JP4397423B1 - Gasification method - Google Patents

Gasification method Download PDF

Info

Publication number
JP4397423B1
JP4397423B1 JP2008204097A JP2008204097A JP4397423B1 JP 4397423 B1 JP4397423 B1 JP 4397423B1 JP 2008204097 A JP2008204097 A JP 2008204097A JP 2008204097 A JP2008204097 A JP 2008204097A JP 4397423 B1 JP4397423 B1 JP 4397423B1
Authority
JP
Japan
Prior art keywords
waste
gas
raw material
mass
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008204097A
Other languages
Japanese (ja)
Other versions
JP2010037478A (en
Inventor
治 中西
成之 井戸
昌哉 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to JP2008204097A priority Critical patent/JP4397423B1/en
Application granted granted Critical
Publication of JP4397423B1 publication Critical patent/JP4397423B1/en
Publication of JP2010037478A publication Critical patent/JP2010037478A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】廃棄資源を有効利用し、燃料として回収可能なガスを効率よく、かつ安定して生成する方法を提供すること。
【解決手段】微細ダストを含む廃材Aと製紙スラッジBと混在しており、該製紙スラッジBによって該廃材Aの微細ダストが吸着されてフロック化し、フロック化したダストが廃材Aに付着した主原料Cを、非酸化性雰囲気下で熱分解し、発生した熱分解ガスをスチームと反応させることを特徴とする、ガス化方法。
【選択図】なし
The present invention provides a method for efficiently and stably generating a gas that can be used effectively as waste and can be recovered as fuel.
The waste material A containing fine dust and papermaking sludge B are mixed, and the fine dust of the waste material A is adsorbed and flocked by the papermaking sludge B, and the flocked dust adheres to the waste material A. A gasification method characterized by pyrolyzing the raw material C in a non-oxidizing atmosphere and reacting the generated pyrolysis gas with steam.
[Selection figure] None

Description

本発明は、ガス化方法に関する。さらに詳しくは、廃棄資源を有効利用し、燃料として回収可能なガスを効率よく、かつ安定して生成する方法に関する。   The present invention relates to a gasification method. More specifically, the present invention relates to a method for efficiently and stably generating a gas that can be effectively used as a waste resource and can be recovered as fuel.

近年、地球温暖化防止、循環型社会形成の推進により、従来焼却処分されていた、例えば廃木材、間伐材、流木、廃割り箸、バーク材等の廃棄資源、いわゆる「バイオマス」を有効利用する方法が種々検討されている。このようなバイオマスを処理する方法としては、一般に直接燃焼方式とガス化方式とが考えられる。   In recent years, methods to effectively use waste resources such as waste wood, thinned wood, driftwood, waste chopsticks, bark, etc., so-called "biomass", which have been disposed of by incineration in the past in order to prevent global warming and promote a recycling-oriented society Various studies have been made. As a method for treating such biomass, a direct combustion method and a gasification method are generally considered.

直接燃焼方式は、バイオマスを完全燃焼させるものであり、例えばストーカ炉、流動床炉、微粉燃焼炉、噴流床炉等の燃焼炉が用いられる。該直接燃焼方式によって回収、利用し得るのは熱エネルギーのみであり、該熱エネルギーにより温水やスチームを発生させて発電を行う。   The direct combustion method completely burns biomass, and for example, a combustion furnace such as a stoker furnace, a fluidized bed furnace, a fine powder combustion furnace, or a spouted bed furnace is used. Only the thermal energy can be recovered and utilized by the direct combustion method, and electricity is generated by generating hot water or steam by the thermal energy.

ガス化方式は、バイオマスを酸素や空気によって部分酸化させるものであり、例えば固定床炉、流動床炉、バブリング型流動床炉、循環流動床炉、循環移動床炉等のガス化炉が用いられる。該ガス化方式では、熱エネルギー及びガスを回収、利用することができ、該熱エネルギーを利用して温水や電力を得ることができる。また、該ガスを燃料として温水や電力を回収したり、熱源としてキルン炉等での助燃剤として利用することも可能である。   In the gasification method, biomass is partially oxidized by oxygen or air, and gasification furnaces such as a fixed bed furnace, a fluidized bed furnace, a bubbling type fluidized bed furnace, a circulating fluidized bed furnace, and a circulating moving bed furnace are used. . In the gasification method, thermal energy and gas can be recovered and used, and hot water and electric power can be obtained using the thermal energy. Moreover, it is also possible to collect hot water and electric power using the gas as fuel, or to use it as a heat source as a combustion aid in a kiln furnace or the like.

また、廃棄物焼却により発生するダイオキシン削減のための規制措置により、バイオマス等の産業廃棄物の単純焼却処理も規制されるようになり、単純な焼却処理が不可能となりつつある。一方で、建設廃木材のリサイクル推進が建設リサイクル法基本方針に盛り込まれ、該建設廃木材等のリサイクル処理が余儀なくされている。   In addition, due to regulatory measures to reduce dioxins generated by waste incineration, simple incineration processing of industrial waste such as biomass is also regulated, and simple incineration processing is becoming impossible. On the other hand, the promotion of recycling of construction waste wood is included in the basic policy of the Construction Recycling Law, and the construction waste wood and the like have to be recycled.

ところが、産業廃棄物及び一般廃棄物の国内総排出量は、通常0.5〜3トン/日程度で、前記バイオマスの主材である廃木材となると、1トン/日程度の排出量に留まり、前記直接燃焼方式やガス化方式における処理量と比較するとかなり少ない。特に廃木材は、一度家屋等の建設用材として用いられたものであり、経年により木材中の水分が低下して極めて低い含水率の素材となっている。ガス化炉においては、原料中に含有される水分により、ガス化炉内の気密性が上昇し、ガス化炉での操業安定性やガス化効率の向上に寄与するが、乾燥素材の場合は水分を供給する必要が生じる。しかしながら、廃木材に水分を供給しても、廃木材の原料中(素材中)にまで水分を含浸させ、含水率を高めることは困難であり、廃木材の外表面に付着した水は、ガス化炉への供給直後に蒸発してガス化炉内の気密性に寄与しない。したがって、バイオマスの処理及び有効利用は要求されているものの、同時にガス化炉での操業安定性やガス化効率の新たな向上技術の開発が望まれている。   However, the total domestic emission of industrial waste and general waste is usually about 0.5 to 3 tons / day, and when it becomes the waste wood that is the main material of the biomass, it is only about 1 ton / day. Compared with the processing amount in the direct combustion method or gasification method, it is considerably small. In particular, waste wood has been used once as a construction material for houses and the like, and has become a material with an extremely low moisture content due to a decrease in moisture in the wood over time. In the gasification furnace, the moisture contained in the raw material increases the gas tightness in the gasification furnace, which contributes to the improvement of operational stability and gasification efficiency in the gasification furnace. It becomes necessary to supply moisture. However, even if moisture is supplied to the waste wood, it is difficult to increase the water content by impregnating the waste wood into the raw material (in the raw material). It evaporates immediately after being supplied to the gasifier and does not contribute to the gas tightness in the gasifier. Therefore, although treatment and effective utilization of biomass are required, development of a new technology for improving operation stability and gasification efficiency in a gasification furnace is desired at the same time.

一方、製紙工場においては、近年の微細繊維を多く含む古紙パルプの高配合化と用紙の軽量化、抄紙機の高速化に伴うワイヤーパートでの急激かつ強制的な脱水により、該微細繊維の歩留まりや灰分の歩留まりが極めて低い状況である。その結果、各製紙工程にて排出される製紙スラッジが年々増加してきている。   On the other hand, in paper mills, the yield of fine fibers is increased by the rapid and forced dehydration at the wire part due to the high blending of waste paper pulp containing many fine fibers in recent years, the paper weight reduction, and the speed of the paper machine. And the yield of ash is very low. As a result, papermaking sludge discharged in each papermaking process has been increasing year by year.

特に、古紙パルプを使用した再生紙の生産比率の増加と古紙パルプの高配合化により、多量の古紙パルプが必要となり、古紙の使用量も増大している。新聞古紙や雑誌古紙等の古紙には、非塗工紙に使用された填料や塗工紙に使用された填料・顔料に由来する無機物が多く含まれているため、古紙処理工程からは、パルプ繊維と分離され、填料・顔料等の無機物が多く含まれた脱墨スラッジが多量に発生している。   In particular, a large amount of used paper pulp is required due to an increase in the production ratio of recycled paper using used paper pulp and a high blending of used paper pulp, and the amount of used paper is also increasing. Waste paper such as used newspapers and magazines contains a lot of inorganic substances derived from fillers used in uncoated paper and fillers and pigments used in coated paper. A large amount of deinking sludge separated from fibers and containing a large amount of inorganic substances such as fillers and pigments is generated.

このような填料・顔料等の無機物を多量に含む古紙処理工程から排出される脱墨スラッジや、各製紙工程から排出される排水・脱水スラッジ等の製紙スラッジは、従来、燃焼して減容化を図ったうえで、多くは埋立て処分されてきた。   Conventionally, deinking sludge discharged from waste paper processing processes that contain a large amount of inorganic substances such as fillers and pigments, and paper sludges such as wastewater and dewatered sludge discharged from each papermaking process, are conventionally burned to reduce the volume. Many have been disposed of in landfills.

しかしながら、環境保護、資源保護、ゴミ減少等に貢献することができる再生紙を、その品質を維持乃至向上しながら継続的に製造するためには、製紙工場にとって、このような製紙スラッジの再資源化や有効利用が重要な課題となってきている。   However, in order to continuously produce recycled paper that can contribute to environmental protection, resource protection, dust reduction, etc., while maintaining or improving its quality, paper mills need to recycle such paper sludge. And effective use have become important issues.

そこで、前記バイオマスや製紙スラッジを再資源化して有効利用するために、さらに各種処理方法が研究されてきている。   Therefore, various treatment methods have been further studied in order to recycle and effectively use the biomass and paper sludge.

例えば特許文献1には、高炉及びコークス炉、シャフト炉、ロータリーキルン、キュポラ、溶融炉やゴミのガス化溶融装置等の処理装置に、一般生ゴミや廃食品残渣、古紙や廃木材、家畜糞、活性汚泥類、製紙スラッジ、シュレッダー屑、廃プラスチック等炭化水素系を含んだ廃棄物、あるいは水分を含む廃棄物及び未利用資源を投入し、還元ガスとして生成した水素ガスを回収する方法が提案されている。   For example, in Patent Document 1, blast furnaces and coke ovens, shaft furnaces, rotary kilns, cupolas, melting furnaces and waste gasification and melting equipment, and other processing equipment such as general garbage and waste food residues, waste paper and waste wood, livestock dung, A method for recovering hydrogen gas generated as reducing gas by introducing waste containing hydrocarbons such as activated sludge, paper sludge, shredder scrap, waste plastic, or waste containing water and unused resources has been proposed. ing.

また例えば特許文献2には、1つの容器内に有機系廃棄物を熱分解する領域と発生した熱分解ガスを改質する領域とを備えるガス化炉を有し、該有機系廃棄物を熱分解する領域に、所定の定圧モル熱容量を有する固体状熱媒体が充填されたガス化装置を用い、有機系廃棄物を熱分解かつ改質してガス化する方法が提案されている。   Further, for example, Patent Document 2 has a gasification furnace having a region for thermally decomposing organic waste and a region for reforming generated pyrolysis gas in one container, and heats the organic waste. There has been proposed a method of gasifying organic waste by pyrolysis and reforming using a gasification apparatus in which a solid heat medium having a predetermined constant pressure molar heat capacity is filled in a region to be decomposed.

これらの方法により、いわゆるバイオマスや製紙スラッジを原料として利用し、資源としての熱エネルギーやガスを得ることは可能である。しかしながら、これらの方法では、原料の保有水分を適度に調整することができず、特に原料を揮発、熱分解させる際の反応系の気密性を維持することができず、ガスの生成効率や安定性が損なわれてしまうという問題がある。
特開2001−311084号公報 特開2005−146056号公報
By these methods, it is possible to use so-called biomass and papermaking sludge as raw materials to obtain thermal energy and gas as resources. However, in these methods, the water content of the raw material cannot be adjusted appropriately, and the gas tightness of the reaction system cannot be maintained especially when the raw material is volatilized or thermally decomposed. There is a problem that the performance is impaired.
JP 2001-311084 A JP 2005-146056 A

本発明は、前記背景技術に鑑みてなされたものであり、廃棄資源を有効利用し、燃料として回収可能なガスを効率よく、かつ安定して生成する方法を提供することを目的とする。   The present invention has been made in view of the background art described above, and an object of the present invention is to provide a method for efficiently and stably generating a gas that can be recovered as a fuel by effectively using waste resources.

本発明は、
微細ダストを含む廃材Aと製紙スラッジBと混在しており、該製紙スラッジBによって該廃材Aの微細ダストが吸着されてフロック化し、フロック化したダストが廃材Aに付着した主原料Cを、非酸化性雰囲気下で熱分解し、発生した熱分解ガスをスチームと反応させることを特徴とする、ガス化方法
に関する。
The present invention
Waste material A containing fine dust and papermaking sludge B are mixed, and fine dust of waste material A is adsorbed and flocked by the papermaking sludge B. The present invention relates to a gasification method characterized by pyrolyzing in a non-oxidizing atmosphere and reacting the generated pyrolysis gas with steam.

本発明のガス化方法は、廃棄資源を有効利用した資源循環型の方法であり、該ガス化方法により、燃料として回収可能なガスを熱量と共に効率よく、かつ安定して生成することができ、しかも操業変動に伴うピッチ分の析出を抑制することもできる。   The gasification method of the present invention is a resource circulation type method that effectively uses waste resources, and by the gasification method, a gas that can be recovered as fuel can be efficiently and stably generated together with the amount of heat. Moreover, it is possible to suppress the precipitation of the pitch due to operational fluctuations.

(実施の形態)
本発明のガス化方法では、原料として、微細ダストを含む廃材Aと製紙スラッジBとを混在させた主原料Cを用い、該主原料Cを非酸化性雰囲気下で熱分解し、発生した熱分解ガスをスチームと反応させる。
(Embodiment)
In the gasification method of the present invention, a main raw material C in which waste material A containing fine dust and papermaking sludge B are mixed as a raw material is used, and the main raw material C is thermally decomposed in a non-oxidizing atmosphere to generate heat. React the cracked gas with steam.

まず、本実施の形態に係るガス化方法に用いる原料について説明する。   First, the raw material used for the gasification method according to the present embodiment will be described.

本実施の形態に用いられる主原料Cの1つである廃材Aとは、例えば廃木材、間伐材、流木、廃割り箸、バーク材等の木材廃棄物であり、通常含水率が低い原料である。   The waste material A, which is one of the main raw materials C used in the present embodiment, is a wood waste such as waste wood, thinned wood, driftwood, waste split chopsticks, bark, etc., and is usually a raw material having a low water content. .

前記廃材Aは、例えば後述するガス化装置におけるガス化炉にて処理が可能な形状であれば特に限定がなく、例えば板状、シート状であれば、面積が4〜20cm2程度で、厚さが5〜10mm程度のものを、棒状であれば、底面積が0.5〜2cm2程度で、長さが20〜100mm程度のものを、また粒状、粉末状であれば、粒径が0.5〜2cm程度のものを好適に用いることができる。 The waste material A is not particularly limited as long as it can be processed in a gasification furnace in a gasification apparatus to be described later. For example, if the shape is a plate or sheet, the area is about 4 to 20 cm 2 , and the thickness is If the length is about 5 to 10 mm, the bottom area is about 0.5 to 2 cm 2 and the length is about 20 to 100 mm. The thing of about 0.5-2 cm can be used suitably.

前記のごとき、好適な板状、シート状、粒状又は粉末状の寸法を超える粗大な廃材Aを用いた場合は、ガス化炉への原料供給における作業性の低下や、原料寸法のバラツキにより、本発明の課題である、燃料として回収可能なガスを効率よく、かつ安定して生成する方法を提供することが困難になる恐れがある。   As described above, when using a coarse waste material A exceeding the suitable plate-like, sheet-like, granular, or powdery dimensions, due to a decrease in workability in the raw material supply to the gasification furnace, or variations in raw material dimensions, There is a fear that it is difficult to provide a method for efficiently and stably generating a gas that can be recovered as a fuel, which is an object of the present invention.

本実施の形態に用いられる廃材Aには、微細ダストが含まれている。該微細ダストとは、原料の木材廃棄物を、例えば後述するガス化装置におけるガス化炉にて処理が可能な所望の形状及び大きさに破砕した際に発生する、例えば粉体状で粒子径が10mm以下、主として2〜6mm程度のダストのことをいう。   The waste material A used in the present embodiment contains fine dust. The fine dust is generated when the raw wood waste is crushed into, for example, a desired shape and size that can be processed in a gasification furnace in a gasification apparatus described later. Means dust of 10 mm or less, mainly about 2 to 6 mm.

通常このような微細ダストが廃材に含まれていると、微細ダストによって空気の流れが阻害されて空隙率が低下し、廃材の熱分解で発生したガスとスチームとを反応させる際に、スチームの流れが阻害され、反応が充分に進行しない。したがって、該微細ダストは、廃材の一部として有効利用が可能であるにも関らず、ガス化炉での処理に先立って、あらかじめ除去しなければならず、その操作も煩雑である。   Normally, when such fine dust is contained in the waste material, the air flow is hindered by the fine dust and the porosity decreases, and when the gas generated by the thermal decomposition of the waste material reacts with the steam, The flow is obstructed and the reaction does not proceed sufficiently. Therefore, although the fine dust can be effectively used as a part of the waste material, it must be removed in advance before the treatment in the gasification furnace, and the operation is complicated.

ところが、本実施の形態では、主原料Cとして、廃材Aだけでなく後述する製紙スラッジBを混在させているので、該製紙スラッジBによって廃材Aの微細ダストが吸着されてフロック化し、フロック化したダストが廃材Aに付着して、熱分解の際に空気の流れを阻害する微細ダストが著しく減少し、後にスチームの流れが阻害されることもない。したがって、従来のように微細ダストをあらかじめ除去する必要はなく、微細ダストを含む廃材Aは、その全てを有効利用することができ、原料の熱分解及び熱分解ガスとスチームとの反応の際に操作が煩雑になることもない。   However, in the present embodiment, not only the waste material A but also papermaking sludge B, which will be described later, is mixed as the main raw material C, so the fine dust of the waste material A is adsorbed by the papermaking sludge B to be flocked and flocked. The dust adheres to the waste material A, and the fine dust that obstructs the air flow during the thermal decomposition is remarkably reduced, and the steam flow is not hindered later. Therefore, it is not necessary to remove the fine dust in advance as in the prior art, and the waste material A containing the fine dust can be effectively used for all, and during the pyrolysis of the raw material and the reaction between the pyrolysis gas and steam. Operation is not complicated.

廃材Aに含まれる微細ダストの量があまりにも多い場合には、製紙スラッジBによって充分に吸着されず、フロック化しないままの状態で熱分解の際に残存してしまう微細ダストの量が多くなる恐れがあるので、微細ダストは、廃材A中に15質量%以下、さらには10質量%以下の量で含まれることが好ましい。また、原料の木材廃棄物を、例えば後述するガス化装置におけるガス化炉にて処理が可能な所望の形状及び大きさに破砕する際の作業を考慮すると、微細ダストは、廃材A中に例えば3質量%程度以上含まれる。   When the amount of fine dust contained in the waste material A is too large, the amount of fine dust that is not sufficiently adsorbed by the papermaking sludge B and remains in the pyrolysis without being flocked increases. Since there exists a possibility, it is preferable that fine dust is contained in the waste material A in the quantity of 15 mass% or less, Furthermore, 10 mass% or less. Further, considering the work when crushing the raw wood waste into a desired shape and size that can be processed in a gasification furnace in a gasification apparatus to be described later, About 3% by mass or more is contained.

なお、廃材A中に含有される微細ダストが15質量%を超えると、前記のように、製紙スラッジBによって充分に吸着されず、フロック化しないままの状態で熱分解の際に残存してしまうため、ガス化炉内で原料の閉塞性が高まり、本発明の課題である、燃料として回収可能なガスを効率よく、かつ安定して生成することができない恐れがある。   In addition, when the fine dust contained in the waste material A exceeds 15% by mass, as described above, it is not sufficiently adsorbed by the papermaking sludge B and remains in the pyrolysis state without being flocked. For this reason, the blockage of the raw material is increased in the gasification furnace, and there is a possibility that the gas that can be recovered as fuel, which is the subject of the present invention, cannot be efficiently and stably generated.

廃材Aは、前記したように、通常含水率が低い原料であり、その形状によっても異なるが、その含水率は20質量%程度以上、25質量%程度以下であることが好ましい。   As described above, the waste material A is usually a raw material having a low moisture content, and the moisture content is preferably about 20% by mass or more and about 25% by mass or less, although it varies depending on the shape.

なお、本明細書において、含水率はJIS Z 7302−3「廃棄物固形化燃料−第3部:水分試験方法」に記載の方法に準拠して測定した値をいう。   In addition, in this specification, a moisture content means the value measured based on the method as described in JISZ7302-3 "Waste solidified fuel-Part 3: Water test method."

本実施の形態では、廃材Aとして例えば前記のごとき低含水率を有するものが用いられ、しかも後述するように、該廃材A及び製紙スラッジBを熱分解するにあたって適度な保有水分が必要であることから、該廃材Aにあらかじめ乾燥処理を施さなくてもよい。   In the present embodiment, as the waste material A, for example, a material having a low water content as described above is used, and, as will be described later, appropriate retained moisture is required for pyrolyzing the waste material A and the papermaking sludge B. Therefore, the waste material A may not be subjected to a drying process in advance.

本実施の形態に用いられる主原料Cのもう1つである製紙スラッジBとは、例えば、特に古紙リサイクル工程等の古紙から脱墨古紙パルプを製造する脱墨処理工程で発生する、例えば微細なパルプ繊維等の有機物と、多孔性の填料、顔料等の無機物、いわゆる炭酸カルシウム、カオリン、タルク、二酸化チタン、シリカ、アルミナ等の無機物とが含有される脱墨スラッジや、製紙工程から発生した各種排水スラッジを集合させて処理した工場排水スラッジや、製紙工程での微生物処理における余剰汚泥スラッジといった、有機物・無機物を含有した製紙工程からの廃棄物であり、通常含水率が高い原料である。   The papermaking sludge B, which is another main raw material C used in the present embodiment, is, for example, generated in a deinking treatment process for producing deinked wastepaper pulp from wastepaper, such as a wastepaper recycling process. Deinking sludge containing organic substances such as pulp fibers and inorganic substances such as porous fillers and pigments, so-called calcium carbonate, kaolin, talc, titanium dioxide, silica, alumina, etc. Waste from the papermaking process containing organic and inorganic substances, such as industrial wastewater sludge collected and treated with wastewater sludge, and surplus sludge sludge in microbial treatment in the papermaking process, and usually a raw material with a high water content.

含水率が高い工場排水スラッジや、製紙工程での微生物処理における余剰汚泥スラッジといった、有機物・無機物を含有した製紙工程からの廃棄物は、ガス化炉内に供給しても含有する水分を容易に気散させないことから、含水率の低い木材廃棄物と組み合わせることでガス化炉内の水分の適切な調節が可能になり、ガス化炉内の気密性を上昇させることが可能になるので、ガスの生成効率や安定性を向上させることができる。   Waste from the papermaking process that contains organic and inorganic substances, such as industrial wastewater sludge with a high water content and surplus sludge sludge from microbial treatment in the papermaking process, can easily contain moisture even if it is supplied to the gasifier. Since it does not disperse, it becomes possible to appropriately adjust the moisture in the gasifier by combining with wood waste with low moisture content, and it becomes possible to increase the gas tightness in the gasifier, so gas The production efficiency and stability of can be improved.

本実施の形態に係るガス化方法において、前記微細ダストを含む廃材Aと共に、高い含水率で水分の保持能力の高い原料として製紙スラッジBを用いることが大きな特徴の1つである。このように微細ダストを含む廃材Aと製紙スラッジBとを併用することで、非酸化性雰囲気下での熱分解の際に、例えば廃材Aを単独で原料とした場合のように系内に水分を別途補給しなくとも、効率よくかつ安定してガス化を進行させることができる。また、前記したように、製紙スラッジBによって、廃材Aに含まれる微細ダストが吸着されてフロック化し、フロック化したダストが廃材Aに付着して、熱分解の際に空気の流れを阻害する微細ダストが著しく減少し、後にスチームの流れが阻害されることもない。したがって、従来のように微細ダストをあらかじめ除去する必要はなく、微細ダストを含む廃材Aは、その全てを有効利用することができ、原料の熱分解及び熱分解ガスとスチームとの反応の際に操作が煩雑になることもない。   In the gasification method according to the present embodiment, together with the waste material A containing fine dust, it is one of the major features that papermaking sludge B is used as a raw material having a high moisture content and a high moisture retention capability. By using the waste material A containing fine dust and the papermaking sludge B in this way, when pyrolyzing in a non-oxidizing atmosphere, for example, when the waste material A is used alone as a raw material, moisture is contained in the system. Gasification can proceed efficiently and stably without replenishing. In addition, as described above, fine dust contained in the waste material A is adsorbed and flocked by the papermaking sludge B, and the flocked dust adheres to the waste material A, and the fine dust that inhibits the flow of air during thermal decomposition. Dust is significantly reduced and the steam flow is not hindered later. Therefore, it is not necessary to remove the fine dust in advance as in the prior art, and the waste material A containing the fine dust can be effectively used for all, and during the pyrolysis of the raw material and the reaction between the pyrolysis gas and steam. Operation is not complicated.

製紙スラッジBは、前記したように、通常含水率が高い原料であり、その種類によっても多少異なるが、その含水率は40質量%程度以上、70質量%程度以下であることが好ましく、50質量%程度以上、70質量%程度以下であることがさらに好ましい。   As described above, the papermaking sludge B is a raw material that usually has a high water content, and varies slightly depending on the type, but the water content is preferably about 40% by mass or more and about 70% by mass or less, and 50% by mass. More preferably, it is about from about% to about 70% by mass.

製紙スラッジBの含水率が70質量%を超えるようにするには、製紙スラッジB中にさらに水を加えなければならず、含水率が高すぎるとガス化炉内の温度低下やガス化炉への搬送時に漏水が生じ、作業性を悪化させる原因となる。また製紙スラッジBの含水率が40質量%未満の場合、本発明の課題である、回収可能なガスを効率よく、かつ安定して生成するためには阻害となる微細ダストを廃材Aに付着させることが困難になり、課題を解決することができない恐れがある。   In order to make the water content of the papermaking sludge B exceed 70% by mass, further water must be added to the papermaking sludge B. If the water content is too high, the temperature in the gasification furnace decreases and the gasification furnace Water leakage occurs during transport, which may cause deterioration of workability. Further, when the water content of the papermaking sludge B is less than 40% by mass, the fine dust that is an obstacle to the efficient and stable generation of the recoverable gas, which is the subject of the present invention, is attached to the waste material A. May be difficult and may not solve the problem.

本実施の形態に係るガス化方法において、まず、微細ダストを含む廃材Aと製紙スラッジBとを、両者の質量比が特定範囲内に含まれるように調整して混在させて混合原料(主原料C)とし、ガス化装置内のガス化炉において、該主原料Cを非酸化性雰囲気下で熱分解する。   In the gasification method according to the present embodiment, first, a waste material A containing fine dust and a papermaking sludge B are mixed and mixed so that the mass ratio of both is included in a specific range (main raw material) C), and the main raw material C is pyrolyzed in a non-oxidizing atmosphere in a gasification furnace in the gasifier.

前記ガス化装置及びそれに備えられるガス化炉の仕様には特に限定がなく、例えば前記主原料Cを熱分解し、さらに該熱分解によって発生した熱分解ガスをスチームと反応させることが可能なものであればよい。   There are no particular limitations on the specifications of the gasifier and the gasifier provided therein, for example, the main raw material C can be pyrolyzed, and the pyrolysis gas generated by the pyrolysis can be reacted with steam If it is.

前記ガス化炉としては、例えばアップドラフトガス化炉があげられる。該アップドラフトガス化炉は、炉下部層から上部層に向けて、灰化層、チャー層、揮発・熱分解層、未反応原料層の略4層の反応層を形成し、炉下部層からの過熱蒸気により原料をガス化させる一種の反応塔の構成からなる。このようなアップドラフトガス化炉では、炉下部層から供給される過熱蒸気によりチャー層下部で燃焼反応が生じ、これによってチャー層上部にて水性ガス化反応、発生炉ガス化反応等の吸熱反応が進行する。したがって、揮発・熱分解層は、燃料ガスとなるCOやH2が生成する反応を維持するために、下部からのガス流が適度な気密性を保持するような層構成を呈することが必要である。該揮発・熱分解層での気密性を適度に保持させるには、反応系が適度な保有水分を有するように調整すればよい。かかる保有水分が不充分であったり、逆に過剰であると、ガスの生成効率や生成安定性が損なわれる。   Examples of the gasification furnace include an updraft gasification furnace. The updraft gasification furnace forms approximately four reaction layers of an ashing layer, a char layer, a volatilization / pyrolysis layer, and an unreacted raw material layer from the lower layer to the upper layer. It consists of a kind of reaction tower which gasifies the raw material with the superheated steam. In such an updraft gasification furnace, a combustion reaction occurs in the lower part of the char layer due to the superheated steam supplied from the lower layer of the furnace, thereby causing an endothermic reaction such as a water gasification reaction and a generating furnace gasification reaction in the upper part of the char layer. Progresses. Therefore, the volatilization / pyrolysis layer needs to exhibit a layer structure in which the gas flow from the lower part maintains an appropriate hermeticity in order to maintain the reaction of generating CO or H2 as fuel gas. . In order to appropriately maintain the airtightness in the volatile / thermal decomposition layer, the reaction system may be adjusted so as to have appropriate retained moisture. If the retained moisture is insufficient or conversely excessive, the gas generation efficiency and generation stability are impaired.

本実施の形態に係るガス化方法では、前記したように、従来ガス化の原料として用いられている、比較的含水率が低い廃材Aだけでなく、その構成成分中に多孔性の填料や顔料が含有され、比較的含水率が高い製紙スラッジBを併用するので、容易に揮発しない該多孔性の填料や顔料に保持された水分によって反応系に適度な保有水分が付与される。したがって、非酸化性雰囲気下での熱分解の際に、例えば廃材Aを単独で原料とした場合のように系内に水分を別途補給しなくとも、前記揮発・熱分解層での気密性が適度に保持され、ガスの生成効率や生成安定性が著しく向上する。   In the gasification method according to the present embodiment, as described above, not only the waste material A having a relatively low water content, which is conventionally used as a raw material for gasification, but also porous fillers and pigments in its constituent components. Since a papermaking sludge B having a relatively high water content is used in combination, an appropriate retained moisture is imparted to the reaction system by the moisture retained in the porous filler or pigment that does not volatilize easily. Therefore, when pyrolyzing in a non-oxidizing atmosphere, for example, when the waste material A is used alone as a raw material, it is possible to maintain airtightness in the volatile / pyrolytic layer without separately supplying water to the system. The gas generation efficiency and generation stability are remarkably improved.

前記微細ダストを含む廃材Aと製紙スラッジBとを混在させる際に、廃材Aに対して製紙スラッジBが多すぎると、主原料Cの水分が過多となってガス温度が低下する恐れがあるので、主原料Cにおける製紙スラッジBの含有割合が、固形分で30質量%以下、さらには25質量%以下となるように調整することが好ましい。また、逆に廃材Aに対して製紙スラッジBが少なすぎると、主原料Cの水分が過少となってガス温度が上昇する恐れがあるので、主原料Cにおける製紙スラッジBの含有割合が、固形分で5質量%以上、さらには10質量%以上となるように調整することが好ましい。このように、両者の質量比は、主原料Cの水分が適切な量となるように適宜調整することが好ましい。   When mixing the waste material A containing fine dust and the papermaking sludge B, if the papermaking sludge B is too much relative to the waste material A, the moisture of the main raw material C may be excessive and the gas temperature may decrease. The content ratio of the papermaking sludge B in the main raw material C is preferably adjusted so that the solid content is 30% by mass or less, and further 25% by mass or less. On the contrary, if the papermaking sludge B is too small relative to the waste material A, the water content of the main raw material C becomes too low and the gas temperature may rise. Therefore, the content ratio of the papermaking sludge B in the main raw material C is solid. It is preferable to adjust so that it may become 5 mass% or more in a minute, and also 10 mass% or more. Thus, it is preferable to appropriately adjust the mass ratio between the two so that the water content of the main raw material C becomes an appropriate amount.

主原料Cにおける製紙スラッジBの含有割合が30質量%を超えると、元来灰分(無機微粒子)を多く含む製紙スラッジBの影響で、ガス化反応が阻害される問題が生じ易くなり、逆に主原料Cにおける製紙スラッジBの含有割合が5質量%未満の場合、製紙スラッジBの持つ、高い含水性による水分保持と微細ダストを廃材Aに固着させる機能とが阻害される問題が発現し易くなるため、本発明の課題である、廃棄資源を有効利用し、燃料として回収可能なガスを効率よく、かつ安定して生成することが困難になる恐れがある。   If the content of the papermaking sludge B in the main raw material C exceeds 30% by mass, the gasification reaction is likely to be hindered due to the influence of the papermaking sludge B originally containing a large amount of ash (inorganic fine particles). When the content ratio of the papermaking sludge B in the main raw material C is less than 5% by mass, a problem that the water retention due to the high water content and the function of fixing the fine dust to the waste material A, which the papermaking sludge B has, is likely to occur. Therefore, there is a risk that it is difficult to efficiently and stably generate a gas that can be effectively used as a problem and is recovered as fuel, which is a problem of the present invention.

また、前記したように、例えば微細ダストを含む廃材Aの含水率は20〜25質量%程度で、製紙スラッジBの含水率は40〜70質量%程度であるが、両者を混在させた主原料Cの含水率は、前記揮発・熱分解層での気密性が適度に保持され、ガスの生成効率や生成安定性が向上するようにするには、45質量%程度以上、55質量%程度以下となるように調整することが好ましい。   Further, as described above, for example, the water content of the waste material A containing fine dust is about 20 to 25% by mass, and the water content of the papermaking sludge B is about 40 to 70% by mass. The moisture content of C is about 45% by mass or more and about 55% by mass or less in order to keep gas tightness in the volatile / thermal decomposition layer moderately and to improve gas generation efficiency and generation stability. It is preferable to adjust so that.

主原料Cの含水率が45質量%未満では、ガス化炉内での水分供給不足が生じ易くなり、逆に55質量%を超えると、作業性が低下する問題が生じ易くなり、本発明の課題である、廃棄資源を有効利用し、燃料として回収可能なガスを効率よく、かつ安定して生成することが困難になる恐れがある。   If the water content of the main raw material C is less than 45% by mass, insufficient supply of moisture in the gasification furnace tends to occur, and conversely, if it exceeds 55% by mass, the problem of reduced workability tends to occur. There is a possibility that it is difficult to efficiently and stably generate a gas that can be recovered as a fuel by effectively using waste resources, which is a problem.

微細ダストを含む廃材Aと製紙スラッジBとを混在させた主原料Cを熱分解する際の加熱温度は、該主原料Cの熱分解反応がほぼ終了し、充分な量の熱分解ガスを発生させることが可能な温度であればよく、例えば1000℃以上、さらには1200℃程度であることが好ましい。該加熱温度が1000℃未満では、主原料Cの熱分解が不充分となる恐れがある。また、加熱温度が1200℃を超えると、熱分解ガス自体が自燃する恐れが生じるため、好ましくない。   The heating temperature when pyrolyzing the main raw material C in which the waste material A containing fine dust and the papermaking sludge B are mixed is almost complete, and a sufficient amount of pyrolytic gas is generated. For example, the temperature is preferably 1000 ° C. or higher, and more preferably about 1200 ° C. If the heating temperature is lower than 1000 ° C., the main raw material C may not be sufficiently thermally decomposed. On the other hand, if the heating temperature exceeds 1200 ° C., the pyrolysis gas itself may be burned by itself, which is not preferable.

前記熱分解の際の加熱手段として、点火時には例えばプロパンガス等のガスを用いるが、点火後は原料である廃材Aが自燃し、熱分解が進行する。   As the heating means at the time of the pyrolysis, a gas such as propane gas is used at the time of ignition.

また前記主原料Cを熱分解する際の圧力は、やはり該主原料Cの熱分解反応がほぼ終了し、充分な量の熱分解ガスを発生させることが可能な圧力であればよく、特に限定されるものではない。   The pressure at which the main raw material C is pyrolyzed may be any pressure as long as the pyrolysis reaction of the main raw material C is almost completed and a sufficient amount of pyrolysis gas can be generated. Is not to be done.

前記主原料Cは非酸化性雰囲気下で熱分解するが、該非酸化性雰囲気としては、例えば水蒸気と空気との混合気体や、チッ素ガス、ヘリウムガス等の不活性ガスの雰囲気があげられる。また該主原料Cを熱分解に供する時間には特に限定がなく、熱分解反応がほぼ終了し、充分な量の熱分解ガスを発生させることが可能な時間であればよい。   The main raw material C is thermally decomposed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a mixed gas of water vapor and air, and an atmosphere of an inert gas such as nitrogen gas or helium gas. Further, the time for subjecting the main raw material C to pyrolysis is not particularly limited as long as the pyrolysis reaction is almost completed and a sufficient amount of pyrolysis gas can be generated.

次に、前記のごとき熱分解により発生した熱分解ガスを、スチームと反応させ、例えばCO、H2等を多く含む燃料ガスを回収することができる。 Next, the pyrolysis gas generated by pyrolysis as described above can be reacted with steam to recover, for example, a fuel gas containing a large amount of CO, H 2 and the like.

前記熱分解ガスとスチームとを反応させる際には、例えば空気と水蒸気とを混合した混合気体を、ガス化炉下部から吹き込む等して供給すればよい。なお、前記熱分解ガスを発生させる際に、微細ダストを含む廃材Aと製紙スラッジBとを混在させた主原料Cの含水率を例えば前記範囲内に調整することにより、該主原料C中の水をスチームとして用いることも可能である。   When the pyrolysis gas and steam are reacted, for example, a mixed gas in which air and water vapor are mixed may be supplied by blowing from the lower part of the gasification furnace. When the pyrolysis gas is generated, by adjusting the water content of the main raw material C in which the waste material A containing fine dust and the papermaking sludge B are mixed, for example, within the above range, It is also possible to use water as steam.

熱分解ガスに対するスチームの供給量は、例えば原料である廃材A及び製紙スラッジBの種類や目的とする燃料ガスの性状等によっても異なり、一概に決定し得るものではなく、両者の反応が充分に進行し、充分な量及び所望の成分を有する燃料ガスが得られるように調整すればよい。   The amount of steam supplied to the pyrolysis gas varies depending on, for example, the types of the waste material A and paper sludge B, which are raw materials, the properties of the target fuel gas, etc., and cannot be determined unconditionally. The fuel gas may be adjusted so that it proceeds and a fuel gas having a sufficient amount and a desired component is obtained.

熱分解ガスとスチームとを反応させる際の反応温度は、両者の反応が終了し、充分な量及び所望の成分を有する燃料ガスを得ることが可能な温度であればよく、特に限定されるものではない。   The reaction temperature at the time of reacting the pyrolysis gas and steam is not particularly limited as long as the reaction of both ends and a fuel gas having a sufficient amount and a desired component can be obtained. is not.

また前記熱分解ガスとスチームとを反応させる際の圧力や時間は、両者の反応が終了し、充分な量及び所望の成分を有する燃料ガスを得ることが可能な圧力であればよく、いずれも特に限定されるものではない。   Further, the pressure and time for reacting the pyrolysis gas and steam may be any pressure at which the reaction between the two ends and a fuel gas having a sufficient amount and a desired component can be obtained. It is not particularly limited.

かくして得られる燃料ガスには、例えばCO、H2等が多く含まれており、各々通常の方法にて精製、濃縮等して適宜回収することができる。 The fuel gas thus obtained contains a large amount of, for example, CO, H 2 and the like, and can be appropriately recovered by purification, concentration, etc., respectively, by a usual method.

このように、本発明のガス化方法によれば、廃棄資源を有効に循環利用して、例えばCO、H2といった燃料ガスを熱量と共に効率よく、かつ安定して回収することができ、しかも操業変動に伴うピッチ分の析出を抑制することもできる。 As described above, according to the gasification method of the present invention, it is possible to efficiently and stably recover the fuel gas such as CO and H 2 together with the amount of heat by effectively circulating and utilizing the waste resources, and further operating. It is also possible to suppress the precipitation of the pitch due to the fluctuation.

好適な本発明のガス化方法においては、廃材を所定形状に砕片化し、砕片化により生じた微細ダストを含む廃棄A原料を、トラックにてガス化炉原料ピットに搬送し、好適にはあらかじめガス化炉原料ピット内の水分が一定になるように撹拌や水付与にて調整する。原料ピット内の廃棄A原料に、さらに所定水分の製紙スラッジBを添加して主原料Cを構成したのち、スクリューコンベアー等の搬送手段でガス化炉内に投入する。スクリューコンベアーは、その途中での水分付与が容易であり、乾燥気味の主原料Cを常に一定の水分に維持させるために有用な手段である。   In the preferred gasification method of the present invention, the waste material is crushed into a predetermined shape, and the waste A raw material containing fine dust generated by the smashing is transported to a gasifier raw material pit by a truck. It is adjusted by stirring and water application so that the moisture in the raw material pit is constant. The main raw material C is constituted by further adding a papermaking sludge B having a predetermined moisture content to the waste A raw material in the raw material pit, and then it is put into the gasification furnace by a conveying means such as a screw conveyor. The screw conveyor is easy to apply moisture in the middle, and is a useful means for maintaining the main ingredient C having a dry taste at a constant moisture.

ガス化炉内で生成した燃料ガスには、多量のタール分と水分が含まれており、燃料ガス利用設備として有用な設備、例えばキルンへの供給においては、供給途中での温度低下により配管中にタール分が析出し、配管の汚れや詰まりの原因となる問題や、含有する水分によるエネルギーロスが生じる恐れがあるので、ガス化炉内で生成した燃料ガスを冷却器にてあらかじめ約30℃付近まで冷却し、タール分と水分とを分離することが好ましい。   The fuel gas generated in the gasifier contains a large amount of tar and moisture. When supplying fuel gas to facilities that are useful as fuel gas equipment, such as kilns, the temperature is lowered during the supply. The tar content is deposited on the pipe, which may cause problems such as dirt and clogging of the piping and energy loss due to moisture contained therein. Therefore, the fuel gas generated in the gasification furnace is preliminarily about 30 ° C. in the cooler. It is preferable to cool to the vicinity and separate the tar content and moisture.

前記のごときタール分と水分とを分離して得られた燃料ガスは、例えば、重油とガスとの混焼バーナー等にて、キルン等の燃焼設備で有効利用することができるほか、ガスエンジン等の動力源にも利用することができる。   The fuel gas obtained by separating the tar content and the moisture as described above can be used effectively in a combustion facility such as a kiln, for example, in a mixed combustion burner of heavy oil and gas, etc. It can also be used as a power source.

次に、本発明のガス化方法を以下の実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   Next, the gasification method of the present invention will be described in more detail based on the following examples, but the present invention is not limited to these examples.

実施例1〜5及び比較例1〜2
以下に示す微細ダストを含む廃材A及び製紙スラッジBを、以下の表1に示す組み合わせで混在させ、混合原料(主原料C)を準備した。該主原料Cを、ガス化装置内のアップドラフトガス化炉(炉下部層から上部層に向けて、灰化層、チャー層、揮発・熱分解層及び未反応原料層からなる4層の反応層を備えたガス化炉)に供給し、水蒸気と空気との混合気体雰囲気下で熱分解し、熱分解ガスを発生させた。なお、かかる熱分解の際、点火時にはプロパンガスを使用し、その後は廃材Aが自燃して熱分解が進行した。
Examples 1-5 and Comparative Examples 1-2
Waste materials A and papermaking sludge B containing fine dust shown below were mixed in the combinations shown in Table 1 below to prepare a mixed raw material (main raw material C). The main raw material C is an updraft gasification furnace in a gasifier (reaction of four layers consisting of an ashing layer, a char layer, a volatilization / thermal decomposition layer, and an unreacted raw material layer from the lower layer to the upper layer) Gasification furnace equipped with a layer) and pyrolyzed in a mixed gas atmosphere of water vapor and air to generate pyrolysis gas. In this thermal decomposition, propane gas was used at the time of ignition, and after that, the waste material A self-combusted and the thermal decomposition proceeded.

(廃材A)
A−1:板状・棒状廃木材混合材
(以下のA−2・A−3を略同量で混合した混合材、含水率:約22質量%、
粉体状微細ダスト(粒子径:約4mm)含有量:約7質量%)
A−2:板状廃木材(面積:約10cm2、厚さ:約5mm、含水率:約20質量%、
粉体状微細ダスト(粒子径:約2mm)含有量:約7質量%)
A−3:棒状廃木材(底面積:約1cm2、長さ:約50mm、含水率:約25質量%、
粉体状微細ダスト(粒子径:約6mm)含有量:約7質量%)
(Waste material A)
A-1: Plate-shaped / rod-shaped waste wood mixed material (mixed material in which the following A-2 and A-3 are mixed in substantially the same amount, moisture content: about 22% by mass,
Fine powder dust (particle size: about 4 mm) content: about 7% by mass)
A-2: Plate-like waste wood (area: about 10 cm 2 , thickness: about 5 mm, moisture content: about 20% by mass,
Fine powder dust (particle size: about 2 mm) content: about 7% by mass)
A-3: Rod-like waste wood (bottom area: about 1 cm 2 , length: about 50 mm, moisture content: about 25% by mass,
Fine powder dust (particle size: about 6 mm) content: about 7% by mass)

(製紙スラッジB)
B−1:脱墨・排水スラッジ混合材
(以下のB−2・B−3を略同量で混合した混合材、含水率:約65質量%)
B−2:脱墨スラッジ
(古紙から脱墨古紙パルプを製造する脱墨処理工程のフローテーション工程で
発生したもの、含水率:約60質量%)
B−3:排水スラッジ
(製紙工程からの各種排水スラッジを集合処理したもの、
含水率:約70質量%)
(Paper sludge B)
B-1: Deinking / drainage sludge mixed material (mixed material in which the following B-2 and B-3 are mixed in substantially the same amount, water content: about 65% by mass)
B-2: Deinking sludge (In the flotation process of the deinking process to manufacture deinked wastepaper pulp from wastepaper
Generated, moisture content: about 60% by mass)
B-3: Wastewater sludge (A collection of various wastewater sludge from the papermaking process,
(Moisture content: about 70% by mass)

(主原料Cの組み合わせ)

Figure 0004397423
(Combination of main raw materials C)
Figure 0004397423

次に、空気と水蒸気とを混合した混合空気をガス化炉下部から吹き込み、発生した熱分解ガスとスチームとを反応させてガス化を行った。   Next, mixed air in which air and water vapor were mixed was blown from the lower part of the gasification furnace, and the generated pyrolysis gas and steam were reacted to perform gasification.

その結果、実施例1〜5では、効率よくかつ安定した操業状態で燃料混合ガスを得ることができた。しかし、比較例1では、ガス化炉内のガス化反応が進行しないだけでなく、不安定な操業で燃料混合ガスとして使用不可であった。また比較例2では、ガス化炉内のガス化反応が殆ど進行しなかった。   As a result, in Examples 1 to 5, it was possible to obtain a fuel mixed gas in an efficient and stable operation state. However, in Comparative Example 1, not only the gasification reaction in the gasification furnace does not proceed, but also the fuel mixture gas cannot be used due to unstable operation. In Comparative Example 2, the gasification reaction in the gasification furnace hardly progressed.

なお、各実施例及び比較例において、原料の準備から燃料混合ガスを得るまでを1セットとした一連の操作を、各々3セットずつ行った。   In each of the examples and comparative examples, a series of operations in which one set from the preparation of the raw material to obtaining the fuel mixed gas was performed was performed in three sets.

また、安定した操業とは、原料の詰まりやガス化炉内の温度変化が少なく、高い発熱量の燃料混合ガスを生成することができる操業状態をいう。一方、不安定な操業とは、原料の詰まりやガス化炉内の温度変化、燃料混合ガス発熱量の変動幅が大きく、燃料混合ガスを有効利用する燃焼設備での操業不安定が生じる操業状態をいう。   Stable operation refers to an operation state in which clogging of raw materials and temperature change in the gasification furnace are small and a fuel mixed gas having a high calorific value can be generated. On the other hand, unstable operation refers to an operation state in which there are large fluctuations in the clogging of raw materials, temperature changes in the gasification furnace, and the heat generation amount of the fuel gas mixture, resulting in operation instability in the combustion facility that effectively uses the fuel gas mixture Say.

石灰化燃焼キルンの重油バーナーを、得られた燃料混合ガスを用いて重油・ガス混焼バーナーに置換えて操業した際の、熱量ベースでの重油使用量の削減率を求めたところ、表1に示すように、実施例1〜5の燃料混合ガスでは2〜3%も重油使用量を削減することができた。これに対して比較例1、2の条件においては、ガス化が不可能であった。   When the heavy oil burner of the calcification combustion kiln was replaced with a heavy oil / gas mixed burner using the obtained fuel mixed gas, the reduction rate of heavy oil usage on a calorific basis was calculated and shown in Table 1. Thus, in the fuel mixed gas of Examples 1-5, the amount of heavy oil used could be reduced by 2-3%. On the other hand, gasification was impossible under the conditions of Comparative Examples 1 and 2.

本発明のガス化方法は、廃棄資源を有効利用した資源循環型の方法であり、例えば建設業、環境事業、燃料供給開発事業等の分野にて広く利用することができる。   The gasification method of the present invention is a resource circulation method that effectively uses waste resources, and can be widely used in fields such as the construction industry, environmental business, and fuel supply development business.

Claims (5)

微細ダストを含む廃材Aと製紙スラッジBと混在しており、該製紙スラッジBによって該廃材Aの微細ダストが吸着されてフロック化し、フロック化したダストが廃材Aに付着した主原料Cを、非酸化性雰囲気下で熱分解し、発生した熱分解ガスをスチームと反応させることを特徴とする、ガス化方法。 Waste material A containing fine dust and papermaking sludge B are mixed, and fine dust of waste material A is adsorbed and flocked by the papermaking sludge B. A gasification method characterized by pyrolyzing in a non-oxidizing atmosphere and reacting the generated pyrolysis gas with steam. 廃材A中に微細ダストが3〜15質量%含まれる、請求項1に記載のガス化方法。   The gasification method according to claim 1, wherein 3 to 15 mass% of fine dust is contained in the waste material A. 主原料Cの含水率が45〜55質量%となるように調整する、請求項1又は2に記載のガス化方法。   The gasification method of Claim 1 or 2 adjusted so that the moisture content of the main raw material C may be 45-55 mass%. 含水率が20〜25質量%の廃材Aと、含水率が40〜70質量%の製紙スラッジBとを混在させる、請求項1〜3のいずれか1つに記載のガス化方法。   The gasification method according to any one of claims 1 to 3, wherein a waste material A having a moisture content of 20 to 25% by mass and a papermaking sludge B having a moisture content of 40 to 70% by mass are mixed. 主原料Cにおける製紙スラッジBの含有割合が、固形分で5〜30質量%となるように調整する、請求項1〜4のいずれか1つに記載のガス化方法。   The gasification method as described in any one of Claims 1-4 adjusted so that the content rate of the papermaking sludge B in the main raw material C may be 5-30 mass% by solid content.
JP2008204097A 2008-08-07 2008-08-07 Gasification method Active JP4397423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204097A JP4397423B1 (en) 2008-08-07 2008-08-07 Gasification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204097A JP4397423B1 (en) 2008-08-07 2008-08-07 Gasification method

Publications (2)

Publication Number Publication Date
JP4397423B1 true JP4397423B1 (en) 2010-01-13
JP2010037478A JP2010037478A (en) 2010-02-18

Family

ID=41591566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204097A Active JP4397423B1 (en) 2008-08-07 2008-08-07 Gasification method

Country Status (1)

Country Link
JP (1) JP4397423B1 (en)

Also Published As

Publication number Publication date
JP2010037478A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
JP5687409B2 (en) Waste treatment method and apparatus
JP4377824B2 (en) Waste melting treatment method using biomass
CA2594842C (en) Waste treatment process and apparatus
He et al. Operating temperature and retention time effects on the thermochemical conversion process of swine manure
Zhang et al. A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment
US20130131421A1 (en) Waste treatment
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JP2009057438A (en) Method for manufacturing semi-dry distilled biomass carbon micropowder and method for using the same
JP3916179B2 (en) High temperature gasification method and apparatus for waste
JP4966239B2 (en) Organic waste treatment method, gasification furnace, reforming furnace, organic waste treatment equipment
EP2566809B1 (en) Waste treatment
JP7140341B2 (en) Hydrogen production method using biomass as raw material
JP5385396B2 (en) Method for producing hydrogen-containing gas
WO2011128513A1 (en) A waste refining method
JP3079051B2 (en) Gasification of waste
WO2011027394A1 (en) Waste treatment method
JP4397423B1 (en) Gasification method
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP4397424B1 (en) Gasification method
JP2009114242A (en) Organic matter gasification method
JP4486377B2 (en) Waste melting treatment method using powdery biomass
JP2009235189A (en) Method for gasifying woody or agricultural biomass
Fang et al. Steel slag assisted pyrolysis of biomass for the preparation of compound adsorbent
JP2004041848A (en) Method for gasifying carbonaceous resources and apparatus therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4397423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250