JP4394557B2 - Transformers and multilayer boards - Google Patents

Transformers and multilayer boards Download PDF

Info

Publication number
JP4394557B2
JP4394557B2 JP2004293447A JP2004293447A JP4394557B2 JP 4394557 B2 JP4394557 B2 JP 4394557B2 JP 2004293447 A JP2004293447 A JP 2004293447A JP 2004293447 A JP2004293447 A JP 2004293447A JP 4394557 B2 JP4394557 B2 JP 4394557B2
Authority
JP
Japan
Prior art keywords
winding
lead
transformer
conductor
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004293447A
Other languages
Japanese (ja)
Other versions
JP2006108415A (en
Inventor
毅 高柳
Original Assignee
コーセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーセル株式会社 filed Critical コーセル株式会社
Priority to JP2004293447A priority Critical patent/JP4394557B2/en
Publication of JP2006108415A publication Critical patent/JP2006108415A/en
Application granted granted Critical
Publication of JP4394557B2 publication Critical patent/JP4394557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、スイッチング電源装置に使用される平面形状の巻線を備えたトランスと、平面形状の巻線を有するトランスの少なくとも一部を含む多層基板に関する。   The present invention relates to a transformer having a planar winding used for a switching power supply and a multilayer substrate including at least a part of the transformer having a planar winding.

従来、トランスを備えた多層基板は、例えばIC(集積回路)を含むような種々の電子機器に使用されているスイッチング電源に広く使用されている。近年、ICの集積度の増大に伴うICの動作電圧の低下、大電流化等により、スイッチング電源には小型化、高効率化と共に大電流化が求められている。そのため、スイッチング電源に使用されるトランスにも、小型薄型化、伝送効率の向上および損失の低減が求められている。最近は、トランスの小型化のために、ワイヤーをボビンに巻回して構成された巻線型コイルに代わって、プリントコイルや平面コイルが用いられるようになってきた。このトランス2のプリントコイルは、例えば図10に示すように、平板形状の導体を備えた基板を並列方向に重ねた多層基板による積層体4を形成し、積層体4にフェライトコア6を嵌合して構成されている。各層の基板は、表面に銅箔等の導体パターンによりコイルが形成されたプリント基板であり、このプリント基板を積層して積層体4が構成されている。また、平面コイルは、例えば、コイル形状に打ち抜かれた複数の薄い銅板を、絶縁層を介して積み重ねて構成されたものもある。このトランス2のコイルは、二次側導体8の巻線が1ターンのもので、コイルの外部へ接続する引出部10では、巻線を形成する導体の一対の電極間を、分割溝12により分離している。この分割溝12の間隔は、各層とも絶縁を確保できる最小限に狭いものである。   Conventionally, a multilayer substrate provided with a transformer is widely used for a switching power supply used in various electronic devices including, for example, an IC (integrated circuit). In recent years, switching power supplies have been required to have a smaller current and higher efficiency as well as a larger current due to a decrease in IC operating voltage and an increase in current accompanying an increase in IC integration. Therefore, transformers used in switching power supplies are also required to be small and thin, improve transmission efficiency, and reduce loss. Recently, in order to reduce the size of a transformer, a printed coil or a planar coil has been used in place of a wound coil formed by winding a wire around a bobbin. For example, as shown in FIG. 10, the printed coil of the transformer 2 forms a multilayer body 4 made of a multilayer substrate in which substrates having flat conductors are stacked in a parallel direction, and a ferrite core 6 is fitted to the multilayer body 4. Configured. The substrate of each layer is a printed circuit board on which a coil is formed by a conductive pattern such as a copper foil on the surface, and the stacked body 4 is configured by laminating this printed circuit board. In addition, the planar coil may be configured by stacking a plurality of thin copper plates punched into a coil shape with an insulating layer interposed therebetween, for example. The coil of the transformer 2 has one turn of the winding of the secondary side conductor 8. In the lead-out portion 10 connected to the outside of the coil, a split groove 12 is provided between a pair of electrodes of the conductor forming the winding. It is separated. The interval between the divided grooves 12 is as narrow as possible to ensure insulation in each layer.

さらに、最近は、スイッチング電源におけるスイッチング周波数を高くして、トランスに用いられるコアにおける最大磁束密度を下げることによって、コアを小型化することも図られている。   Furthermore, recently, it has been attempted to reduce the size of the core by increasing the switching frequency in the switching power supply and lowering the maximum magnetic flux density in the core used for the transformer.

ところで、スイッチング電源における出力電流の増大は、トランスにおいて、巻線による損失である銅損を増大させる。また、スイッチング電源におけるスイッチング周波数の上昇により回路に流れる電流も高周波になり、表皮効果や近接効果の影響により、トランスのコイルを構成する導体の交流抵抗の増大を引き起こす。さらに、スイッチング電源における出力電流の増大とスイッチング周波数の上昇は、トランスの二次巻線に接続される導体パターンにおける損失も増大させる。これは、表皮効果の結果、導体の実効断面積が減少し交流抵抗が増加するコイル周辺で導体損失が増えることによる。   By the way, the increase in the output current in the switching power supply increases the copper loss, which is a loss due to the winding, in the transformer. Further, the current flowing through the circuit also becomes high frequency due to the increase of the switching frequency in the switching power supply, and the AC resistance of the conductor constituting the coil of the transformer is increased due to the skin effect and the proximity effect. Furthermore, the increase in the output current and the increase in the switching frequency in the switching power supply also increase the loss in the conductor pattern connected to the secondary winding of the transformer. This is because as a result of the skin effect, the conductor loss increases around the coil where the effective cross-sectional area of the conductor decreases and the AC resistance increases.

トランスにおける銅損を低減させる技術として、銅箔を用いた一次巻線および二次巻線を交互に配置した高周波用トランスでは、電流の流れる方向が互いに逆になる一次巻線と二次巻線とを交互に配置することで、近接効果による電流の集中を抑え交流抵抗が低減される。   As a technology to reduce copper loss in transformers, in high-frequency transformers in which primary and secondary windings using copper foil are alternately arranged, primary and secondary windings in which the directions of current flow are opposite to each other Are alternately arranged, current concentration due to the proximity effect is suppressed and AC resistance is reduced.

ところで、ICの動作電圧の低下、大電流化により、スイッチング電源では、出力の低電圧化および大電流化が求められるようになってきた。そのため、スイッチング電源に用いられるトランスでは、二次巻線の巻数は少なくなり、1ターンとされることも多くなってきた。また、電源の薄型要求が多くなり、トランスも薄型にする必要があることと、表皮効果による交流抵抗上昇を抑える目的で、コイルを形成する導体を平板形状にすることがある。このコイルの二次巻線が平板形状であって、1ターンであるトランスの引き出し線の形状は、絶縁が確保できる最小限に一対の電極間の間隔を狭くして形成されていた。また、平板形状の導体を複数層に分けて形成し、並列接続される場合も、各層の導体形状を等しくして、各層の電極間の分割溝位置は、各層の厚み方向の投影位置で互いに同じ箇所に形成されていた。
特開2003−272929号公報
By the way, as the operating voltage of the IC is reduced and the current is increased, the switching power supply is required to reduce the output voltage and increase the current. Therefore, in the transformer used for the switching power supply, the number of turns of the secondary winding is reduced and the number of turns is often increased. In addition, the demand for a thin power supply increases, the transformer needs to be thin, and the conductor forming the coil may have a flat plate shape for the purpose of suppressing an increase in AC resistance due to the skin effect. The secondary winding of this coil has a flat plate shape, and the shape of the lead wire of the transformer, which is one turn, is formed by narrowing the distance between the pair of electrodes as much as possible to ensure insulation. Also, in the case where a flat conductor is divided into a plurality of layers and connected in parallel, the conductor shape of each layer is made equal, and the position of the dividing groove between the electrodes of each layer is the same as the projected position in the thickness direction of each layer. It was formed in the same place.
JP 2003-272929 A

上記従来の技術の場合、二次巻線の導体を形成する場合、1ターンでは、両極の引き出し線をコイルと同一平面上に構成するため、お互いの引き出し線の対向面積を大きくするような形状を作れない問題がある。また、トランスを流れる電流が大きくなるにつれ、巻線による損失である銅損を増大させるものである。さらに、トランスのコイルを構成する導体の交流抵抗は、表皮効果や近接効果の影響で、高周波数になるほど増加するものである。そして、スイッチング電源にけるスイッチング周波数が高周波になったり、トランスを含む回路に流れる電流波形が台形波や矩形波に近い形状であることによる高調波の影響で、トランスの交流銅損を増大させるものである。   In the case of forming the conductor of the secondary winding in the case of the above prior art, in one turn, the lead lines of both poles are formed on the same plane as the coil, so that the opposing areas of the lead lines are increased. There is a problem that cannot be made. Also, as the current flowing through the transformer increases, the copper loss, which is a loss due to the winding, is increased. Furthermore, the AC resistance of the conductor constituting the transformer coil increases as the frequency increases due to the skin effect and proximity effect. And the switching frequency in the switching power supply becomes high frequency, or the current waveform flowing in the circuit including the transformer increases the AC copper loss of the transformer due to the influence of harmonics due to the shape close to a trapezoidal wave or rectangular wave It is.

さらに、前述のように二次巻線の巻数が少なくなると、二次巻線の巻線部分のみならず、二次巻線をトランスの外部の回路へ接続するための引出部の構造が、トランス全体の特性に与える影響が大きくなってくる。例えば、図10に示すトランス2のように、嵌合分割溝12の間隔を、各層とも絶縁を確保できる最小限に狭くすることは、対向部分で電流の向きが逆であり近接効果の影響を低減することはできるが、対向面積が小さく限界がある。また、近接効果、表皮効果により発生する交流抵抗による損失は、近年の高周波数大電流化では無視できないくらい大きなものである。さらに、このトランス2では、各層の二次側導体8の形状を等しくして、2極間の分割溝12位置も2次側導体8と投影方向に等しく形成されるため、対向部分での電流密度が高まり、損失が増大し、トランス2の伝送効率を低下させる。さらに、インダクタンスが大きくなり、磁束の集中が強まり、漏れ磁束を増加させ、周囲の回路のノイズ源となるという問題点があった。   Furthermore, as described above, when the number of turns of the secondary winding is reduced, not only the winding portion of the secondary winding but also the structure of the lead-out portion for connecting the secondary winding to a circuit outside the transformer is changed. The effect on the overall characteristics will increase. For example, as in the transformer 2 shown in FIG. 10, the interval between the fitting division grooves 12 is reduced to the minimum that can ensure insulation in each layer. Although it can be reduced, the facing area is small and has a limit. Further, the loss due to the AC resistance caused by the proximity effect and the skin effect is so large that it cannot be ignored in the recent high frequency and high current. Further, in this transformer 2, the shape of the secondary conductor 8 of each layer is made equal, and the position of the dividing groove 12 between the two poles is also formed to be equal to the projection direction in the secondary conductor 8. The density increases, the loss increases, and the transmission efficiency of the transformer 2 decreases. Furthermore, there is a problem that the inductance increases, the concentration of magnetic flux increases, the leakage magnetic flux increases, and it becomes a noise source for the surrounding circuits.

この発明は、上記従来技術の問題に鑑みて成されたもので、小型で薄型であり内部電力損失やノイズを低減できるようにした平面形状のトランス及び多層基板を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a planar transformer and a multilayer substrate that are small and thin and can reduce internal power loss and noise.

この発明は、一次巻線と、平面形状の導体で形成された二次巻線を有するトランスにおいて、前記トランスは前記一次巻線及び二次巻線の中心に挿通されたコアを有し、前記二次巻線は一方向に一対の引出部が長く延設された1ターンのコイルを構成し、前記二次巻線が絶縁層を介して複数層並列接続して積層体が形成され、各々前記複数層の前記各一対の引出部の端部で前記一対の引出部が各々積層方向に接続され、前記二次巻線の前記一対の引出部を分ける分割溝の位置が、並列接続した前記各引出部の導体間で厚み方向の投影位置が異なり、並列に設けた一方の前記二次巻線の一方の極性の引出部が、対面する他方の二次巻線の他方の極性の引出部と前記積層体の厚さ方向に重なる部分を有し、前記各コイルに電流を流すと、前記引出部の長手方向に沿って電流が流れ、前記積層体の厚さ方向に重なる部分の前記各引出部に流れる電流が互いに逆方向に流れるように形成されたトランスである。 The present invention provides a transformer having a primary winding and a secondary winding formed of a planar conductor, the transformer having a core inserted in the center of the primary winding and the secondary winding, the secondary winding constitutes a one-turn coil which is extended long pair of lead portions in one direction, laminate the secondary winding is a plurality of layers connected in parallel via an insulating layer is formed, respectively wherein the pair of lead-out portion at the end of each pair of lead portions of the plurality of layers are connected respectively to the stacking direction, the position of the dividing groove that divides the pair of lead-out portion of the secondary winding, connected in parallel the Projection positions in the thickness direction differ between the conductors of each lead portion, and one lead portion of one of the secondary windings provided in parallel is the lead portion of the other polarity of the other secondary winding facing each other the have a portion that overlaps in the thickness direction of the laminate, when an electric current is applied to the respective coils and the lead Longitudinal current flows along a current flowing through the respective lead-out portion of the portion overlapping in the thickness direction of the laminate is formed trans to flow in opposite directions.

前記二次巻線を銅板やプリント基板の導体で形成したものである。また、前記一次巻線と前記二次巻線を、多層基板の導体で形成したものでも良い。   The secondary winding is formed of a copper plate or a printed circuit board conductor. Further, the primary winding and the secondary winding may be formed of a conductor of a multilayer substrate.

前記一方の極性の引出部と他方の極性の引出部による重なり幅が、前記引出部の導体の幅の3%以上50%以下である。   The overlapping width of the one polarity lead portion and the other polarity lead portion is 3% or more and 50% or less of the conductor width of the lead portion.

またこの発明は、スイッチング電源装置を構成するために用いられる多層基板であって、前記多層基板の一部にトランスを備え、このトランスは、一次巻線と、平面形状の導体で形成された二次巻線と、前記一次巻線及び二次巻線の中心に挿通されたコアとを有し、前記二次巻線は、一方向に一対の引出部が長く延設された1ターンのコイルを構成し、前記二次巻線が前記多層基板により絶縁層を介して複数層並列接続され、各々前記複数層の前記各一対の引出部の端部で前記一対の引出部が各々積層方向に接続され、前記多層基板の前記二次巻線の前記一対の引出部を分ける分割溝の位置が、並列接続した前記各引出部の導体間で厚み方向の投影位置が異なり、並列に設けた一方の前記二次巻線の一方の極性の引出部が、対面する他方の二次巻線の他方の極性の引出部と前記多層基板の厚さ方向に重なる部分を有し、前記各コイルに電流を流すと、前記引出部の長手方向に沿って電流が流れ、前記積層体の厚さ方向に重なる部分の前記各引出部に流れる電流が、互いに逆方向に流れるように形成された構造である多層基板である。さらに、前記複数の二次巻線は、一方の極性の引出部同士及び他の極性の引出部同士が、厚み方向に通貫したスルーホールによって互いに接続され、前記一対のスルーホール間の間隔は、前記コイル内周縁の直径と等しいものである。 The present invention is also a multilayer substrate used for constituting a switching power supply apparatus, and a transformer is provided in a part of the multilayer substrate, and the transformer is formed of a primary winding and a planar conductor. A one-turn coil having a secondary winding and a core inserted in the center of the primary and secondary windings , wherein the secondary winding has a pair of extended portions extending in one direction. The secondary winding is connected in parallel by a plurality of layers through the insulating layer by the multilayer substrate , and the pair of lead portions are respectively in the stacking direction at the ends of the pair of lead portions of the plurality of layers. is connected, while the position of the dividing groove that divides the pair of lead-out portion of the secondary winding of the multilayer substrate, different projection position in the thickness direction between the conductors of the respective lead portions connected in parallel and provided in parallel Of the secondary winding of one of the secondary windings Possess the other portion overlapping in the thickness direction of the multilayer substrate and the polarity of the lead portion of the winding, when a current flows to each coil, current flows along the longitudinal direction of the lead-out portion, of the laminate This is a multilayer substrate having a structure formed so that currents flowing through the lead portions in the overlapping portion in the thickness direction flow in opposite directions . Further, the plurality of secondary windings are connected to each other by through holes in which one polarity lead portions and the other polarity lead portions penetrate each other in the thickness direction, and an interval between the pair of through holes is , Equal to the diameter of the inner periphery of the coil.

この発明のトランス及びこのトランスを設けた多層基板によれば、大電流が流れる導体の交流抵抗を小さくして銅損を低減し、トランスの発熱も抑えることができる。さらに、トランスの内部電力損失を低減することができ、このトランスを使用したスイッチング電源装置の電源効率を向上させることができる。また、内部電力損失を低減させることで、放熱部品を減らし放熱のためのスペースを抑えることもでき、スイッチング電源装置のより小型化も可能になるものである。   According to the transformer of the present invention and the multilayer substrate provided with this transformer, the AC resistance of the conductor through which a large current flows can be reduced to reduce the copper loss, and the heat generation of the transformer can also be suppressed. Furthermore, the internal power loss of the transformer can be reduced, and the power supply efficiency of the switching power supply device using this transformer can be improved. Further, by reducing the internal power loss, it is possible to reduce the heat-radiating parts and to reduce the space for heat dissipation, and it is possible to further reduce the size of the switching power supply device.

以下、この発明のトランス及び多層基板の第一実施形態について、図1、図2を基にして説明する。この実施形態のトランスは、スイッチング電源のトランスに使用される。   Hereinafter, a first embodiment of a transformer and a multilayer substrate according to the present invention will be described with reference to FIGS. The transformer of this embodiment is used as a transformer of a switching power supply.

この実施形態のトランス20は、コイルを形成した導体パターンを有した積層体22を備え、積層体22は、図2に示すように、表面に平板形状または銅箔などの導体によりコイルを形成した基板24が、複数重なり形成されている。基板24は、一次巻線を形成した一次側導体30や二次巻線を形成した二次側導体46の導体パターンが表面に設けられている。そして、一次側導体30や二次側導体46を挟み込むようにして、積層体22と適宜な隙間を設けてフェライトコア26が嵌合し、トランス20を構成している。   The transformer 20 of this embodiment includes a laminated body 22 having a conductor pattern in which a coil is formed. As shown in FIG. 2, the laminated body 22 has a coil formed on its surface with a conductor such as a flat plate shape or copper foil. A plurality of substrates 24 are formed so as to overlap each other. The substrate 24 is provided on the surface with a conductor pattern of a primary side conductor 30 in which a primary winding is formed and a secondary side conductor 46 in which a secondary winding is formed. Then, the ferrite core 26 is fitted with the laminated body 22 so as to sandwich the primary side conductor 30 and the secondary side conductor 46 so as to constitute the transformer 20.

このトランス20のコイルを形成した積層体22は、図1、図2に示すように、上面からみると、積層体22を構成する基板24の一端部近傍に矩形のスルーホール28が2つ、長手方向端部の縁に平行に設けられている。また、このスルーホール28は、積層体22を形成する各基板24表面の一次側導体30に繋がった一次側端子部32に接続している。そして、一次側端子部32には、図1(a)に示すL字状の一次側端子部材34が挿通され、スルーホール28を介して積層体22の内部で一次側端子部32と一次側端子部材34が電気的に接続している。   As shown in FIGS. 1 and 2, the laminated body 22 in which the coil of the transformer 20 is viewed from the upper surface has two rectangular through holes 28 in the vicinity of one end portion of the substrate 24 constituting the laminated body 22. It is provided parallel to the edge of the longitudinal end. Further, the through hole 28 is connected to a primary side terminal portion 32 connected to the primary side conductor 30 on the surface of each substrate 24 forming the multilayer body 22. An L-shaped primary side terminal member 34 shown in FIG. 1A is inserted into the primary side terminal portion 32, and the primary side terminal portion 32 and the primary side inside the laminated body 22 through the through hole 28. The terminal member 34 is electrically connected.

積層体22を形成する基板24の中央より僅かに図面上方には、円形の貫通穴36が設けられ、この貫通穴36の両側に位置する基板24の長手方向の縁は、貫通穴36と同心円の円周上に一致するように円形に膨らんだ形状を成している。この貫通穴36には、フェライトコア26の中足が挿通される。   A circular through hole 36 is provided slightly above the center of the substrate 24 forming the laminate 22, and the longitudinal edges of the substrate 24 located on both sides of the through hole 36 are concentric with the through hole 36. The shape swells in a circle so as to coincide with the circumference of the circle. The middle leg of the ferrite core 26 is inserted into the through hole 36.

積層体22の基板24には、図2(c)、(d)に示すように、一次側導体30による一次巻線が貫通穴36の周囲に形成されている。一次側導体30は、各基板24に2ターンずつ形成され、貫通穴36の近傍のスルーホール52で直列に接続され、4ターンのコイルを形成している。そして、図2(c)、(d)に示す各一次側導体30の一方の端部が各々一次側端子部32につながり、スルーホール28を介して一対の一次側端子部材34に繋がっている。   As shown in FIGS. 2 (c) and 2 (d), the primary winding by the primary side conductor 30 is formed on the substrate 24 of the multilayer body 22 around the through hole 36. The primary conductor 30 is formed on each substrate 24 by two turns and connected in series by a through hole 52 in the vicinity of the through hole 36 to form a four-turn coil. 2C and 2D, one end of each primary conductor 30 is connected to the primary terminal 32, and is connected to the pair of primary terminal members 34 through the through holes 28. .

また、積層体22の2次側は、図2(a)、(b)に示すように、基板24表面に形成された二次側導体46が貫通穴36の周縁部に沿って形成され、各々1ターンの二次巻線を形成している。積層体22を形成する基板24には、積層体22の一次側導体30が設けられた縁の反対側に、二次側導体46から延長された引出部38を備える。引出部38の端部近傍には、矩形のスルーホール40が、短手方向と平行に、二次側導体46の貫通穴36の周縁部に沿ったコイル部分の内周縁の直径とほぼ等しい寸法の間隔を空けて、2つ設けられている。このスルーホール40は、積層体22を形成する基板24表面の二次側端子部42を貫通して形成され、二次側端子部材44が嵌合して接続されている。この二次側端子部42は、積層体22を形成する基板24表面に設けられた二次側導体46から延長されている。この実施形態では、二次側端子部42のスルーホール40に挿通された二次側端子部材44は、図1(a),(c)に示すように、T字状をしており、二次側端子部材44と2層の二次側導体46がスルーホール40を介して電気的に接続している。 Moreover, as shown in FIGS. 2A and 2B, the secondary side conductor 46 formed on the surface of the substrate 24 is formed along the peripheral portion of the through hole 36 on the secondary side of the multilayer body 22. Each form a secondary winding of one turn. The substrate 24 that forms the multilayer body 22 includes a lead portion 38 that extends from the secondary conductor 46 on the opposite side of the edge on which the primary conductor 30 of the multilayer body 22 is provided. In the vicinity of the end portion of the lead-out portion 38, a rectangular through hole 40 has a dimension substantially equal to the diameter of the inner peripheral edge of the coil portion along the peripheral edge portion of the through hole 36 of the secondary conductor 46 in parallel with the short side direction. Two are provided with an interval of. The through hole 40 is formed so as to penetrate the secondary terminal portion 42 on the surface of the substrate 24 forming the laminated body 22, and the secondary terminal member 44 is fitted and connected thereto. The secondary side terminal portion 42 extends from a secondary side conductor 46 provided on the surface of the substrate 24 forming the multilayer body 22. In this embodiment, the secondary terminal member 44 inserted into the through hole 40 of the secondary terminal portion 42 has a T-shape as shown in FIGS. The secondary terminal member 44 and the two-layer secondary conductor 46 are electrically connected via the through hole 40.

この実施形態の1ターンの二次巻線を形成した二次側導体46の両端は、基板24表面で僅かな隙間である分割溝50を設けた状態で引出部38を形成し、引出部38の端部が二次側端子部42となっている。二次側導体46は、図1(c)の断面図にあるように、絶縁層を挟んで各々独立に2層設けられ、トランス20は、一次側導体30と二次側導体46による一次巻線と二次巻線との巻数比が4:1になっている。二次巻線は、図2(a),(b)の2層構成になっており、図2(a),(b)に示すように各層の基板24の引出部38の分割溝50の位置は、図2(a)では引出部38の中心線から右側へ位置がずれ、図2(b)では左にずれた位置であり、互いに基板24の厚み方向の投影位置が重なり合わないように各々所定間隔離れて設けられている。なお、積層体22は、さらに基板24による層を増やしても良く、その場合、図2(a)の層と図2(b)の層が互いに交互に複数層並列に構成されると良い。   In this embodiment, a lead-out portion 38 is formed at both ends of the secondary-side conductor 46 that forms the secondary winding of one turn with a split groove 50 that is a slight gap on the surface of the substrate 24. Is the secondary terminal portion 42. As shown in the cross-sectional view of FIG. 1C, the secondary side conductor 46 is provided with two independent layers with an insulating layer interposed therebetween, and the transformer 20 includes a primary winding by the primary side conductor 30 and the secondary side conductor 46. The turn ratio between the wire and the secondary winding is 4: 1. The secondary winding has a two-layer structure shown in FIGS. 2A and 2B. As shown in FIGS. 2A and 2B, the secondary winding has a dividing groove 50 of the lead-out portion 38 of the substrate 24 of each layer. The position is shifted to the right from the center line of the lead-out portion 38 in FIG. 2A and shifted to the left in FIG. 2B so that the projection positions in the thickness direction of the substrate 24 do not overlap each other. Are provided at predetermined intervals. In addition, the layered body 22 may further increase the number of layers by the substrate 24. In that case, the layers in FIG. 2A and the layers in FIG.

次に、このトランス20の動作について説明する。この実施形態のトランス20に電流を流すと、二次側導体46のそれぞれ引出部38では、分割溝50で分割された引出部38の互いに積層した基板24に電流が流れる。そして、積層された二次側導体46の各々の一対の引出部38のうち、互いに電流の流れる方向が異なる引出部38の、互いに対向する部分は、積層された二次側導体46の各引出部38の各分割溝50間の幅となり、広い範囲で互いに逆方向の電流が、積層された各引出部38同士で近接して対面することになるこのため、それぞれの極性の引出部38が発生する磁束をお互いに打ち消すような動作をし、近接効果の影響を効果的に低減する。 Next, the operation of the transformer 20 will be described. When a current is passed through the transformer 20 of this embodiment, a current flows in each of the lead portions 38 of the secondary side conductor 46 through the stacked substrates 24 of the lead portions 38 divided by the dividing grooves 50. Then, within each of the pair of lead portions 38 of the stacked secondary side conductor 46, the lead portion 38 in different directions of current flow to one another, portions facing each other, each drawer of stacked secondary side conductor 46 is the width between the dividing groove 50 of the section 38, reverse current to each other over a wide range, so that the face in close proximity at each leading portion 38 with each other are laminated. For this reason , the operation | movement which cancels out the magnetic flux which each drawer | drawing-out part 38 of each polarity cancels mutually is performed, and the influence of a proximity effect is reduced effectively.

この実施形態のトランス20によれば、近接効果の影響を低減し、交流抵抗値を小さくできる。また、引出部38の磁束密度が低下し漏れ磁束が小さくなるため、低損失でノイズの発生も抑えることができるものである。従って、このトランス20を使用したスイッチング電源装置では、内部電力損失が低減し、効率が向上すると共に発熱も抑えることができるため、スイッチング電源の放熱板の部品点数が減り、より高効率で小型化も可能になるものである。   According to the transformer 20 of this embodiment, the influence of the proximity effect can be reduced and the AC resistance value can be reduced. Further, since the magnetic flux density of the lead-out portion 38 is reduced and the leakage magnetic flux is reduced, the generation of noise can be suppressed with low loss. Therefore, in the switching power supply device using this transformer 20, the internal power loss is reduced, the efficiency is improved and the heat generation can be suppressed, so the number of parts of the heat sink of the switching power supply is reduced, and the size is increased with higher efficiency. Is also possible.

次に、この発明の第二実施形態について、図3を基に説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態のトランスは、図3に示すように、二次側導体46を3層にしたものである。   Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. In the transformer of this embodiment, as shown in FIG. 3, the secondary conductor 46 has three layers.

図3(a)〜(c)は、積層体22を形成する3層それぞれの基板24の表面に、銅箔により形成された二次側導体46を示す。図3(a)は、二次側導体46による1ターンの二次巻線が形成され、二次側導体46の引出部38において、基板24の長手方向中心線に対して図面上で右側にずれた位置に分割溝50が設けられ、二次巻線の両端が各二次側端子部42に繋がっている。図3(b)も、二次側導体46により1ターンの二次巻線が形成され、二次側導体46の引出部38において、基板24の長手方向中心線に対して図面上で左側にずれた位置に分割溝50が設けられ、二次巻線の両端が各二次側端子部42に繋がっている。図3(c)は、二次側導体46により1ターンの二次巻線が形成され、二次側導体46の引出部38において、基板24の長手方向中心線に沿って分割溝50が設けられ、二次巻線の両端が各二次側端子部42に繋がっている。この基板24を、絶縁層を挟んで複数重ねて積層体22を形成している。積層体22の各基板24の引出部38の断面は、図3(d)に示すように、基板24の面方向の分割溝50の位置が各々異なる位置に設けられている。即ち、厚さ方向に並列接続した各々の二次側導体46の引出部38は、各基板24に形成された分割溝50の厚み方向投影位置が、隣り合う二次側導体46同士では重なりを持たず、異なる位置に形成されている。   FIGS. 3A to 3C show the secondary conductor 46 formed of copper foil on the surface of each of the three layers of the substrate 24 forming the multilayer body 22. FIG. 3A shows a secondary winding of one turn formed by the secondary conductor 46, and at the lead-out portion 38 of the secondary conductor 46 on the right side in the drawing with respect to the longitudinal center line of the substrate 24. Dividing grooves 50 are provided at shifted positions, and both ends of the secondary winding are connected to the respective secondary side terminal portions 42. In FIG. 3B as well, a secondary winding of one turn is formed by the secondary conductor 46, and the lead-out portion 38 of the secondary conductor 46 is on the left side in the drawing with respect to the longitudinal center line of the substrate 24. Dividing grooves 50 are provided at shifted positions, and both ends of the secondary winding are connected to the respective secondary side terminal portions 42. In FIG. 3C, a secondary winding of one turn is formed by the secondary conductor 46, and the dividing groove 50 is provided along the longitudinal center line of the substrate 24 in the lead-out portion 38 of the secondary conductor 46. Thus, both ends of the secondary winding are connected to each secondary terminal portion 42. A stack 22 is formed by stacking a plurality of the substrates 24 with an insulating layer interposed therebetween. As shown in FIG. 3D, the cross section of the lead-out portion 38 of each substrate 24 of the laminate 22 is provided at a position where the position of the dividing groove 50 in the surface direction of the substrate 24 is different. That is, the lead portions 38 of the secondary conductors 46 connected in parallel in the thickness direction have overlapping projection positions in the thickness direction of the dividing grooves 50 formed in the respective substrates 24 between the adjacent secondary conductors 46. It does not have and is formed in a different position.

この実施形態のトランス20によれば、3層以上に基板24を重ねた場合も、上記実施形態と同様の効果を得ることができる。なお、各基板24の分割溝50は、互いに中心線に対して対称である必要はなく、引出部38において対向する基板24同士で、互いに異なる極性の導体が重なり合うように、分割溝50の位置を面方向にずらした構造であれば良い。   According to the transformer 20 of this embodiment, even when the substrate 24 is stacked on three or more layers, the same effect as that of the above embodiment can be obtained. The dividing grooves 50 of each substrate 24 do not need to be symmetrical with respect to the center line, and the positions of the dividing grooves 50 are such that conductors having different polarities overlap each other between the substrates 24 facing each other in the lead-out portion 38. Any structure may be used as long as it is shifted in the plane direction.

次に、この発明の第三実施形態について、図4、図5を基に説明する。ここで上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態のトランス20は、図4に示すように、表面に銅箔の導体による回路パターン等が設けられた回路基板58を、厚み方向に絶縁層を挟んで重ねて形成された多層基板から成る積層体56に、フェライトコア26が組み合わされて形成されている。   Next, a third embodiment of the present invention will be described with reference to FIGS. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIG. 4, the transformer 20 of this embodiment includes a circuit board 58 having a circuit pattern made of a copper foil conductor on the surface, and a multilayer board formed by stacking insulating layers in the thickness direction. The laminated body 56 is formed by combining the ferrite core 26.

この積層体56を形成する回路基板58表面には、コイルを構成する一次側導体30と二次側導体46が形成されている。そして、この二次側導体46の引出部38は、分割溝50により分かれて二次側端子部42につながり、それぞれ2個の整流素子52がスルーホール54を介して各層の二次側端子部42に接続されている。積層体56の各層の二次側導体46は、各々並列に設けられたコイルを構成し、重なり合う二次側導体46が互いに、このスルーホール54にて並列に回路に接続されている。また、この実施形態においても、トランス20の複数層の二次側導体46の引出部38では、厚み方向に並列に隣接する二次側導体46の各層の分割溝50が互いに重ならない位置に設けられている。また、このトランス20の一次側導体30は、厚み方向にスルーホール60にて接続されている。   A primary side conductor 30 and a secondary side conductor 46 constituting a coil are formed on the surface of the circuit board 58 forming the multilayer body 56. The lead-out portion 38 of the secondary-side conductor 46 is divided by the dividing groove 50 and connected to the secondary-side terminal portion 42, and each of the two rectifying elements 52 is connected to the secondary-side terminal portion of each layer through the through hole 54. 42. The secondary side conductors 46 of each layer of the multilayer body 56 constitute a coil provided in parallel, and the overlapping secondary side conductors 46 are connected to the circuit in parallel through the through holes 54. Also in this embodiment, in the lead-out portion 38 of the secondary-side conductor 46 of the plurality of layers of the transformer 20, the dividing grooves 50 of the respective layers of the secondary-side conductor 46 adjacent in parallel in the thickness direction are provided at positions where they do not overlap each other. It has been. The primary conductor 30 of the transformer 20 is connected by a through hole 60 in the thickness direction.

この回路基板58に形成された回路は、例えば図5(a)に示すシングルフォワード式電源装置や、図5(b)に示すハーフブリッジ倍電流整流式電源装置である。図5(a)に示す回路は、入力端子間に設けられた入力コンデンサC1と、トランス20の一次巻線である一次側導体30に直列に接続されたスイッチ素子SW1が設けられている。また二次側には、二次側導体46に接続された整流素子であるダイオードD1,D2が設けられ、ダイオードD2のカソード側であって二次側導体46のドットのある端子がチョークコイルL1の一端に接続され、チョークコイルL1の他端とダイオードD2のアノード間に出力コンデンサC2が接続されるとともに出力端子に繋がっている。   The circuit formed on the circuit board 58 is, for example, a single forward power supply device shown in FIG. 5A or a half-bridge current rectification power supply device shown in FIG. The circuit shown in FIG. 5A includes an input capacitor C1 provided between input terminals and a switch element SW1 connected in series to a primary conductor 30 that is a primary winding of the transformer 20. On the secondary side, diodes D1 and D2 which are rectifying elements connected to the secondary conductor 46 are provided, and the terminal on the cathode side of the diode D2 and having the dots of the secondary conductor 46 is the choke coil L1. The output capacitor C2 is connected between the other end of the choke coil L1 and the anode of the diode D2, and is connected to the output terminal.

また、図5(b)に示すハーフブリッジ倍電流整流式電源装置は、一次側には、入力端子間に設けられた入力コンデンサC3と、入力コンデンサC3の両端に接続されたコンデンサC4,C5の直列回路と、コンデンサC4,C5の直列回路の両端に接続され直列に設けられたスイッチ素子SW2,SW3とを備えている。そして、トランス20の一次巻線である一次側導体30のドットのある側がコンデンサC4,C5の中点に接続され、ドットのない側がスイッチ素子SW2,SW3の中点に接続されている。また、二次側には、二次側導体46の両端が、整流素子であるダイオードD3,D4の各カソードに接続されているとともにチョークコイルL2,L3の各一端に各々接続されている。そして、チョークコイルL2,L3の他端がともに出力コンデンサC6の一端に接続され、ダイオードD3,D4の各アノードがともに出力コンデンサC6の他端に接続され、出力端子に繋がっている。   Further, in the half-bridge double current rectification type power supply device shown in FIG. 5B, on the primary side, an input capacitor C3 provided between input terminals and capacitors C4 and C5 connected to both ends of the input capacitor C3 are provided. A series circuit and switch elements SW2 and SW3 provided in series connected to both ends of the series circuit of capacitors C4 and C5 are provided. The side with dots of the primary conductor 30 which is the primary winding of the transformer 20 is connected to the middle point of the capacitors C4 and C5, and the side without dots is connected to the middle points of the switch elements SW2 and SW3. On the secondary side, both ends of the secondary conductor 46 are connected to the cathodes of the diodes D3 and D4, which are rectifier elements, and to the respective ends of the choke coils L2 and L3. The other ends of the choke coils L2 and L3 are both connected to one end of the output capacitor C6, and the anodes of the diodes D3 and D4 are both connected to the other end of the output capacitor C6 and connected to the output terminal.

この実施形態のトランス20を設けた多層基板から成る回路基板58は、二次側導体46の巻線数を1ターンとして整流できる方式であれば全ての電源回路に用いることができるものである。   The circuit board 58 formed of a multilayer board provided with the transformer 20 of this embodiment can be used for all power supply circuits as long as the number of windings of the secondary conductor 46 can be rectified.

次に、この発明の第四実施形態について、図6を基に説明する。ここで上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態も複数の基板により形成された積層体22から成るコイルを備えたもので、基板24には、図6に示すように、銅箔により二次側導体46と一次側導体30が設けられている。そして、二次側導体46の引出部38には、貫通穴36から二次側端子部42にかけて分割溝50が設けられている。この分割溝50は、屈折した曲部60を備えたもので、二次側導体46の引出部38に設けられた分割溝50の位置について、厚み方向の隣り合う二次側導体46同士で、分割溝50が重ならない位置に設けられている。   Next, a fourth embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. This embodiment is also provided with a coil composed of a laminate 22 formed of a plurality of substrates, and the substrate 24 is provided with a secondary side conductor 46 and a primary side conductor 30 with copper foil as shown in FIG. It has been. A split groove 50 is provided in the lead portion 38 of the secondary conductor 46 from the through hole 36 to the secondary terminal portion 42. This dividing groove 50 is provided with a refracted curved portion 60, and the position of the dividing groove 50 provided in the lead-out portion 38 of the secondary side conductor 46 is between the adjacent secondary side conductors 46 in the thickness direction. The dividing groove 50 is provided at a position where it does not overlap.

この実施形態のトランス20においても上記実施形態と同様の効果を得ることができるもので、分割溝50の形状や長さ等は問わないものである。   In the transformer 20 of this embodiment, the same effect as that of the above embodiment can be obtained, and the shape, length, etc. of the dividing groove 50 are not questioned.

なお、この発明のトランス及び多層基板は上記実施形態に限定されるものではなく、二次側導体の引出部に形成される分割溝と、並列に形成され積層されて隣接する他極の二次側導体の引出部の分割溝が、厚み方向に投影した位置が異なり、引出部の互いに対向した他方の極同士の導体の重なりが、導体幅または導体面積の3〜50%であればよい。   The transformer and the multilayer substrate according to the present invention are not limited to the above-described embodiment, but are divided grooves formed in the lead-out portion of the secondary-side conductor, and secondary electrodes of other poles that are formed in parallel and stacked. The position where the dividing groove of the lead portion of the side conductor is projected in the thickness direction is different, and the overlap of the conductors of the other opposite poles of the lead portion may be 3 to 50% of the conductor width or conductor area.

またこの発明は、積層体によりコイルが形成されたトランス及びこのトランスを備えた多層基板であればよいため、多層基板やコアの形状等は適宜設定可能である。   In addition, since the present invention only needs to be a transformer in which a coil is formed of a laminated body and a multilayer substrate including the transformer, the shape of the multilayer substrate and the core can be set as appropriate.

次に、この発明の一実施例のトランスについてシミュレーションにより測定した結果について、図7〜図9を基に説明する。この実施例1によるトランス20は、図7(a)に示すように、二次側導体46の引出部38、分割溝50の位置を積層体22の長手方向中心線から線対称にずらした位置に設けたものである。この二次側導体46は、厚さ方向に絶縁層を挟んで並列に4層設けられている。そして、図7(b)に示すように、1層目と3層目の分割溝50の位置と2層目と4層目の分割溝50の位置を、図面上で水平方向にそれぞれ等しく設定している。   Next, the results of the simulation of the transformer according to one embodiment of the present invention will be described with reference to FIGS. In the transformer 20 according to the first embodiment, as shown in FIG. 7A, the positions of the lead-out portion 38 and the dividing groove 50 of the secondary conductor 46 are shifted symmetrically from the longitudinal center line of the multilayer body 22. Is provided. The secondary side conductors 46 are provided in parallel in four layers with an insulating layer interposed therebetween in the thickness direction. Then, as shown in FIG. 7B, the positions of the first and third layer dividing grooves 50 and the positions of the second and fourth layer dividing grooves 50 are set equal in the horizontal direction on the drawing. is doing.

この実施例のトランス20について、引出部38の導体の抵抗値をシミュレーションにより検証した。検証にあたり、4層のそれぞれの二次側導体46と分割溝50について、水平方向の重なり幅をw、二次側導体46の厚さをt、引出部38の導体の水平方向の幅をLとし、シミュレーションによる演算では、重なり幅wを変化させて、導体の厚さt=0.105mm、分割溝幅S=0.2mm、引出部38の水平方向の幅L=11.8mmとして抵抗値を求めた。   For the transformer 20 of this example, the resistance value of the conductor of the lead portion 38 was verified by simulation. In the verification, for each of the secondary conductors 46 and the split grooves 50 of the four layers, the horizontal overlap width w, the thickness of the secondary conductor 46 t, and the horizontal width of the conductor of the lead portion 38 are L. In the calculation by simulation, the overlap width w is changed, the conductor thickness t = 0.105 mm, the division groove width S = 0.2 mm, and the horizontal width L = 11.8 mm of the lead portion 38. Asked.

この実施例1の、交流抵抗値の変化を図8のグラフに示す。このグラフでは、重なりがない場合は、電流周波数が600kHzと6MHzの場合の交流抵抗値が、表皮効果及び近接効果の影響で直流抵抗値の10倍から40倍になっている。また、分割溝幅S=0.2mmであるため、重なりがない場合を、重なり幅=−0.2mmとなっている。   The graph of FIG. 8 shows the change of the AC resistance value of Example 1. In this graph, when there is no overlap, the AC resistance value when the current frequency is 600 kHz and 6 MHz is 10 to 40 times the DC resistance value due to the skin effect and the proximity effect. Further, since the dividing groove width S = 0.2 mm, the overlapping width = −0.2 mm when there is no overlap.

このグラフから、重なり幅w=約5.8mmで抵抗値の極小値をとっている。これは、この実施例1の引出部の水平方向の全体幅の約50%にあたる。重なり幅wを50%以上取ると、一方の電極の引出部が細すぎて、その部分の抵抗値が増加する影響が出るため、グラフに示すように抵抗値が上昇し始める。従って、重なり幅wは、50%以下で効果を発揮することが確認できた。   From this graph, the overlap width w = about 5.8 mm and the minimum resistance value is taken. This corresponds to about 50% of the entire horizontal width of the drawer portion of the first embodiment. If the overlap width w is 50% or more, the lead portion of one electrode is too thin and the resistance value of that portion increases, so that the resistance value starts to increase as shown in the graph. Accordingly, it was confirmed that the effect was exhibited when the overlap width w was 50% or less.

また、重なり幅wを0.3mm程度に設定するだけで、従来の重なりのない場合の交流抵抗値よりも600kHzで約20%、6MHzで約30%低減する効果を確認できた。   Moreover, the effect of reducing about 20% at 600 kHz and about 30% at 6 MHz was confirmed by simply setting the overlap width w to about 0.3 mm, compared to the conventional AC resistance value without overlap.

以上から、重なり幅wは、引出部の水平方向の幅Lの3%以上50%以下で効果を発揮することが確認できた。特に、導体のパターン設計上3%以上25%以下の範囲で重なりを形成することが好ましい。   From the above, it has been confirmed that the overlap width w exhibits an effect when it is 3% or more and 50% or less of the horizontal width L of the lead-out portion. In particular, it is preferable to form an overlap in the range of 3% to 25% in terms of conductor pattern design.

また、この実施例の構造により、図9のグラフに示すように、インダクタンスの低下も確認できた。図9のグラフから、重なり幅w=約5.8mmで極小値をとっていることが確認できる。これは、図8の場合と同じく、この実施例1の引出部の水平方向の全幅の約50%にあたる。また、重なり幅wを0.3mmと小さく形成するだけで、重なりのない場合と比較して大幅な低減効果が確認できた。これは、引出部の重なりにより、磁束密度の集中が少なく漏れ磁束が少ないことを示す。これにより、漏れ磁束が原因で発生するノイズの低減にもなるものである。   In addition, due to the structure of this example, as shown in the graph of FIG. From the graph of FIG. 9, it can be confirmed that the overlap width w = about 5.8 mm and the minimum value is taken. As in the case of FIG. 8, this corresponds to about 50% of the full width in the horizontal direction of the drawer portion of the first embodiment. Moreover, only by forming the overlap width w as small as 0.3 mm, a significant reduction effect was confirmed as compared with the case where there was no overlap. This indicates that the concentration of the magnetic flux density is small and the leakage magnetic flux is small due to the overlap of the drawn portions. This also reduces noise generated due to leakage magnetic flux.

この発明の第一実施形態のトランスを示す左側面図(a)、部分破断平面図(b)、A−A断面図(c)である。It is the left view (a), partial fracture top view (b), and AA sectional view (c) showing the transformer of a first embodiment of this invention. この実施形態の積層体を形成する各基板を示す平面図である。It is a top view which shows each board | substrate which forms the laminated body of this embodiment. この発明の第二実施形態の積層体の各基板を示す平面図(a)(b)(c)と、積層体の引出部の断面図である。It is a top view (a) (b) (c) which shows each board | substrate of the laminated body of 2nd embodiment of this invention, and sectional drawing of the drawer | drawing-out part of a laminated body. この発明の第三実施形態の二次側導体の引出部に整流素子を設けた多層基板を示す概略平面図である。It is a schematic plan view which shows the multilayer substrate which provided the rectifier in the extraction | drawer part of the secondary side conductor of 3rd embodiment of this invention. この実施形態の多層基板に設けられるシングルフォワード式電源の回路(a)と、ハーフブリッジ倍電流整流式電源を示す回路(b)の回路図である。It is a circuit diagram of the circuit (a) of the single forward type power supply provided in the multilayer substrate of this embodiment, and the circuit (b) which shows a half bridge double current rectification type power supply. この発明の第四実施形態の基板の二次側導体の引出部の形状を示す平面図である。It is a top view which shows the shape of the extraction | drawer part of the secondary side conductor of the board | substrate of 4th embodiment of this invention. この発明の実施例1の積層体の構造を示す概略平面図(a)と断面図(b)である。It is the schematic plan view (a) and sectional drawing (b) which show the structure of the laminated body of Example 1 of this invention. この発明の実施例1の交流抵抗比の変化を示すグラフである。It is a graph which shows the change of the alternating current resistance ratio of Example 1 of this invention. この発明の実施例1のインダクタンス比の変化を示すグラフである。It is a graph which shows the change of the inductance ratio of Example 1 of this invention. 従来の多層基板によるトランスを示す左側面図(a)、部分破断平面図(b)、B−B断面図(c)である。It is the left view (a), partial broken top view (b), and BB sectional drawing (c) which show the trans | transformer by the conventional multilayer substrate.

符号の説明Explanation of symbols

20 トランス
22 積層体
24 基板
26 フェライトコア
30 一次側導体
38 引出部
42 二次側端子部
46 二次側導体
50 分割溝
20 Transformer 22 Laminate 24 Substrate 26 Ferrite Core 30 Primary Side Conductor 38 Leader 42 Secondary Side Terminal 46 Secondary Side Conductor 50 Dividing Groove

Claims (7)

一次巻線と、平面形状の導体で形成された二次巻線を有するトランスにおいて、前記トランスは前記一次巻線及び二次巻線の中心に挿通されたコアを有し、前記二次巻線は一方向に一対の引出部が長く延設された1ターンのコイルを構成し、前記二次巻線が絶縁層を介して複数層並列接続して積層体が形成され、各々前記複数層の前記各一対の引出部の端部で前記一対の引出部が各々積層方向に接続され、前記二次巻線の前記一対の引出部を分ける分割溝の位置が、並列接続した前記各引出部の導体間で厚み方向の投影位置が異なり、並列に設けた一方の前記二次巻線の一方の極性の引出部が、対面する他方の二次巻線の他方の極性の引出部と前記積層体の厚さ方向に重なる部分を有し、前記各コイルに電流を流すと、前記引出部の長手方向に沿って電流が流れ、前記積層体の厚さ方向に重なる部分の前記各引出部に流れる電流が、互いに逆方向に流れるように形成されたことを特徴とするトランス。 A transformer having a primary winding and a secondary winding formed of a planar conductor, wherein the transformer has a core inserted in the center of the primary winding and the secondary winding, and the secondary winding Constitutes a one-turn coil in which a pair of lead portions are extended in one direction, and the secondary winding is connected in parallel through a plurality of layers through an insulating layer to form a laminate . The pair of lead portions are respectively connected in the stacking direction at the ends of the pair of lead portions, and the positions of the dividing grooves that divide the pair of lead portions of the secondary winding are parallel to each other of the lead portions. Projection positions in the thickness direction differ between conductors, and one polarity lead portion of one of the secondary windings provided in parallel has the other polarity lead portion of the other secondary winding facing the other and the laminate. have a portion overlapping the thickness direction, when an electric current is applied to the respective coils, the longitudinal direction of the lead-out portion Along current flows, transformer current flowing through the respective lead-out portion of the portion overlapping in the thickness direction of the laminate, characterized in that it is formed so as to flow in opposite directions. 前記二次巻線を銅板で形成したことを特徴とする請求項1記載のトランス。   The transformer according to claim 1, wherein the secondary winding is formed of a copper plate. 上記二次巻線をプリント基板の導体で形成したことを特徴とする請求項1記載のトランス。   2. The transformer according to claim 1, wherein the secondary winding is formed of a conductor of a printed circuit board. 前記一次巻線と前記二次巻線を多層基板の導体で形成したことを特徴とする請求項1記載のトランス。   2. The transformer according to claim 1, wherein the primary winding and the secondary winding are formed of a conductor of a multilayer substrate. 前記一方の極性の引出部と他方の極性の引出部による重なり幅が、前記引出部の導体の幅の3%以上50%以下であることを特徴とする請求項1,2,3または4記載のトランス。   5. The overlap width between the one polarity lead portion and the other polarity lead portion is 3% or more and 50% or less of the width of the conductor of the lead portion. Transformer. スイッチング電源装置を構成するために用いられる多層基板において、前記多層基板の一部にトランスを備え、このトランスは、一次巻線と、平面形状の導体で形成された二次巻線と、前記一次巻線及び二次巻線の中心に挿通されたコアとを有し、前記二次巻線は、一方向に一対の引出部が長く延設された1ターンのコイルを構成し、前記二次巻線が前記多層基板により絶縁層を介して複数層並列接続され、各々前記複数層の前記各一対の引出部の端部で前記一対の引出部が各々積層方向に接続され、前記多層基板の前記二次巻線の前記一対の引出部を分ける分割溝の位置が、並列接続した前記各引出部の導体間で厚み方向の投影位置が異なり、並列に設けた一方の前記二次巻線の一方の極性の引出部が、対面する他方の二次巻線の他方の極性の引出部と前記多層基板の厚さ方向に重なる部分を有し、前記各コイルに電流を流すと、前記引出部の長手方向に沿って電流が流れ、前記積層体の厚さ方向に重なる部分の前記各引出部に流れる電流が、互いに逆方向に流れるように形成された構造であることを特徴とする多層基板。 In the multilayer substrate used to configure the switching power supply device, said comprising a transformer in a part of the multilayer substrate, the transformer includes a primary winding, a secondary winding formed by conductors planar shape, said primary A core inserted in the center of the winding and the secondary winding, and the secondary winding constitutes a one-turn coil in which a pair of leading portions extend long in one direction, and the secondary winding A plurality of windings are connected in parallel through the insulating layer by the multilayer substrate , and the pair of lead portions are connected in the stacking direction at the ends of the pair of lead portions of the plurality of layers , respectively . position of the dividing groove that divides the pair of lead-out portion of the secondary winding, different projection position in the thickness direction between the conductors of the respective lead portions connected in parallel, the one which is provided in parallel of said secondary winding The lead of one polarity is connected to the other pole of the other secondary winding Parts possess a lead portion overlapping portions in the thickness direction of the multilayer substrate, when an electric current is applied to each coil, current flows along the longitudinal direction of the lead-out portion, which overlaps in the thickness direction of the stack of A multilayer substrate characterized in that it has a structure formed such that currents flowing through the respective lead portions flow in opposite directions . 前記複数の二次巻線は、一方の極性の引出部同士及び他の極性の引出部同士が、厚み方向に通貫したスルーホールによって互いに接続され、前記一対のスルーホール間の間隔は、前記コイル内周縁の直径と等しいことを特徴とする請求項6記載の多層基板。The plurality of secondary windings are connected to each other by a through hole in which one polarity lead portions and the other polarity lead portions penetrate each other in the thickness direction, and the interval between the pair of through holes is The multilayer substrate according to claim 6, wherein the multilayer substrate has a diameter equal to that of the inner periphery of the coil.
JP2004293447A 2004-10-06 2004-10-06 Transformers and multilayer boards Active JP4394557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293447A JP4394557B2 (en) 2004-10-06 2004-10-06 Transformers and multilayer boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293447A JP4394557B2 (en) 2004-10-06 2004-10-06 Transformers and multilayer boards

Publications (2)

Publication Number Publication Date
JP2006108415A JP2006108415A (en) 2006-04-20
JP4394557B2 true JP4394557B2 (en) 2010-01-06

Family

ID=36377773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293447A Active JP4394557B2 (en) 2004-10-06 2004-10-06 Transformers and multilayer boards

Country Status (1)

Country Link
JP (1) JP4394557B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270347A (en) * 2007-04-17 2008-11-06 Densei Lambda Kk Transformer
KR101173591B1 (en) * 2011-09-09 2012-08-13 주식회사 세빅글로벌 Micro coil for reducing harmonic wave and power saving transformer with the same micro coil
JP6915451B2 (en) * 2017-08-23 2021-08-04 スミダコーポレーション株式会社 Coil parts

Also Published As

Publication number Publication date
JP2006108415A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
TWI278876B (en) Transformer structure
JP4873522B2 (en) Multilayer inductor
US7978041B2 (en) Transformer
JP5339398B2 (en) Multilayer inductor
JP2002270437A (en) Flat coil and flat transformer
JP2007274759A (en) Power supply
JP3488869B2 (en) Planar coils and transformers
JP2005310980A (en) Inductor and transformer
JP4394557B2 (en) Transformers and multilayer boards
JP2014207406A (en) Magnetic device
JP2009038297A (en) Semiconductor device
JP4343891B2 (en) Coils, transformers and switching power supplies
JP5193843B2 (en) Multilayer inductor
JPH11307367A (en) Thin transformer
JP2015088689A (en) Multilayer printed board and magnetic device
JP2010153618A (en) Multilayered inductor
JP2017220515A (en) Transformer
JP4827087B2 (en) Multilayer inductor
JP2007317892A (en) Multilayered inductor
US10404178B2 (en) Insulation type step-up converter
JP2004112991A (en) Switching power supply
KR101838227B1 (en) Common winding wire planar transformer
JP2003197439A (en) Electromagnetic device
US9472333B2 (en) Planar type transformer and switching power supply circuit
TWI747508B (en) Planar winding transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Ref document number: 4394557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151023

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250