JP4398038B2 - カメラ及びその製造方法 - Google Patents
カメラ及びその製造方法 Download PDFInfo
- Publication number
- JP4398038B2 JP4398038B2 JP2000007940A JP2000007940A JP4398038B2 JP 4398038 B2 JP4398038 B2 JP 4398038B2 JP 2000007940 A JP2000007940 A JP 2000007940A JP 2000007940 A JP2000007940 A JP 2000007940A JP 4398038 B2 JP4398038 B2 JP 4398038B2
- Authority
- JP
- Japan
- Prior art keywords
- unit
- camera
- units
- storing
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Camera Bodies And Camera Details Or Accessories (AREA)
- Automatic Focus Adjustment (AREA)
- Focusing (AREA)
Description
【発明の属する技術分野】
本発明は、複数のユニットから構成されるカメラとその製造方法に関する。
【0002】
【従来の技術】
一般に、製作時にカメラを構成するための部品やユニットを管理するために、製造年月日、シリアルナンバー、ロットナンバー等を部品やユニットにつけている。これらの情報は、ユニット本体に刻印したり、シールやバーコードを利用して、ユニット毎に来歴付けされる。
【0003】
また、部品の精度等の原因で生じた特性ばらつきなどをEEPROMに記憶させておき、使用する際にその記憶された情報に基づき補正を行う技術が特開昭63−198818号公報等に開示されている。
【0004】
【発明が解決しようとする課題】
しかし近年、カメラにも多機能が求められ、種々のユニットが採用され搭載されることにより、システムが複雑になってきている。また、そのシステムを構成するユニット自体も複雑な構成となっている。
【0005】
従って、従来からのシリアルナンバー、ロットナンバーによる管理だけでは、カメラの性能を規格内に納めるには不十分となっている。つまり、各ユニットは多数の部品を組み合わせて構成されており、それらの部品のばらつきが積み重なって、同じユニットでも個々に特性のばらつきが生じている。
【0006】
最終的にそれらのばらつきを持つユニットがカメラに組みつけられると、ユニット同士の組み合わせによっては、ばらつきが増大するようになる場合もあり、設計されたカメラの性能(規格)にならない恐れがある。
【0007】
このような組み合わせに関する情報は、従来の刻印やバーコードなどによる管理方法では取り扱うことができなかった。そのため、複雑なネットワークコンピュータを導入した大がかりな管理を行わなくては、完成したカメラが設計時に定めた規格を満たせず、不良品となってしまう場合があった。
【0008】
また、上記特開昭63−198818号公報では、ばらつきを補正する技術について述べられているが、個々に特性ばらつきが発生しているユニットの組み合わせについて開示されていない。
【0009】
そこで本発明は、ユニット固有の性能に関する情報を個々に管理し、カメラに組みつけられた際に、各ユニットの情報を統合することにより性能の補正を行って高品質なカメラとその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するために、個別ユニットに内蔵され、該個別ユニットの性能を保障するための調整値を記憶したユニット記憶手段と、複数種類のユニットを組み合わせてカメラ本体を構成した段階で、所定の特性測定の結果により得られたデータと上記個別ユニット毎に記憶された調整値とに基づいて演算され、個別カメラボディの性能を保障するための最終調整値を当該カメラの主たる記憶手段に記憶させる手段とを備えるカメラを提供する。
【0011】
また、複数のユニットから成るカメラにおいて、上記複数のユニットの内少なくとも1つが電気的に書き込み可能なメモリを有し、当該メモリには、ユニット単体状態での当該ユニットの品質情報を記憶する領域と、当該ユニットが他のユニットと組み合わされてカメラ状態に組立てられた後に、上記品質情報を用いて演算された値を記憶する領域とを有するカメラを提供する。
【0012】
以上のようなカメラ及びその製造方法は、構成するために組みつけられる複数のユニットのそれぞれが、該ユニット製造時に検査された特性やばらつきに関する品質情報を記憶する不揮発性メモリを搭載しており、カメラ本体に組みつけられた際に、記憶されている品質情報に基づき、設計時の性能を保障するような補正値を算出し、主たる不揮発性メモリに記憶させる。そして、撮影における動作時には、記憶された補正値による動作補正を行う。また完成されたカメラの性能が規格から外れる場合には、個々のユニットがもつ特性やばらつきの傾向に関する情報に基づき、ばらつきを減少させるようなユニットを組み合わせて、再構成する。また、ユニット単体で特性や組立ばらつきのチェックを行い記憶させることで、完成時には不良の発生を抑制する製造方法である。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態について詳細に説明する。
【0014】
図4には、製造工場におけるカメラ製作の様子を示しており、第1の実施形態に係るカメラとその製造方法の概念について説明する。製造中のカメラ50は、図3に示すように、本体ユニット1、鏡枠ユニット2、オートフォーカス(AF)ユニット(測距ユニット)3等が組み付けられて構成されている。
【0015】
前述したように、カメラ50は、これら個々のユニットが持つばらつき要因をキャンセルするため、種々の調整を行ない、検査後に出荷されているが、そのばらつきがつみ重なり、組み合わせによっては、設計時に設定された規格に入らないことがある。例えば、各ユニットがすべて前ピン傾向のばらつきを許容範囲ギリギリの状態で持っていた場合、完成時にこれらのばらつきが積算されると不良となる確率が高い。
【0016】
そこで本実施形態では、各ユニットが、各々のばらつき傾向を示す情報を記憶するためのEEPROM等の不揮発性メモリを備えている。後述するように、本体ユニット1には不揮発性メモリ(主たるメモリ手段)、各ユニットには、不揮発性メモリ32,37,41が備えられている。
【0017】
そして、図4に示すような最終工程で、作業者52がカメラ50とパーソナルコンピュータ(以下、PCと称する)17とをインターフェイス51を介して接続して調べるようにしてもよい。各ユニットのばらつき傾向を集めた合成情報によって、カメラの性能における信頼性が低い場合は、PC17によりその旨の警告が音や表示によって行われる。
【0018】
図5に示すフローチャートに従った組立工程によるカメラ製造について説明する。
【0019】
まず、各ユニットのメモリに記憶されたそのユニットにおけるばらつき等の情報を読み出し(ステップS1)、PC17でそれらの情報を合成した合成情報を形成する(ステップS2)。そして合成情報が規格によって定められた所定範囲内であるか否かを判定し(ステップS3)、範囲内でない場合には(NO)、警告を行う(ステップS4)。警告されたカメラ50は、図4(a)に示すように、修理者53がその合成情報を確認し、別の傾向のばらつきを持つユニット54との組み替えを行う。一方、合成情報が所定範囲内であれば(YES)、補正情報(例えば、前ピンになる度合等の制御パラメータ)をカメラ本体に配置されたEEPROM等の主たるメモリ16に記憶させる(ステップS5)。カメラは、撮影時にこの補正情報を加味した制御を行ない、的確な動作を行なわせる。
【0020】
次に図1には、第1の実施形態に係るカメラの一部の具体的な構成例を示し、説明する。
【0021】
このカメラ50は大別して、本体ユニット1、鏡枠ユニット2、オートフォーカス(AF)ユニット3及び、ストロボユニット4から構成されている。
【0022】
まず、本体ユニット1の構成について説明する。
【0023】
本体ユニット1は、カメラ全体の制御を行なうためのマイクロコンピュータからなる制御部5を有しており、制御部5によりドライバ回路6が制御される。このドライバ回路6は、ズーム&フィルム駆動モータ7と、接点9を介して、鏡枠ユニット2内のレンズ駆動モータ28とへ駆動のための電力を供給する。
【0024】
上記ズーム&フィルム駆動モータ7は、駆動力分配機構10により必要に応じて分配され伝達された駆動力をフィルム給送機構11及び鏡枠ユニット2の焦点距離可変機構12に与える。フィルム給送機構11は、駆動力分配機構10を介して伝達された駆動力により、装填されたフィルムの巻上げ動作、巻戻し動作を行なう。また、焦点距離可変機構12も同様に駆動力分配機構10を介して伝達された駆動力により、撮影レンズ22の一部となるレンズ13を変移させて焦点距離を変化させる。
【0025】
また、駆動力分配機構10から焦点距離可変機構12の間には、連結ギア14と減速機構15が設けられている。この減速機構15によって、ズーム&フィルム駆動モータ7の回転速度は、レンズ13を移動するために適当な速度に減速される。そして、減速されたズーム&フィルム駆動モータ7の駆動力は、連結ギア14を通して、本体ユニット1から鏡枠ユニット2へ伝達される。
【0026】
さらに制御部5には、制御パラメータやセンサの補正値、ストロボの補正値などが記憶されるEEPROM等からなる不揮発性メモリ16と、外部制御装置と端子19を介して通信するための通信インターフェイス回路18が接続されている。外部制御装置としては、カメラの製造工程で使用されるパーソナルコンピュータ(PC)17が想定され、各ユニットを本体ユニット1に組みつけた状態で、PC17により、後述する各ユニットに配置された不揮発性メモリへ任意の記憶情報を閲覧したり、修正することができる。
【0027】
また、本体ユニット1には、制御部5により制御され、光や音により警告を与えるための警告部20と、液晶パネル等により構成され、情報を表示するための表示部21が接続されている。
【0028】
尚、制御パラメータやセンサ補正値としては、駆動のためのパラメータとして、駆動力分配機構10においては、ズーム&フィルム駆動モータの回転数を検出するための例えばフォトインタラプタ信号のスレッシュデータ、フィルム給送機構11においてはパーフォレーション検出信号のスレッシュデータ等があり、本体ユニット1固有の来歴情報として、不揮発性メモリ16に記憶される。また製造工程において、このPC17からの指示に基づいて、制御部5が動作して各種の調整動作が行なわれる。この調整動作によって、PC17は、最終調整値(合成補正値)となる制御パラメータ及び補正値を決定し、不揮発性メモリ16へ記憶させる。
【0029】
次に、鏡枠ユニット2の構成について説明する。
【0030】
この鏡枠ユニット2は、前述した焦点距離可変機構12と、焦点距離を変更し、被写体にフォーカスを合わせる撮影レンズ22と、レンズ13の焦点距離を検出し、その焦点距離情報を制御部5へ出力する焦点距離検出回路23が設けられている。ズーム&フィルム駆動モータ7を駆動源として焦点距離可変機構12により、いわゆるズーム動作を行なって焦点距離を変更し、焦点距離検出回路23による焦点距離情報が制御部5へ伝達される。
【0031】
また露出動作を行なうレンズシャッタ24を有しており、このレンズシャッタ24を構成するセクタ羽根を開閉駆動するセクタ羽根駆動機構25と、セクタ羽根駆動機構25に駆動力を与えるセクタ駆動アクチュエータ26と、セクタ羽根の状態を検出するためのセクタ羽根検出回路27が設けられる。
【0032】
さらに、レンズ駆動モータ28の駆動力により撮影レンズの一部となるフォーカシングレンズ29を変位させる焦点調節機構30と、レンズ駆動モータ28の回転に連動したパルス信号を制御部5に出力するパルス発生回路31とが設けられている。制御部5は、このパルス信号に基づきレンズ駆動モータ28の駆動を制御することにより、焦点調節機構30による焦点合わせを行なう。また、各モータの駆動に必要な電力は、本体ユニット1のドライバ回路6から供給されている。
【0033】
そして、この時の焦点距離と鏡枠のズーム位置との対応情報や、焦点調節機構30の分解能情報や、シャッタ開閉時のセクタ羽根の移動速度特性に関する情報などが、鏡枠ユニット用不揮発性メモリ32に記憶されている。
【0034】
前記オートフォーカスユニット3は、端子33を介して制御部5の指令に基づいて被写体までの距離を測距するものであり、一対のレンズからなる測距光学系34と、この測距光学系34により結像された2つの被写体像を光電変換するCCD等の画素からなるラインセンサ35と、ラインセンサ35を制御して、2つの像のずれ量を読み出し、ずれ量に基づく被写体までの距離を算出する距離検出回路36と、測距データと実際の距離とを一致させるための調整データや、ラインセンサ35の温度特性などのデータを記憶するAFユニット用不揮発性メモリ37とで構成される。
【0035】
またストロボユニット4は、反射傘に収納されたキセノン管38、充電回路39及び光量制御回路40と、充電電圧データや発光時間データ等が記憶されるストロボユニット用不揮発性メモリ41とにより構成される。充電回路39には、キセノン管38の発光エネルギーを蓄えるためのメインコンデンサが含まれており、端子42を介して伝達された制御部5の指令に従って、メインコンデンサを充電し、光量制御回路40は、そのメインコンデンサに蓄積された電荷をキセノン管38を通して放電し、発光させる。
【0036】
以上のように本実施形態における各ユニットは、組み合わせられることによって、カメラとしての機能を果たし、本体ユニット1を中心に、ユニット間のデータの受け渡しによって、どのユニットと組み合わされたかの情報や、組み合わせた場合の特性などが、来歴として各ユニットに配置されたそれぞれの不揮発性メモリに記憶されている。
【0037】
図2は、第1の実施形態におけるメモリ空間図を示し、図2(a)は、鏡枠ユニット2、オートフォーカスユニット3及び、ストロボユニット4の各ユニットに設けられた不揮発性メモリ32,37,41の空間配置を概念的に示している。また、図2(b)は、本体ユニット1に設けられた不揮発性メモリ16の空間配置を概念的に示している。
【0038】
これらの不揮発性メモリには、ユニット自体の管理ナンバー、製造年月日、部品のロットナンバー、ユニットにおいて目標とする性能を実現するための調整データ、及び設計からのばらつきデータ等が記憶されている。また、これらユニットを組み合わせることで、本体ユニット1には、各ユニットの情報を、さらに組み合わせによる性能の良否などを記録するような領域を各不揮発性メモリ内に有している。
【0039】
また、カメラが完成した状態で、撮影毎に各ユニットのばらつきデータを参照した制御を行なっていると演算も大変なので、各ユニットのチェックで得られていたばらつきデータを一括して補正できるような補正データを計算する工程を設けておき、その最終調整値(総合補正係数)を本体ユニット1内の不揮発性メモリ16に記憶させておく。
【0040】
ここで、まずカメラのピント合せに関連する各要素について説明する。
【0041】
図6(a)は、オートフォーカスユニット3に相当する測距ユニットの各構成部位と、これらを組み上げた外観構成を示し、赤外線を投射する赤外発光ダイオード(IRED)55の光を被写体に対し集光投光する投光レンズ56、図示しない被写体からの反射信号光を受光する受光レンズ57及びその光位置を検出するセンサ(PSD)58が枠59に接着されており、これらのIRED55、PSD58を制御又はその出力信号を処理する集積回路(AFIC)60がプリント基板61上に乗っていて、図6(a)のようにリード線62やフレキシブル基板63等で接続され、測距ユニットを形成する。
【0042】
この基板61上には、前述した不揮発性メモリ37としてのEEPROM64が搭載されている。反射信号光が三角測距の原理で入射位置を変えるので、この結果より被写体距離を検出する。しかし、ICなど各部品の出来ばえに加え、その組みつけのばらつき等が積算されて単に組み立てただけでは設計通りの測距性能を出力することができない。
【0043】
そこで、図7(a)に示すフローチャートを参照して組立工程について説明する。
【0044】
まず、組立・接着工程として、部品を組み立てや接着によりユニットを完成させて調整した後(ステップS11〜S13)、図6(b)に示すように、工場内で作業者52がこの測距ユニット59を実際に作動させて、その特性(AF特性)をチェックする(ステップS14)。このユニット特性を把握し、不揮発性メモリ37(EEPROM64)にその結果を書き込むようにする(ステップS15)。測距ユニットの集積回路60は、PC17とコネクタ65を介して通信を行ない所定距離L1 のチャート66を測距した時の測距結果をPC17に出力する。
【0045】
そこで実測値DL1と設計値DL0との誤差ΔDLを用いて設計値からのずれがなくなるようにする。図7(b)に示すフローチャートを参照して説明する。
【0046】
まず、図6(b)に示すように測距ユニットをセットして、IRED55をチャート66に向かって発光させて(ステップS21)、その反射光をPSD58で受光して、実測値DL1を算出し、設計値DL0からの誤差ΔDL を求める(ステップS22)。
【0047】
また、チャート66への測距時の光量を光量PL1として(ステップS23)、この実測値DL1における誤差ΔDL と測距時の光量PL1をEEPROM64に記憶する(ステップS24)。以後実際の測距時に得られた実測値DL1に誤差ΔDL を加味して距離算出し、ピント合せを行う。
【0048】
次に、実測値PL1と設計値の光量PL0とを比較する(ステップS25)。
【0049】
この比較は、光投射タイプの測距装置においては、発光する光量が多いと正確な測距値を出力するが、例えば、部品の精度によって、その光量が少ないものでは遠距離における精度劣化が起こりやすい。つまり、発光する光量が設計値よりも少ないユニットでは(NO)、ピントが遠距離になりがちである。そこで、光量が少ないものについては、遠距離で誤差が出やすいことを示す補正値FAFを−0.1に設定し(ステップS26)、それをEEPROM64に記憶させる(ステップS28)。また、光量が十分な場合には(YES)、補正値FAFを0に設定して(ステップS27)、同様にEEPROM64に記憶させる。
【0050】
このように製造されている測距ユニットが誤差を起こしやすいものか否かをそのユニットに設けられたEEPROM等の不揮発性メモリ内に書きこむことができる。
【0051】
図8にはカメラの本体ユニット1の構成を示し、図9に示すフローチャートを参照して、構成及び製造工程について説明する。
【0052】
本体ユニット1は、図8(a)に示すように、筐体71に対して、巻き上げ用モータ72、巻き上げ・巻き戻し用ギア列73、EEPROMからなる不揮発性メモリ16が実装された基板74等がビス75,76で組みつけられて構成される(ステップS31)。
【0053】
図8(b)に示すように、この本体ユニット1においては、撮影レンズ等からなる鏡枠ユニット2が当てつけられる面と、フィルム面(フィルムが当てつけられる面)との距離Fkがカメラのピント合せ時には重要な要因となる。
【0054】
つまり、カメラのオートフォーカス制御は、フィルム面に対して、ピントが合うようにレンズ位置を調整するため、この距離Fkが設計値からずれていると測距ユニットの測距結果が正確であっても、フィルム面には正しく結像せず、見当はずれの所にピント合せをして、ピンボケとなってしまう。
【0055】
そこで、図8(c)にようにレーザ変位計79a,79b,79cを用いて、中心部における2つの面の位置の距離Fkを実測し(ステップS32)、その実測値と設計値からの差ΔFを求め(ステップS33)、先の中心部誤差ΔFと比較し、さらにどれだけの誤差があるかを補正値FHとして不揮発性メモリ16に記憶させる(ステップS34)。そして実際の撮影におけるピント合せ時には、カメラの制御部5がこの補正値FHを加味した制御を行なう。
【0056】
また、画面の周辺部のピントも重要なので周辺部をレーザ変位計79a,79b,79cを用いて実測し(ステップS35)、同様に、その誤差に基づく補正値FH1を求めて不揮発性メモリ16に記憶させる(ステップS36)。
【0057】
なお、図8(c)には、レーザ変位計で実測するために、本体ユニット1のフィルム面側に冶具82を当てつけた状態を示す。
【0058】
本体ユニット1は、バネ83a,83bの力で押圧される金属板84a,84bに挟まれて、冶具82に固持された状態で実測が行なわれる。このように、本体ユニット1についても、成形時のガタや組みつけ歪により、撮影時に影響しそうな誤差要因を不揮発性メモリ16に記憶しておく。
【0059】
また、前述した鏡枠ユニット2においても、図10(a)に示すような複雑に構成されている。撮影レンズを固定する鏡枠80a,80bやレンズシャッタ24などがユニット枠80cに組みこまれ、そこにはEEPROM等からなる不揮発性メモリ32が実装された基板が取り付けられている。
【0060】
図10(b)に示すように、これらの撮影レンズ系は、本体ユニット1に当てつけられて固定され、撮影時には被写体の光をフィルム面86にピント合せする。従って、各部品の精度や組みつけ精度が撮影レンズによって増幅される形でピント精度に影響する。また撮影レンズ22は、傾きや位置の誤差によって空間周波数によるピント位置ずれやチャートの縦横によるピント位置ずれを起こすので、非常に正確な組立と測定を要する。
【0061】
図10(c)には、製造工程における検査を実施するための構成を示し、図11(a)には、その検査ルーチンを説明するためのフローチャートを示す。
【0062】
撮影レンズ22を固定する鏡枠80a,80bやレンズシャッタ24等をユニット枠80cに組みつけ及び接着を行い組み立てる(ステップS41)。
【0063】
この検査では、図10(c)に示すような検査治具に鏡枠ユニット2をセットして、光源90とレンズ91で形成された平行光をチャート92に投射させて遠距離(∞)光を形成し、鏡枠80a,80b内の撮影レンズで結像させて、そのピント位置を撮像素子(CCD)93でコントラストを調べながら前後に移動(スライド部材94a,94bによる)して、そのピント位置が規格通りか否かを調べる。つまり、PC17により、撮像素子93の画像処理回路96から出力された画像データをモニタして、スライド部材94a,94bをスキャン機構99によってスキャンさせ、その位置を変位量検査部95で調べる(ステップS42)。
【0064】
この実測されたピント位置が設計時に求められた設計値からどの程度ずれが生じたか、そのずれ量ΔFL (補正値FL )を算出して不揮発性メモリ32に書きこむ(ステップS43)。カメラの制御部5は、撮影時のピント合せを行う際に、この補正値FL を加味してピント制御を行なう。
【0065】
この不揮発性メモリ32にずれ量を書き込んだ後、次にPC17は、チャート92を切換部98により切換える(ステップS44)。これは、レンズ設計時の空間周波数20本に合せたチャートを例えば10本に変更したり、若しくは縦チャートから横チャートに切換えるような変更でもよい。
【0066】
この結果、設計通りの精度で組み立てられていれば、これらのチャート変化によってピント位置にずれは生じないが、前述したように部品精度、組立ばらつきによって、差異を生じることがあった。
【0067】
しかし実際には、製造ラインの実力や工程設定の制約等から、必ずしも理想的な製品ばかりが生産できるわけではなく、所定の許容値(規格)範囲内のものは良品判定しなければならない。しかし、良品の中でも限界ギリギリの良品と理想どおりの良品とが存在する。
【0068】
そこで、チャート切換によって、ピント位置がずれた場合のずれ量を図10(c)に示したような検査治具によりピント位置を検査して(ステップS45)、ずれ量ΔFL からの差となるずれ量ΔFLCを不揮発性メモリ32に書きこむ(ステップS46)。以上説明したように、鏡枠ユニット2によるピント合せにおいては、種々のユニットがからみ合って、その性能が満たされる。
【0069】
図11(b)に示すフローチャートのように、前述した実施形態においては、各ユニットのピント関係の合成情報(合成補正値)は、測距ユニット3のFAF、本体ユニット1のFH1、鏡枠ユニット2のFLCを加算したもの(ステップS47〜S50)からなり、ピントの信頼性を示す値となる。
【0070】
つまり、特定の条件下では補正できる不揮発性メモリに記憶されたデータの他、被写体が遠距離に存在する時の信頼性、被写体が中央以外に存在した時のピントの信頼性、チャート変化による信頼性等を同じディメンジョンの評価量として不揮発性メモリ16に記憶しておくことにより、実際の撮影時の信頼性が製造工程内で予測できようになる。
【0071】
これによって、あまりにも相性(誤差の傾向)の悪いユニットで構成されたカメラは、修理したりユニットを交換したりする。これは、図4や図5において説明したとおりである。
【0072】
この合成信頼性は、カメラの制御部5が各ユニットに搭載されている不揮発性メモリが記憶するデータにより判定してもよいし、工場の組立工程のPC17が各ユニットの不揮発性メモリに記憶されるデータに基づき判断するようにしてもよい。例えば、図4(a)示す最終工程で、作業者52がカメラ50とPC17とをインターフェース51を介して接続して検査を行う。この検査で得られた合成補正値によって信頼性が低いと判断された場合は、PC17がその旨を警告表示を行う。
【0073】
そして、各ユニットに搭載される不揮発性メモリに記憶されたデータをその都度読み出して参照しピントを制御する方式のカメラでは、図13(a)に示すフローチャートのように、測距する度に補正してピント位置の算出を行っている。例えば、測距を行い(ステップS61)、得られた測距データを補正し(ステップS62)、ピント位置を算出する(ステップS63)。さらに、そのピント位置に対して、本体ユニット1のばらつきによる補正(ステップS64)、鏡枠ユニット2のばらつきによる補正(ステップS65)を行い、ようやく正しいピント制御が可能となる(ステップS66)。このようにピント制御に多くのステップと演算を要すると、タイムラグやプログラム容量の点で無駄が多く好ましくない。
【0074】
そこで本実施形態では、各ユニットで得られた誤差データを統括して合成補正値を求める工程を、図4(a)に示すようにカメラ組立後に実施する。この工程では、カメラの動作確認と共に各ユニットの補正データをPC17が読み出して、カメラ内の制御部5が演算するよりも高性能、高速の演算によって合成補正値を求める。
【0075】
この合成補正値の算出について、図12に示すフローチャートを参照して説明する。
【0076】
まず、測距ユニット3の不揮発性メモリ37から実測値DL1をPC17に読み出し(ステップS51)、設計値DL0と実測値DL1との誤差ΔDLに係数kを掛けた補正値FAFを算出する(ステップS52)。
【0077】
次に本体ユニット1の不揮発性メモリ16から補正値FHを読み出し(ステップS53)、鏡枠ユニット2の不揮発性メモリ32から補正値FLを読み出す(ステップS54)。そして、これらの補正値を加算して、合成補正値FHOSEI を算出し(ステップS55)、本体ユニット1の不揮発性メモリ16に記憶する(ステップS56)。
【0078】
このように、本体ユニット1の不揮発性メモリ16内に予め、合成補正値FHOSEI を記憶するための領域を設けておき、PC17により求められた合成補正値FHOSEI が記憶される。そして、求める際に重要なのは、各ユニットのばらつき若しくは誤差成分を同じディメンジョンに統一した形で計算することである。例えばステップS52においては、測距データの誤差をピント位置の誤差のディメンジョンに変換する係数kを乗じて単位を合わせている。本体ユニット1の誤差、鏡枠ユニット2の誤差は、共にピント位置のディメンジョンなので、各ユニットから読み出されて、そのまま加算され、合成補正値FHOSEI として求められている。
【0079】
そして、図13(b)のフローチャートに示すように合成補正値FHOSEI を用いたピント合せを行なう。
【0080】
まず、測距を行い(ステップS71)、得られた測距データに基づきピント位置を算出する(ステップS72)。そして、そのピント位置に対して、合成補正値FHOSEI による補正を行い(ステップS73)、ピント制御を実施する(ステップS74)。
【0081】
以上説明したように本実施形態によれば、特定の条件だけでピント精度を満足するだけでなく、様々な環境、条件下におけるピントの信頼性までを考慮して、高品質のAFカメラが提供できる。
【0082】
しかも、部品精度や組立誤差による多少のばらつきが各ユニットにあったとしても、カメラに組みつけた時に互いに打ち消し合うようなばらつきであれば、許容可能で、ユーザに対して問題を及ぼすことがない。
【0083】
このため、従来のように厳しい規格から外れたものを単に不良として判定しその規格に合うまで分解して部品交換を行っていた不良ユニットに対して、ばらつきをうち消し合うユニットどうしを組みつけることにより、良品として使用できるため有用であり、不良率を下げ、製造コストを抑制してカメラの製造コスト低減に寄与することができる。
【0084】
次に図14に示す製造工程における検査実施の様子を示す図を参照して、第2の実施形態について説明する。図15(a)は、測距及び調整を行う工程を説明するためのフローチャートである。
【0085】
図6(c)に示した工程を経て組み立てられたカメラ50は、作業者101により固定台102上にセットして、チャート103を測距できるようにする(ステップS81)。カメラ内の回路は、インターフェース回路104を介してPC17と通信されている。
【0086】
そして、カメラ50から例えば、70cmの近距離にあるチャート103を測距する(ステップS82)。この測距により測距データD1 を得ると共に、得られた測距データD1 が所定の範囲に入っているか否かを判別する(ステップS83)。この判定は、測距ユニットの性能保障を行なうためのものである。この判定で測距データD1 が所定の範囲内でなければ(NO)、不良判定を行う(ステップS83)。この判定の場合には、前述した図6(c)の場合と同様に、PC17による警告音や表示を出してもよい。この不良判定されたカメラは、部品交換やユニット交換により修理され、その後の工程で不良とされることはない。一方、測距データD1 が所定の範囲内であれば(YES)、良品として判断され、その測距データD1 をAFユニット3内の不揮発性メモリ37に記憶する(ステップS85)。
【0087】
また、図14(a)における工程で、すでに測距ユニットの性能は、チェックされているので、ここで不良品が出る確率は少なくなる上、すでに近距離のデータは得られているので、次に遠距離のデータを測定すれば、遠近2つの測距結果が得られ、これらの結果によりピント調整用の補正値が求められる。
【0088】
従来、図6の工程を実施した際に、遠近2つのチャートを用いて補正値を求めており、チャートの切り換え等が必要であったが、工程設備が複雑になり、メンテナンスが増えるという問題があった。本実施形態のような工程設定であれば、最小限の段階で無駄なく補正値を求めることができる。
【0089】
次に、図15(b)には本体チェック工程のフローチャートを示し説明する。
【0090】
まず、各ユニットとを本体ユニット1に組みつけて、カメラ50をほぼ完成させる。(ステップS91)。つまり、図14(b)に示すように、本体ユニット1にAFユニット3、鏡枠ユニット2等を組みつけ、外装105を取り付ける。この外装105の前面には前パネル106が取り付けられ、測距用の光束が通過するように構成されている。
【0091】
そして、作業者101がPC17を操作して、カメラ50を制御して、例えば、カメラから4m離れたチャート103を測距し、その時の測距データD2 を取得する(ステップS92)。
【0092】
次に、PC17がカメラの制御部5と通信を行い、ユニット単体の検査時に記憶させておいた近距離の測距データD1 を読み出す(ステップS93)。これらの測距データD1 ,D2 に基づき、補正係数k,sを求め(ステップS94)、不揮発性メモリ16に記憶する。
【0093】
図16に示すように、距離の逆数1/Lとピント位置Pの関係はリニアな特性を持っている。設計値の実線に沿ってカメラの制御部5は、ピント制御を行なうが、部品の精度のばらつきや前パネルの曲面の影響によって、実測値は設計値からずれた値をとることが多い。そのため、リニアな関係なものを補正するには、傾き補正係数kとシフト補正係数sが必要であるため、PC17は、各距離の設計値と実測値を用いて、1次式の変換式によって係数k,sを求めカメラの不揮発性メモリ16に記憶する。
【0094】
カメラの制御部5は、撮影時に図15(c)に示すフローチャートに従い、撮影が行われる。
【0095】
つまり、シャッタボタンを押下すると共に、測距(D)が行われ(ステップS101)、前述したようにカメラの主たる不揮発性メモリ16に記憶された補正係数を読み出し(ステップS102)、得られた測距データDを補正して(ステップS103)、補正された測距データP(P=k・D+s)に基づき、ピント位置を決定し(ステップS104)、撮影する(ステップS105)。
【0096】
そして、前パネル106の曲面の影響が大きい場合は、図6(c)において、ユニットの前面に同等の前パネルを取り付けた状態で、測距データを得るようにすればよい。
【0097】
また、特にカメラから測距用光を投射するアクティブAFの場合、カメラ内での測距用光の回りこみや、前パネルによる光量減衰の影響が、図14(b)に示すような完成品状態では生じやすく、反射信号が減少する遠距離において無視できなくなる。このことを考慮すると、ユニット状態では、こうした影響が生じにくい近距離データを取得する方がよい。経験的に、ユニットで遠距離情報まで取得すると前述の影響によって、完成品にすると結局、誤差を生じてしまうことが多い。そこで、本実施例では遠距離データの取得はより測定を実際撮影に近づけている。
【0098】
以上説明したように、本実施形態によれば、工程の設備を無駄なくし、ユニット状態において性能を保障し、早めに不良品判定を行なうことによって最終工程の不良をへらし、カメラ全体の性能保障を合理的に行なうことができる。
【0099】
最終工程で不良が出ると、そこまで組み上げる工賃、そこから分解修理する工賃や時間的なロスが莫大となり、カメラのコストを上げるのに大きく影響してしまう。従って、本発明によって、カメラのコスト低減が可能となり、なお且つ高品質の製品提供が可能となる。
【0100】
以上の実施形態について説明したが、本明細書には以下のような発明も含まれている。
【0101】
(1)品質情報を記憶するためのメモリをそれぞれ備えた複数のユニットから成るカメラであって、
上記メモリは、各メモリの記憶内容を組み合わせて得られるカメラの性能を補償する補正情報を記憶するための記憶領域を備えたことを特徴とするカメラ。
【0102】
(2)当該ユニットの個別調整値を記憶したユニット記憶手段を具備し、ユニット単位で性能保障された複数種類のユニットを組み合わせて構成されるカメラであって、
上記ユニットの内、主たるユニットには組み合わされる複数の従ユニット群から読み出した上記個別調整値とカメラとして機能する段階に組立てられた状態で所定の特性測定結果により得られた調整値とに基づいて演算された最終調整値を当該カメラの主たる記憶手段に記憶させる手段と、
を具備して成ることを特徴とするカメラ。
【0103】
(3)第1の測定により得られた第1測定値をカメラ内のメモリに記憶させる第1工程と、
第2の測定により得られた第2測定値と上記第1測定値とに基づいて、上記カメラの固体差をキャンセルするための補正データを算出して上記メモリに記憶させる第2工程と
を具備したことを特徴とするカメラの製造方法。
【0104】
【発明の効果】
以上詳述したように本発明によれば、ユニット固有の性能に関する情報を個々に管理し、カメラに組みつけられた際に、各ユニットの情報を統合することにより性能の補正を行って高品質なカメラとその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明による第1の実施形態に係るカメラの一部の具体的な構成例を示す図である。
【図2】第1の実施形態におけるメモリの空間配置を概念的に示す図である。
【図3】カメラを構成する代表的なユニットの例を示す図である。
【図4】製造工場におけるカメラ製作の様子を示す図である。
【図5】カメラ製造における組立工程について説明するためのフローチャートである。
【図6】測距ユニットの構成例を示す図である。
【図7】組立工程及びAFチェック工程に付いて説明するためのフローチャートである。
【図8】カメラの本体ユニット1の構成例を示す図である。
【図9】組立工程について説明するためのフローチャートである。
【図10】鏡枠ユニットの構成例と製造工程における検査を実施するための構成例を示す図である。
【図11】組立工程及びピント関係の合成情報について説明するためのフローチャートである。
【図12】合成補正値の算出について説明するためのフローチャートである。
【図13】撮影におけるピント制御について説明するためのフローチャートである。
【図14】第2の実施形態における製造工程の実施状態を示す図である。
【図15】測距及び本体の調整工程と撮影について説明するためのフローチャートである。
【図16】測距における距離の逆数VL とピント位置Pとの関係を示す図である。
【符号の説明】
1…本体ユニット
2…鏡枠ユニット
3…オートフォーカス(AF)ユニット
4…ストロボユニット
5…制御部(マイクロコンピュータ)
13…レンズ13
16…不揮発性メモリ(EEPROM)
17…外部制御装置(PC)
22…撮影レンズ
29…フォーカシングレンズ
32…鏡枠ユニット用不揮発性メモリ(EEPROM)
34…測距光学系
35…ラインセンサ
37…AFユニット用不揮発性メモリ(EEPROM)
41…ストロボユニット用不揮発性メモリ(EEPROM)
50…カメラ
Claims (3)
- 個別ユニットに内蔵され、該個別ユニットの性能を保障するための調整値を記憶したユニット記憶手段と、
複数種類のユニットを組み合わせてカメラ本体を構成した段階で、所定の特性測定の結果により得られたデータと上記個別ユニット毎に記憶された調整値とに基づいて演算され、個別カメラボディの性能を保障するための最終調整値を当該カメラの主たる記憶手段に記憶させる手段と、
を具備して成ることを特徴とするカメラ。 - 複数のユニットから成るカメラにおいて、
上記複数のユニットの内少なくとも1つが電気的に書き込み可能なメモリを有し、当該メモリには、ユニット単体状態での当該ユニットの品質情報を記憶する領域と、当該ユニットが他のユニットと組み合わされてカメラ状態に組立てられた後に、上記品質情報を用いて演算された値を記憶する領域とを有することを特徴とするカメラ。 - 個別ユニットの性能を保障するための調整データを該個別ユニットに内蔵された記憶手段に記憶させる工程と、
複数種類のユニットを組み合わせてカメラ本体を構成した段階で、所定の特性測定の結果により得られたデータと上記個別ユニット毎に記憶された調整値とに基づいて演算され、個別カメラボディの性能を保障するための最終調整値を当該カメラの主たる記憶手段に記憶させる工程と、
を具備して成ることを特徴とするカメラの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000007940A JP4398038B2 (ja) | 2000-01-17 | 2000-01-17 | カメラ及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000007940A JP4398038B2 (ja) | 2000-01-17 | 2000-01-17 | カメラ及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001201785A JP2001201785A (ja) | 2001-07-27 |
JP4398038B2 true JP4398038B2 (ja) | 2010-01-13 |
Family
ID=18536290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000007940A Expired - Fee Related JP4398038B2 (ja) | 2000-01-17 | 2000-01-17 | カメラ及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4398038B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4804210B2 (ja) * | 2006-04-18 | 2011-11-02 | キヤノン株式会社 | 撮像装置及びその制御方法 |
-
2000
- 2000-01-17 JP JP2000007940A patent/JP4398038B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001201785A (ja) | 2001-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7483056B2 (en) | Image capturing apparatus with blur compensation | |
US8228389B2 (en) | Image pickup apparatus, interchangeable lens unit, camera body, and ultrasonic motor driving apparatus | |
US7193651B2 (en) | Camera system, lens apparatus and camera | |
KR20020033430A (ko) | 자동초점 조절장치 및 전자적 촬상장치 | |
WO2005015282A1 (ja) | カメラ、交換レンズ、中間アダプタ及びこれらを含むカメラシステム | |
CN102375303A (zh) | 安装适配器和成像装置 | |
JP4931225B2 (ja) | 撮像装置 | |
JP2006098771A (ja) | 焦点検出装置、撮像装置、撮像システム及びレンズユニット | |
JP4663246B2 (ja) | カメラ、カメラシステム及びレンズ装置 | |
CN105704365A (zh) | 焦点检测设备和用于焦点检测设备的控制方法 | |
JP2005227639A5 (ja) | ||
JP4398038B2 (ja) | カメラ及びその製造方法 | |
JP4560420B2 (ja) | 撮像装置 | |
JP2006065080A (ja) | 撮像装置 | |
JP2004138769A (ja) | 電子カメラ、及び電子カメラの焦点制御系統の検査方法 | |
JP2002090840A (ja) | カメラ | |
JP2005142837A (ja) | カメラの調整装置 | |
JP2002357762A (ja) | ズームレンズ付きカメラ | |
JP6108977B2 (ja) | 光学機器およびレンズの駆動制御方法 | |
JP2001228526A (ja) | カメラ | |
JP3415235B2 (ja) | カメラ | |
JP2006270362A (ja) | 撮像ユニット、撮像装置および撮像装置の調整方法 | |
JP4334949B2 (ja) | デジタル一眼レフカメラに於けるフォーカシングスクリーンの位置調整装置及び位置調整方法 | |
JP4599383B2 (ja) | カメラの製造方法 | |
JPH06205260A (ja) | カメラ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090929 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091022 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131030 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |