中間増幅回路出力V2はレギュレータ回路3の出力VOを一定に保つべく、その出力値を下げ、出力回路のPch-FET-T3のソース・ゲート間電圧を増して、負荷電流の増加を図る。しかし、この中間増幅回路出力V2は他方では第1出力制限回路Clamp を構成する第2Pch-FET-T4のゲートに接続され、この電位V2が下がるので、第2Pch-FET-T4のドレイン電流が増加し、従って、この第2Pch-FET-T4のドレインに接続される第3Nch-FET-T5および第4Nch-FET-T6のゲート電位が増加し、出力回路V0に接続され負荷電流の増加と共に出力V0が下がる傾向にある第3Nch-FET-T5および第4Nch-FET-T6のソース電極と前記増加するゲート電位との差電圧が増加し、第3Nch-FET-T5および第4Nch-FET-T6のドレイン電流を増加させる。この結果、第4Nch-FET-T6のドレイン電流が増加すると、抵抗R5の電圧降下が増加し、第3Pch-FET-T7のソース・ドレイン間抵抗値を減少させる。この第3Pch-FET-T7のソース・ドレイン間の抵抗は、中間増幅回路Amp の抵抗R1に並列に挿入されているので、第4Nch-FET-T6のドレイン電流が予め定められた値を越えるところから、中間増幅回路Amp の出力V2は一定値にクランプされる。従って、この負荷電流範囲では出力電圧V0は降下していく。
【0011】
(C) 次に、出力制限手段の動作を説明する。上述で述べた値よりさらに負荷電流ILが増加していくと、出力電圧V0は図示例では、基準電圧Vrefより降下する。このとき、過負荷検出回路(コンパレータQ2)は基準電圧Vrefと出力電圧V0とを比較して制御信号V4を出力して、スイッチ素子SWを切り換えて、中間増幅回路Amp を出力電流容量の小さい第2Nch-FET-T2に切り換える。この結果、中間増幅回路Amp の出力V2は電位を電源電圧Vdd 側で移行し、出力回路を構成するPch-FET-T3のソース・ゲート間電圧が減少するので、出力電圧V0は急激に減少する。
【0012】
この様なレギュレータ回路3の出力V0の動作は、図7に図示されている。図7において、横軸に電圧を、縦軸に電流をとる。図示例では、レギュレータ回路3の出力V0は3Vに制御され、その出力電流は定格値(1x)である。上述した(A) 定格負荷範囲内の動作が図7の符号Aで図示され、(B) 第1出力制限回路の動作範囲が符号Bで図示され、(C) 出力制限手段の動作領域が符号Cで図示されている。また、図8はこのレギュレータ回路3の起動特性を図示したものであり、横軸に時間を、縦軸に電圧をとる。このレギュレータ回路3では、負荷回路Lに平滑回路用の容量Cが並列に接続されているので、電源を投入して起動したとき、起動初期状態では、容量Cにレギュレータ回路3の出力電流ILが流れ、負荷短絡状態と等価の状態にある。従って、このレギュレータ回路3は上記説明の(C) 出力制限手段の動作状態にある。従って、負荷回路Lが定格範囲内にあっても、図7の符号Cで図示される小さい出力電流で容量Cを充電し、この出力電圧が過負荷検出回路(コンパレータQ2)の基準電圧Vrefを越えた時点で、出力制限手段の動作がOFF され、(B) 第1出力制限回路の動作モードに入って、この大きい出力電流で容量Cを急速充電して、(A) 定格負荷範囲内の定電圧動作に入ることができる。この起動特性では、(C) 出力制限手段の動作状態を必ず通過するので、レギュレータ回路3が立ち上がり、定電圧動作に入るまでに約30μsec の時間を必要とする。
【0013】
【発明が解決しようとする課題】
上述の様に、従来技術のレギュレータ回路では、負荷短絡時の電源電流を小さくしようとすると、出力電圧が基準電圧以下では出力電流が制限されるため、レギュレータ回路を起動するとき、出力端子に外付けされる容量への充電に時間がかかり、立ち上がり時間が遅くなる、と言う問題がある。例えば、携帯電話機の様に、低消費電流化のために、レギュレータ回路を頻繁にON,OFF制御しようとする場合、この立ち上がり時間が遅いと携帯電話機が使用しずらく、早めに電源を立ち上げる必要がある。
【0014】
本発明は上記の点にかんがみてなされたものであり、その目的は前記した課題を解決して、低消費電流化の効果を確保しながら、かつ、電源の起動特性の良いレギュレータ回路を提供することにある。
【0015】
【課題を解決するための手段】
上記課題は本発明によれば、レギュレータ回路は、基準電圧発生回路と、この基準電圧発生回路の基準電圧を受け負帰還信号との差を増幅する演算増幅器と、この演算増幅器出力を増幅し,この増幅出力の出力範囲を切り換えて過負荷電流を制限する出力制限手段を有する中間増幅回路と、この中間増幅回路出力を増幅して負荷に電力を供給する出力回路と、この出力を分圧し前記演算増幅器に負帰還信号を供給する分圧回路と、出力回路の出力電圧の低下を検知して出力制限手段に制御信号を出力して過負荷保護動作を行う過負荷検出回路と、を備え、前記出力回路は、第1Pチャンネル電界効果トランジスタのソース電極を電源電圧Vddに接続し、ゲート電極を前記中間増幅回路出力に接続し、ドレイン電極をレギュレータ回路出力として前記負荷に接続し、前記レギュレータ回路はさらに、前記中間増幅回路出力を検知し、前記中間増幅回路出力に基づき前記中間増幅回路出力の変化を抑制・クランプする第1出力制限回路と、前記レギュレータ回路を起動するイネーブル信号を遅延する遅延回路と、この遅延回路で遅延されたイネーブル信号と過負荷検出回路からの制御信号との論理積をとるAND素子と、を備えるものとする。
【0016】
かかる構成により、イネーブル信号をONしてレギュレータ回路を起動するとき、イネーブル信号が遅延回路で遅延されて出力されるまでの期間、出力制限手段への制御信号をブロックして、出力制限手段による過負荷保護回路動作を中断することができる。
また、出力制限手段を有する中間増幅回路は、出力電流容量の大きい第1Nチャンネル電界効果トランジスタNch-FET と、出力電流容量の小さい第2Nch-FET と、この両Nch-FET の増幅出力を切り換えるスイッチ素子と、このスイッチを経由していずれかのNch-FET の増幅出力電流を電源電圧Vdd からの電圧降下として検出する抵抗と、を備え、両Nch-FET のソース電極を電源0Vに接続し、ゲート電極を負帰還増幅器出力に接続し、それぞれのNch-FET のドレイン電極をスイッチ素子のそれぞれの電極に接続して構成することができる。
【0017】
また、前記第1出力制限回路は、ゲート電極を前記中間増幅回路出力に接続するとともにソース電極を前記第1Pch-FETのソース電極と共通接続した第2Pch-FETと、ドレイン電極を前記中間増幅回路出力に接続するとともに、ソース電極とゲート電極間にゲート電位決定抵抗(R5)を接続する第3Pch-FETと、を備え、前記第2Pch-FETに流れる電流の増加に応じて増加する電流を前記ゲート電位決定抵抗に流すよう構成することができる。
そして、第3Nch-FETおよび第4Nch-FETをさらに備え、前記第3Nch-FETのゲート電極とドレイン電極を前記第2Pch-FETのドレイン電極に接続するとともに、ソース電極を前記レギュレータ回路出力に接続し、前記第4Nch-FETのゲート電極,ソース電極およびドレイン電極を、それぞれ前記第3Nch-FETのゲート電極,前記レギュレータ回路出力および前記第3Pch-FETのゲート電極に接続するよう構成することができる。
【0018】
【発明の実施の形態】
図1は本発明の一実施例によるレギュレータ回路のブロック図、図2はイネーブル信号に対するレギュレータ回路出力の立ち上がり特性図、図3はレギュレータ回路の動作を説明する説明図であり、図4〜図8に対応する同一部材には同じ符号が付してある。
【0019】
図1において、本発明によるレギュレータ回路1は、基準電圧発生回路VRと、この基準電圧発生回路VRの基準電圧Vrefを受け負帰還信号Vfとの差を増幅する演算増幅器Q1と、この演算増幅器出力V1を増幅し,この増幅出力V2の出力範囲を切り換えて過負荷電流を制限する出力制限手段を有する中間増幅回路Amp と、この中間増幅回路出力V2を増幅して負荷Lに電力を供給する出力回路T3と、この出力V0を分圧し前記演算増幅器Q1に負帰還信号Vfを供給する分圧回路R2,R3 と、出力回路T3の出力電圧V0の低下を検知して前記出力制限手段に制御信号V4を出力して過負荷保護動作を行う過負荷検出回路Q2と、
レギュレータ回路1を起動するイネーブル信号V5を遅延する遅延回路Q4と、この遅延回路Q4で遅延されたイネーブル信号V6と前記過負荷検出回路Q2からの制御信号V4との論理積をとる AND素子Q3と、を備えて構成される。
【0020】
かかる構成により、イネーブル信号V5をON(Hレベル)してレギュレータ回路1を起動するとき、イネーブル信号V5が遅延回路Q4で遅延されて出力されるまでの期間、出力制限手段(SW)への制御信号V7をブロックして、出力制限手段による過負荷保護回路動作を中断することができる。
【0021】
【実施例】
図1において、レギュレータ回路は、負帰還増幅器を構成する演算増幅器Q1と、この演算増幅器Q1の出力を増幅するソース接地型の電界効果トランジスタNch-FET-T1,T2 と, いずれかの電界効果トランジスタ(T1,T2) の負荷となる抵抗R1と, 出力電流容量の大きい第1Nch-FET-T1から出力電流容量の小さい第2Nch-FET-T2に負荷回路を切り換える切り換えスイッチSWと, からなり出力制限手段を構成する中間増幅回路Amp と、この中間増幅回路Amp 出力V2を増幅して出力回路を形成するソース接地型の電界効果トランジスタPch-FET-T3と、この出力電圧V0を分圧して負帰還電圧Vfを形成する出力電圧検出回路R2,R3 と、Pch-FET-T4,T7 と,Nch-FET-T5,T6と, 抵抗R4,R5 と, からなり中間増幅回路Amp の出力V2の変化を抑制・クランプする第1出力制限回路Clamp と、前記出力電圧V0と基準電圧とを比較し過負荷検出回路を構成して制御信号V4を出力するコンパレータQ2と、を備える従来技術で説明した回路に、本発明によるレギュレータ回路を起動するイネーブル信号V5を遅延する遅延回路Q4と、この遅延回路Q4で遅延されたイネーブル信号V6と制御信号V4とからの論理積をとる AND素子Q3と、を備えて構成される。そして、この出力回路には、負荷回路Lと、出力安定化用の容量Cとが外部接続されている。
【0022】
かかる構成により、レギュレータ回路1をONするイネーブル信号V5を遅延させて生成した制御信号V6は、図2に図示する様に、レギュレータ出力V0が立ち上がるのに十分な時間(数十μsec)の間Lレベルとなっているので、短絡保護回路が無いシリーズレギュレータ回路と同様に、外付け容量Cを電流制限せずに大電流で出力電圧V0レベルまで充電することができる。この結果、従来技術で説明した図5の(B) に図示すると同様な短い時間で立ち上がる電圧波形を得ることができる。
【0023】
出力回路の負荷電流ILが大きいときも、定格値負荷電流以内であれば、出力電圧V0の降下が小さいため、コンパレータQ2の出力V4はLレベルのままであり、短絡保護回路が無いシリーズレギュレータ回路2,3と同様に、出力電圧V0を一定に保つ様に動作することができる。
次に、出力端子が電源0Vに短絡する様な状態においては、出力電圧V0が基準電圧Vref以下になるので、コンパレータQ2の出力V4がHレベルとなると、制御信号V7もHレベルとなるので、中間増幅回路Amp を構成する電界効果トランジスタNch-FET-T1を駆動能力の小さいNch-FET-T2に切り換え、このNch-FET-T2のドレイン電流が少ないところで飽和するので、出力回路を形成する電界効果トランジスタPch-FET-T3とのゲート電位を抵抗R1によって電源電圧Vdd 側に引き上げ、出力回路の電界効果トランジスタPch-FET-T3のドレイン電流を減らす様に動作する。
【0024】
図1の図示例では、出力回路が負荷の破壊などによって電源0Vへ短絡状態となったとき、通常の出力電圧3.0Vから基準電圧であるVref(ここでは約1,2V)までの出力電圧範囲においては、中間増幅回路Amp の出力V2の変化を抑制・クランプする第1出力制限回路Clamp により、短絡電流を1x (A)程度に制限し、さらに、電源0Vの電位レベルあたりまで短絡状態が進行した場合、コンパレータQ2の動作により、中間増幅回路Amp を構成する電界効果トランジスタNch-FET-T1を駆動能力の小さいNch-FET-T2に切り換え、このNch-FET-T2のドレイン電流が少ないところで飽和するので、出力回路を形成する電界効果トランジスタPch-FET-T3とのゲート電位を抵抗R1によって電源電圧Vdd 側に引き上げる様に動作する。
【0025】
この動作によって、短絡時の電位が電源0Vの電位レベル程度になったとき、出力回路の電界効果トランジスタPch-FET-T3は、Nch-FET-T2に切り換えられた中間増幅回路Amp によって制限されたドレイン電流しか抵抗R1に流れないので、負荷短絡時の保護回路として動作することができる。
また,図1の第1出力制限回路Clamp がない回路構成でも、即ち、図4に図示する従来技術の回路構成に、本発明による中間増幅回路Amp と、過負荷検出回路を構成するコンパレータQ2と、遅延回路Q4と、 AND素子Q3と、を備えて構成することにより、図3に図示する第1出力制限回路の効果はなくなるが,同様にレギュレータ回路の起動時の立ち上がり特性を改善することができる。
【0026】
【発明の効果】
本発明によれば、出力電圧の立ち上がり時において、出力短絡保護回路が動作しない様にすることによって、大電流で出力回路に接続される容量を充電することができるので、素早くレギュレータをONすることができ、例えば、携帯電話の様に、不必要な回路ブロックへの電力供給を止めて、きめ細かな電力制御をして、機器全体の消費電力を下げる様な制御に適している。
【0027】
また、一旦、出力が立ち上がったあとでは、従来技術通りの負荷短絡保護機能を保有することができる。
この結果、低消費電流化の効果を確保しながら、かつ、電源の起動特性の良いレギュレータ回路を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例によるレギュレータ回路のブロック図
【図2】イネーブル信号に対するレギュレータ回路出力の立ち上がり特性図
【図3】レギュレータ回路の動作を説明する説明図
【図4】従来技術によるレギュレータ回路図
【図5】図4のレギュレータ回路の特性図
【図6】負荷短絡保護機能を有する従来技術のレギュレータ回路のブロック図
【図7】同レギュレータ回路の負荷短絡保護特性図
【図8】同レギュレータ回路の起動特性図
【符号の説明】
1 レギュレータ回路
Q1 演算増幅器
Q2 コンパレータ
Q3 AND 素子
Q4 遅延回路
T1,T2,T5,T6 Nch-FET
T3,T4,T7 Pch-FET
R1〜R5 抵抗
SW スイッチ
L 負荷
C 容量
Vref 基準電圧
V1〜V7,Vf 信号
Vdd 電源電圧
Vss 電源0V
A 定電圧動作領域
B 第1出力制限回路の動作領域
C 第2出力制限回路の動作領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to voltage regulators and power supply control ICs for various electronic devices, and more particularly to voltage regulators and power supply control ICs used as power supplies for portable devices and the like.
[0002]
[Prior art]
In recent years, various portable devices typified by mobile phones and video cameras are on the market. Since these portable devices are driven by a battery power source, they are required to be small, light, and have low power consumption.
Among the circuits that make up these portable devices, the regulator circuit that supplies a constant voltage has the above requirements and the characteristics that the regulator circuit compresses the ripple voltage against the ripple voltage superimposed on the power supply with a small number of parts, A so-called power supply ripple rejection rate is required to be large. For this reason, a series regulator circuit is mainly used as a constant voltage circuit for portable devices.
[0003]
FIG. 4 shows an example of a series regulator circuit 2 according to the prior art. In FIG. 4, a regulator circuit 2 receives a reference voltage generation circuit VR, and a negative feedback signal Vf obtained by dividing the output voltage V0 of the regulator circuit 2 by resistors R2 and R3, receiving the reference voltage Vref of the reference voltage generation circuit VR. An operational amplifier Q1 that amplifies the difference between the two and a source electrode that amplifies the operational amplifier output V1 are connected to a power supply 0V (Vss), a drain circuit has a resistor R1, and a level shift operation is performed to connect an intermediate amplifier circuit Amp. The first N-channel field effect transistor T1 (hereinafter referred to as Nch-FET- (Tx; Tx is abbreviated as a member number)) to be formed, and the intermediate amplifier circuit output V2 are connected to the power source voltage Vdd to connect the source electrode to the drain circuit A voltage dividing circuit of the resistors R2 and R3 forming a negative feedback circuit, and a first P-channel field effect transistor T3 (hereinafter abbreviated as Pch-FET-T (x)) for connecting the load circuit L. Configured.
[0004]
With this configuration, in a steady state, the Pch-FET-T3 supplies current to the load circuit L and the voltage dividing circuit of the resistors R2 and R3. In addition, a capacitor C is connected in parallel to the load circuit L, functions to absorb the ripple component of the output voltage V0, and is charged up to the load voltage V0. Further, the feedback voltage Vf divided by the resistors R2 and R3 is negatively fed back to the operational amplifier Q1, and is equal to the input reference voltage Vref, that is, the output voltage V0 of the regulator circuit 2 is the reference voltage. Negative feedback control is performed to equal Vref × (1 + R2 / R3).
[0005]
Next, when the load current IL to the load circuit L increases, the output voltage V0 decreases, and therefore the divided voltage Vf of the voltage dividing circuits R2 and R3 also decreases, so the output voltage V1 of the operational amplifier Q1 increases. The gate voltage of Nch-FET-T1 increases, and the drain current of Nch-FET-T1 increases. As a result, the source-gate voltage of Pch-FET-T3 also increases, the drain current of Pch-FET-T3 increases, and the negative feedback operation works so that the output voltage V0 maintains the steady output voltage state. . That is, the series regulator circuit 2 operates in such a manner that the change of the output voltage V0 due to the increase or decrease of the load current is the same as that in the steady state and the original output voltage V0 is maintained by adopting a negative feedback circuit configuration.
[0006]
However, in Pch-FET-T3, the field-effect transistor T3 has a very large shape dimension in order to minimize the output voltage drop at the rated load current. As a result, the saturation output current of the Pch-FET-T3 itself is generally designed so that a current several tens of times the rated load current can flow.
However, due to a failure in the load circuit of this series regulator, for example, a short circuit accident of the load circuit L, a short circuit between the wirings of the load circuit L, or a short circuit breakage within the capacitor C, the output voltage circuit becomes the power supply 0V circuit Vss. As shown in FIG. 5 to be described later, an excessive current IL continues to flow from the power supply Vdd to the power supply 0V circuit Vss. As a result, heat is generated. In the worst case, there is a risk of smoke and fire.
[0007]
5, (A) of FIG. 5 shows the case where the output voltage V0 is taken on the horizontal axis and the output current IL is taken on the vertical axis. For example, the output voltage V0 = 3V and the rated load current IL = 1x. In this case, when the load resistance L becomes smaller than the rated value, the load current IL increases beyond the rated value (1x), but the output voltage V0 maintains approximately 3V. When the load resistance L is further reduced and the load current IL increases to more than twice the rated value (1x), the Pch-FET-T3 enters the saturated output current state, and the loop gain of the negative feedback circuit due to the saturation of the Pch-FET-T3 Due to the decrease, the constant voltage characteristic of the output voltage V0 cannot be maintained, and the voltage V0 drops. The maximum power consumption of the field effect transistor T3 forming the output stage is when the load resistance L is short-circuited. For example, when the maximum load current IL at the time of short-circuit in the illustrated example is (2.5x) of the rated value (1x), Vdd) x (2.5x), and there is a danger of thermal destruction of Pch-FET-T3 and its peripheral parts. FIG. 5B shows the start-up characteristic of this series regulator, and the output voltage rise characteristic tr rises in about several μsec.
[0008]
Next, a conventional series regulator circuit 3 incorporating a load short-circuit protection circuit will be described with reference to FIGS. In FIG. 6, the regulator circuit 3 has the following three changes / additions to the regulator circuit 2 described in FIG. (1) An intermediate amplifier circuit Amp composed of a resistor R1 and an Nch-FET-T1 is commonly used as a first Nch-FET-T1 having a large output current capacity and a second Nch-FET- having a small output current capacity. T2 and switch element SW that switches the amplified output of both Nch-FET-T1 and T2, and the amplified output current of one of Nch-FET-T1 and T2 via this switch SW is the voltage from power supply voltage Vdd An intermediate amplifier circuit Amp having output limiting means consisting of a resistor R1 that detects the drop; and
(2) The second Pch, which detects this intermediate amplifier output V2, connects the gate electrode to the intermediate amplifier output V2, connects the source electrode to the power supply voltage Vdd, and connects the resistor R4 between the drain electrode and the power supply 0V. -FET-T4, the third Nch-FET-T5 connected to the drain electrode of this second Pch-FET-T4 with the gate electrode and drain electrode short-circuited, the source electrode connected to the regulator circuit output V0, and the source electrode Connected to the regulator circuit output V0 and connected between the fourth Nch-FET-T6 whose gate electrode is connected to the gate electrode of the third Nch-FET-T5, and the drain electrode of this fourth Nch-FET-T6 and the power supply voltage Vdd And a third Pch-FET-T7 that forms a clamp circuit by connecting the source electrode and the gate electrode to both ends of the resistor R5, and connecting the drain electrode to the intermediate amplifier circuit output V2, respectively. A first output limiting circuit Clamp configured;
(3) an overload detection circuit (comparator Q2) that detects a decrease in the output voltage V0 of the output circuit, outputs a control signal V4 to the output limiting means, and performs an overload protection operation;
It is in the point comprised with.
[0009]
With this configuration, when the load resistance L decreases and the output circuit enters an overload state, the regulator circuit output V0 operates in the following three ways depending on the load state as the output voltage V0 decreases. That is,
(A) In the rated load range or a range slightly exceeding this, the forward-amplifier circuit composed of the operational amplifier Q1, the intermediate amplifier circuit Amp, and the Pch-FET-T3 constituting the output circuit is not saturated. Since the negative feedback loop is configured with a high loop gain, the output VO of the regulator circuit 3 can hold a constant value.
[0010]
(B) Next, the operation of the first output limiting circuit Clamp will be described. When the load current increases beyond the rated value, the output V2 of the intermediate amplifier circuit decreases its output value to keep the output VO of the regulator circuit 3 constant, and the source gate of the Pch-FET-T3 of the output circuit Increase load voltage to increase load voltage. However, this intermediate amplifier circuit output V2 is connected to the gate of the second Pch-FET-T4 constituting the first output limiting circuit Clamp on the other side, and since this potential V2 drops, the drain current of the second Pch-FET-T4 increases. Therefore, the gate potentials of the third Nch-FET-T5 and the fourth Nch-FET-T6 connected to the drain of the second Pch-FET-T4 increase, and the output V0 is connected to the output circuit V0 as the load current increases. The difference voltage between the source electrodes of the third Nch-FET-T5 and the fourth Nch-FET-T6 and the increased gate potential increases, and the drains of the third Nch-FET-T5 and the fourth Nch-FET-T6 tend to decrease. Increase current. As a result, when the drain current of the fourth Nch-FET-T6 increases, the voltage drop of the resistor R5 increases, and the resistance value between the source and drain of the third Pch-FET-T7 decreases. Since the resistance between the source and drain of the third Pch-FET-T7 is inserted in parallel with the resistance R1 of the intermediate amplifier Amp, the drain current of the fourth Nch-FET-T6 exceeds a predetermined value. Therefore, the output V2 of the intermediate amplifier circuit Amp is clamped to a constant value. Therefore, the output voltage V0 drops in this load current range.
[0011]
(C) Next, the operation of the output limiting means will be described. When the load current IL further increases from the value described above, the output voltage V0 drops below the reference voltage Vref in the illustrated example. At this time, the overload detection circuit (comparator Q2) compares the reference voltage Vref with the output voltage V0 and outputs the control signal V4, switches the switch element SW, and switches the intermediate amplifier circuit Amp to the first output current capacity smaller. Switch to 2Nch-FET-T2. As a result, the output V2 of the intermediate amplifier circuit Amp shifts the potential on the power supply voltage Vdd side, and the voltage between the source and gate of the Pch-FET-T3 constituting the output circuit decreases, so the output voltage V0 decreases rapidly. .
[0012]
The operation of the output V0 of the regulator circuit 3 is illustrated in FIG. In FIG. 7, the horizontal axis represents voltage and the vertical axis represents current. In the illustrated example, the output V0 of the regulator circuit 3 is controlled to 3 V, and the output current is the rated value (1x). The above-mentioned (A) operation within the rated load range is illustrated by the symbol A in FIG. 7, (B) the operation range of the first output limiting circuit is illustrated by the symbol B, and (C) the operation region of the output limiting means is denoted by the symbol. This is indicated by C. FIG. 8 illustrates the starting characteristics of the regulator circuit 3. The horizontal axis represents time and the vertical axis represents voltage. In the regulator circuit 3, the smoothing circuit capacitor C is connected in parallel to the load circuit L. Therefore, when the power supply is turned on and started, the output current IL of the regulator circuit 3 is supplied to the capacitor C in the initial startup state. Current is equivalent to the load short circuit condition. Therefore, the regulator circuit 3 is in the operating state of the (C) output limiting means described above. Therefore, even when the load circuit L is within the rated range, the capacitor C is charged with a small output current shown by the symbol C in FIG. 7, and this output voltage is used as the reference voltage Vref of the overload detection circuit (comparator Q2). When exceeded, the operation of the output limiting means is turned off, (B) the operation mode of the first output limiting circuit is entered, the capacitor C is rapidly charged with this large output current, and (A) within the rated load range. Can enter constant voltage operation. In this start-up characteristic, (C) since the operation state of the output limiting means is surely passed, it takes about 30 μsec for the regulator circuit 3 to rise and start constant voltage operation.
[0013]
[Problems to be solved by the invention]
As described above, in the conventional regulator circuit, if the power supply current when the load is short-circuited is reduced, the output current is limited when the output voltage is lower than the reference voltage. There is a problem that it takes time to charge the attached capacity and the rise time is delayed. For example, when a regulator circuit is frequently turned ON / OFF to reduce current consumption, such as a mobile phone, if the rise time is slow, the mobile phone is difficult to use, and the power supply is turned on early. There is a need.
[0014]
The present invention has been made in view of the above points, and an object of the present invention is to solve the above-described problems and provide a regulator circuit having a good power supply start-up characteristic while ensuring the effect of reducing current consumption. There is.
[0015]
[Means for Solving the Problems]
According to the present invention, the regulator circuit includes a reference voltage generation circuit, an operational amplifier that receives the reference voltage of the reference voltage generation circuit and amplifies the difference between the negative feedback signal, and amplifies the output of the operational amplifier. An intermediate amplifier circuit having output limiting means for switching the output range of the amplified output to limit the overload current, an output circuit for amplifying the output of the intermediate amplifier circuit and supplying power to the load, and dividing the output to A voltage dividing circuit that supplies a negative feedback signal to the operational amplifier, and an overload detection circuit that detects a decrease in the output voltage of the output circuit and outputs a control signal to the output limiting means to perform an overload protection operation , In the output circuit, the source electrode of the first P-channel field effect transistor is connected to the power supply voltage Vdd, the gate electrode is connected to the output of the intermediate amplifier circuit, and the drain electrode is used as the regulator circuit output. Connected to the serial load, said regulator circuit further wherein detecting the intermediate amplifying circuit output, wherein a first output limiting circuit for suppressing clamp a change in the intermediate amplifying circuit output based on the intermediate amplifying circuit output, the regulator circuit And a delay circuit that delays an enable signal that activates the AND, and an AND element that takes a logical product of the enable signal delayed by the delay circuit and a control signal from the overload detection circuit.
[0016]
With this configuration, when the enable signal is turned on to start the regulator circuit, the control signal to the output limiting means is blocked during the period until the enable signal is delayed and output by the delay circuit, The load protection circuit operation can be interrupted.
The intermediate amplifier circuit having output limiting means includes a first N-channel field effect transistor Nch-FET having a large output current capacity, a second Nch-FET having a small output current capacity, and a switch for switching the amplified outputs of both Nch-FETs. And a resistor that detects the amplified output current of one of the Nch-FETs as a voltage drop from the power supply voltage Vdd via this switch, and the source electrodes of both Nch-FETs are connected to the power supply 0V, The gate electrode can be connected to the negative feedback amplifier output, and the drain electrode of each Nch-FET can be connected to each electrode of the switch element.
[0017]
The first output limiting circuit includes a second Pch-FET having a gate electrode connected to the intermediate amplifier circuit output and a source electrode commonly connected to a source electrode of the first Pch-FET, and a drain electrode connected to the intermediate amplifier circuit. A third Pch-FET that is connected to the output and connects a gate potential determining resistor (R5) between the source electrode and the gate electrode, the current increasing in response to an increase in the current flowing through the second Pch-FET It can be configured to flow through a gate potential determining resistor.
A third Nch-FET and a fourth Nch-FET; and a gate electrode and a drain electrode of the third Nch-FET are connected to a drain electrode of the second Pch-FET, and a source electrode is connected to the regulator circuit output. The gate electrode, the source electrode, and the drain electrode of the fourth Nch-FET can be connected to the gate electrode of the third Nch-FET, the regulator circuit output, and the gate electrode of the third Pch-FET, respectively.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
1 is a block diagram of a regulator circuit according to an embodiment of the present invention, FIG. 2 is a rising characteristic diagram of a regulator circuit output with respect to an enable signal, and FIG. 3 is an explanatory diagram for explaining the operation of the regulator circuit. The same members corresponding to are denoted by the same reference numerals.
[0019]
In FIG. 1, a regulator circuit 1 according to the present invention includes a reference voltage generating circuit VR, an operational amplifier Q1 that receives the reference voltage Vref of the reference voltage generating circuit VR and amplifies the difference between the negative feedback signal Vf, and an output of the operational amplifier. An intermediate amplifier circuit Amp having output limiting means for amplifying V1 and switching the output range of the amplified output V2 to limit the overload current, and an output for amplifying the intermediate amplifier circuit output V2 and supplying power to the load L A circuit T3, a voltage dividing circuit R2 and R3 that divides the output V0 and supplies a negative feedback signal Vf to the operational amplifier Q1, and detects a decrease in the output voltage V0 of the output circuit T3 and detects the control signal to the output limiting means Overload detection circuit Q2 that outputs V4 and performs overload protection operation,
A delay circuit Q4 for delaying an enable signal V5 for starting the regulator circuit 1, an AND element Q3 for taking the logical product of the enable signal V6 delayed by the delay circuit Q4 and the control signal V4 from the overload detection circuit Q2; , And is configured.
[0020]
With this configuration, when the enable signal V5 is turned on (H level) and the regulator circuit 1 is started, the control to the output limiting means (SW) is performed until the enable signal V5 is delayed by the delay circuit Q4 and output. The signal V7 can be blocked to interrupt the overload protection circuit operation by the output limiting means.
[0021]
【Example】
In FIG. 1, the regulator circuit includes an operational amplifier Q1 constituting a negative feedback amplifier, a common source field effect transistor Nch-FET-T1, T2 for amplifying the output of the operational amplifier Q1, and any one of the field effect transistors. (T1, T2) load R1 and a switch SW that switches the load circuit from the first Nch-FET-T1 with large output current capacity to the second Nch-FET-T2 with small output current capacity The intermediate amplifier circuit Amp constituting the means, the intermediate amplifier circuit Amp, the output V2 is amplified to form an output circuit, and the source-grounded field effect transistor Pch-FET-T3, and the output voltage V0 is divided to be negative feedback. Output voltage detection circuit R2, R3 that forms voltage Vf, Pch-FET-T4, T7, Nch-FET-T5, T6, and resistors R4, R5, and changes in output V2 of intermediate amplifier Amp First output limiting circuit Clamp to suppress and clamp, the output voltage V0 and the reference voltage A comparator Q2 that configures an overload detection circuit and outputs a control signal V4, a delay circuit Q4 that delays an enable signal V5 that activates the regulator circuit according to the present invention, and a circuit described in the related art, An AND element Q3 that takes the logical product of the enable signal V6 and the control signal V4 delayed by the delay circuit Q4 is provided. A load circuit L and an output stabilizing capacitor C are externally connected to the output circuit.
[0022]
With this configuration, the control signal V6 generated by delaying the enable signal V5 for turning on the regulator circuit 1 is L for a sufficient time (several tens of microseconds) for the regulator output V0 to rise as shown in FIG. Therefore, as with the series regulator circuit without the short circuit protection circuit, the external capacitor C can be charged to the output voltage V0 level with a large current without limiting the current. As a result, it is possible to obtain a voltage waveform that rises in a short time similar to that shown in FIG.
[0023]
Even if the load current IL of the output circuit is large, the output voltage V0 drop is small if it is within the rated load current. Therefore, the output V4 of the comparator Q2 remains at L level, and there is no short circuit protection circuit. Similar to 2 and 3, it can operate to keep the output voltage V0 constant.
Next, in a state where the output terminal is short-circuited to the power supply 0V, the output voltage V0 becomes equal to or lower than the reference voltage Vref. Therefore, when the output V4 of the comparator Q2 becomes H level, the control signal V7 also becomes H level. The field effect transistor Nch-FET-T1 that constitutes the intermediate amplifier circuit Amp is switched to the Nch-FET-T2 with a small driving capability, and the Nch-FET-T2 is saturated where the drain current is small, so the electric field that forms the output circuit The gate potential of the effect transistor Pch-FET-T3 is raised to the power supply voltage Vdd side by the resistor R1 to operate so as to reduce the drain current of the field effect transistor Pch-FET-T3 in the output circuit.
[0024]
In the example shown in Fig. 1, when the output circuit is short-circuited to the power supply 0V due to the destruction of the load, etc., the output voltage range from the normal output voltage 3.0V to the reference voltage Vref (here, approximately 1, 2V) , The first output limiting circuit Clamp that suppresses and clamps the change in the output V2 of the intermediate amplifier Amp limits the short-circuit current to about 1x (A), and further the short-circuit state progresses to the potential level of the power supply 0V. In this case, the field effect transistor Nch-FET-T1 constituting the intermediate amplifier circuit Amp is switched to the Nch-FET-T2 having a small driving capability by the operation of the comparator Q2, and saturation occurs when the drain current of the Nch-FET-T2 is small. As a result, the gate potential of the field effect transistor Pch-FET-T3 forming the output circuit is increased to the power supply voltage Vdd side by the resistor R1.
[0025]
By this operation, when the potential at the time of short circuit becomes about the potential level of the power supply 0V, the field effect transistor Pch-FET-T3 of the output circuit is limited by the intermediate amplifier circuit Amp switched to Nch-FET-T2. Since only the drain current flows through the resistor R1, it can operate as a protection circuit when the load is short-circuited.
Further, even in a circuit configuration without the first output limiting circuit Clamp in FIG. 1, that is, in the prior art circuit configuration shown in FIG. 4, an intermediate amplifier circuit Amp according to the present invention and a comparator Q2 constituting an overload detection circuit are provided. By including the delay circuit Q4 and the AND element Q3, the effect of the first output limiting circuit shown in FIG. 3 is eliminated, but it is also possible to improve the startup characteristics at the start of the regulator circuit. it can.
[0026]
【The invention's effect】
According to the present invention, the capacitor connected to the output circuit can be charged with a large current by preventing the output short circuit protection circuit from operating when the output voltage rises. For example, as in a mobile phone, it is suitable for control in which power supply to unnecessary circuit blocks is stopped and fine power control is performed to reduce power consumption of the entire device.
[0027]
Further, once the output rises, the load short-circuit protection function as in the prior art can be held.
As a result, it is possible to provide a regulator circuit with good start-up characteristics of the power supply while ensuring the effect of reducing current consumption.
[Brief description of the drawings]
FIG. 1 is a block diagram of a regulator circuit according to an embodiment of the present invention. FIG. 2 is a rising characteristic diagram of a regulator circuit output with respect to an enable signal. FIG. 3 is an explanatory diagram for explaining the operation of the regulator circuit. Regulator circuit diagram [FIG. 5] Characteristic diagram of the regulator circuit in FIG. 4 [FIG. 6] Block diagram of a conventional regulator circuit having a load short-circuit protection function [FIG. 7] Load short-circuit protection characteristic diagram of the regulator circuit [FIG. 8] Start-up characteristics diagram of the regulator circuit [Explanation of symbols]
1 Regulator circuit
Q1 operational amplifier
Q2 Comparator
Q3 AND element
Q4 Delay circuit
T1, T2, T5, T6 Nch-FET
T3, T4, T7 Pch-FET
R1 ~ R5 resistance
SW Switch L Load C Capacity
Vref reference voltage
V1 to V7, Vf signal
Vdd supply voltage
Vss power supply 0V
A Constant voltage operation region B Operation region of the first output limiting circuit C Operation region of the second output limiting circuit

Claims (4)

基準電圧発生回路と、この基準電圧発生回路の基準電圧を受け負帰還信号との差を増幅する演算増幅器と、この演算増幅器出力を増幅し,この増幅出力の出力範囲を切り換えて過負荷電流を制限する出力制限手段を有する中間増幅回路と、この中間増幅回路出力を増幅して負荷に電力を供給する出力回路と、この出力を分圧し前記演算増幅器に負帰還信号を供給する分圧回路と、出力回路の出力電圧の低下を検知して前記出力制限手段に制御信号を出力して過負荷保護動作を行う過負荷検出回路と、を備えるレギュレータ回路において、
前記出力回路は、第1Pチャンネル電界効果トランジスタ(以下、Pch-FETと略称する)のソース電極を電源電圧Vddに接続し、ゲート電極を前記中間増幅回路出力に接続し、ドレイン電極をレギュレータ回路出力として前記負荷に接続し、
前記レギュレータ回路は、さらに、前記中間増幅回路出力を検知し、前記中間増幅回路出力に基づき前記中間増幅回路出力の変化を抑制・クランプする第1出力制限回路と、前記レギュレータ回路を起動するイネーブル信号を遅延する遅延回路と、この遅延回路で遅延されたイネーブル信号と前記過負荷検出回路からの制御信号との論理積をとるAND素子と、を備え、
イネーブル信号をONしてレギュレータ回路を起動するとき、イネーブル信号が遅延回路で遅延されて出力されるまでの期間、出力制限手段への制御信号をブロックして、出力制限手段による過負荷保護回路動作を中断する、
ことを特徴とするレギュレータ回路。
A reference voltage generation circuit, an operational amplifier that receives the reference voltage of the reference voltage generation circuit and amplifies the difference between the negative feedback signal, amplifies the operational amplifier output, switches the output range of the amplified output, and reduces the overload current. An intermediate amplifier circuit having output limiting means for limiting; an output circuit for amplifying the output of the intermediate amplifier circuit and supplying power to the load; and a voltage dividing circuit for dividing the output and supplying a negative feedback signal to the operational amplifier; An overload detection circuit that detects a decrease in the output voltage of the output circuit and outputs a control signal to the output limiting means to perform an overload protection operation.
The output circuit has a source electrode of a first P-channel field effect transistor (hereinafter abbreviated as Pch-FET) connected to a power supply voltage Vdd, a gate electrode connected to the output of the intermediate amplifier circuit, and a drain electrode output to a regulator circuit. Connected to the load as
The regulator circuit further detects a output of the intermediate amplifier circuit, suppresses and clamps a change in the output of the intermediate amplifier circuit based on the output of the intermediate amplifier circuit, and an enable signal for starting the regulator circuit A delay circuit that delays the AND circuit, and an AND element that takes a logical product of the enable signal delayed by the delay circuit and the control signal from the overload detection circuit,
When starting the regulator circuit by turning on the enable signal, the control signal to the output limiting means is blocked until the enable signal is output after being delayed by the delay circuit, and the overload protection circuit operates by the output limiting means. Interrupt
A regulator circuit characterized by that.
請求項1に記載のレギュレータ回路において、
出力制限手段を有する中間増幅回路は、出力電流容量の大きい第1Nチャンネル電界効果トランジスタ(以下、Nch-FETと略称する)と、出力電流容量の小さい第2Nch-FETと、この両Nch-FETの増幅出力を切り換えるスイッチ素子と、このスイッチを経由していずれかのNch-FETの増幅出力電流を電源電圧Vddからの電圧降下として検出する抵抗と、を備え、両Nch-FETのソース電極を電源0Vに接続し、ゲート電極を負帰還増幅器出力に接続し、それぞれのNch-FETのドレイン電極をスイッチ素子のそれぞれの電極に接続する、ことを特徴とするレギュレータ回路。
The regulator circuit according to claim 1,
The intermediate amplifier circuit having output limiting means includes a first N-channel field effect transistor (hereinafter abbreviated as Nch-FET) having a large output current capacity, a second Nch-FET having a small output current capacity, and both Nch-FETs. A switch element that switches the amplified output and a resistor that detects the amplified output current of one of the Nch-FETs as a voltage drop from the power supply voltage Vdd via this switch, and the source electrode of both Nch-FETs is powered A regulator circuit characterized in that it is connected to 0 V, the gate electrode is connected to the negative feedback amplifier output, and the drain electrode of each Nch-FET is connected to each electrode of the switch element.
請求項1または2に記載のレギュレータ回路において、The regulator circuit according to claim 1 or 2,
前記第1出力制限回路は、ゲート電極を前記中間増幅回路出力に接続するとともにソース電極を前記第1Pch-FETのソース電極と共通接続した第2Pch-FETと、ドレイン電極を前記中間増幅回路出力に接続するとともに、ソース電極とゲート電極間にゲート電位決定抵抗(R5)を接続する第3Pch-FETと、を備え、  The first output limiting circuit includes a second Pch-FET having a gate electrode connected to the output of the intermediate amplifier circuit, a source electrode commonly connected to a source electrode of the first Pch-FET, and a drain electrode connected to the output of the intermediate amplifier circuit. And a third Pch-FET for connecting a gate potential determining resistor (R5) between the source electrode and the gate electrode,
前記第2Pch-FETに流れる電流の増加に応じて増加する電流を前記ゲート電位決定抵抗に流す、ことを特徴とするレギュレータ回路。  A regulator circuit, wherein a current that increases in accordance with an increase in a current flowing through the second Pch-FET is caused to flow through the gate potential determining resistor.
請求項3に記載のレギュレータ回路において、The regulator circuit according to claim 3,
第3Nch-FETおよび第4Nch-FETをさらに備え、  Further comprising a third Nch-FET and a fourth Nch-FET,
前記第3Nch-FETのゲート電極とドレイン電極を前記第2Pch-FETのドレイン電極に接続するとともに、ソース電極を前記レギュレータ回路出力に接続し、  A gate electrode and a drain electrode of the third Nch-FET are connected to a drain electrode of the second Pch-FET, and a source electrode is connected to the regulator circuit output;
前記第4Nch-FETのゲート電極,ソース電極およびドレイン電極を、それぞれ前記第3Nch-FETのゲート電極,前記レギュレータ回路出力および前記第3Pch-FETのゲート電極に接続する、ことを特徴とするレギュレータ回路。  A regulator circuit, wherein the gate electrode, the source electrode, and the drain electrode of the fourth Nch-FET are connected to the gate electrode of the third Nch-FET, the regulator circuit output, and the gate electrode of the third Pch-FET, respectively. .
JP2000331841A 2000-10-31 2000-10-31 Regulator circuit Expired - Fee Related JP4403288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331841A JP4403288B2 (en) 2000-10-31 2000-10-31 Regulator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331841A JP4403288B2 (en) 2000-10-31 2000-10-31 Regulator circuit

Publications (2)

Publication Number Publication Date
JP2002140122A JP2002140122A (en) 2002-05-17
JP4403288B2 true JP4403288B2 (en) 2010-01-27

Family

ID=18808131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331841A Expired - Fee Related JP4403288B2 (en) 2000-10-31 2000-10-31 Regulator circuit

Country Status (1)

Country Link
JP (1) JP4403288B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556116B2 (en) * 2004-11-26 2010-10-06 ソニー株式会社 Constant voltage power circuit
KR100900267B1 (en) 2007-08-06 2009-05-29 (주)태진기술 Sub-1v output voltage regulator of ultra low dropout type
CN108710400B (en) * 2018-06-04 2020-02-18 电子科技大学 Enabling circuit capable of being used for negative voltage output

Also Published As

Publication number Publication date
JP2002140122A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
US6236194B1 (en) Constant voltage power supply with normal and standby modes
US6177785B1 (en) Programmable voltage regulator circuit with low power consumption feature
JP3983612B2 (en) Stabilized power supply with current limiting function
US9429971B2 (en) Short-circuit protection for voltage regulators
US7276888B2 (en) Precharge circuit for DC/DC boost converter startup
JP4651428B2 (en) Switching regulator and electronic device equipped with the same
US6870351B2 (en) Voltage regulator circuit and integrated circuit device including the same
JP3986391B2 (en) Constant voltage power circuit
US6236195B1 (en) Voltage variation correction circuit
US20200395846A1 (en) Charge-pump control circuit and battery control circuit
JP4403288B2 (en) Regulator circuit
JP2003114727A (en) Electric power source circuit
JP2706721B2 (en) Voltage regulator
US6518804B2 (en) Semiconductor integrated circuit device
KR20080000542A (en) Switching regulator
JP2005293067A (en) Voltage regulator
JP2004252891A (en) Regulator circuit
JP2010217965A (en) Constant voltage circuit
JP2009123172A (en) Constant voltage circuit
JP3403606B2 (en) Stabilized power supply circuit
JPH01158515A (en) Series voltage regulator
JP3834673B2 (en) Power regulator circuit
JP2008152433A (en) Voltage regulator
JP2003198277A (en) Mos transistor output circuit
TWI846878B (en) Charge pump control circuit and battery control circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4403288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees