JP4397090B2 - Pneumatic tire manufacturing method - Google Patents

Pneumatic tire manufacturing method Download PDF

Info

Publication number
JP4397090B2
JP4397090B2 JP2000068461A JP2000068461A JP4397090B2 JP 4397090 B2 JP4397090 B2 JP 4397090B2 JP 2000068461 A JP2000068461 A JP 2000068461A JP 2000068461 A JP2000068461 A JP 2000068461A JP 4397090 B2 JP4397090 B2 JP 4397090B2
Authority
JP
Japan
Prior art keywords
bead core
core member
bead
carcass
unvulcanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000068461A
Other languages
Japanese (ja)
Other versions
JP2001252991A (en
Inventor
佐伯  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2000068461A priority Critical patent/JP4397090B2/en
Publication of JP2001252991A publication Critical patent/JP2001252991A/en
Application granted granted Critical
Publication of JP4397090B2 publication Critical patent/JP4397090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tyre Moulding (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気入りタイヤの製造方法、より詳細には、スチールコードをカーカスプライに適用する空気入りラジアルタイヤ用未加硫タイヤの製造方法に関し、特に、未加硫タイヤ成型に当り、カーカスプライ用素材をビードコア部材に対し高精度で、かつ、安定して巻返すことができる空気入りタイヤの製造方法に関する。
【0002】
【従来の技術】
空気入りラジアルタイヤの中でもトラックやバスなどの重車両に使用する、いわゆる重荷重用空気入りラジアルタイヤには、カーカスにスチールコードのゴム被覆プライを用いるのが一般である。また、この種のタイヤには高圧の内圧を充てんするので、カーカスはビードコアの周りをタイヤ内側から外側に向け折返し、カーカスを一対のビードコアに係止する構造が採用されている。
【0003】
ところが、カーカスの折返しは、ビード部のゴム中で放射方向に位置し、かつ、切り離し端を有しているので、タイヤの荷重負荷転動下でカーカスの折返し端に大きなひずみが集中し、折返し端からセパレーション故障が生じ易い。そこで、折返し端のひずみ集中を回避するため、図13にビード部30の断面を示すように、それまでの折返し構造に代えて、カーカス31の端部31E がビードコア32周面を包み込むような巻込み構造が提案されている。
【0004】
しかし、巻込み端部31E は、カーカス31のプライ中に埋設する多数本のスチールコードの弾性領域内での巻込み変形に留まり、かつ、カーカス31のスチールコードがラジアル配列である上に反発弾性力が大きいため、タイヤの製造過程にてビードコア32から遠ざかる。その結果、所望するビードコア巻込み状態を実現することが困難となり、結局、ゴム中の巻込み端31Eeに集中ひずみが作用し、亀裂発生からバーストに至る故障が発生し易くなり、期待したほどのビード部耐久性向上を実現することができない。また、無理な巻込みは、スチールコードを傷付け、ゴムとの接着不良箇所を作り出す不都合も生じる。
【0005】
そこで、本出願人は、既に特願平11−19847号に係る明細書にて、スチールコードのゴム被覆になるカーカスプライのビードコア巻込み部に、一以上の塑性変形箇所を設ける空気入りタイヤを提案している。この塑性変形になるビー3コア巻込み部を図12のビード部断面図に示す。図12に示すビード部20において、カーカス21はビードコア22の巻込み部21R を有し、ビードコア22は、断面がほぼ六角形を示し、巻込み部21R は塑性変形箇所p1 、p2 、p3 を有する。
【0006】
この巻込み部21R に塑性変形箇所p1 、p2 、p3 を設けることで、巻込み部21R はビードコア22の周面に沿い位置するので、巻込み端21Reに作用するひずみは著しく低減し、巻込み端21Reの耐セパレーション性は大幅に向上し、結局、ビード部20の耐久性は著しく向上することを確かめている。巻込み端21Reをビードコア22により近く位置させる上で、巻込み端21Reに近い塑性変形箇所は特に重要な役を担う。
【0007】
【発明が解決しようとする課題】
しかし、巻込み部21R に塑性変形箇所p1 、p2 、p3 を設けるタイヤを製造する際に、以下に述べるような課題が存在することが分かった。
すなわち、端部10AEに塑性変形箇所p1 、p2 、p3 をもつカーカスプライ用素材10A を成型ドラム2B 上に巻付けた円筒状バンド10A の断面を示す図11において、一対のビードコア部材15を各側の塑性変形箇所p1 、p2 、p3 に適用する際、まず、各ビードコア部材15を保持する一対のビードセッタ4が、一旦、塑性変形箇所p1 、p2 、p3 を通過しなければならない。
【0008】
次いで、図11に示すように、各ビードコア部材15をバンド10Aに対し所定位置にセットするため、ビードセッタ4は、バンド10A の端部10AEの塑性変形部p1 〜p2 〜p3 を二点鎖線で示す位置から実線で示す位置まで強制変形させる必要がある。この状態で、ビードコア部材15をロック用手段16の矢印方向拡径により、ビードコア部材14をバンド10A にロック固定する。
【0009】
しかし、ビードセッタ4の塑性変形部p1 〜p2 〜p3 の一旦通過と、強制変形とはビードセッタ4に対し大きな反力をもたらす。この反力は、ビードセッタ4にとって大きな負担となるため、強制変形に時間をとらせ、結局、成型のサイクルタイムが増加し、成型の生産性が低下する。また、この大きな反力に対向するには成型機の出力系を強化させる必要が生じ、その一方で反力による成型機の耐久性不足が生じるなど、深刻な問題が生じる。また、ビードコア部材15の正確な位置決めに不都合が生じるなど、成型精度が損なわれる問題も存在する。
【0010】
従って、この発明の請求項1〜4に記載した発明の目的は、上述の残された課題の完全解決にあり、より具体的には、ビードコア部材のビードセッタに対する反力を大幅に低減させ、これにより、従来の成型機のままで、十分な耐久性と高度な生産性とを保持し、高精度な成型が可能な空気入りタイヤ製造方法を提供することにある。
【0011】
上記目的を達成するため、この発明の請求項1に記載した発明は、未加硫タイヤの成型に当り、
多数本の平行配列スチールコードに未加硫ゴムを被覆したラジアルカーカスプライ用素材の、タイヤのカーカス周方向に沿いビードコアを巻返す両側端部に、それぞれ予め2箇所以上の上向きくせ付けを施し、その後、くせ付け部をもつ両側端部の被覆ゴム部分に所定ピッチで切込みを入れ、両側にそれぞれ複数箇所の切込みをもつ素材を成型ドラムに供給して円筒状にジョイントし、
円筒状素材のくせ付け部をもつ両側端部に一対のビードコア部材を供給して位置させ、この位置の各ビードコア部材を上記素材を介して内方からロック固定し、この固定の下で上記素材をトロイド状に膨出変形させ、膨出変形した素材の各くせ付け部をビードコア部材の周囲に巻込み密着させ、
その後、トロイド状素材の外周側に未加硫ベルトと未加硫トレッドゴムとを張合わせることを特徴とする空気入りタイヤの製造方法である。
【0012】
請求項1に記載した発明に関し、請求項2に記載した発明のように、切込みを施す所定ピッチを150mm以下とし、請求項1、2に記載した発明に関し、各側端部の縁からの切込み長さを、ビードコア部材の断面周長さの3/12〜9/12倍の範囲内とするのが、好適に適合する。
【0013】
そして、請求項1〜3に記載した発明に関し、請求項4に記載した発明のように、各くせ付け部をビードコア部材の周囲に巻込み密着させる際に、切込み位置を両側から挟むスチールコード端部それぞれを、切込み位置を境として互いに反対方向に傾斜させる。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態を図1〜図10に基づき説明する。
図1は、この発明に用いる成型機の概略平面図であり、
図2は、この発明による成型ドラム供給直前のラジアルカーカスプライ用素材の平面図であり、
図3は、図2に示すラジアルカーカスプライ用素材の右半断面図であり、
図4は、成型ドラムに巻付け後のこの発明によるラジアルカーカスプライ用素材の一部断面図であり、
図5は、ビードコア部材を位置決めしたときの素材くせ付け端部とビードセッタとの断面図であり、
図6は、図5に示す素材を膨出変形させ、ビードコア部材周りにくせ付け端部を巻込み密着させた時の全体の概略断面図であり、
図7は、くせ付け端部に関する、成型ドラム上の傾斜角度とスチールコードの引張強さ保持率との関係を示す線図であり、
図8は、切込みピッチとビードセッタに対する反力との関係を示す線図であり、
図9は、この発明による、図6に示すくせ付け端部とビードコア部材との一部斜視図であり、
図10は、この発明による、図6に示すくせ付け端部のスチールコードとビードコア部材との側面図である。
【0015】
図1において、成型機は、各回転部を駆動するモータを内蔵するハウジング1と、ハウジング1から延びるシャフトに装着した成型ドラム2と、成型ドラム2に後述するラジアルカーカスプライ用素材(以下カーカス素材と略す)を供給するためのサービサ3と、成型ドラム2に一対のビードコア部材を搬送し、所定位置に固定する一対のビードセッタ4と、成型ドラム2上のカーカス素材をビードコア部材に密着させるための一対のステッチャーロール5とを備える。成型ドラム2は、中央に膨張可能なブラダ2B を備える。
【0016】
また、成型機は、別のサービサ6から供給する未加硫ベルトと未加硫トレッドゴムを円筒状に積層するベルト・トレッドバンドドラム(BTドラム)7と、BTドラム7で積層したベルト・トレッドバンドを成型ドラム2上に搬送するオーリング8とを備える。
【0017】
図2及び図3において、図12を合わせ参照し、カーカス素材10は、タイヤのカーカス21の周方向(タイヤ軸線周り)にほぼ直交する多数本の平行配列スチールコード11に未加硫ゴム12を被覆した部材である。図2では、スチールコード11を破線で示す。符号Cはカーカス素材10の幅中央線である。
【0018】
各図に示すように、カーカス素材10には、タイヤのカーカス21の周方向に沿いビードコア22を巻返す両側端部21R に対応する両側端部10E に、それぞれ予め2箇所以上、図示例は3箇所の上向きくせ付けを施しておき、このカーカス素材10をサービサ3から成型ドラム2に供給する。
【0019】
このくせ付けは、スチールコード11に塑性変形を生じさせた状態を指す。図3に示すように、カーカス素材10を成型ドラム2に供給する際に、塑性変形を起こさせたくせ付け部p1 、p2 、p3 は上向きとする。くせ付け部p1 、p2、p3 は、タイヤのカーカス21の両側端部21R のくせ付け部p1 、p2 、p3 に相当する。
【0020】
ここで、成型ドラム2に供給する以前に、予め、カーカス素材10のくせ付け部p1 、p2 、p3 をもつ両側端部10E の被覆ゴム12部分に所定ピッチPで切込み13を入れるものとする。ただし、成型ドラム2に対するカーカス素材10の1回巻付け分につき、切込み13は両側端部10E にそれぞれ複数箇所設ける。また、切込み13は、側端部10E の縁10Eeから切込むのが好ましい。この複数箇所の切込み13をもつカーカス素材10を成型ドラム2のブラダ2B 上で円筒状にジョイントする。このときの円筒状カーカス素材10の状態を図4の断面図に示す。符号Xは成型ドラム2の回転軸線である。
【0021】
その後、一対のビードセッタ4が保持する一対のビードコア部材15を成型ドラム2に向け搬送し、図5に示すように、円筒状カーカス素材10のくせ付け部p1 、p2 、p3 をもつ両側端部10E に各ビードコア部材15を位置させる。この位置で各ビードセッタ4が保持する各ビードコア部材15をカーカス素材10を介して内方からブラダ2B に ロック固定する。このロック方法は、例えば、成型ドラム2に対し位置決めさせるビードコア部材15の直下で成型ドラム2が装備する拡径・縮径自在な一対のロック手段16を用いる。
【0022】
その後、各ビードセッタ4を、各ビードコア部材15保持から解除して、成型ドラム2から退避させる。そして、図6に示すように、各ビードコア部材15のロックを保持した状態で、例えば、ブラダ2B 内部に加圧ガスを供給し、併せて、一対のロック手段16の相互間隔を狭め、カーカス素材10をトロイド状に膨出変形させる。
【0023】
この膨出変形と同時に、ステッチャーロール5を矢印方向に移動させながら、ステッチャーロール5の軸線周りの回転と押圧動作とにより、膨出変形したカーカス素材10の各くせ付け端部10E をビードコア部材の周囲に巻込み密着させる。このとき、くせ付け部p1 、p2 、p3 はビードコア部材15の各屈折角部に合わせる。
【0024】
その後、予め、BTドラム7上に積層した未加硫ベルトと未加硫トレッドゴムとのバンド(図示省略)をオーリング8により成型ドラム2の所定位置まで搬送し、このバンドをトロイド状カーカス素材10の外周側に張合わせて未加硫タイヤの成型を完了させる。その後は、この未加硫タイヤに加硫成型を施し、図12に示すビード部20を有する空気入りタイヤを完成させる。
【0025】
以上述べた空気入りタイヤの作用効果を以下に述べる。
すなわち、図2〜図4において、成型ドラム2に供給する以前のカーカス素材10のくせ付け端部10E を除く部分は平面状を呈し、この平面に対するくせ付け部p1 〜くせ付け部p2 の傾斜角度αは、成型ドラム2上での円筒形状カーカス素材10では、成型ドラム2の軸線X方向に対する傾斜角度βに変化する。
【0026】
平面形状から円筒形状に変化する際のカーカス素材10は、両側端部が円周長さを増そうとする。このとき、従来のカーカス素材のくせ付け端部は外側に向け変形し、傾斜角度βは傾斜角度αより小さくなる傾向を示す。
【0027】
これに対し、両側それぞれのくせ付け端部10E に複数箇所の切込み13を有しているカーカス素材10は、切込み13を境として円周方向両側に開くので、図4に示すように、くせ付け端部10E は外側に傾斜し、その結果、傾斜角度βは傾斜角度αより大きくなる。実験結果によれば、円筒状カーカス素材10の内周面の周長さが1654mmの場合で、α=53°がβ=60°に、1800mmの場合でα=50°がβ=60°に変化する。
【0028】
要するに、この傾斜角度が大きくなる変化は、図7に、傾斜角度βと、くせ付け端部10E におけるスチールコード11の引張強さ保持率(%)との関係を線図で示すように、同一傾斜角度βでみて、実線で示す実施例は、破線で示す従来に比しより大きな保持率(%)を有する効果を発揮する。また、くせ付け部p1はスチールコード11に塑性変形を起こさせているため、ビードコア部材15のロック時に傾斜角度βは傾斜角度αに戻る。
【0029】
これに留まらす、切込み13が存在するため、くせ付け端部10E を通過する際のビードセッタ4に対する反力及びビードコア部材15を所定位置に位置決めする際のビードセッタ4に対するくせ付け端部10E の反力が大幅に軽減される。これにより、従来の成型機の改造は不要であり、従来のままのビードセッタ4の十分な耐久性を保証し、しかも、成型工程の高度な生産性を保持することができ、かつ、高精度な成型が可能となる。
【0030】
ここで、切込みピッチPは、150mm以下とするのが好ましい。なぜなら、図8に、切込みピッチP(mm)と、ビードセッタ4に対する反力(MPa)との関係を示す線図から明らかなように、切込みピッチPが150mmを超えると、反力がサチュレートするからである。
【0031】
各図に示すビードコア部材15は、断面が六角形をなす、いわゆる六角ビードコアであるが、その他に断面形状が四角形以上の多角形であっても良く、また、丸形であっても良い。適用するビードコア部材15との関係において、各くせ付け端部10E の縁10Eeからの切込み13の切込み長さは、ビードコア部材15の断面周長さの3/12〜9/12倍の範囲内とするのが適合する。
【0032】
また、図9に示すように、各くせ付け端部10E をビードコア部材15の周囲に巻込み密着させる際は、切込み13の両側は、切込み13終端からくせ付け端部10E の縁10Eeに向かい扇状に先開きとしてビードコア部材15の周囲に巻込み密着させる。
【0033】
このとき、図10に示すように、切込み13位置、すなわち元の切込み13を含み軸線Xから放射方向に延びる平面Qを両側から挟むスチールコード11端部それぞれを、平面Qを境として平面Qに対し傾斜角度θをもって互いに反対方向に傾斜させる。これにより、仮に、タイヤにて、カーカス21の或る部分の巻込み端21Reに位置するスチールコード11端に亀裂が発生したとしても、平面Qを挟む両側の巻込み端21Re相互間は周方向に大きな隔たりを有しているので、周方向の亀裂進行を阻止し、結局、ビード部20の耐久性向上効果を得ることができる。
【0034】
【実施例】
トラック及びバス用ラジアルプライタイヤで、サイズが435/45R22.5であり、ビードコア部材15には六角ビードコアと、くせ付け部p1 、p2 、p3 における塑性変形内角を120°としたカーカス素材10とを用いた。六角ビードコア15の断面周長さは56mmであり、切込みピッチPを30mmとし、切込み13の長さは40mmとした。
【0035】
上記のカーカス素材10を成型ドラム2に巻付けて円筒状とし、六角ビードコア15を保持するビードセッタ4を所定位置まで搬送し、くせ付け端部10E を通過させるときにビードセッタ4に作用する反力と、六角ビードコア15をロック位置に位置決めするときにビードセッタ4に作用する反力とを測定し、実施例と従来例とで比較した。
【0036】
測定結果は、従来例の二つの反力をそれぞれ100とする指数にてあらわしたとき、実施例は、通過時の反力が86であり、ロック位置決め時が82である。これらの結果から、実施例の有効性を実証することができる。
【0037】
【発明の効果】
この発明の請求項1〜4に記載した発明によれば、カーカス素材の両側くせ付け端部に対する、ビードコア部材保持用ビードセッタの通過に伴う反力及びビードコア部材のロック位置決め時のビードセッタの反力をそれぞれ大幅に低減することができ、これにより、従来の成型機のままで、十分な耐久性と高度な生産性とを保持し、高精度な成型が可能な空気入りタイヤ製造方法を提供することができる。
【図面の簡単な説明】
【図1】 この発明に用いる成型機の概略平面図である。
【図2】 この発明による成型ドラム供給直前のカーカス素材の平面図である。
【図3】 図2に示すカーカス素材の右半断面図である。
【図4】 成型ドラムに巻付け後のこの発明によるカーカス素材の一部断面図である。
【図5】 この発明によるビードコア部材位置決め時のくせ付け端部とビードセッタとの断面図である。
【図6】 図5に示すカーカス素材を膨出変形させ、ビードコア部材周りにくせ付け端部を巻込み密着させた時の全体の概略断面図である。
【図7】 くせ付け端部に関する、成型ドラム上の傾斜角度とスチールコードの引張強さ保持率との関係を示す線図である。
【図8】 切込みピッチとビードセッタ反力との関係を示す線図である。
【図9】 図6に示すくせ付け端部とビードコア部材との一部斜視図である。
【図10】 図6に示すくせ付け端部のスチールコードとビードコア部材との側面図である。
【図11】 従来のビードコア部材位置決め時のくせ付け端部とビードセッタとの断面図である。
【図12】 この発明によるカーカス素材を用いたタイヤのビード部断面図である。
【図13】 くせ付け部をもたない従来タイヤのビード部断面図である。
【符号の説明】
1 ハウジング
2 成型ドラム
2B ブラダ
3 カーカス素材サービサ
4 ビードセッタ
5 ステッチャーロール
6 サービサ
7 BTドラム
8 オーリング
10 カーカス素材
10E くせ付け部をもつ両側端部
10Ee 両側端部の縁
11 スチールコード
12 被覆ゴム
13 切込み
15 ビードコア部材
16 ロック手段
1 、p2 、p3 くせ付け部
α、β くせ付け部p1 〜p2 の傾斜角度
P 切込みピッチ
X 成型ドラムの軸線
Q 切込みを含む平面
θ 平面Qに対するスチールコード傾斜角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a pneumatic tire, and more particularly, to a method for manufacturing an unvulcanized tire for a pneumatic radial tire in which a steel cord is applied to a carcass ply. The present invention relates to a method for manufacturing a pneumatic tire that can rewind a material for a bead core member with high accuracy and stably.
[0002]
[Prior art]
Among pneumatic radial tires, a so-called heavy duty pneumatic radial tire used for heavy vehicles such as trucks and buses generally uses a rubber-coated ply of a steel cord for a carcass. In addition, since this type of tire is filled with a high internal pressure, a structure is employed in which the carcass is folded around the bead core from the inside of the tire to the outside and the carcass is locked to the pair of bead cores.
[0003]
However, since the carcass folding is located in the radial direction in the rubber of the bead part and has a cut-off end, a large strain concentrates on the carcass folding end under the rolling load of the tire, and the carcass folding takes place. A separation failure tends to occur from the end. Therefore, in order to avoid strain concentration at the folded end, as shown in the cross section of the bead portion 30 in FIG. 13, a winding in which the end portion 31E of the carcass 31 wraps around the circumferential surface of the bead core 32 instead of the folded structure thus far. Including structures have been proposed.
[0004]
However, the winding end portion 31E remains in the winding deformation within the elastic region of a large number of steel cords embedded in the ply of the carcass 31, and the steel cord of the carcass 31 is in a radial arrangement and has a rebound resilience. Since the force is large, the bead core 32 is moved away from the tire during the manufacturing process. As a result, it becomes difficult to realize a desired bead core winding state, eventually, concentrated strain acts on the winding end 31Ee in the rubber, and a failure from crack generation to burst is likely to occur, as expected. The bead portion durability cannot be improved. In addition, unreasonable wrapping also causes the inconvenience of damaging the steel cord and creating a poorly bonded portion with rubber.
[0005]
In view of this, the present applicant has already disclosed a pneumatic tire in the specification according to Japanese Patent Application No. 11-19847 in which one or more plastically deformed portions are provided in a bead core winding portion of a carcass ply that becomes a rubber coating of a steel cord. is suggesting. The bead 3 core entrainment part that undergoes plastic deformation is shown in the bead part cross-sectional view of FIG. In the bead portion 20 shown in FIG. 12, the carcass 21 has a winding portion 21R of a bead core 22, and the bead core 22 has a substantially hexagonal cross section, and the winding portion 21R has plastic deformation locations p 1 , p 2 , p. Has 3 .
[0006]
By providing plastic deformation points p 1 , p 2 , and p 3 in the winding portion 21R, the winding portion 21R is located along the peripheral surface of the bead core 22, so that the strain acting on the winding end 21Re is significantly reduced. It has been confirmed that the separation resistance of the winding end 21Re is greatly improved, and the durability of the bead portion 20 is significantly improved. When the winding end 21Re is positioned closer to the bead core 22, the plastic deformation portion near the winding end 21Re plays a particularly important role.
[0007]
[Problems to be solved by the invention]
However, it has been found that the following problems exist when manufacturing a tire in which the plastic deformation portions p 1 , p 2 , and p 3 are provided in the entrained portion 21R.
That is, in FIG. 11 showing a cross section of a cylindrical band 10A in which a carcass ply material 10A having plastic deformation points p 1 , p 2 , and p 3 is wound around an end portion 10AE on a forming drum 2B, a pair of bead core members 15 is shown. Is applied to the plastic deformation locations p 1 , p 2 , and p 3 on each side, first, the pair of bead setters 4 holding the bead core members 15 once pass through the plastic deformation locations p 1 , p 2 , and p 3 . Must.
[0008]
Then, as shown in FIG. 11, to set a predetermined position of each bead core members 15 to the band 10A, Bidosetta 4, the plastic deformation of the end 10AE of the band 10A p 1 ~p 2 ~p 3 the two points It is necessary to forcibly deform from the position indicated by the chain line to the position indicated by the solid line. In this state, the bead core member 15 is locked and fixed to the band 10A by expanding the bead core member 15 in the arrow direction of the locking means 16.
[0009]
However, once passing through the plastic deformation portions p 1 to p 2 to p 3 of the bead setter 4 and forced deformation, a large reaction force is exerted on the bead setter 4. Since this reaction force is a heavy burden on the bead setter 4, it takes time for forced deformation, eventually increasing the molding cycle time and lowering the molding productivity. Further, in order to face this large reaction force, it is necessary to strengthen the output system of the molding machine. On the other hand, serious problems such as insufficient durability of the molding machine due to the reaction force occur. In addition, there is a problem that molding accuracy is impaired, such as inconvenience in accurate positioning of the bead core member 15.
[0010]
Accordingly, the object of the present invention described in claims 1 to 4 is to completely solve the above-mentioned remaining problems. More specifically, the reaction force of the bead core member to the bead setter is greatly reduced. Accordingly, an object of the present invention is to provide a pneumatic tire manufacturing method that can maintain high durability and high productivity while maintaining the conventional molding machine and can perform high-precision molding.
[0011]
In order to achieve the above object, the invention described in claim 1 of the present invention is used for molding an unvulcanized tire,
The radial carcass ply material, in which a large number of parallel arrangement steel cords are coated with unvulcanized rubber, is subjected to two or more upwards in advance on both side ends where the bead core is wound along the circumferential direction of the carcass of the tire, After that, cuts are made at a predetermined pitch in the covered rubber parts on both side ends with the crease part, and a material having a plurality of cuts on both sides is supplied to the molding drum and joined in a cylindrical shape,
A pair of bead core members are supplied to and positioned at both end portions of the cylindrical material having the crease portion, and each bead core member at this position is locked and fixed from the inside through the material. Bulging and deforming into a toroidal shape, each squeezed portion of the bulging and deforming material is wound around the bead core member and closely adhered,
Then, the manufacturing method of the pneumatic tire characterized by sticking an unvulcanized belt and an unvulcanized tread rubber on the outer peripheral side of a toroid-like material.
[0012]
With respect to the invention described in claim 1, as in the invention described in claim 2, the predetermined pitch to be cut is set to 150 mm or less, and the invention described in claims 1 and 2, the cut from the edge of each side end portion It is preferable that the length is within a range of 3/12 to 9/12 times the circumferential length of the bead core member.
[0013]
And as for the invention described in claims 1-3, as in the invention described in claim 4, the steel cord ends sandwiching the incision positions from both sides when the squeezed portions are wound around and closely contacted around the bead core member. The respective parts are inclined in opposite directions with respect to the cut position.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic plan view of a molding machine used in the present invention.
FIG. 2 is a plan view of a radial carcass ply material immediately before feeding a molding drum according to the present invention,
FIG. 3 is a right half sectional view of the radial carcass ply material shown in FIG.
FIG. 4 is a partial cross-sectional view of a radial carcass ply material according to the present invention after being wound around a molding drum,
FIG. 5 is a cross-sectional view of the material staking end and the bead setter when the bead core member is positioned;
FIG. 6 is a schematic cross-sectional view of the whole when the material shown in FIG. 5 is bulged and deformed, and the squeezed end portion is wound around and closely adhered to the bead core member.
FIG. 7 is a diagram showing the relationship between the inclination angle on the molding drum and the tensile strength retention rate of the steel cord with respect to the brazing end,
FIG. 8 is a diagram showing the relationship between the cutting pitch and the reaction force against the bead setter.
FIG. 9 is a partial perspective view of the bracing end and the bead core member shown in FIG. 6 according to the present invention.
FIG. 10 is a side view of the steel cord and the bead core member at the butt end shown in FIG. 6 according to the present invention.
[0015]
In FIG. 1, a molding machine includes a housing 1 incorporating a motor for driving each rotating part, a molding drum 2 mounted on a shaft extending from the housing 1, and a radial carcass ply material (hereinafter referred to as a carcass material) described later on the molding drum 2. A pair of bead core members for transporting the pair of bead core members to the molding drum 2 and fixing them to a predetermined position, and a carcass material on the molding drum 2 for closely contacting the bead core members. And a pair of stitcher rolls 5. The molding drum 2 includes an expandable bladder 2B at the center.
[0016]
The molding machine also includes a belt tread band drum (BT drum) 7 in which an unvulcanized belt and an unvulcanized tread rubber supplied from another servicer 6 are laminated in a cylindrical shape, and a belt tread laminated on the BT drum 7. And an O-ring 8 for conveying the band onto the molding drum 2.
[0017]
2 and 3, the carcass material 10 is formed by applying unvulcanized rubber 12 to a large number of parallel-arranged steel cords 11 substantially orthogonal to the circumferential direction of the tire carcass 21 (around the tire axis). It is a coated member. In FIG. 2, the steel cord 11 is indicated by a broken line. Reference numeral C denotes a width center line of the carcass material 10.
[0018]
As shown in each figure, the carcass material 10 has two or more portions on each side end portion 10E corresponding to both side end portions 21R where the bead core 22 is wound back along the circumferential direction of the carcass 21 of the tire. The carcass material 10 is supplied from the servicer 3 to the molding drum 2 by applying an upward crease.
[0019]
This caulking refers to a state in which the steel cord 11 is plastically deformed. As shown in FIG. 3, when the carcass material 10 is supplied to the molding drum 2, the tacking portions p 1 , p 2 , and p 3 that cause plastic deformation are set upward. Imprint unit p 1, p 2, p 3 corresponds to the imprint of the each side region 21R p 1, p 2, p 3 of the carcass 21 of the tire.
[0020]
Here, before being supplied to the molding drum 2, incisions 13 are made at a predetermined pitch P in the covering rubber 12 portions of the side end portions 10E having the crease portions p 1 , p 2 , and p 3 of the carcass material 10 in advance. And However, for each turn of the carcass material 10 wound around the molding drum 2, a plurality of cuts 13 are provided at both end portions 10E. Further, it is preferable that the cut 13 is cut from the edge 10Ee of the side end portion 10E. The carcass material 10 having the plurality of cuts 13 is jointed on the bladder 2B of the molding drum 2 in a cylindrical shape. The state of the cylindrical carcass material 10 at this time is shown in the sectional view of FIG. Reference numeral X denotes a rotation axis of the molding drum 2.
[0021]
Thereafter, the pair of bead core members 15 held by the pair of bead setters 4 are transported toward the molding drum 2, and as shown in FIG. 5, both sides of the cylindrical carcass material 10 having the interposing portions p 1 , p 2 , and p 3. Each bead core member 15 is positioned at the end 10E. At this position, each bead core member 15 held by each bead setter 4 is locked and fixed to the bladder 2B from the inside via the carcass material 10. In this locking method, for example, a pair of locking means 16 that can be enlarged and reduced in diameter are provided in the molding drum 2 immediately below the bead core member 15 to be positioned with respect to the molding drum 2.
[0022]
Thereafter, each bead setter 4 is released from holding each bead core member 15 and is retracted from the molding drum 2. Then, as shown in FIG. 6, in a state where the lock of each bead core member 15 is held, for example, pressurized gas is supplied to the inside of the bladder 2B and, at the same time, the mutual distance between the pair of lock means 16 is narrowed, so that the carcass material 10 is bulged and deformed into a toroidal shape.
[0023]
At the same time as the bulging deformation, the stitcher roll 5 is moved in the direction of the arrow, and by rotating and pressing around the axis of the stitcher roll 5, each squeezed end portion 10E of the bulged and deformed carcass material 10 is moved to the bead core member. Tighten it around and bring it into close contact. At this time, the crease portions p 1 , p 2 , and p 3 are adjusted to the respective refraction angle portions of the bead core member 15.
[0024]
Thereafter, a band (not shown) of an unvulcanized belt and an unvulcanized tread rubber previously laminated on the BT drum 7 is conveyed to a predetermined position of the molding drum 2 by the O-ring 8, and this band is a toroidal carcass material. Then, the molding of the unvulcanized tire is completed. Thereafter, the unvulcanized tire is vulcanized and molded to complete the pneumatic tire having the bead portion 20 shown in FIG.
[0025]
The effects of the pneumatic tire described above will be described below.
That is, in FIGS. 2 to 4, the portion of the carcass material 10 before being supplied to the molding drum 2 excluding the squeezing end portion 10 </ b> E has a planar shape, and the squeezing parts p 1 to p 2 with respect to this plane. In the cylindrical carcass material 10 on the molding drum 2, the inclination angle α changes to an inclination angle β with respect to the axis X direction of the molding drum 2.
[0026]
When the carcass material 10 is changed from a planar shape to a cylindrical shape, both end portions try to increase the circumferential length. At this time, the heeled end portion of the conventional carcass material is deformed outward, and the inclination angle β tends to be smaller than the inclination angle α.
[0027]
On the other hand, the carcass material 10 having a plurality of cuts 13 at the squeezing end portions 10E on both sides opens to both sides in the circumferential direction with the cuts 13 as a boundary. Therefore, as shown in FIG. The end 10E is inclined outward, so that the inclination angle β is larger than the inclination angle α. According to the experimental results, when the circumferential length of the inner circumferential surface of the cylindrical carcass material 10 is 1654 mm, α = 53 ° is β = 60 °, and when 1800 mm, α = 50 ° is β = 60 °. Change.
[0028]
In short, the change in which the inclination angle increases is the same as that shown in the diagram of FIG. 7, in which the relationship between the inclination angle β and the tensile strength retention rate (%) of the steel cord 11 at the crimped end 10E is shown by a diagram. When viewed at the inclination angle β, the embodiment indicated by the solid line exhibits the effect of having a larger retention rate (%) than the conventional case indicated by the broken line. Further, since the crease part p 1 causes the steel cord 11 to undergo plastic deformation, the inclination angle β returns to the inclination angle α when the bead core member 15 is locked.
[0029]
Since the notch 13 exists, the reaction force against the bead setter 4 when passing through the squeezing end 10E and the reaction force of the squeezing end 10E against the bead setter 4 when positioning the bead core member 15 at a predetermined position. Is greatly reduced. This eliminates the need for modification of the conventional molding machine, guarantees sufficient durability of the conventional bead setter 4, and can maintain a high level of productivity in the molding process. Molding becomes possible.
[0030]
Here, the cutting pitch P is preferably 150 mm or less. This is because, as is clear from the diagram showing the relationship between the cutting pitch P (mm) and the reaction force (MPa) against the bead setter 4 in FIG. 8, the reaction force saturates when the cutting pitch P exceeds 150 mm. It is.
[0031]
The bead core member 15 shown in each drawing is a so-called hexagonal bead core having a hexagonal cross section. Alternatively, the bead core member 15 may be a polygon having a quadrangular shape or more, or a round shape. In relation to the bead core member 15 to be applied, the cut length of the cut 13 from the edge 10Ee of each crease end 10E is within a range of 3/12 to 9/12 times the circumferential length of the bead core member 15. It is suitable to do.
[0032]
Further, as shown in FIG. 9, when each squeezed end portion 10E is wound around and closely adhered to the bead core member 15, both sides of the notch 13 are fan-shaped from the end of the notch 13 toward the edge 10Ee of the squeezed end portion 10E. As a first opening, it is wound around the bead core member 15 and closely attached.
[0033]
At this time, as shown in FIG. 10, the ends of the steel cord 11 that sandwich the plane 13 extending from both sides of the cut 13 position, that is, the original cut 13 and extending in the radial direction from the axis X to the plane Q with the plane Q as a boundary. In contrast, they are inclined in opposite directions with an inclination angle θ. Thereby, even if a crack occurs at the end of the steel cord 11 located at the winding end 21Re of a certain part of the carcass 21 in the tire, the gap between the winding ends 21Re on both sides sandwiching the plane Q is circumferential. Therefore, it is possible to prevent the progress of cracks in the circumferential direction and eventually obtain the effect of improving the durability of the bead portion 20.
[0034]
【Example】
A radial ply tire for trucks and buses having a size of 435 / 45R22.5, a carcass material having a bead core member 15 having a hexagonal bead core and an internal angle of plastic deformation at the squeezed portions p 1 , p 2 , and p 3 of 120 ° 10 was used. The cross-sectional circumferential length of the hexagonal bead core 15 was 56 mm, the cutting pitch P was 30 mm, and the length of the cutting 13 was 40 mm.
[0035]
The carcass material 10 is wound around the molding drum 2 into a cylindrical shape, the bead setter 4 holding the hexagonal bead core 15 is transported to a predetermined position, and the reaction force acting on the bead setter 4 when passing through the tacking end portion 10E. The reaction force acting on the bead setter 4 when the hexagonal bead core 15 is positioned at the lock position was measured and compared between the example and the conventional example.
[0036]
When the measurement result is expressed by an index in which the two reaction forces in the conventional example are 100, respectively, the reaction force in the embodiment is 86 and 82 in the lock positioning. From these results, the effectiveness of the examples can be demonstrated.
[0037]
【The invention's effect】
According to the first to fourth aspects of the present invention, the reaction force accompanying the passing of the bead core member holding bead setter with respect to the both side squeezed end portions of the carcass material and the reaction force of the bead setter when the bead core member is locked are determined. Providing a pneumatic tire manufacturing method that can maintain a sufficient durability and high productivity while maintaining the conventional molding machine, and can perform high-precision molding. Can do.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a molding machine used in the present invention.
FIG. 2 is a plan view of a carcass material immediately before supplying a molding drum according to the present invention.
FIG. 3 is a right half sectional view of the carcass material shown in FIG. 2;
FIG. 4 is a partial cross-sectional view of a carcass material according to the present invention after being wound around a molding drum.
FIG. 5 is a cross-sectional view of an end portion and a bead setter when positioning a bead core member according to the present invention.
6 is a schematic cross-sectional view of the whole when the carcass material shown in FIG. 5 is bulged and deformed, and the crimped end portion is wound around the bead core member and brought into close contact therewith.
FIG. 7 is a diagram showing the relationship between the inclination angle on the molding drum and the tensile strength retention rate of the steel cord with respect to the brazed end portion.
FIG. 8 is a diagram showing a relationship between a cutting pitch and a bead setter reaction force.
9 is a partial perspective view of the squeezed end portion and the bead core member shown in FIG. 6. FIG.
FIG. 10 is a side view of the steel cord and the bead core member at the crease end shown in FIG. 6;
FIG. 11 is a cross-sectional view of an end portion and a bead setter when positioning a conventional bead core member.
FIG. 12 is a cross-sectional view of a bead portion of a tire using a carcass material according to the present invention.
FIG. 13 is a cross-sectional view of a bead portion of a conventional tire having no crease portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing 2 Molding drum 2B Bladder 3 Carcass material servicer 4 Bead setter 5 Stitcher roll 6 Servicer 7 BT drum 8 O-ring 10 Carcass material 10E Both side edge part 10Ee which has a crushed part 11 Steel cord 12 Cover rubber 13 Notch 15 Bead core member 16 Locking means p 1 , p 2 , p 3 Inclined portion α, β Inclined angle P of incised portions p 1 to p 2 Cutting pitch X Forming drum axis Q Plane including cutting θ Plane steel cord for plane Q Inclination angle

Claims (4)

未加硫タイヤの成型に当り、
多数本の平行配列スチールコードに未加硫ゴムを被覆したラジアルカーカスプライ用素材の、タイヤのカーカス周方向に沿いビードコアを巻返す両側端部に、それぞれ予め2箇所以上の上向きくせ付けを施し、その後、くせ付け部をもつ両側端部の被覆ゴム部分に所定ピッチで切込みを入れ、両側にそれぞれ複数箇所の切込みをもつ素材を成型ドラムに供給して円筒状にジョイントし、
円筒状素材のくせ付け部をもつ両側端部に一対のビードコア部材を供給して位置させ、この位置の各ビードコア部材を上記素材を介して内方からロック固定し、この固定の下で上記素材をトロイド状に膨出変形させ、膨出変形した素材の各くせ付け部をビードコア部材の周囲に巻込み密着させ、
その後、トロイド状素材の外周側に未加硫ベルトと未加硫トレッドゴムとを張合わせることを特徴とする空気入りタイヤの製造方法。
When molding unvulcanized tires,
The radial carcass ply material, in which a large number of parallel arrangement steel cords are coated with unvulcanized rubber, is subjected to two or more upwards in advance on both side ends where the bead core is wound along the circumferential direction of the carcass of the tire, After that, cuts are made at a predetermined pitch in the covered rubber parts on both side ends with the crease part, and a material having a plurality of cuts on both sides is supplied to the molding drum and joined in a cylindrical shape,
A pair of bead core members are supplied to and positioned at both end portions of the cylindrical material having the crease portion, and each bead core member at this position is locked and fixed from the inside through the material. Bulging and deforming into a toroidal shape, each squeezed portion of the bulging and deforming material is wound around the bead core member and closely adhered,
Then, the manufacturing method of the pneumatic tire characterized by sticking an unvulcanized belt and an unvulcanized tread rubber on the outer peripheral side of a toroid-like material.
切込みを施す所定ピッチを150mm以下とする請求項1に記載した製造方法。The manufacturing method according to claim 1, wherein the predetermined pitch for cutting is 150 mm or less. 各側端部の縁からの切込み長さを、ビードコア部材の断面周長さの3/12〜9/12倍の範囲内とする請求項1又は2に記載した製造方法。The manufacturing method according to claim 1 or 2, wherein a cut length from an edge of each side end portion is in a range of 3/12 to 9/12 times the cross-sectional circumferential length of the bead core member. 各くせ付け部をビードコア部材の周囲に巻込み密着させる際に、切込み位置を両側から挟むスチールコード端部それぞれを、切込み位置を境として互いに反対方向に傾斜させる請求項1〜3のいずれか一項に記載した製造方法。The steel cord end portions sandwiching the cut positions from both sides are inclined in opposite directions to each other with the cut positions as boundaries when each of the crease portions is wound around the bead core member and brought into close contact therewith. The manufacturing method described in the item.
JP2000068461A 2000-03-13 2000-03-13 Pneumatic tire manufacturing method Expired - Fee Related JP4397090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068461A JP4397090B2 (en) 2000-03-13 2000-03-13 Pneumatic tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068461A JP4397090B2 (en) 2000-03-13 2000-03-13 Pneumatic tire manufacturing method

Publications (2)

Publication Number Publication Date
JP2001252991A JP2001252991A (en) 2001-09-18
JP4397090B2 true JP4397090B2 (en) 2010-01-13

Family

ID=18587514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068461A Expired - Fee Related JP4397090B2 (en) 2000-03-13 2000-03-13 Pneumatic tire manufacturing method

Country Status (1)

Country Link
JP (1) JP4397090B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518883B2 (en) * 2004-09-08 2010-08-04 株式会社ブリヂストン Pneumatic tire manufacturing apparatus and manufacturing method
JP5110973B2 (en) * 2007-06-18 2012-12-26 株式会社ブリヂストン Tire molding apparatus and tire molding method
JP5623889B2 (en) * 2010-12-07 2014-11-12 株式会社ブリヂストン Pneumatic tire manufacturing method

Also Published As

Publication number Publication date
JP2001252991A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
JP4294803B2 (en) Manufacturing method of carcass structure of automobile tire and carcass structure of automobile wheel tire
JPH11314284A (en) Manufacture of tire
JPH11254906A (en) Tire for wheel of vehicle
US20080053595A1 (en) Chipper and apex subassembly as an intermediate article of manufacture
JPH03148302A (en) Pneumatic tire
US5215612A (en) Method for manufacturing tires
US6363986B1 (en) Band element and method for building same for a run flat banded tire
EP3186096B1 (en) Improved tire belt construction
EP3450151B1 (en) Method of making a tire
JP4381609B2 (en) Method for manufacturing carcass structure of automobile tire and carcass structure
US5468328A (en) Tire molder shoulder bladder
JP4397090B2 (en) Pneumatic tire manufacturing method
JP4286511B2 (en) Pneumatic radial tire and manufacturing method thereof
US6972061B1 (en) Compound apex for vehicle tire
JPH03164302A (en) Pneumatic tire
JPH04319423A (en) Device and method for joining sheet material
US4319943A (en) Folded bead filler construction
US5200009A (en) Joining reinforced elastomeric sheet material
JP3735447B2 (en) Pneumatic tire
EP3450152B1 (en) Method of making a tire and tire building drum
US20090008013A1 (en) Air Bladder for Safety Tire
JP2004249537A (en) Tire molding method and tire
JPH0115402B2 (en)
WO2001039964A1 (en) Compound apex for vehicle tire
WO2007102441A1 (en) Method of manufacturing pneumatic tire, and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees