JP4396465B2 - Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same - Google Patents

Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same Download PDF

Info

Publication number
JP4396465B2
JP4396465B2 JP2004281052A JP2004281052A JP4396465B2 JP 4396465 B2 JP4396465 B2 JP 4396465B2 JP 2004281052 A JP2004281052 A JP 2004281052A JP 2004281052 A JP2004281052 A JP 2004281052A JP 4396465 B2 JP4396465 B2 JP 4396465B2
Authority
JP
Japan
Prior art keywords
polyurethane foam
rigid polyurethane
acid
raw material
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004281052A
Other languages
Japanese (ja)
Other versions
JP2005126695A (en
Inventor
勝美 徳本
豊 玉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004281052A priority Critical patent/JP4396465B2/en
Publication of JP2005126695A publication Critical patent/JP2005126695A/en
Application granted granted Critical
Publication of JP4396465B2 publication Critical patent/JP4396465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

本発明は硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームを製造する際に用いる触媒組成物、該触媒組成物、ポリオール成分、及び水を含む原料配合組成物、並びに該原料配合組成物とポリイソシアネートを反応させる硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームの製造法に関するものである。   The present invention relates to a catalyst composition used in producing a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam, a raw material blend composition containing the catalyst composition, a polyol component, and water, and the raw material blend composition and poly The present invention relates to a method for producing a rigid polyurethane foam and / or an isocyanurate-modified rigid polyurethane foam in which an isocyanate is reacted.

硬質ポリウレタンフォーム、イソシアヌレート変性硬質ポリウレタンフォームは、断熱性及び自己接着性に優れることから、電気冷蔵庫、建材等の断熱材として広く利用されている。これらの用途に用いられる硬質ポリウレタンフォーム、イソシアヌレート変性硬質ポリウレタンフォームは、一般に、ポリオール成分、発泡剤、触媒、整泡剤及びその他の助剤を混合した原料配合組成物とポリイソシアネートを混合し発泡反応させる方法により得られる。硬質ポリウレタンフォーム及びイソシアヌレート変性硬質ウレタンフォーム製造用の原料配合組成物は、配合されてから実際に使用されるまで数週間から3か月の期間貯蔵されることが多い。すなわち、この原料配合液は、配合されてから数週間から3か月程度も経過した後に使用されることもあることから、貯蔵安定性が問題となる。   Rigid polyurethane foams and isocyanurate-modified rigid polyurethane foams are widely used as heat insulating materials for electric refrigerators and building materials because they are excellent in heat insulating properties and self-adhesive properties. Rigid polyurethane foams and isocyanurate-modified rigid polyurethane foams used for these applications are generally foamed by mixing a polyisocyanate with a raw material blended composition in which a polyol component, a foaming agent, a catalyst, a foam stabilizer and other auxiliaries are mixed. It is obtained by the method of reacting. Raw material blend compositions for producing rigid polyurethane foams and isocyanurate-modified rigid urethane foams are often stored for a period of several weeks to three months from compounding until actual use. That is, since this raw material compounded solution may be used after several weeks to about three months have passed since compounding, storage stability becomes a problem.

現在、硬質ポリウレタンフォーム、イソシアヌレート変性硬質ポリウレタンフォームの発泡剤として用いられているジクロロモノフルオロエタン(HCFC−141b)にはオゾン層破壊の問題がある。このため、これに代る次世代の発泡剤として、オゾン層を破壊することのないハイドロフルオロカーボン(以下、HFCと称する場合がある)が候補に挙げられている。HFCとしてはテトラフルオロエタン(HFC134a)、1,1,1,3,3−ペンタフルオロプロパン(HFC245fa)、1,1,1,3,3−ペンタフルオロブタン(HFC365mfc)、1,1,1,2,3,3,3−ヘプタフルオロプロパン(HFC227ea)等がある。   Currently, dichloromonofluoroethane (HCFC-141b) used as a foaming agent for rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam has a problem of ozone layer destruction. For this reason, hydrofluorocarbons (hereinafter sometimes referred to as HFCs) that do not destroy the ozone layer are listed as candidates as next-generation foaming agents that can replace them. Examples of HFCs include tetrafluoroethane (HFC134a), 1,1,1,3,3-pentafluoropropane (HFC245fa), 1,1,1,3,3-pentafluorobutane (HFC365mfc), 1,1,1, 2,3,3,3-heptafluoropropane (HFC227ea) and the like.

また、オゾン層を破壊することのない低沸点の炭化水素(以下、HCと称する場合がある)も候補として有力視されており、このような炭化水素(HC)の例としては、沸点が通常−30〜70℃の炭化水素が使用され、その具体例としては、プロパン、ブタン、ペンタン、シクロペンタン、ヘキサン、及びこれらの混合物が知られている。   In addition, low boiling point hydrocarbons that do not destroy the ozone layer (hereinafter sometimes referred to as HC) are also considered promising candidates, and examples of such hydrocarbons (HC) generally have a boiling point. Hydrocarbons of -30 to 70 ° C are used, and specific examples thereof include propane, butane, pentane, cyclopentane, hexane, and mixtures thereof.

しかしながら、従来の触媒を用いた場合、これらの発泡剤を含む原料配合組成物では保存安定性が悪いという問題があった。   However, when a conventional catalyst is used, the raw material blend composition containing these foaming agents has a problem of poor storage stability.

また、低密度のフォームを得るためには、HC及びHFC以外の発泡剤として水が用いられる。水を用いる場合には、水とポリイソシアネート成分との反応で生成する炭酸ガスが発泡成分として利用される。また、HCやHFCと水を組み合わせて使用することもできる。   In order to obtain a low density foam, water is used as a foaming agent other than HC and HFC. When water is used, carbon dioxide generated by the reaction between water and the polyisocyanate component is used as the foaming component. Further, HC or HFC and water can be used in combination.

しかしながら、原料配合組成物の中に、発泡成分を発生させる水を含む場合、特に原料貯蔵安定性が悪いという問題があった。   However, when the raw material composition contains water that generates a foaming component, there is a problem that raw material storage stability is particularly poor.

硬質ポリウレタンフォームの形成反応は、主にポリオールとポリイソシアネートの反応によるウレタン基形成反応(樹脂化反応)とポリイソシアネートと水の反応によるウレア基形成反応(泡化反応)からなる。また、イソシアヌレート変性硬質ポリウレタンフォームの形成反応は、上記2種の反応に加えて、ポリイソシアネートの三量化によるイソシアヌレート環形成反応(イソシアヌレート化反応)からなる。これらの反応に用いる触媒は反応速度だけでなく、フォームの熱伝導率、フォーム表面の硬化速度、接着強度、成型性、寸法安定性及び物性等に大きな影響を及ぼすだけでなく、工業的には貯蔵安定性という観点が特に重要である。   The formation reaction of the rigid polyurethane foam mainly comprises a urethane group formation reaction (resinification reaction) by reaction of polyol and polyisocyanate, and a urea group formation reaction (bubble formation reaction) by reaction of polyisocyanate and water. Further, the formation reaction of the isocyanurate-modified rigid polyurethane foam includes an isocyanurate ring formation reaction (isocyanuration reaction) by trimerization of polyisocyanate in addition to the above two kinds of reactions. The catalyst used in these reactions not only has a significant effect on the thermal conductivity of the foam, the curing speed of the foam surface, the adhesive strength, moldability, dimensional stability and physical properties, but also industrially. The viewpoint of storage stability is particularly important.

なお、硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォーム製品には、一般に難燃化及び物性の向上を図る理由からポリオール成分として芳香族ジカルボン酸をエステル化させて得られる芳香族ポリエステルポリオールが多用される。   For rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam products, aromatic polyester polyols obtained by esterifying an aromatic dicarboxylic acid as a polyol component are generally used for the purpose of improving flame retardancy and improving physical properties. Is done.

従来、硬質ポリウレタンフォーム製造用の触媒としては、樹脂化反応及び/又は泡化反応を特に促進する化合物が用いられ、このような触媒としてはこれまで有機金属化合物や3級アミン化合物が用いられていた。例えば、工業的に用いられるポリウレタンフォーム製造用の触媒用の3級アミン化合物としては、トリエチレンジアミン、N,N,N’,N’−テトラメチル−1,6−ヘキサンジアミン、N,N−ジメチルシクロヘキシルアミン、ビス(2−ジメチルアミノエチル)エーテル、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン等の化合物が知られている。   Conventionally, as a catalyst for producing a rigid polyurethane foam, a compound that particularly promotes a resinification reaction and / or a foaming reaction has been used, and as such a catalyst, an organometallic compound or a tertiary amine compound has been used so far. It was. For example, the tertiary amine compounds for industrially used polyurethane foam production catalysts include triethylenediamine, N, N, N ′, N′-tetramethyl-1,6-hexanediamine, N, N-dimethyl. Compounds such as cyclohexylamine, bis (2-dimethylaminoethyl) ether, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine are known.

また、イソシアヌレート変性硬質ポリウレタンフォーム製造用の触媒としては、イソシアヌレート化反応を特に促進する触媒として、例えば、カルボン酸のアルカリ金属塩類、金属アルコラート、金属フェノラート、金属水酸化物等の有機金属系触媒、第3級アミン類、第3級フォスフィン類、燐のオニウム塩化合物、第4級アンモニウム塩類等が知られている。これらのうち、酢酸カリ、2−エチルヘキサン酸カリ等のアルカリ金属塩、ヒドロキシアルキルトリメチル第4級アンモニウム2−エチルヘキサン酸塩等の第4級アンモニウム塩系触媒、1,3,5−トリス(N,N−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン等のs−トリアジン化合物、2,4,6−トリス(ジメチルアミノメチル)フェノール等の特定の第3級アミン類が、イソシアヌレート化活性が高いことから、特に広く使用されている。更に、第4級アンモニウム塩としては、テトラアルキルアンモニウム有機酸塩等のテトラアルキルアンモニウム塩が知られている(テトラアルキルアンモニウム有機酸塩について、例えば、特許文献1参照)。   Further, as a catalyst for producing an isocyanurate-modified rigid polyurethane foam, as a catalyst that particularly accelerates the isocyanurate-forming reaction, for example, an alkali metal salt of a carboxylic acid, a metal alcoholate, a metal phenolate, a metal hydroxide, an organic metal type Catalysts, tertiary amines, tertiary phosphine, onium salt compounds of phosphorus, quaternary ammonium salts and the like are known. Among these, alkali metal salts such as potassium acetate and potassium 2-ethylhexanoate, quaternary ammonium salt catalysts such as hydroxyalkyltrimethyl quaternary ammonium 2-ethylhexanoate, 1,3,5-tris ( N, N-dimethylaminopropyl) s-triazine compounds such as hexahydro-S-triazine, and certain tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol have high isocyanuration activity. Therefore, it is widely used. Furthermore, tetraalkylammonium salts such as tetraalkylammonium organic acid salts are known as quaternary ammonium salts (for example, see Patent Document 1 for tetraalkylammonium organic acid salts).

しかしながら、これらの硬質ポリウレタンフォーム、イソシアヌレート変性硬質ポリウレタンフォーム製造用の触媒を用いた場合、原料配合組成物中のポリエステルポリオールが、水又は水を含む発泡剤とアミン系触媒との存在下で加水分解を起こし易く、原料配合組成物の貯蔵安定性が悪化して正常な発泡製品ができなくなるという問題があった。この問題に対して、ポリオール成分の改良や、難燃剤、触媒の影響に関する検討がなされているが、これまで十分な解決にはなっていなかった(原料配合組成物の貯蔵安定性について、例えば、非特許文献1参照)。   However, when these rigid polyurethane foams and isocyanurate-modified rigid polyurethane foam production catalysts are used, the polyester polyol in the raw material composition is hydrolyzed in the presence of water or a water-containing blowing agent and an amine catalyst. There is a problem in that decomposition tends to occur, storage stability of the raw material composition deteriorates, and a normal foamed product cannot be obtained. In order to solve this problem, investigations have been made on the effects of polyol components, flame retardants, and catalysts, but it has not been a sufficient solution so far (for the storage stability of the raw material composition, for example, Non-patent document 1).

特許第3012897号明細書Japanese Patent No. 3012897 MCADAMS et al.,“Stabilization of Rigid Systems Containing Aromatic Polyester Polyol and Water”,Polyurethanes Conference 2002,Conference Proceedings,Page.3−18MCADAMS et al. , “Stabilization of Rigid Systems Containing Aromatic Polyester Polyol and Water”, Polyurethanes Conference 2002, Conference Processings, Page. 3-18

硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ウレタンフォーム製造用の原料配合組成物は、上記したとおり、配合されてから実際に使用されるまで数週間から3ヶ月の期間貯蔵されることが多い。しかしながら、安価で、なお且つ環境上の問題の小さい発泡剤である水や、特定の炭化水素(HC)及び/又はハイドロフルオロカーボン(HFC)系の発泡剤を含む原料配合組成物では、貯蔵安定性が低下し、さらに製造した硬質ウレタンフォーム及びイソシアヌレート変性硬質ウレタンフォーム製品の表面脆性(フライアビリティー性)悪化、面材との接着不良、フォームの寸法安定性低下、難燃性悪化等の問題が生じていた。   As described above, a raw material blend composition for producing a rigid polyurethane foam and / or isocyanurate-modified rigid urethane foam is often stored for a period of several weeks to three months after being blended until actually used. However, in the raw material composition containing water and a specific hydrocarbon (HC) and / or hydrofluorocarbon (HFC) -based foaming agent which are inexpensive and have little environmental problems, the storage stability In addition, problems such as deteriorated surface brittleness (flyability) of rigid urethane foam and isocyanurate-modified rigid urethane foam products, poor adhesion to face materials, reduced dimensional stability of foam, and worsened flame retardancy It was happening.

本発明は上記の課題に鑑みてなされたものであり、その目的は、水又は水と特定のHC及び/又はHFCからなる発泡剤と、ポリエステルポリオールを含む原料配合組成物において、ポリエステルポリオールの加水分解を抑制して原料配合組成物の貯蔵安定性を高めることのできる触媒組成物、該触媒組成物を含んでなる原料配合組成物、並びに該原料配合組成物を用いた硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームの製造法を提供することである。   The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to add water or a foaming agent composed of water and specific HC and / or HFC, and a raw material-blended composition containing the polyester polyol to hydrolyze the polyester polyol. Catalyst composition capable of suppressing decomposition and enhancing storage stability of raw material blended composition, raw material blended composition comprising the catalyst composition, and rigid polyurethane foam and / or using the raw material blended composition It is to provide a process for producing an isocyanurate-modified rigid polyurethane foam.

本発明者らは、上述の問題点を解決するために鋭意検討した結果、水又は水と特定のHC及び/又はHFCからなる発泡剤を含む原料配合組成物においては、特定の構造と性質を有するアミン化合物を含んでなる触媒組成物を使用することにより、特にポリエステルポリオールの加水分解が著しく改善され、原料配合組成物の貯蔵安定性を高めるとともに、得られる硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームのフォーム物性が優れることを見出し、本発明を完成するに至った。   As a result of intensive investigations to solve the above-mentioned problems, the present inventors have obtained a specific structure and properties in a raw material composition containing water or a foaming agent composed of water and specific HC and / or HFC. By using a catalyst composition comprising an amine compound, the hydrolysis of the polyester polyol is remarkably improved, and the storage stability of the raw material composition is enhanced, and the resulting rigid polyurethane foam and / or isocyanurate modification The present inventors have found that the foam physical properties of the rigid polyurethane foam are excellent, and have completed the present invention.

すなわち本発明は、以下に示すとおりの、硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォーム製造用触媒組成物、それを用いた原料配合組成物、及びそれを用いた硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームの製造法である。   That is, the present invention provides a catalyst composition for producing a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam, a raw material blend composition using the same, and a rigid polyurethane foam and / or isocyanate using the same as shown below. This is a method for producing a nurate-modified rigid polyurethane foam.

[1]少なくとも下記(A)及び(B)のアミン化合物を含んでなる硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォーム製造用の触媒組成物。   [1] A catalyst composition for producing a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam, comprising at least the following amine compounds (A) and (B).

(A)下記一般式(1)     (A) The following general formula (1)

Figure 0004396465
[式中、R〜Rは、炭素数1〜12の飽和又は不飽和炭化水素基(但し、R〜Rのうちのいずれか2個が炭素原子、酸素原子又は窒素原子を介してヘテロ環を形成していてもよい)を表し、Rは炭素数1〜18のアルキル基又は芳香族炭化水素基を表し、Xは酸解離定数(pKa)が4.8以下の有機酸基を示す。]
で表される4級アンモニウム塩。
Figure 0004396465
[Wherein, R 1 to R 3 are each a saturated or unsaturated hydrocarbon group having 1 to 12 carbon atoms (provided that any two of R 1 to R 3 are bonded via a carbon atom, an oxygen atom, or a nitrogen atom) R 4 represents an alkyl group having 1 to 18 carbon atoms or an aromatic hydrocarbon group, and X represents an organic acid having an acid dissociation constant (pKa) of 4.8 or less. Indicates a group. ]
A quaternary ammonium salt represented by

(B)N−メチルジシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルオクチルアミン、N,N−ジメチルノニルアミン、N,N−ジメチルデシルアミン、N,N−ジメチルウンデシルアミン、N,N−ジメチルドデシルアミン、N,N−ジメチルトリデシルアミン、N,N−ジメチルテトラデシルアミン、N,N−ジメチルペンタデシルアミン、N,N−ジメチルヘキサデシルアミン、N,N−ジメチルヘプタデシルアミン、N,N−ジメチルオクタデシルアミン、N−メチルジオクチルアミン、N−メチルジノニルアミン、N−メチルジデシルアミン、N−メチルジウンデシルアミン、N−メチルジドデシルアミン、N−メチルジトリデシルアミン、N−メチルジテトラデシルアミン、N−メチルジペンタデシルアミン、N−メチルジヘキサデシルアミン、N−メチルジヘプタデシルアミン、及びN−メチルジオクタデシルアミンからなる群より選ばれる1種又は2種以上の疎水性アミン化合物。。     (B) N-methyldicyclohexylamine, N, N-dimethylbenzylamine, N, N-dimethyloctylamine, N, N-dimethylnonylamine, N, N-dimethyldecylamine, N, N-dimethylundecylamine, N, N-dimethyldodecylamine, N, N-dimethyltridecylamine, N, N-dimethyltetradecylamine, N, N-dimethylpentadecylamine, N, N-dimethylhexadecylamine, N, N-dimethylhepta Decylamine, N, N-dimethyloctadecylamine, N-methyldioctylamine, N-methyldinonylamine, N-methyldidecylamine, N-methyldiundecylamine, N-methyldidodecylamine, N-methylditridecyl Amine, N-methylditetradecylamine, N-methyldipentadecyl Amine, N- methyl-di-hexadecylamine, N- methyl-di heptadecylamine, and one or more hydrophobic amine compound selected from the group consisting of N- methyl dioctadecyl amine. .

[2]一般式(1)で表される4級アンモニウム塩を構成する有機酸が、ギ酸及び/又は酢酸であることを特徴とする上記[1]に記載の触媒組成物。   [2] The catalyst composition as described in [1] above, wherein the organic acid constituting the quaternary ammonium salt represented by the general formula (1) is formic acid and / or acetic acid.

[3]一般式(1)で表される4級アンモニウム塩が、テトラメチルアンモニウム酢酸塩、テトラメチルアンモニウムギ酸塩、テトラエチルアンモニウム酢酸塩、テトラエチルアンモニウムギ酸塩、テトラプロピルアンモニウム酢酸塩、テトラプロピルアンモニウムギ酸塩、テトラブチルアンモニウム酢酸塩、テトラブチルアンモニウムギ酸塩、メチルトリエチルアンモニウム酢酸塩、メチルトリエチルアンモニウムギ酸塩、メチルトリプロピルアンモニウム酢酸塩、メチルトリプロピルアンモニウムギ酸塩、メチルトリブチルアンモニウム酢酸塩、メチルトリブチルアンモニウムギ酸塩、トリメチルドデシルアンモニウムギ酸塩、及びトリメチルドデシルアンモニウム酢酸4級アンモニウム塩からなる群より選ばれる1種又は2種以上であることを特徴とする上記[1]に記載の触媒組成物。   [3] A quaternary ammonium salt represented by the general formula (1) is tetramethylammonium acetate, tetramethylammonium formate, tetraethylammonium acetate, tetraethylammonium formate, tetrapropylammonium acetate, tetrapropylammonium formate Salt, tetrabutylammonium acetate, tetrabutylammonium formate, methyltriethylammonium acetate, methyltriethylammonium formate, methyltripropylammonium acetate, methyltripropylammonium formate, methyltributylammonium acetate, methyltributylammonium formate One or more selected from the group consisting of a salt, trimethyldodecyl ammonium formate, and quaternary ammonium trimethyl dodecyl ammonium acetate A catalyst composition according to [1], wherein the.

[4]下記(C)のアミン化合物をさらに含むことを特徴とする上記[1]及至[3]のいずれかに記載の触媒組成物。   [4] The catalyst composition according to any one of [1] to [3], further comprising an amine compound of the following (C):

(C)1−イソブチル−2−メチルイミダゾール、1−メチルイミダゾール、1,2−ジメチルイミダゾール、1−(2−ヒドロキシエチル)−2−メチルイミダゾール、1−(2−ヒドロキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシエチル)イミダゾール、N−メチル−N’−(2−ヒドロキシエチル)ピペラジン、及びN−(2−ヒドロキシエチル)モルフォリンからなる群より選ばれる1種又は2種以上の複素環式第三級アミン化合物。     (C) 1-isobutyl-2-methylimidazole, 1-methylimidazole, 1,2-dimethylimidazole, 1- (2-hydroxyethyl) -2-methylimidazole, 1- (2-hydroxypropyl) -2-methyl One or more selected from the group consisting of imidazole, 1- (2-hydroxyethyl) imidazole, N-methyl-N ′-(2-hydroxyethyl) piperazine, and N- (2-hydroxyethyl) morpholine A heterocyclic tertiary amine compound of

[5]少なくとも下記(A)及び(C)のアミン化合物を含んでなる硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォーム製造用の触媒組成物。   [5] A catalyst composition for producing a rigid polyurethane foam and / or an isocyanurate-modified rigid polyurethane foam comprising at least the following amine compounds (A) and (C).

(A)下記一般式(1)     (A) The following general formula (1)

Figure 0004396465
[式中、R〜Rは、炭素数1〜12の飽和又は不飽和炭化水素基(但し、R〜Rのうちのいずれか2個が炭素原子、酸素原子又は窒素原子を介してヘテロ環を形成していてもよい)を表し、Rは炭素数1〜18のアルキル基又は芳香族炭化水素基を表し、Xは酸解離定数(pKa)が4.8以下の有機酸基を示す。]
で表される4級アンモニウム塩。
Figure 0004396465
[Wherein, R 1 to R 3 are each a saturated or unsaturated hydrocarbon group having 1 to 12 carbon atoms (provided that any two of R 1 to R 3 are bonded via a carbon atom, an oxygen atom, or a nitrogen atom) R 4 represents an alkyl group having 1 to 18 carbon atoms or an aromatic hydrocarbon group, and X represents an organic acid having an acid dissociation constant (pKa) of 4.8 or less. Indicates a group. ]
A quaternary ammonium salt represented by

(C)1−イソブチル−2−メチルイミダゾール、1−メチルイミダゾール、1,2−ジメチルイミダゾール、1−(2−ヒドロキシエチル)−2−メチルイミダゾール、1−(2−ヒドロキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシエチル)イミダゾール、N−メチル−N’−(2−ヒドロキシエチル)ピペラジン、及びN−(2−ヒドロキシエチル)モルフォリンからなる群より選ばれる1種又は2種以上の複素環式第三級アミン化合物。     (C) 1-isobutyl-2-methylimidazole, 1-methylimidazole, 1,2-dimethylimidazole, 1- (2-hydroxyethyl) -2-methylimidazole, 1- (2-hydroxypropyl) -2-methyl One or more selected from the group consisting of imidazole, 1- (2-hydroxyethyl) imidazole, N-methyl-N ′-(2-hydroxyethyl) piperazine, and N- (2-hydroxyethyl) morpholine A heterocyclic tertiary amine compound of

[6]一般式(1)で表される4級アンモニウム塩を構成する有機酸が、ギ酸及び/又は酢酸であることを特徴とする上記[5]に記載の触媒組成物。   [6] The catalyst composition as described in [5] above, wherein the organic acid constituting the quaternary ammonium salt represented by the general formula (1) is formic acid and / or acetic acid.

[7]一般式(1)で表される4級アンモニウム塩が、テトラメチルアンモニウム酢酸塩、テトラメチルアンモニウムギ酸塩、テトラエチルアンモニウム酢酸塩、テトラエチルアンモニウムギ酸塩、テトラプロピルアンモニウム酢酸塩、テトラプロピルアンモニウムギ酸塩、テトラブチルアンモニウム酢酸塩、テトラブチルアンモニウムギ酸塩、メチルトリエチルアンモニウム酢酸塩、メチルトリエチルアンモニウムギ酸塩、メチルトリプロピルアンモニウム酢酸塩、メチルトリプロピルアンモニウムギ酸塩、メチルトリブチルアンモニウム酢酸塩、メチルトリブチルアンモニウムギ酸塩、トリメチルドデシルアンモニウムギ酸塩、及びトリメチルドデシルアンモニウム酢酸4級アンモニウム塩からなる群より選ばれる1種又は2種以上であることを特徴とする上記[5]又は[6]に記載の触媒組成物。   [7] A quaternary ammonium salt represented by the general formula (1) is tetramethylammonium acetate, tetramethylammonium formate, tetraethylammonium acetate, tetraethylammonium formate, tetrapropylammonium acetate, tetrapropylammonium formate Salt, tetrabutylammonium acetate, tetrabutylammonium formate, methyltriethylammonium acetate, methyltriethylammonium formate, methyltripropylammonium acetate, methyltripropylammonium formate, methyltributylammonium acetate, methyltributylammonium formate One or more selected from the group consisting of a salt, trimethyldodecyl ammonium formate, and quaternary ammonium trimethyl dodecyl ammonium acetate The catalyst composition according to the above [5] or [6], wherein the.

[8]ポリオール成分、水、及び上記[1]及至[7]のいずれかに記載の触媒組成物を含んでなる硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォーム製造用の原料配合組成物。   [8] A raw material blend composition for producing a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam, comprising a polyol component, water, and the catalyst composition according to any one of [1] to [7] above.

[9]発泡剤として、1,1,1,3,3−ペンタフルオロブタン、1,1,1,3,3−ペンタフルオロプロパン、1,1,1,2−テトラフルオロエタン、1,1,1,2,3,3,3−ヘプタフルオロプロパン、1,1,1,2,3,3−ヘキサフルオロプロパン、1,1,1,4,4,4−ヘキサフルオロブタン、プロパン、ブタン、ペンタン、シクロペンタン、及びヘキサンからなる群より選ばれる1種又は2種以上をさらに含んでなる上記[8]に記載の原料配合組成物。   [9] 1,1,1,3,3-pentafluorobutane, 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1 , 1,2,3,3,3-heptafluoropropane, 1,1,1,2,3,3-hexafluoropropane, 1,1,1,4,4,4-hexafluorobutane, propane, butane The raw material-blended composition according to [8], further comprising one or more selected from the group consisting of pentane, cyclopentane, and hexane.

[10]ポリオール成分として、芳香族ポリエステルポリオールを含むことを特徴とする上記[8]又は[9]に記載の原料配合組成物。   [10] The raw material-blended composition as described in [8] or [9] above, which contains an aromatic polyester polyol as a polyol component.

[11]上記[8]及至[10]のいずれかに記載の原料配合組成物にポリイソシアネートを混合して反応させることを特徴とする硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームの製造法。   [11] A process for producing a rigid polyurethane foam and / or an isocyanurate-modified rigid polyurethane foam, characterized by mixing and reacting a polyisocyanate with the raw material blend composition according to any one of [8] to [10] above .

本発明の触媒組成物は、ポリオール成分、水を含んでなる硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォーム製造用の原料配合組成物において、ポリオールの加水分解を抑制して原料配合組成物の貯蔵安定性を高めることができる。   The catalyst composition of the present invention is a raw material blend composition for producing a rigid polyurethane foam and / or an isocyanurate-modified hard polyurethane foam comprising a polyol component, water, and suppresses hydrolysis of the polyol. Storage stability can be increased.

また、本発明によれば、水以外の発泡剤としてのHC及び/又はHFCの使用量を低減できるため、環境安全性、経済性を高められ、なおかつ原料配合組成物の貯蔵安定性、難燃性、実用性に優れた硬質ポリウレタンフォーム、イソシアヌレート変性硬質ポリウレタンフォームの製造法を提供できる。   In addition, according to the present invention, since the amount of HC and / or HFC used as a foaming agent other than water can be reduced, environmental safety and economy can be improved, and storage stability and flame retardancy of the raw material blended composition can be improved. Can provide a method for producing a rigid polyurethane foam and an isocyanurate-modified rigid polyurethane foam having excellent properties and practicality.

さらに、本発明の触媒組成物、原料配合組成物を用いて製造した硬質ポリウレタンフォーム,イソシアヌレート変性硬質ポリイソシアヌレートフォームは、フォームの流動性、接着強度に優れる。   Furthermore, the rigid polyurethane foam and isocyanurate-modified rigid polyisocyanurate foam produced using the catalyst composition and raw material blend composition of the present invention are excellent in foam fluidity and adhesive strength.

本発明の触媒組成物において、上記一般式(1)で表される4級アンモニウム塩化合物を構成する有機酸は、酸解離定数(pKa)が4.8以下の有機酸であることが必須である。酸解離定数(pKa)が4.8以下の有機酸としては、特に限定するものではないが、例えば、脂肪族飽和モノカルボン酸、脂肪族不飽和モノカルボン酸、脂肪族ポリカルボン酸、酸性OH基を持つ酸、芳香族カルボン酸等の有機酸が挙げられ、具体的には、イソ吉草酸、ギ酸、グリコール酸、酢酸、クロロ酢酸、シアノ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリメチル酢酸、フルオロ酢酸、ブロモ酢酸、メトキシ酢酸、メルカプト酢酸、ヨード酢酸、乳酸、ピルビン酸、2−クロロプロピオン酸、3−クロロプロピオン酸、レブリン酸、アクリル酸、クロトン酸、ビニル酢酸、メタクリル酸、アジピン酸、アゼライン酸、オキサロ酢酸、クエン酸、グルタル酸、コハク酸、シュウ酸、d−酒石酸、酒石酸(メソ)、スベリン酸、セバシン酸、フマル酸、マレイン酸、マロン酸、アスコルビン酸、レダクチン酸、レダクトン、o−アニス酸、m−アニス酸、p−アニス酸、安息香酸、ケイ皮酸、ナフトエ酸、フェニル酢酸、フェノキシ酢酸、フタル酸、イソフタル酸、テレフタル酸、マンデル酸等が例示される。これらのうち、特に好ましくはギ酸及び/又は酢酸である。   In the catalyst composition of the present invention, the organic acid constituting the quaternary ammonium salt compound represented by the general formula (1) must be an organic acid having an acid dissociation constant (pKa) of 4.8 or less. is there. The organic acid having an acid dissociation constant (pKa) of 4.8 or less is not particularly limited, and examples thereof include aliphatic saturated monocarboxylic acids, aliphatic unsaturated monocarboxylic acids, aliphatic polycarboxylic acids, and acidic OH. Examples include acids having a group and organic acids such as aromatic carboxylic acids. Specifically, isovaleric acid, formic acid, glycolic acid, acetic acid, chloroacetic acid, cyanoacetic acid, dichloroacetic acid, trichloroacetic acid, trimethylacetic acid, fluoroacetic acid , Bromoacetic acid, methoxyacetic acid, mercaptoacetic acid, iodoacetic acid, lactic acid, pyruvic acid, 2-chloropropionic acid, 3-chloropropionic acid, levulinic acid, acrylic acid, crotonic acid, vinylacetic acid, methacrylic acid, adipic acid, azelaic acid , Oxaloacetic acid, citric acid, glutaric acid, succinic acid, oxalic acid, d-tartaric acid, tartaric acid (meso), suberic acid, sebacine , Fumaric acid, maleic acid, malonic acid, ascorbic acid, reductic acid, reductone, o-anisic acid, m-anisic acid, p-anisic acid, benzoic acid, cinnamic acid, naphthoic acid, phenylacetic acid, phenoxyacetic acid, phthalate Examples include acids, isophthalic acid, terephthalic acid, mandelic acid and the like. Of these, formic acid and / or acetic acid are particularly preferable.

上記(A)に示される4級アンモニウム塩を構成する有機酸として、酸解離定数(pKa)が4.8を超える有機酸を用いた場合、原料配合組成物に含まれるポリオール成分(ポリエステルポリオール)が加水分解を起こし易くなり、貯蔵安定性が悪化して正常な発泡製品ができなくなるおそれがある。   When an organic acid having an acid dissociation constant (pKa) exceeding 4.8 is used as the organic acid constituting the quaternary ammonium salt shown in (A) above, the polyol component (polyester polyol) contained in the raw material blend composition Tends to be hydrolyzed, and the storage stability may deteriorate and a normal foamed product may not be obtained.

本発明において、上記一般式(1)で表される4級アンモニウム塩としては、具体的には、テトラメチルアンモニウム酢酸塩、テトラメチルアンモニウムギ酸塩、テトラエチルアンモニウム酢酸塩、テトラエチルアンモニウムギ酸塩、テトラプロピルアンモニウム酢酸塩、テトラプロピルアンモニウムギ酸塩、テトラブチルアンモニウム酢酸塩、テトラブチルアンモニウムギ酸塩、メチルトリエチルアンモニウム酢酸塩、メチルトリエチルアンモニウムギ酸塩、メチルトリプロピルアンモニウム酢酸塩、メチルトリプロピルアンモニウムギ酸塩、メチルトリブチルアンモニウム酢酸塩、メチルトリブチルアンモニウムギ酸塩、トリメチルドデシルアンモニウムギ酸塩、トリメチルドデシルアンモニウム酢酸塩、等が例示され、これらの1種又は2種以上を用いることができる。   In the present invention, the quaternary ammonium salt represented by the general formula (1) specifically includes tetramethylammonium acetate, tetramethylammonium formate, tetraethylammonium acetate, tetraethylammonium formate, tetrapropyl. Ammonium acetate, tetrapropylammonium formate, tetrabutylammonium acetate, tetrabutylammonium formate, methyltriethylammonium acetate, methyltriethylammonium formate, methyltripropylammonium acetate, methyltripropylammonium formate, methyltributyl Examples include ammonium acetate, methyltributylammonium formate, trimethyldodecylammonium formate, trimethyldodecylammonium acetate, and the like. It can be used two or more kinds.

本発明において、上記(B)の疎水性アミン化合物は、水100gへの溶解量が0.1g以下のアミン化合物であり、具体的には、N−メチルジシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルオクチルアミン、N,N−ジメチルノニルアミン、N,N−ジメチルデシルアミン、N,N−ジメチルウンデシルアミン、N,N−ジメチルドデシルアミン、N,N−ジメチルトリデシルアミン、N,N−ジメチルテトラデシルアミン、N,N−ジメチルペンタデシルアミン、N,N−ジメチルヘキサデシルアミン、N,N−ジメチルヘプタデシルアミン、N,N−ジメチルオクタデシルアミン、N−メチルジオクチルアミン、N−メチルジノニルアミン、N−メチルジデシルアミン、N−メチルジウンデシルアミン、N−メチルジドデシルアミン、N−メチルジトリデシルアミン、N−メチルジテトラデシルアミン、N−メチルジペンタデシルアミン、N−メチルジヘキサデシルアミン、N−メチルジヘプタデシルアミン、N−メチルジオクタデシルアミンが挙げられ、これらの1種又は2種以上を用いることができる。   In the present invention, the hydrophobic amine compound (B) is an amine compound having a solubility in 100 g of water of 0.1 g or less, specifically, N-methyldicyclohexylamine, N, N-dimethylbenzylamine. N, N-dimethyloctylamine, N, N-dimethylnonylamine, N, N-dimethyldecylamine, N, N-dimethylundecylamine, N, N-dimethyldodecylamine, N, N-dimethyltridecylamine N, N-dimethyltetradecylamine, N, N-dimethylpentadecylamine, N, N-dimethylhexadecylamine, N, N-dimethylheptadecylamine, N, N-dimethyloctadecylamine, N-methyldioctylamine N-methyldinonylamine, N-methyldidecylamine, N-methyldiundecylamine, -Methyldidodecylamine, N-methylditridecylamine, N-methylditetradecylamine, N-methyldipentadecylamine, N-methyldihexadecylamine, N-methyldiheptadecylamine, N-methyldioctadecyl An amine is mentioned, These 1 type (s) or 2 or more types can be used.

本発明においては、上記化合物のうち、好ましくは、N−メチルジシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルオクチルアミン、N,N−ジメチルノニルアミン、N,N−ジメチルデシルアミン、N,N−ジメチルウンデシルアミン、N,N−ジメチルドデシルアミンであり、特に好ましくはN−メチルジシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルオクチルアミン、N,N−ジメチルデシルアミン、N,N−ジメチルドデシルアミンである。   In the present invention, among the above compounds, N-methyldicyclohexylamine, N, N-dimethylbenzylamine, N, N-dimethyloctylamine, N, N-dimethylnonylamine, N, N-dimethyldecylamine is preferable. N, N-dimethylundecylamine, N, N-dimethyldodecylamine, particularly preferably N-methyldicyclohexylamine, N, N-dimethylbenzylamine, N, N-dimethyloctylamine, N, N-dimethyl Decylamine, N, N-dimethyldodecylamine.

本発明において、水100gへの溶解量が0.1gを超えるアミン化合物を用いた場合、原料配合組成物中に含まれるポリオール成分が加水分解を起こし易くなるため、貯蔵安定性が悪化して正常な発泡製品ができなくなるおそれがある。   In the present invention, when an amine compound having a solubility in 100 g of water of more than 0.1 g is used, the polyol component contained in the raw material composition is likely to be hydrolyzed, so that the storage stability is deteriorated and normal. There is a risk that it will be impossible to produce a foamed product.

本発明の触媒組成物においては、上記の(A)及び/又は(B)のアミン化合物を含んだ上で、さらに上記(C)に示される複素環式第三級アミン化合物をさらに含んでもよい。   In the catalyst composition of the present invention, the amine compound (A) and / or (B) may be included, and the heterocyclic tertiary amine compound represented by (C) may be further included. .

酸解離定数(pKa)が8未満であるアミン化合物をさらに含んでなる触媒組成物では、上記の(A)及び(B)のアミン化合物と共存した系においてポリオール成分の加水分解が起こり難くなるため、貯蔵安定性に優れる原料配合組成物が得られる。   In a catalyst composition further comprising an amine compound having an acid dissociation constant (pKa) of less than 8, hydrolysis of the polyol component is unlikely to occur in a system coexisting with the amine compounds (A) and (B). Thus, a raw material blend composition having excellent storage stability can be obtained.

上記(C)に示される複素環式第三級アミン化合物としては、具体的には、1−イソブチル−2−メチルイミダゾール、1−メチルイミダゾール、1,2−ジメチルイミダゾール、1−(2−ヒドロキシエチル)−2−メチルイミダゾール、1−(2−ヒドロキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシエチル)イミダゾール、N−メチル−N’−(2−ヒドロキシエチル)ピペラジン、N−メチル−N’−(2−ヒドロキシプロピル)ピペラジン、N−メチル−N’−(2−メトキシエチル)ピペラジン、N−(2−ヒドロキシエチル)モルフォリン、N−(2−ヒドロキシプロピル)モルフォリン、N−メチルモルフォリン、N−エチルモルフォリンが挙げられ、これらの1種又は2種以上を用いることができる。   Specific examples of the heterocyclic tertiary amine compound shown in (C) above include 1-isobutyl-2-methylimidazole, 1-methylimidazole, 1,2-dimethylimidazole, 1- (2-hydroxy Ethyl) -2-methylimidazole, 1- (2-hydroxypropyl) -2-methylimidazole, 1- (2-hydroxyethyl) imidazole, N-methyl-N ′-(2-hydroxyethyl) piperazine, N-methyl -N '-(2-hydroxypropyl) piperazine, N-methyl-N'-(2-methoxyethyl) piperazine, N- (2-hydroxyethyl) morpholine, N- (2-hydroxypropyl) morpholine, N -Methyl morpholine and N-ethyl morpholine are mentioned, These 1 type (s) or 2 or more types can be used.

本発明においては、上記化合物のうち、1−イソブチル−2−メチルイミダゾール、1−メチルイミダゾール、1,2−ジメチルイミダゾール、1−(2−ヒドロキシエチル)−2−メチルイミダゾール、1−(2−ヒドロキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシエチル)イミダゾール、N−メチル−N’−(2−ヒドロキシエチル)ピペラジン、N−(2−ヒドロキシエチル)モルフォリンが好ましい。これら複素環式の第三級アミン化合物は、原料配合液中に含まれるポリエステルポリオールの加水分解を抑制するため、原料配合物の貯蔵安定性をさらに向上させることができる。   In the present invention, among the above compounds, 1-isobutyl-2-methylimidazole, 1-methylimidazole, 1,2-dimethylimidazole, 1- (2-hydroxyethyl) -2-methylimidazole, 1- (2- Hydroxypropyl) -2-methylimidazole, 1- (2-hydroxyethyl) imidazole, N-methyl-N ′-(2-hydroxyethyl) piperazine, N- (2-hydroxyethyl) morpholine are preferred. Since these heterocyclic tertiary amine compounds suppress hydrolysis of the polyester polyol contained in the raw material blending solution, the storage stability of the raw material blend can be further improved.

本発明の触媒組成物では、上記(A)及び(B)のアミン化合物を併用した場合、原料配合組成物の貯蔵安定性改良に加えて、発泡反応させた硬質ポリウレタンフォーム及びイソシアヌレート変性硬質ポリウレタンフォームの流動性改良効果が得られる。   In the catalyst composition of the present invention, when the amine compounds (A) and (B) are used in combination, in addition to improving the storage stability of the raw material composition, the foamed hard polyurethane foam and isocyanurate-modified hard polyurethane An effect of improving the fluidity of the foam can be obtained.

また、本発明の触媒組成物においては、上記(A)及び(C)のアミン化合物を併用することもできる。上記(A)及び(C)のアミン化合物を併用した場合には、原料配合組成物の貯蔵安定性改良に加えて、発泡反応させた硬質ポリウレタンフォーム及びイソシアヌレート変性硬質ポリウレタンフォームと面材間の接着性改良効果が得られる。   Moreover, in the catalyst composition of this invention, the amine compound of said (A) and (C) can also be used together. When the amine compounds of the above (A) and (C) are used in combination, in addition to improving the storage stability of the raw material blend composition, between the foamed rigid polyurethane foam and isocyanurate modified rigid polyurethane foam and the face material Adhesive improvement effect is obtained.

更に(A)、(B)及び(C)のアミン化合物を併用した触媒組成物では、原料配合組成物の貯蔵安定性改良に加えて、発泡反応させた硬質ポリウレタンフォーム及びイソシアヌレート変性硬質ポリウレタンフォームの接着性及び流動性改良の効果が得られる。   Furthermore, in the catalyst composition in which the amine compounds of (A), (B) and (C) are used in combination, in addition to improving the storage stability of the raw material blended composition, a foamed hard polyurethane foam and an isocyanurate-modified hard polyurethane foam The effect of improving the adhesiveness and fluidity is obtained.

本発明の触媒組成物における、上記各アミン化合物の混合比率は、特に限定するものではないが、通常、(A)/(B)/(C)=5〜90/5〜90/10〜90(重量比)の範囲である。   The mixing ratio of each amine compound in the catalyst composition of the present invention is not particularly limited, but is usually (A) / (B) / (C) = 5 to 90/5 to 90/10 to 90. (Weight ratio).

本発明の触媒組成物には、本発明の効果を逸脱しない範囲で他の触媒を併用して用いても良い。他の触媒としては、例えば、従来公知の第3級アミン類等を挙げることができる。   In the catalyst composition of the present invention, other catalysts may be used in combination without departing from the effects of the present invention. Examples of other catalysts include conventionally known tertiary amines.

従来公知の第3級アミン類としては、特に限定するものではないが、例えば、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルプロピレンジアミン、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン、N,N,N’,N”,N”−ペンタメチル−(3−アミノプロピル)エチレンジアミン、N,N,N’,N”,N”−ペンタメチルジプロピレントリアミン、N,N,N’,N’−テトラメチルグアニジン、1,3,5−トリス(N,N−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、N,N’−ジメチルピペラジン、ビス(2−ジメチルアミノエチル)エーテル、1−ジメチルアミノプロピルイミダゾール等が挙げられる。また触媒活性、ヌレート活性が高く、トータルの触媒使用量を低減できる1,3,5−トリス(N,N−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン、2,4,6−トリス(ジメチルアミノメチル)フェノール等も用いることができる。   Conventionally known tertiary amines are not particularly limited, and examples thereof include N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentamethyl- (3-aminopropyl) ethylenediamine, N, N, N ′, N ″, N ″ -pentamethyldipropylenetriamine, N, N, N ′, N′-tetramethylguanidine, 1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, 1,8-diazabicyclo [5.4.0] undecene-7, N, N′-dimethylpiperazine, bis (2-dimethylaminoethyl) ether, 1-dimethylaminopropylimidazole, etc. It is below. 1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, 2,4,6-tris (dimethylaminomethyl), which has high catalytic activity and nurate activity, and can reduce the total amount of catalyst used. ) Phenol and the like can also be used.

本発明の触媒組成物には、本発明の効果を逸脱しない範囲で、更に他の触媒として、例えば、従来公知のポリイソシアヌレート化触媒等を使用することができる。従来公知のポリイソシアヌレート化触媒としては、特に限定するものではないが、上述の第3級アミン類以外にも、第4級アンモニウム塩類等、有機金属系触媒、第3級フォスフィン類、燐のオニウム塩化合物等を用いることができる。   In the catalyst composition of the present invention, for example, a conventionally known polyisocyanuration catalyst or the like can be used as another catalyst without departing from the effects of the present invention. The conventionally known polyisocyanurate-forming catalyst is not particularly limited, but besides the above-mentioned tertiary amines, quaternary ammonium salts, organometallic catalysts, tertiary phosphine, phosphorus An onium salt compound or the like can be used.

このような第4級アンモニウム塩としては、特に限定するものではないが、例えば、テトラメチルアンモニウムクロライド等のテトラアルキルアンモニウムハロゲン化物、水酸化テトラメチルアンモニウム塩等のテトラアルキルアンモニウム水酸化物、2−ヒドロキシプロピルトリメチルアンモニウムギ酸塩、2−ヒドロキシプロピルトリメチルアンモニウム2−エチルヘキサン酸塩等のトリアルキルヒドロキシプロピルアンモニウム有機酸塩類等が挙げられる。また、触媒活性、ヌレート活性が高く、トータルの触媒使用量を低減できるトリメチル−2−ヒドロキシプロピル系第4級アンモニウム・2−エチルヘキサン酸塩(例えば、特開昭52−17484号公報参照)や、トリメチル−2−ヒドロキシプロピル系第4級アンモニウム・ギ酸塩、トリメチル−2−ヒドロキシプロピル系第4級アンモニウム・酢酸塩、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン/プロピレンオキシド/2−エチルヘキサン酸=1/1/1モルの反応から得られる第4級アンモニウム塩等のヒドロキシアルキル系4級アンモニウム有機酸塩(例えば、特開平10−017638号公報参照)、テトラメチルアンモニウム・2−エチルヘキサン酸塩、メチルトリエチルアンモニウム・2−エチルヘキサン酸塩等のテトラアルキルアンモニウム有機酸塩類、N,N,N’,N’−テトラメチルヘキサメチレンジアミン/炭酸ジメチル=1/1.5モルの反応から得られる第4級アンモニウム炭酸塩等のテトラアルキルアンモニウム炭酸塩(例えば、特開平11−199644号公報参照)等も挙げられる。   Such a quaternary ammonium salt is not particularly limited. For example, tetraalkylammonium halides such as tetramethylammonium chloride, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, 2- Examples include trialkylhydroxypropylammonium organic acid salts such as hydroxypropyltrimethylammonium formate and 2-hydroxypropyltrimethylammonium 2-ethylhexanoate. In addition, trimethyl-2-hydroxypropyl quaternary ammonium 2-ethylhexanoate (see, for example, JP-A-52-17484), which has high catalytic activity and nurate activity, and can reduce the total amount of catalyst used, Trimethyl-2-hydroxypropyl quaternary ammonium formate, trimethyl-2-hydroxypropyl quaternary ammonium acetate, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine / propylene oxide / 2-Ethylhexanoic acid = 1/1/1/1 hydroxyalkyl-based quaternary ammonium organic acid salt such as quaternary ammonium salt obtained from the reaction (for example, see JP-A-10-017638), tetramethylammonium・ 2-ethylhexanoate, methyltriethylammonium ・ 2-ethylhex Tetraalkylammonium organic acid salts such as phosphates, quaternary ammonium carbonates obtained from the reaction of N, N, N ′, N′-tetramethylhexamethylenediamine / dimethyl carbonate = 1 / 1.5 mol, etc. Examples thereof include tetraalkylammonium carbonate (see, for example, JP-A No. 11-199644).

また、有機金属系触媒としては、特に限定するものではないが、例えば、酢酸カリウム、2−エチルヘキサン酸カリウム等のカルボン酸のアルカリ金属塩類、スタナスジアセテート、スタナスジオクトエート、スタナスジオレエート、スタナスジラウレート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジクロライド、ジオクチル錫ジラウレート、オクタン酸鉛、ナフテン酸鉛、ナフテン酸ニッケル、ナフテン酸コバルト、又カルボン酸のリチウム、ナトリウム、カリウム塩等である酢酸カリウム、2−エチルヘキサン酸カリウム等のカルボン酸のアルカリ金属塩類が例示できる。   Further, the organometallic catalyst is not particularly limited, and examples thereof include alkali metal salts of carboxylic acids such as potassium acetate and potassium 2-ethylhexanoate, stannous diacetate, stannous dioctate, stannous dioleate. , Stannous dilaurate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, dioctyltin dilaurate, lead octoate, lead naphthenate, nickel naphthenate, cobalt naphthenate, lithium carboxylic acid, sodium, Examples thereof include alkali metal salts of carboxylic acids such as potassium acetate and potassium 2-ethylhexanoate.

本発明においては、これらの他にも、2−ヒドロキシプロピルトリメチルアンモニウム2−エチルヘキサン酸塩等のトリアルキルヒドロキシプロピルアンモニウム有機酸塩類等、メチルトリエチルアンモニウム・2−エチルヘキサン酸塩等のテトラアルキルアンモニウム有機酸塩類等、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン/プロピレンオキシド/2−エチルヘキサン酸=1/1/1モルの反応から得られる第4級アンモニウム塩等のヒドロキシアルキル系4級アンモニウム有機酸塩(例えば、特開平10−017638号公報参照)、N,N,N’,N’−テトラメチルヘキサメチレンジアミン/炭酸ジメチル=1/1.5モルの反応から得られる第4級アンモニウム炭酸塩等のテトラアルキルアンモニウム炭酸塩等(例えば、特開平11−199644号公報参照)、1,3,5−トリス(N,N−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン、2,4,6−トリス(ジメチルアミノメチル)フェノールも用いることができる。   In the present invention, besides these, trialkylhydroxypropylammonium organic acid salts such as 2-hydroxypropyltrimethylammonium 2-ethylhexanoate and the like, and tetraalkylammonium such as methyltriethylammonium and 2-ethylhexanoate Hydroxy such as quaternary ammonium salt obtained from reaction of organic acid salts, etc., N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine / propylene oxide / 2-ethylhexanoic acid = 1/1/1 mol Alkyl quaternary ammonium organic acid salt (see, for example, JP-A-10-017638), N, N, N ′, N′-tetramethylhexamethylenediamine / dimethyl carbonate = 1 / 1.5 mol Tetraalkylammonium carbonate such as quaternary ammonium carbonate Etc. (for example, see JP-A-11-199644), 1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, 2,4,6-tris (dimethylaminomethyl) phenol Can be used.

本発明の原料配合組成物は、上述の触媒組成物に加えて、ポリオール成分、及び水を含んでなるものである。   The raw material blend composition of the present invention comprises a polyol component and water in addition to the above catalyst composition.

本発明の原料配合組成物における触媒組成物の使用量は、特に限定するものではないが、ポリオール成分100重量部に対して、0.5〜15重量部の範囲とするのが好ましい。使用量が0.5重量部以下では反応速度が遅くなり生産性が悪く、15重両部以上ではポリエステルポリオールの加水分解が起こり易くなる。なお、上記(A)〜(C)のアミン化合物以外に他の触媒を併用する場合、他の触媒の使用量はポリオール成分100重量部に対して、0.5〜5重量部、上記(A)〜(C)のアミン化合物との合計で1〜20重量部の範囲とするのが好ましい。   Although the usage-amount of the catalyst composition in the raw material compounding composition of this invention is not specifically limited, It is preferable to set it as the range of 0.5-15 weight part with respect to 100 weight part of polyol components. If the amount used is 0.5 parts by weight or less, the reaction rate is slow and the productivity is poor, and if it is 15 parts by weight or more, hydrolysis of the polyester polyol tends to occur. When other catalysts are used in addition to the amine compounds (A) to (C) above, the amount of other catalysts used is 0.5 to 5 parts by weight with respect to 100 parts by weight of the polyol component. ) To (C) and the total amount of the amine compound is preferably in the range of 1 to 20 parts by weight.

本発明の原料配合組成物に用いられるポリオール成分としては、芳香族ポリエステルポリオールであるか、又は芳香族ポリエステルポリオールを含むことが好ましい。ポリオール成分として、芳香族ポリエステルポリオール化合物を用いることにより、難燃性の高い硬質ポリウレタンフォーム及びイソシアヌレート変性硬質ポリウレタンフォームを得ることができる。   The polyol component used in the raw material blend composition of the present invention is preferably an aromatic polyester polyol or preferably contains an aromatic polyester polyol. By using an aromatic polyester polyol compound as the polyol component, it is possible to obtain a hard polyurethane foam and an isocyanurate-modified hard polyurethane foam having high flame retardancy.

芳香族ポリエステルポリオールとしては、特に限定するものではないが、例えば、二塩基酸とヒドロキシ化合物(グリコール等)の反応から得られるものや、岩田敬治「ポリウレタン樹脂ハンドブック」(1987年初版)日刊工業新聞社 p.116〜117に記載されているDMT残査、無水フタル酸を出発原料とするポリエステルポリオール、ナイロン製造時の廃物、TMP、ペンタエリストールの廃物、フタル酸系ポリエステルの廃物、廃品を処理し誘導したポリエステルポリオール等が挙げられる。   The aromatic polyester polyol is not particularly limited, and examples thereof include those obtained from the reaction of dibasic acids and hydroxy compounds (glycols, etc.), and Keiji Iwata “Polyurethane Resin Handbook” (1987 first edition) Nikkan Kogyo Shimbun. Company p. DMT residue described in 116-117, polyester polyol starting from phthalic anhydride, nylon production waste, TMP, pentaerythritol waste, phthalic polyester waste, waste products A polyester polyol etc. are mentioned.

本発明においては、上記以外にも、フタル酸、イソフタル酸、テレフタル酸、無水フタル酸やこれらの廃物、廃品から芳香族ジカルボン酸やその誘導体をエステル化反応させて得られるものが例示できる。   In the present invention, in addition to the above, there can be exemplified those obtained by esterifying aromatic dicarboxylic acid and its derivatives from phthalic acid, isophthalic acid, terephthalic acid, phthalic anhydride, wastes thereof, and waste products.

本発明において、芳香族ポリエステルポリオールの好ましい水酸基価は150〜450の範囲である。   In the present invention, the preferred hydroxyl value of the aromatic polyester polyol is in the range of 150 to 450.

ポリエステルポリオールの原料として用いる二塩基酸としては、アジピン酸、フタル酸類、コハク酸、アゼライン酸、セバシン酸、リシノール酸等が例示されるが、良好な難燃性を得ることができることから、芳香環を含むフタル酸類が好ましい。   Examples of the dibasic acid used as a raw material for the polyester polyol include adipic acid, phthalic acids, succinic acid, azelaic acid, sebacic acid, ricinoleic acid, and the like. The phthalic acid containing is preferable.

また、芳香族ポリエステルポリオールを形成するヒドロキシ化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ヘキサンジオール、ネオペンチルグリコール、トリメチロールプロパン、ヘキサントリオール、グリセリン、ペンタエリスリトール、フェノール及びその誘導体等が挙げられる。   Examples of the hydroxy compound forming the aromatic polyester polyol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, hexanediol, neopentyl glycol, trimethylolpropane, hexanetriol, glycerin, pentaerythritol, Phenol and its derivatives are mentioned.

本発明における原料配合組成物中のポリオール成分中の芳香族ポリエステルポリオールの割合は、過度に少ないと十分な難燃性が得られないため、ポリオール成分中に30重量%以上含有されていることが好ましい。   If the proportion of the aromatic polyester polyol in the polyol component in the raw material blend composition in the present invention is too small, sufficient flame retardancy cannot be obtained, so that the polyol component contains 30% by weight or more. preferable.

本発明において、ポリエステルポリオール以外に使用されるポリオールとしては、例えば、従来公知のマンニッヒベースポリオール等のフェノール系ポリオール等、ポリエーテルポリオール、含リンポリオールや含ハロゲンポリオール等の難燃ポリオール、ポリマーポリオールが挙げられる。   In the present invention, the polyol used in addition to the polyester polyol includes, for example, phenol polyols such as conventionally known Mannich base polyols, polyether polyols, flame retardant polyols such as phosphorus-containing polyols and halogen-containing polyols, and polymer polyols. Can be mentioned.

マンニッヒベースポリオール等のフェノール系ポリオールとしては、例えば、フェノール及び/又はその誘導体をマンニッヒ変性して得られたポリエーテルポリオール(以下、「マンニッヒ変性ポリオール」と記載する)、即ち、フェノール、又はノニルフェノール、アルキルフェノール等のフェノール誘導体をホルムアルデヒドとジエタノールアミン等の2級アミンやアンモニア、1級アミン等を用いてマンニッヒ変性し、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを開環付加重合して得られるポリエーテルポリオールを用いても良い。このようなマンニッヒ変性ポリオールは、自己反応活性が高く、かつ難燃性も比較的高いため、スプレー発泡型硬質ポリウレタンフォームにおいて、吹き付け発泡時に難燃性能を著しく損なうことなく、速やかに反応を進めることができる。ただし、ポリオール成分中のマンニッヒ変性ポリオールが70重量%を超えると難燃性能が悪化してくるおそれがあるため、マンニッヒ変性ポリオールを使用する場合、そのポリオール成分中の割合は、通常70重量%以下、好ましくは20〜50重量%の範囲である。   Examples of phenolic polyols such as Mannich base polyols include polyether polyols obtained by modifying Mannich with phenol and / or derivatives thereof (hereinafter referred to as “Mannich modified polyols”), that is, phenol or nonylphenol, A polyether polyol obtained by subjecting a phenol derivative such as alkylphenol to Mannich modification using a secondary amine such as formaldehyde and diethanolamine, ammonia or a primary amine, and ring-opening addition polymerization of an alkylene oxide such as ethylene oxide or propylene oxide. It may be used. Such Mannich-modified polyols have a high self-reactive activity and a relatively high flame retardancy, and therefore, in spray foamed rigid polyurethane foams, the reaction can proceed promptly without significantly impairing the flame retardant performance during spray foaming. Can do. However, if the Mannich modified polyol in the polyol component exceeds 70% by weight, the flame retardancy may be deteriorated. Therefore, when the Mannich modified polyol is used, the proportion in the polyol component is usually 70% by weight or less. It is preferably in the range of 20 to 50% by weight.

また、ポリエーテルポリオールとしては、例えば、エチレンジアミン、トリレンジアミン、シュークロース、アミノアルコール、ジエチレングリコール等のマンニッヒ変性ポリオールとは異なる開始剤に対してエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを開環付加重合して得られるポリエーテルポリオール化合物を用いても良い。ただし、ポリオール成分中のポリエーテルポリオールが70重量%を超えると難燃性能が悪化してくるおそれがあるため、そのポリオール成分中の割合は、通常70重量%以下、好ましくは20〜50重量%の範囲である。   As the polyether polyol, for example, ring opening addition polymerization of alkylene oxide such as ethylene oxide and propylene oxide with an initiator different from Mannich modified polyol such as ethylenediamine, tolylenediamine, sucrose, amino alcohol, diethylene glycol and the like. A polyether polyol compound obtained in this manner may be used. However, if the polyether polyol in the polyol component exceeds 70% by weight, the flame retardancy may be deteriorated. Therefore, the proportion in the polyol component is usually 70% by weight or less, preferably 20 to 50% by weight. Range.

また、含リンポリオールや含ハロゲンポリオール等の難燃ポリオール等としては、例えば、リン酸化合物にアルキレンオキシドを付加して得られる含リンポリオール、エピクロルヒドリンやトリクロロブチレンオキシドを開環重合して得られる含ハロゲンポリオール、ブロモ化ペンタエリスリトール/蔗糖系ポリオール、テトラブロモフタル酸ポリエステル等の含ハロゲンポリオール、マンニッヒベースポリオール等のフェノールポリオール等が挙げられる。ただし、ポリオール成分中の難燃ポリオールが70重量%を超えると難燃性能は向上するものの発煙性が悪化してくるため、そのポリオール成分中の割合は、通常70重量%以下、好ましくは20〜50重量%の範囲である。   Examples of flame retardant polyols such as phosphorus-containing polyols and halogen-containing polyols include phosphorus-containing polyols obtained by adding alkylene oxide to phosphoric acid compounds, ring-containing polymerization obtained by ring-opening polymerization of epichlorohydrin and trichlorobutylene oxide. Examples include halogen polyols, halogenated polyols such as brominated pentaerythritol / sucrose polyols, tetrabromophthalic acid polyesters, and phenol polyols such as Mannich base polyols. However, if the flame retardant polyol in the polyol component exceeds 70% by weight, the flame retardant performance is improved, but the smoke generation property is deteriorated. Therefore, the ratio in the polyol component is usually 70% by weight or less, preferably 20 to 20%. It is in the range of 50% by weight.

本発明の原料配合組成物は、発泡用の成分として少なくとも水を含んでなるものである。   The raw material blend composition of the present invention comprises at least water as a foaming component.

本発明においては、原料配合組成物に水を添加し、水とポリイソシアネート化合物との反応で生成する炭酸ガスで発泡することが好ましい。   In the present invention, it is preferable to add water to the raw material-blended composition and foam with carbon dioxide gas generated by the reaction between water and the polyisocyanate compound.

本発明における発泡剤は、水添加による炭酸ガスのみでも良いが、これに特定のHC及び/又はHFCを併用することができる。   The blowing agent in the present invention may be only carbon dioxide gas by addition of water, but specific HC and / or HFC can be used in combination therewith.

HFCとしては、例えば、1,1,1,3,3−ペンタフルオロブタン、1,1,1,3,3−ペンタフルオロプロパン、1,1,1,2−テトラフルオロエタン、1,1,1,2,3,3,3−ヘプタフルオロプロパン、1,1,1,2,3,3−ヘキサフルオロプロパン、1,1,1,4,4,4−ヘキサフルオロブタン等が挙げられ、これらよりなる群から選ばれる1種又は2種以上を用いることが好ましい。これらのうち、1,1,1,3,3−ペンタフルオロプロパン、1,1,1,3,3−ペンタフルオロブタン、1,1,1,2,3,3,3−ヘプタフルオロプロパン、1,1,1,2−テトラフルオロエタンが特に好ましい。   Examples of the HFC include 1,1,1,3,3-pentafluorobutane, 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,1, 1,2,3,3,3-heptafluoropropane, 1,1,1,2,3,3-hexafluoropropane, 1,1,1,4,4,4-hexafluorobutane, etc. It is preferable to use one or more selected from the group consisting of these. Of these, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, 1,1,1,2-tetrafluoroethane is particularly preferred.

HCとしては、通常、沸点が−30〜70℃の炭化水素を使用することが好ましい。その具体例としては、プロパン、ブタン、ペンタン、シクロペンタン、ヘキサン及びこれらの混合物よりなる群から選ばれる1種又は2種以上を用いることが好ましい。   As HC, it is usually preferable to use a hydrocarbon having a boiling point of −30 to 70 ° C. As specific examples thereof, it is preferable to use one or more selected from the group consisting of propane, butane, pentane, cyclopentane, hexane, and mixtures thereof.

本発明において、特定のHC及び/又はHFCを併用する場合、発泡剤としての水の使用量は、ポリオール成分100重量部に対して通常0.5〜20重量部、好ましくは1〜20重量部の範囲である。水の使用量がこの範囲よりも少ないと、発泡が不十分でフォームの低密度化を十分に図ることができず、また、HC及び/又はHFCの使用量の低減効果を得ることが難しくなるおそれがある。一方、水の使用量が上記範囲を超えると、著しい発泡が起きて取り扱い性が困難となる上に、ポリエステルポリオールの加水分解の問題が生じるおそれがある。したがって、本発明において、HC及び/又はHFCを併用する場合には、ポリオール成分100重量部に対して、通常、水を0.5〜20重量部、HC及び/又はHFCを2〜40重量部の範囲で用い、好ましくは、水を1〜20重量部、HC及び/又はHFCを2〜40重量部の範囲で用いる。   In the present invention, when a specific HC and / or HFC is used in combination, the amount of water used as a blowing agent is usually 0.5 to 20 parts by weight, preferably 1 to 20 parts by weight with respect to 100 parts by weight of the polyol component. Range. If the amount of water used is less than this range, foaming is insufficient and the foam density cannot be sufficiently reduced, and it is difficult to obtain the effect of reducing the amount of HC and / or HFC used. There is a fear. On the other hand, if the amount of water used exceeds the above range, remarkable foaming occurs and handling becomes difficult, and there is a risk that hydrolysis of the polyester polyol may occur. Therefore, in the present invention, when HC and / or HFC are used in combination, water is usually 0.5 to 20 parts by weight and HC and / or HFC is 2 to 40 parts by weight with respect to 100 parts by weight of the polyol component. Preferably, water is used in the range of 1 to 20 parts by weight, and HC and / or HFC is used in the range of 2 to 40 parts by weight.

本発明において、HC及び/又はHFCを併用しない場合には、水はポリオール成分100重量部に対して3〜20重量部の範囲とするのが好ましい。   In the present invention, when HC and / or HFC are not used in combination, water is preferably in the range of 3 to 20 parts by weight with respect to 100 parts by weight of the polyol component.

本発明の原料配合組成物には、本発明の効果が得られる範囲で、その他の助剤を含んでも良い。このような助剤としては、整泡剤、難燃剤、架橋剤又は鎖延長剤等が例示される。   The raw material blend composition of the present invention may contain other auxiliaries as long as the effects of the present invention are obtained. Examples of such auxiliaries include foam stabilizers, flame retardants, crosslinking agents, chain extenders and the like.

本発明において、必要であれば整泡剤として界面活性剤を用いることができる。使用される界面活性剤としては、例えば、有機シリコーン系界面活性剤が挙げられ、具体的には、有機シロキサン−ポリオキシアルキレン共重合体、シリコーン−グリース共重合体等の非イオン系界面活性剤、又はこれらの混合物等が例示される。それらの使用量は、ポリオール100重量部に対して、0.1〜10重量部の範囲が好ましい。   In the present invention, if necessary, a surfactant can be used as a foam stabilizer. Examples of the surfactant used include organic silicone surfactants, and specifically, nonionic surfactants such as organosiloxane-polyoxyalkylene copolymers and silicone-grease copolymers. Or a mixture thereof. The use amount thereof is preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of polyol.

また本発明の原料配合組成物は、必要であれば難燃剤を含んでも良い。使用される難燃剤は特に限定されないが、例えば、リン酸とアルキレンオキシドとの付加反応によって得られるプロポキシル化リン酸、プロポキシル化ジブチルピロリン酸等の含リンポリオールの様な反応型難燃剤、トリクレジルホスフェート等の第3リン酸エステル類、トリス(2−クロロエチル)ホスフェート、トリス(クロロプロピル)ホスフェート等のハロゲン含有第3リン酸エステル類、ジブロモプロパノール、ジブロモネオペンチルグリコール、テトラブロモビスフェノールA等のハロゲン含有有機化合物類、酸化アンチモン、炭酸マグネシウム、炭酸カルシウム、リン酸アルミニウム等の無機化合物等が挙げられる。その含有量は、要求される難燃性に応じて異なり、特に限定するものではないが、ポリオール100重量部に対して、4〜20重量部の範囲が好ましい。   The raw material blend composition of the present invention may contain a flame retardant if necessary. Although the flame retardant used is not particularly limited, for example, a reactive flame retardant such as a phosphorus-containing polyol such as propoxylated phosphoric acid and propoxylated dibutyl pyrophosphate obtained by addition reaction of phosphoric acid and alkylene oxide, Tertiary phosphate esters such as tricresyl phosphate, halogen-containing tertiary phosphate esters such as tris (2-chloroethyl) phosphate, tris (chloropropyl) phosphate, dibromopropanol, dibromoneopentyl glycol, tetrabromobisphenol A And halogen-containing organic compounds such as antimony oxide, magnesium carbonate, calcium carbonate, and aluminum phosphate. The content varies depending on the required flame retardancy and is not particularly limited, but is preferably in the range of 4 to 20 parts by weight with respect to 100 parts by weight of the polyol.

本発明において、必要であれば架橋剤又は鎖延長剤を用いることができる。架橋剤又は鎖延長剤としては、例えば、エチレングリコール、1,4−ブタンジオール、グリセリン等の低分子量の多価アルコール類、ジエタノールアミン、トリエタノールアミン等の低分子量のアミンポリオール類、又はエチレンジアミン、キシリレンジアミン、メチレンビスオルソクロルアニリン等ポリアミン類等を挙げることができる。   In the present invention, if necessary, a crosslinking agent or a chain extender can be used. Examples of the crosslinking agent or chain extender include low molecular weight polyhydric alcohols such as ethylene glycol, 1,4-butanediol and glycerin, low molecular weight amine polyols such as diethanolamine and triethanolamine, or ethylenediamine and xylylene. Examples include polyamines such as range amine and methylenebisorthochloroaniline.

本発明においては、必要に応じて、着色剤や、老化防止剤、その他従来公知の添加剤等も更に使用できる。これらの添加剤の種類、添加量は、使用される添加剤の通常の使用範囲でよい。   In the present invention, a colorant, an antiaging agent, and other conventionally known additives can be further used as necessary. The type and amount of these additives may be within the normal usage range of the additive used.

本発明の方法においては、上述の原料配合組成物にポリイソシアネートを混合して反応させ、硬質ポリウレタンフォーム及び/又はイソシアネート変成硬質ポリウレタンフォームを製造する。   In the method of the present invention, a polyisocyanate is mixed and reacted with the above raw material blend composition to produce a rigid polyurethane foam and / or an isocyanate-modified rigid polyurethane foam.

本発明の方法において、ポリイソシアネートとしては、特に限定するものではないが、例えば、ジフェニルメタンジイソシアネート、トリレンジイソシアネート等の芳香族系ポリイソシアネート化合物、イソホロンジイソシアネート等の脂環族系ポリイソシアネート類、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネート類等の1種又は2種以上を使用することができる。なお、本発明におけるポリイソシアネートのイソシアネート指数は通常70以上であり、硬質ポリウレタンフォーム製品を製造する場合は70〜120の範囲、イソシアヌレート変性硬質ポリウレタンフォームを製造する場合は120〜500の範囲であることが好ましい。   In the method of the present invention, the polyisocyanate is not particularly limited. For example, aromatic polyisocyanate compounds such as diphenylmethane diisocyanate and tolylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate, hexamethylene 1 type (s) or 2 or more types, such as aliphatic polyisocyanates, such as diisocyanate, can be used. In addition, the isocyanate index of the polyisocyanate in the present invention is usually 70 or more, and in the case of producing a rigid polyurethane foam product, it is in the range of 70 to 120, and in the case of producing an isocyanurate-modified rigid polyurethane foam, it is in the range of 120 to 500. It is preferable.

本発明の原料配合組成物を用いて、硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームを製造する場合、上記の原料配合組成物とポリイソシアネートとを急激に混合攪拌した後、適当な容器又はモールドに注入して発泡成型させることにより該フォームを製造することができる。混合、攪拌は一般的な攪拌機や専用のポリウレタン発泡機を使用して実施すれば良い。ポリウレタン発泡機としては高圧、低圧及びスプレー式の機器が使用できる。   When a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam is produced using the raw material blend composition of the present invention, the above raw blend composition and polyisocyanate are rapidly mixed and stirred, and then a suitable container or The foam can be produced by being injected into a mold and subjected to foam molding. Mixing and stirring may be performed using a general stirrer or a dedicated polyurethane foaming machine. As the polyurethane foaming machine, high-pressure, low-pressure and spray-type devices can be used.

このようにして得られる本発明の硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームは、コア密度10〜100kg/mの範囲であることが好ましい。コア密度が100kg/mを超えると燃焼成分が増加して、難燃性が悪化する上に、コスト高となる。コア密度が10kg/m未満では、強度特性等が劣るものとなる。 The rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam of the present invention thus obtained preferably has a core density in the range of 10 to 100 kg / m 3 . When the core density exceeds 100 kg / m 3 , the combustion components increase, the flame retardancy deteriorates and the cost increases. When the core density is less than 10 kg / m 3 , strength characteristics and the like are inferior.

本発明の方法により、製造される製品は種々の用途に使用できる。例えば、建築、土木関係の断熱材や構造材、電気機器関係では、冷凍庫、冷蔵庫、冷凍ショーケース等の断熱材、プラントや船舶関係では、LPG、LNGタンカーやパイプラインの断熱材、車両関係では、保冷庫や冷凍車の断熱材等の用途が挙げられる。   The product produced by the method of the present invention can be used in various applications. For example, heat insulation and structural materials related to construction, civil engineering, electrical equipment related, heat insulating materials such as freezer, refrigerator, freezer showcase, etc., plant and ship related, LPG, LNG tanker and pipeline heat insulating materials, vehicle related Applications such as cold storage and heat insulation for refrigerated vehicles can be mentioned.

以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples.

なお、以下の実施例、比較例において、各測定項目の測定方法は以下のとおりである。   In the following examples and comparative examples, the measurement method for each measurement item is as follows.

・反応性の測定項目
ゲルタイム:反応が進行し液状物質より、樹脂状物質に変わる時間を測定。
・ Reactivity measurement items Gel time: Measures the time required for the reaction to progress to a resinous substance from a liquid substance.

・フォームのコア密度:
2Lポリエチレン製カップ内でフリー発泡させたフォームの中心部を70mm×70mm×200mmの寸法にカットし、寸法、重量を正確に測定してコア密度を算出した。
-Foam core density:
The center part of the foam that was free-foamed in a 2 L polyethylene cup was cut into dimensions of 70 mm × 70 mm × 200 mm, and the core density was calculated by accurately measuring the dimensions and weight.

・フォームの流動性:
110×30×5cmのアルミニウム製モールド内に混合した原料を一定量注入して発泡させたフォームの長さ(cm)を測定した。フォームの長さが長いほど流動性に優れる。
・ Foam fluidity:
A length (cm) of a foam obtained by injecting a certain amount of the mixed raw material into a 110 × 30 × 5 cm aluminum mold and foaming was measured. The longer the foam length, the better the fluidity.

・フォームの寸法安定性:
2Lポリエチレン製カップ内でフリー発泡させたフォームの中心部分を70mm×70mm×200mmの寸法にカットした後、20℃×1ヶ月の条件下、厚み方向の変化率を測定した。
-Foam dimensional stability:
After the center portion of the foam that was free-foamed in a 2 L polyethylene cup was cut to a size of 70 mm × 70 mm × 200 mm, the rate of change in the thickness direction was measured under the condition of 20 ° C. × 1 month.

・フォームの接着強度:
2Lポリエチレン製カップ内でフリー発泡させたフォームの上面に5×5cmのSUS304製板をセットして発泡させた。発泡1時間後、セットしたSUS304製板の90度剥離強度を測定し、フォームの接着強度とした。
-Foam adhesive strength:
A 5 × 5 cm SUS304 plate was set on the upper surface of the foam that was free-foamed in a 2 L polyethylene cup, and foamed. One hour after foaming, the 90 ° peel strength of the set SUS304 plate was measured and used as the adhesive strength of the foam.

製造例1 触媒A1(テトラエチルアンモニウム酢酸塩50%、エチレングリコール50%溶液)の製造
ナス形フラスコに水酸化テトラエチルアンモニウム水溶液(1モル)を仕込み、室温を保つように冷却しながら、酢酸(1モル)を加えて、テトラエチルアンモニウム酢酸塩を得た。その後、所定濃度となるように溶媒としてエチレングリコールを加え、エバポレーターを用いて水を留去してテトラエチルアンモニウム酢酸塩50%、エチレングリコール50%溶液を得た。
Production Example 1 Production of Catalyst A1 (Tetraethylammonium Acetate 50%, Ethylene Glycol 50% Solution) An aqueous solution of tetraethylammonium hydroxide (1 mol) was charged into an eggplant-shaped flask and cooled to maintain room temperature while acetic acid (1 mol) was prepared. ) Was added to obtain tetraethylammonium acetate. Thereafter, ethylene glycol was added as a solvent to a predetermined concentration, and water was distilled off using an evaporator to obtain a solution of 50% tetraethylammonium acetate and 50% ethylene glycol.

製造例2 触媒A2(テトラメチルアンモニウム酢酸塩50%、エチレングリコール50%溶液)の製造
水酸化テトラエチルアンモニウム水溶液に代えて水酸化テトラメチルアンモニウム水溶液(1モル)を用いた以外は製造例1と同様にしてテトラメチルアンモニウム酢酸塩50%、エチレングリコール50%溶液を得た。
Production Example 2 Production of Catalyst A2 (Tetramethylammonium Acetate 50%, Ethylene Glycol 50% Solution) Same as Production Example 1 except that a tetramethylammonium hydroxide aqueous solution (1 mol) was used instead of the tetraethylammonium hydroxide aqueous solution. Thus, a solution of 50% tetramethylammonium acetate and 50% ethylene glycol was obtained.

製造例3 触媒A3(テトラメチルアンモニウムギ酸塩50%、エチレングリコール50%溶液)の製造
酢酸に代えてギ酸(1モル)を用いた以外は製造例2と同様にしてテトラメチルアンモニウムギ酸塩50%、エチレングリコール50%溶液を得た。
Production Example 3 Production of Catalyst A3 (50% tetramethylammonium formate, 50% ethylene glycol solution) 50% tetramethylammonium formate in the same manner as in Production Example 2 except that formic acid (1 mol) was used instead of acetic acid. An ethylene glycol 50% solution was obtained.

製造例4 触媒H(メチルトリエチルアンモニウム2−エチルヘキサン酸塩50%、エチレングリコール50%溶液)の製造
攪拌式オートクレーブにトリエチルアミン(1モル)、炭酸ジメチル(1.5モル)及び溶媒としてメタノール(2モル)を仕込み、反応温度110℃にて12時間反応させメチルトリエチルアンモニウムカーボネートのメタノール溶液を得た。このものに2−エチルヘキサン酸(1モル)を仕込み、溶媒として所定の濃度となるようにエチレングリコールを加えた後、エバポレーターで副生する炭酸ガスおよびメタノールを除くことによってメチルトリエチルアンモニウム2−エチルヘキサン酸塩50%、エチレングリコール50%溶液を得た。
Production Example 4 Production of catalyst H (50% methyltriethylammonium 2-ethylhexanoate, 50% ethylene glycol solution) Triethylamine (1 mol), dimethyl carbonate (1.5 mol) and methanol (2 mol) as a solvent in a stirring autoclave Mol) was prepared and reacted at a reaction temperature of 110 ° C. for 12 hours to obtain a methanol solution of methyltriethylammonium carbonate. 2-ethylhexanoic acid (1 mol) was added to this product, ethylene glycol was added as a solvent to a predetermined concentration, and then methyl triethylammonium 2-ethyl was removed by removing carbon dioxide and methanol by-produced by an evaporator. A 50% hexanoate and 50% ethylene glycol solution was obtained.

製造例5 触媒C1[1−(2−ヒドロキシプロピル)−2−メチルイミダゾール]の製造
攪拌式オートクレーブに2−メチルイミダゾール(1モル)、溶媒としてメタノールを仕込み、反応温度80〜140℃にてプロピレンオキサイド(1モル)を反応させた後、蒸留精製することによって1−(2−ヒドロキシプロピル)−2−メチルイミダゾールを得た。
Production Example 5 Production of catalyst C1 [1- (2-hydroxypropyl) -2-methylimidazole] A stirred autoclave was charged with 2-methylimidazole (1 mol) and methanol as a solvent, and propylene was reacted at a reaction temperature of 80 to 140 ° C. After reacting with oxide (1 mol), 1- (2-hydroxypropyl) -2-methylimidazole was obtained by purification by distillation.

実施例1、参考例2〜参考例6、実施例7〜実施例10、比較例1〜比較例9
表1、表2に示す配合により原料配合液を調製し、この原料配合液とポリイソシアネートを、所定のイソシアネート指数となるように重量比を決め、液温20℃にてラボミキサーを使用して6000〜9000rpmで3秒間攪拌して発泡反応させて、イソシアヌレート変性硬質ポリウレタンフォームを製造した。
Example 1 , Reference Example 2 to Reference Example 6, Example 7 to Example 10, Comparative Example 1 to Comparative Example 9
Prepare the raw material mixture by the formulation shown in Table 1 and Table 2, determine the weight ratio of this raw material mixture and polyisocyanate so as to have a predetermined isocyanate index, and use a laboratory mixer at a liquid temperature of 20 ° C. An isocyanurate-modified rigid polyurethane foam was produced by stirring at 6000 to 9000 rpm for 3 seconds to cause foaming reaction.

このときのGT(ゲルタイム)を目視で測定し、初期反応性とした。また、得られたイソシアヌレート変性硬質ポリウレタンフォームについて、コア密度、寸法安定性、接着強度を測定した。次に原料スケールをアップさせ同様な操作にて40℃に温度調節したモールド内に混合した原料を入れて、発泡成型を行った。混合液を入れた時点から10分後にフォームを脱型した。成型フォームからフォームの流動性を評価した。   The GT (gel time) at this time was measured visually to obtain initial reactivity. Further, the core density, dimensional stability, and adhesive strength of the obtained isocyanurate-modified rigid polyurethane foam were measured. Next, the raw material scale was raised and the mixed raw material was put into a mold whose temperature was adjusted to 40 ° C. by the same operation, and foam molding was performed. The foam was removed 10 minutes after the time when the mixed solution was added. The fluidity of the foam was evaluated from the molded foam.

次に、上記アミン化合物を含む原料配合組成物を密閉容器に入れて50℃で7日間放置した後、同様に液温20℃にてイソシアネートと混合して発泡させたときのGTを測定して貯蔵後反応性とした。これらの結果を表1、表2にあわせて示す。   Next, after putting the raw material compounded composition containing the amine compound in a sealed container and leaving it to stand at 50 ° C. for 7 days, similarly, the GT when mixed with isocyanate at a liquid temperature of 20 ° C. and foamed was measured. Reactive after storage. These results are shown in Tables 1 and 2 together.

Figure 0004396465
1) Oxid L.P.製 廃PET系ポリエステルポリオール(OH価=241mgKOH/g)
2) アクゾノーベル(株)製 トリスクロロプロピルフォスフェート(商品名:ファイロールPCF)
3) 日本ユニカー製 シリコーン系界面活性剤(商品名:SZ−1627)
4) テトラエチルアンモニウム酢酸塩50%、エチレングリコール50%溶液(合成品)
5) テトラメチルアンモニウム酢酸塩50%、エチレングリコール50%溶液(合成品)
6) テトラメチルアンモニウムギ酸塩50%、エチレングリコール50%溶液(合成品)
7) N,N−ジメチルドデシルアミン(東京化成社製)
8) N−メチルジシクロヘキシルアミン(東京化成社製)
9) 1−(2−ヒドロキシプロピル)−2−メチルイミダゾール(合成品)
10)東ソー株式会社製 1,2−ジメチルイミダゾール70%、エチレングリコール30% (商品名:TOYOCAT−DM70)
11)日本乳化剤(株)製 1−イソブチル−2−メチルイミダゾール
12)エアープロダクツアンドケミカルズ(株)製 N,N,N−トリメチル−N−ヒドロキシプロピルアンモニウム 2−エチルヘキサン酸塩75%、ジエチレングリコール25% (商品名:DABCO−TMR)
13)エアープロダクツアンドケミカルズ(株)製 2−エチルヘキサン酸カリウム塩 75%、ジエチレングリコール 25% (商品名:DABCO−K15)
14)東ソ−株式会社製 N,N,N’,N’−テトラメチルヘキサメチレンジアミン (商品名:TOYOCAT−MR)
15)メチルトリエチルアンモニウム2−エチルヘキサン酸塩(合成品)
16)セントラル硝子(株)製 HFC−245fa (1,1,1,3,3−ペンタフルオロプロパン)
17)ソルベイ(株)製 HFC−365mfc(1,1,1,3,3−ペンタフルオロブタン)
18)日本ゼオン(株)製 ゼオンソルブHP(シクロペンタン)
19)日本ポリウレタン工業(株)製ポリメリックMDI (商品名:MR−200、NCO含量=31.0%)。
Figure 0004396465
1) Oxid L. P. Manufactured waste polyester polyester polyol (OH value = 241 mgKOH / g)
2) Trischloropropyl phosphate (trade name: Pyrol PCF) manufactured by Akzo Nobel Co., Ltd.
3) Nippon Unicar silicone surfactant (trade name: SZ-1627)
4) 50% tetraethylammonium acetate, 50% ethylene glycol solution (synthetic product)
5) Tetramethylammonium acetate 50%, ethylene glycol 50% solution (synthetic product)
6) 50% tetramethylammonium formate, 50% ethylene glycol solution (synthetic product)
7) N, N-dimethyldodecylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
8) N-methyldicyclohexylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
9) 1- (2-hydroxypropyl) -2-methylimidazole (synthetic product)
10) Tosoh Corporation 1,2-dimethylimidazole 70%, ethylene glycol 30% (trade name: TOYOCAT-DM70)
11) Nippon Emulsifier Co., Ltd. 1-isobutyl-2-methylimidazole 12) Air Products & Chemicals Co., Ltd. N, N, N-trimethyl-N-hydroxypropylammonium 2-ethylhexanoate 75%, diethylene glycol 25 % (Product name: DABCO-TMR)
13) 2-ethylhexanoic acid potassium salt 75%, diethylene glycol 25% (trade name: DABCO-K15) manufactured by Air Products and Chemicals Co., Ltd.
14) N, N, N ′, N′-tetramethylhexamethylenediamine (trade name: TOYOCAT-MR) manufactured by Tosoh Corporation
15) Methyltriethylammonium 2-ethylhexanoate (synthetic product)
16) HFC-245fa (1,1,1,3,3-pentafluoropropane) manufactured by Central Glass Co., Ltd.
17) HFC-365mfc (1,1,1,3,3-pentafluorobutane) manufactured by Solvay Co., Ltd.
18) ZEON SOLV HP (Cyclopentane) manufactured by Nippon Zeon Co., Ltd.
19) Polymeric MDI (trade name: MR-200, NCO content = 31.0%) manufactured by Nippon Polyurethane Industry Co., Ltd.

Figure 0004396465
1) Oxid L.P.製 廃PET系ポリエステルポリオール(OH価=241mgKOH/g)
2) アクゾノーベル(株)製 トリスクロロプロピルフォスフェート(商品名:ファイロールPCF)
3) 日本ユニカー製 シリコーン系界面活性剤(商品名:SZ−1627)
4) テトラエチルアンモニウム酢酸塩50%、エチレングリコール50%溶液(合成品)
5) テトラメチルアンモニウム酢酸塩50%、エチレングリコール50%溶液(合成品)
6) テトラメチルアンモニウムギ酸塩50%、エチレングリコール50%溶液(合成品)
7) N,N−ジメチルドデシルアミン(東京化成社製)
8) N−メチルジシクロヘキシルアミン(東京化成社製)
9) 1−(2−ヒドロキシプロピル)−2−メチルイミダゾール(合成品)
10)東ソー株式会社製 1,2−ジメチルイミダゾール70%、エチレングリコール30% (商品名:TOYOCAT−DM70)
11)日本乳化剤(株)製 1−イソブチル−2−メチルイミダゾール
12)エアープロダクツアンドケミカルズ(株)製 N,N,N−トリメチル−N−ヒドロキシプロピルアンモニウム 2−エチルヘキサン酸塩75%、ジエチレングリコール25% (商品名:DABCO−TMR)
13)エアープロダクツアンドケミカルズ(株)製 2−エチルヘキサン酸カリウム塩 75%、ジエチレングリコール 25% (商品名:DABCO−K15)
14)東ソ−株式会社製 N,N,N’,N’−テトラメチルヘキサメチレンジアミン (商品名:TOYOCAT−MR)
15)メチルトリエチルアンモニウム2−エチルヘキサン酸塩(合成品)
16)セントラル硝子(株)製 HFC−245fa (1,1,1,3,3−ペンタフルオロプロパン)
17)ソルベイ(株)製 HFC−365mfc(1,1,1,3,3−ペンタフルオロブタン)
18)日本ゼオン(株)製 ゼオンソルブHP(シクロペンタン)
19)日本ポリウレタン工業(株)製ポリメリックMDI (商品名:MR−200、NCO含量=31.0%)。
Figure 0004396465
1) Oxid L. P. Manufactured waste polyester polyester polyol (OH value = 241 mgKOH / g)
2) Trischloropropyl phosphate (trade name: Pyrol PCF) manufactured by Akzo Nobel Co., Ltd.
3) Nippon Unicar silicone surfactant (trade name: SZ-1627)
4) 50% tetraethylammonium acetate, 50% ethylene glycol solution (synthetic product)
5) Tetramethylammonium acetate 50%, ethylene glycol 50% solution (synthetic product)
6) 50% tetramethylammonium formate, 50% ethylene glycol solution (synthetic product)
7) N, N-dimethyldodecylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
8) N-methyldicyclohexylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
9) 1- (2-hydroxypropyl) -2-methylimidazole (synthetic product)
10) Tosoh Corporation 1,2-dimethylimidazole 70%, ethylene glycol 30% (trade name: TOYOCAT-DM70)
11) Nippon Emulsifier Co., Ltd. 1-isobutyl-2-methylimidazole 12) Air Products & Chemicals Co., Ltd. N, N, N-trimethyl-N-hydroxypropylammonium 2-ethylhexanoate 75%, diethylene glycol 25 % (Product name: DABCO-TMR)
13) 2-ethylhexanoic acid potassium salt 75%, diethylene glycol 25% (trade name: DABCO-K15) manufactured by Air Products and Chemicals Co., Ltd.
14) N, N, N ′, N′-tetramethylhexamethylenediamine (trade name: TOYOCAT-MR) manufactured by Tosoh Corporation
15) Methyltriethylammonium 2-ethylhexanoate (synthetic product)
16) HFC-245fa (1,1,1,3,3-pentafluoropropane) manufactured by Central Glass Co., Ltd.
17) HFC-365mfc (1,1,1,3,3-pentafluorobutane) manufactured by Solvay Co., Ltd.
18) ZEON SOLV HP (Cyclopentane) manufactured by Nippon Zeon Co., Ltd.
19) Polymeric MDI (trade name: MR-200, NCO content = 31.0%) manufactured by Nippon Polyurethane Industry Co., Ltd.

表1より明らかなように、触媒として、アミン化合物(A)と、(B)及び/又は(C)を併用して用いた実施例1、参考例2〜参考例6、実施例7〜実施例10は、いずれも貯蔵後の反応低下が少なく、GT変化率も10%以下であった。また、得られたフォームは、コア密度、流動性、寸法安定性、及び接着強度のいずれもが好適範囲内である。
As is apparent from Table 1, Example 1 , Reference Example 2 to Reference Example 6, and Example 7 to Example in which the amine compound (A) and (B) and / or (C) were used in combination as a catalyst were used. In Example 10, the reaction decrease after storage was small, and the GT change rate was 10% or less. Moreover, the obtained foam has all of core density, fluidity, dimensional stability, and adhesive strength within a preferable range.

これに対し、表2より明らかなとおり、触媒として、アミン化合物(A)と、(B)及び/又は(C)を併用しない比較例1〜比較例10は、いずれも貯蔵後の反応性低下が大きい。   On the other hand, as is clear from Table 2, Comparative Examples 1 to 10 in which the amine compound (A) and (B) and / or (C) are not used together as a catalyst are all reduced in reactivity after storage. Is big.

例えば、触媒として、本発明のpKaを示す有機酸を用いた4級アンモニウム塩化合物を触媒組成物として使用していない比較例1〜比較例4では、貯蔵後のGTが共に遅くなり、貯蔵安定性に劣っていた。特に、比較例2では、貯蔵後GT変化率が100%を超えており、反応硬化に必要な時間が貯蔵前の2倍以上必要となるため、実用途に耐えないものであった。   For example, in Comparative Examples 1 to 4 in which the quaternary ammonium salt compound using the organic acid exhibiting pKa of the present invention is not used as the catalyst as the catalyst, both the GT after storage becomes slow, and the storage stability It was inferior. In particular, in Comparative Example 2, the GT change rate after storage exceeded 100%, and the time required for reaction curing was required twice or more before storage, so that it could not withstand actual use.

また、触媒として、本発明の上記(A)〜(C)のアミン化合物を何れも使用していない比較例6及び比較例7では、貯蔵後GT変化率が100%を超えており、反応硬化に必要な時間が貯蔵前の2倍以上必要となるため、実用途に耐えないものであった。   Moreover, in Comparative Example 6 and Comparative Example 7 in which none of the amine compounds of the above (A) to (C) of the present invention is used as a catalyst, the GT change rate after storage exceeds 100%, and reaction hardening Since the time required for storage is more than twice that before storage, it was unbearable for actual use.

また、本発明の上記(A)のアミン化合を単独で用いた比較例8では、貯蔵後の反応性低下と接着性の低下が見られた。
Moreover, in the comparative example 8 which used the amine compound of the said (A) of this invention independently, the reactivity fall after storage and the adhesive fall were seen.

Claims (7)

少なくとも下記(A)及び(B)のアミン化合物を含んでなる硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォーム製造用の触媒組成物。
(A)下記一般式(1)
Figure 0004396465
[式中、R〜Rは、炭素数1〜12の飽和又は不飽和炭化水素基(但し、R〜Rのうちのいずれか2個が炭素原子、酸素原子又は窒素原子を介してヘテロ環を形成していてもよい)を表し、Rは炭素数1〜18のアルキル基又は芳香族炭化水素基を表し、Xは酸解離定数(pKa)が4.8以下の有機酸基を示す。]
で表される4級アンモニウム塩であって、一般式(1)で表される4級アンモニウム塩を構成する有機酸は、ギ酸及び/又は酢酸である
(B)N−メチルジシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルオクチルアミン、N,N−ジメチルノニルアミン、N,N−ジメチルデシルアミン、N,N−ジメチルウンデシルアミン、N,N−ジメチルドデシルアミン、N,N−ジメチルトリデシルアミン、N,N−ジメチルテトラデシルアミン、N,N−ジメチルペンタデシルアミン、N,N−ジメチルヘキサデシルアミン、N,N−ジメチルヘプタデシルアミン、N,N−ジメチルオクタデシルアミン、N−メチルジオクチルアミン、N−メチルジノニルアミン、N−メチルジデシルアミン、N−メチルジウンデシルアミン、N−メチルジドデシルアミン、N−メチルジトリデシルアミン、N−メチルジテトラデシルアミン、N−メチルジペンタデシルアミン、N−メチルジヘキサデシルアミン、N−メチルジヘプタデシルアミン、及びN−メチルジオクタデシルアミンからなる群より選ばれる1種又は2種以上の疎水性アミン化合物。
A catalyst composition for producing a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam comprising at least the following amine compounds (A) and (B):
(A) The following general formula (1)
Figure 0004396465
[Wherein, R 1 to R 3 are each a saturated or unsaturated hydrocarbon group having 1 to 12 carbon atoms (provided that any two of R 1 to R 3 are bonded via a carbon atom, an oxygen atom, or a nitrogen atom) R 4 represents an alkyl group having 1 to 18 carbon atoms or an aromatic hydrocarbon group, and X represents an organic acid having an acid dissociation constant (pKa) of 4.8 or less. Indicates a group. ]
The organic acid constituting the quaternary ammonium salt represented by the general formula (1) is formic acid and / or acetic acid .
(B) N-methyldicyclohexylamine, N, N-dimethylbenzylamine, N, N-dimethyloctylamine, N, N-dimethylnonylamine, N, N-dimethyldecylamine, N, N-dimethylundecylamine, N, N-dimethyldodecylamine, N, N-dimethyltridecylamine, N, N-dimethyltetradecylamine, N, N-dimethylpentadecylamine, N, N-dimethylhexadecylamine, N, N-dimethylhepta Decylamine, N, N-dimethyloctadecylamine, N-methyldioctylamine, N-methyldinonylamine, N-methyldidecylamine, N-methyldiundecylamine, N-methyldidodecylamine, N-methylditridecyl Amine, N-methylditetradecylamine, N-methyldipentadecyl Amine, N- methyl-di-hexadecylamine, N- methyl-di heptadecylamine, and one or more hydrophobic amine compound selected from the group consisting of N- methyl dioctadecyl amine.
一般式(1)で表される4級アンモニウム塩が、テトラメチルアンモニウム酢酸塩、テトラメチルアンモニウムギ酸塩、テトラエチルアンモニウム酢酸塩、テトラエチルアンモニウムギ酸塩、テトラプロピルアンモニウム酢酸塩、テトラプロピルアンモニウムギ酸塩、テトラブチルアンモニウム酢酸塩、テトラブチルアンモニウムギ酸塩、メチルトリエチルアンモニウム酢酸塩、メチルトリエチルアンモニウムギ酸塩、メチルトリプロピルアンモニウム酢酸塩、メチルトリプロピルアンモニウムギ酸塩、メチルトリブチルアンモニウム酢酸塩、メチルトリブチルアンモニウムギ酸塩、トリメチルドデシルアンモニウムギ酸塩、及びトリメチルドデシルアンモニウム酢酸4級アンモニウム塩からなる群より選ばれる1種又は2種以上であることを特徴とする請求項1に記載の触媒組成物。 The quaternary ammonium salt represented by the general formula (1) is tetramethylammonium acetate, tetramethylammonium formate, tetraethylammonium acetate, tetraethylammonium formate, tetrapropylammonium acetate, tetrapropylammonium formate, tetra Butylammonium acetate, tetrabutylammonium formate, methyltriethylammonium acetate, methyltriethylammonium formate, methyltripropylammonium acetate, methyltripropylammonium formate, methyltributylammonium acetate, methyltributylammonium formate, trimethyl It should be one or more selected from the group consisting of dodecyl ammonium formate and trimethyl dodecyl ammonium acetate quaternary ammonium salt A catalyst composition according to claim 1, wherein. 下記(C)のアミン化合物をさらに含むことを特徴とする請求項1又は請求項2に記載の触媒組成物。
(C)1−イソブチル−2−メチルイミダゾール、1−メチルイミダゾール、1,2−ジメチルイミダゾール、1−(2−ヒドロキシエチル)−2−メチルイミダゾール、1−(2−ヒドロキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシエチル)イミダゾール、N−メチル−N’−(2−ヒドロキシエチル)ピペラジン、及びN−(2−ヒドロキシエチル)モルフォリンからなる群より選ばれる1種又は2種以上の複素環式第三級アミン化合物。
The catalyst composition according to claim 1 or 2 , further comprising an amine compound of the following (C).
(C) 1-isobutyl-2-methylimidazole, 1-methylimidazole, 1,2-dimethylimidazole, 1- (2-hydroxyethyl) -2-methylimidazole, 1- (2-hydroxypropyl) -2-methyl One or more selected from the group consisting of imidazole, 1- (2-hydroxyethyl) imidazole, N-methyl-N ′-(2-hydroxyethyl) piperazine, and N- (2-hydroxyethyl) morpholine A heterocyclic tertiary amine compound of
ポリオール成分、水、及び請求項1及至請求項3のいずれかに記載の触媒組成物を含んでなる硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォーム製造用の原料配合組成物。 A raw material blend composition for producing a rigid polyurethane foam and / or isocyanurate-modified rigid polyurethane foam, comprising a polyol component, water, and the catalyst composition according to any one of claims 1 to 3 . 発泡剤として、1,1,1,3,3−ペンタフルオロブタン、1,1,1,3,3−ペンタフルオロプロパン、1,1,1,2−テトラフルオロエタン、1,1,1,2,3,3,3−ヘプタフルオロプロパン、1,1,1,2,3,3−ヘキサフルオロプロパン、1,1,1,4,4,4−ヘキサフルオロブタン、プロパン、ブタン、ペンタン、シクロペンタン、及びヘキサンからなる群より選ばれる1種又は2種以上をさらに含んでなる請求項4に記載の原料配合組成物。 As the blowing agent, 1,1,1,3,3-pentafluorobutane, 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,1, 2,3,3,3-heptafluoropropane, 1,1,1,2,3,3-hexafluoropropane, 1,1,1,4,4,4-hexafluorobutane, propane, butane, pentane, The raw material blend composition according to claim 4 , further comprising one or more selected from the group consisting of cyclopentane and hexane. ポリオール成分として、芳香族ポリエステルポリオールを含むことを特徴とする請求項4又は請求項5に記載の原料配合組成物。 6. The raw material blend composition according to claim 4, wherein the polyol component includes an aromatic polyester polyol. 請求項4及至請求項6のいずれかに記載の原料配合組成物にポリイソシアネートを混合して反応させることを特徴とする硬質ポリウレタンフォーム及び/又はイソシアヌレート変性硬質ポリウレタンフォームの製造法。 A process for producing a rigid polyurethane foam and / or an isocyanurate-modified rigid polyurethane foam, characterized in that a polyisocyanate is mixed and reacted with the raw material-blended composition according to any one of claims 4 to 6 .
JP2004281052A 2003-09-29 2004-09-28 Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same Active JP4396465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281052A JP4396465B2 (en) 2003-09-29 2004-09-28 Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003338661 2003-09-29
JP2004281052A JP4396465B2 (en) 2003-09-29 2004-09-28 Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009193161A Division JP5278246B2 (en) 2003-09-29 2009-08-24 Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same

Publications (2)

Publication Number Publication Date
JP2005126695A JP2005126695A (en) 2005-05-19
JP4396465B2 true JP4396465B2 (en) 2010-01-13

Family

ID=34655537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281052A Active JP4396465B2 (en) 2003-09-29 2004-09-28 Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same

Country Status (1)

Country Link
JP (1) JP4396465B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633109B2 (en) * 2006-08-11 2014-12-03 東ソー株式会社 Catalyst composition for producing polyurethane resin and method for producing polyurethane resin
JP5136750B2 (en) * 2007-06-11 2013-02-06 株式会社ブリヂストン Thermal insulation composition, polyurethane foam thermal insulation, and thermal insulation construction method
JP5206303B2 (en) * 2008-10-14 2013-06-12 東ソー株式会社 Composition for producing flame retardant rigid polyurethane foam, method for producing flame retardant rigid polyurethane foam using the composition, and flame retardant rigid polyurethane foam obtained by the production method
KR101132774B1 (en) 2009-07-06 2012-04-06 수경화학 주식회사 A blowing agent for insulating material, foam composition comprising the same, and preparation method of foam using the same
KR101666097B1 (en) 2009-08-27 2016-10-13 삼성전자 주식회사 Polyurethane foam composition and polyurethane foam prepared using same
JP5397170B2 (en) * 2009-11-09 2014-01-22 川崎化成工業株式会社 Rigid polyurethane foam composition and method for producing rigid polyurethane foam
WO2011136230A1 (en) 2010-04-28 2011-11-03 旭硝子株式会社 Method for producing rigid foam synthetic resin
US9556303B2 (en) * 2011-02-21 2017-01-31 Honeywell International Inc. Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents
JP6213083B2 (en) * 2012-09-14 2017-10-18 東ソー株式会社 Composition for producing flame retardant rigid urethane foam, and method for producing flame retardant rigid urethane foam using the same
CA2913764C (en) * 2013-05-28 2021-05-11 Arkema Inc. Stabilized polyurethane polyol blends containing halogenated olefin blowing agent
JP6281280B2 (en) * 2013-12-19 2018-02-21 東ソー株式会社 Allophanate / isocyanurate-forming catalyst, polyisocyanate composition using the catalyst, method for producing the composition, and two-component coating composition using the composition
EP3357947A4 (en) * 2015-09-30 2019-04-17 Sekisui Chemical Co., Ltd. Flame-retardant rigid polyurethane foam
JP2020139006A (en) * 2019-02-27 2020-09-03 旭有機材株式会社 Polyol chemical composition

Also Published As

Publication number Publication date
JP2005126695A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP5278246B2 (en) Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same
EP1273604B1 (en) Method for producing a rigid polyurethane foam
US6384177B1 (en) Process for producing polyurethane and polyisocyanurate
JP4396465B2 (en) Catalyst composition for producing rigid polyurethane foam and isocyanurate-modified rigid polyurethane foam, and raw material blending composition using the same
EP1528072B1 (en) Catalyst blends for producing low thermal desorption polyurethane foams
JP2017155203A (en) Catalyst composition for manufacturing soft polyurethane foam
JP7416817B2 (en) Amine compositions useful in producing stable polyurethane foam systems
JP2013151635A (en) Raw material blending composition for manufacturing polyurethane foam
JP5206303B2 (en) Composition for producing flame retardant rigid polyurethane foam, method for producing flame retardant rigid polyurethane foam using the composition, and flame retardant rigid polyurethane foam obtained by the production method
JP3826469B2 (en) Manufacturing method of rigid isocyanurate foam
JP3826470B2 (en) Manufacturing method of rigid spray foam
JP2002293859A (en) Rigid polyurethane foam and method for producing the same
JP3849178B2 (en) Manufacturing method of rigid isocyanurate foam
US11021561B2 (en) Amine composition useful for making polyurethane foam
JPH09132625A (en) Catalyst for isocyanurate-modified polyurethane foam and production of isocyanurate-modified polyurethane foam by using the same
JP4147871B2 (en) Catalyst composition for producing rigid polyisocyanurate foam and method for producing rigid polyisocyanurate foam using the same
JP5927905B2 (en) Raw material composition for polyurethane foam production
JP5206123B2 (en) Amine compound, polyol composition for producing polyurethane foam, and method for producing polyurethane foam using the same
JP4110302B2 (en) Manufacturing method of rigid isocyanurate spray foam
JP4122872B2 (en) Catalyst composition for producing rigid polyurethane foam and method for producing rigid polyurethane foam using the same
JP4403738B2 (en) Catalyst for producing rigid polyurethane foam and method for producing rigid polyurethane foam using the same
JP4815709B2 (en) Manufacturing method of rigid polyurethane foam
JP4938917B2 (en) Amine catalysts for the production of polyurethanes and polyisocyanurates
JP4687668B2 (en) Amine catalysts for the production of polyurethanes and polyisocyanurates
JP2008013485A (en) Alkanolamine, method for producing the same and method for producing polyurethane resin using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4396465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4