JP4392516B2 - 生体のしこり検査装置 - Google Patents

生体のしこり検査装置 Download PDF

Info

Publication number
JP4392516B2
JP4392516B2 JP2003341875A JP2003341875A JP4392516B2 JP 4392516 B2 JP4392516 B2 JP 4392516B2 JP 2003341875 A JP2003341875 A JP 2003341875A JP 2003341875 A JP2003341875 A JP 2003341875A JP 4392516 B2 JP4392516 B2 JP 4392516B2
Authority
JP
Japan
Prior art keywords
living body
hardness
probe
frequency
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003341875A
Other languages
English (en)
Other versions
JP2004283547A (ja
JP2004283547A5 (ja
Inventor
定夫 尾股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2003341875A priority Critical patent/JP4392516B2/ja
Publication of JP2004283547A publication Critical patent/JP2004283547A/ja
Publication of JP2004283547A5 publication Critical patent/JP2004283547A5/ja
Application granted granted Critical
Publication of JP4392516B2 publication Critical patent/JP4392516B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

本発明は、生体のしこり検査装置に係り、特に生体の硬さの2次元的な分布を測定できるしこり検査装置に関する。
例えば、乳がん検診等においては、患者の診断部位をはさんでX線撮影等を行って、生体内部に硬いところ、すなわち、しこりがないか判断される。また、触診によりしこりの有無や程度を判断することも行われ、後者は医師等の専門家による触診のほか、医師等の指導のもとで患者自身により行われることもある。
生体の内部におけるしこりは、患者等の生体の外観からはどこにしこりがあるか判断が困難なため、広範囲にわたりX線撮影や触診を行う必要がある場合がある。また、X線撮影等のように患者の診断部位をはさんで診断を行う方法では、診断部位あるいは患者の体形によっては十分な範囲をはさむことができない場合がある。また、触診による方法は経験が必要で、しこりの有無、その程度の判別に触診者の個人差が現れ、定量的な判断が困難である。
本発明は、かかる従来技術の課題を解決し、生体のしこりについて定量的に2次元的分布を測定できる生体のしこり検査装置を提供することである。
上記目的を達成するため、本発明に係る生体のしこり検査装置は、プローブ基体と、プローブ基体に2次元に配列されて保持され、生体表面に圧接される複数の探触素子であって、各探触素子は、生体に振動を入射する振動子と、生体からの反射波を検出する振動検出センサとをそれぞれ有する複数の探触素子と、振動子の信号入力端と振動検出センサの信号出力端との間に設けられ、探触素子に接触する部分の生体の硬さを算出する硬さ算出器と、各探触素子と硬さ算出器との接続を順次切り替える硬さ算出切替回路と、各探触素子について算出された硬さを2次元表示する表示器と、を備え、硬さ算出器は、振動検出センサの信号出力端に入力端が接続された増幅器と、増幅器の出力端と振動子の信号入力端との間に設けられ、振動子への入力波形と振動検出センサからの出力波形との間に位相差が生じるときは、周波数を変化させて前記位相差をゼロにシフトする位相シフト回路と、位相差をゼロにシフトさせるための周波数変化量を検出する周波数変化量検出手段と、を含み、探触素子と生体との間の閉ループの共振を維持しつつ、生体の硬さに応じて生ずる周波数変化量の2次元分布から生体のしこり検査を行うことを特徴とする。
また、本発明に係る生体のしこり検査装置は、プローブ基体と、プローブ基体に2次元に配列されて保持され、生体表面に圧接される複数の探触素子であって、各探触素子は、生体にパルス波を入射する振動子と、生体からの反射波を検出する振動検出センサとをそれぞれ有する複数の探触素子と、振動子のパルス波入射端と振動検出センサの反射波検出端との間に設けられ、探触素子に接触する部分の生体の硬さを算出する硬さ算出部と、各探触素子と硬さ算出器との接続を順次切り替える硬さ算出切替回路と、各探触素子について算出された硬さを2次元表示する表示器と、を備え、硬さ算出部は、入射されるパルス波の周波数成分分析を行い、各正弦波成分の周波数と、その周波数における正弦波成分と余弦波成分とから求められる位相差のスペクトル分布を求める入射波周波数成分分析手段と、反射波の周波数成分分析を行い、各正弦波成分の周波数と、その周波数における正弦波成分と余弦波成分とから求められる位相差のスペクトル分布を求める反射波周波数成分分析手段と、入射波のスペクトル分布と反射波のスペクトル分布とを比較し、それぞれの周波数fxにおける、その入射波の位相と反射波の位相の差である位相差θxを求める周波数変化算出手段と、入射波の周波数に対する反射波の振幅ゲイン及び位相差の関係を表す基準伝達特性曲線を用い、周波数fxにおける位相差θxについて、周波数を変化させることで位相差θxをゼロにシフトさせるための周波数変化量dfを算出する周波数変化量検出手段と、を備え、生体の硬さに応じて生ずるdfの2次元分布から生体のしこり検査を行うことを特徴とする。
また、本発明に係る生体のしこり検査装置は、各探触素子に設けられた複数の圧力センサと、圧力センサの端子間に設けられ、探触素子に接触する部分の生体組織への押し付け圧を算出する押し付け圧算出器と、各探触素子と押し付け圧算出器との接続を順次切り替える圧力算出切替回路と、各圧力センサの押し付け圧を所定の許容幅と比較し、許容幅以内の押し付け圧が検出される探触素子を選別する素子選別手段と、を備えることを特徴とする。
また、表示器は、選別された探触素子について算出された硬さに基づいて、生体のしこりの表示を行うことが好ましい。
また、表示器は、プローブ基体において各探触素子が配列される側の裏面に設けられることが好ましい。
また、本発明に係る生体のしこり検査装置において、プローブ基体の裏面側に設けられ、表示器を収納する収納部と、収納部の一部に設けられ、表示器と接続される基体側接続部と、表示器から引き出され、一端に基体側接続部に着脱可能に接続される表示側接続部を有する信号線と、を備え、信号線の表示側接続部を基体側接続部に接続したまま、表示器がプローブ基体の収納部に収納されることが好ましい。
また、本発明に係る生体のしこり検査装置において、さらに、プローブ基体は、外部機器に接続するための外部接続部を有し、表示側接続部は、外部接続部にも接続可能である構造を有していることが好ましい。
上記構成の少なくとも1つにより、プローブ基体に探触素子が2次元的に配置され、これらの探触素子が生体表面に圧接される。各探触素子は、接続を順次切り替える硬さ算出切替回路を介し硬さ算出器に接続され、探触素子が接触する生体の部分の硬さが算出され、その結果が表示器に2次元表示される。したがって、生体に広い範囲について接触し、その範囲の生体の硬さ、つまりしこりを2次元的に把握できる。各探触素子から生体に入射された振動は、生体内部の硬さに応じてその波形の周波数と位相を変化させて反射波として戻ってくる。したがって、入射波と反射波との比較から生体内部の硬さを検査することができる。上記構成において、入射波と反射波の比較は、位相差をゼロにシフトさせるための周波数変化量で捉える。周波数測定は、精度の高い測定器を用いることができるので、生体の硬さ、すなわちしこりを定量的に測定できる。
また、上記構成の少なくとも1つにより、プローブ基体に探触素子が2次元的に配置され、これらの探触素子が生体表面に圧接される。したがって、生体に広い範囲について接触し、その範囲の生体の硬さ、つまりしこりを2次元的に把握できる。そして、各探触素子から生体組織にパルス波を入射し、その反射波を検出する。生体組織に入射されたパルス波は、生体組織内部の硬さに応じてその周波数成分を変化させて反射波として戻ってくる。したがって、入射パルス波の周波数成分分析の内容と、反射波の周波数成分分析の内容との比較から生体組織の硬さ、すなわちしこりを検査することができる。上記構成において、入射パルス波と反射波との間における周波数成分の変化の検出は、各周波数成分における正弦波成分と余弦波成分の割合で定まる位相について入射パルス波と反射波との間で生ずる変化、すなわち位相差を用いる。そして、生ずる位相差の程度を、基準伝達特性曲線を介して位相差をゼロにする周波数変化量に変換する。周波数測定は、精度の高い測定器を用いることができるので、しこりを定量的に測定できる。
また、上記構成の少なくとも1つにより、各探触素子に設けられた圧力センサを用い、各圧力センサの検出値と許容幅とを比較して、許容幅以内の探触素子を選び出す。選び出された探触素子は、許容幅の範囲で生体組織に圧接していることになるので、しこり検査装置を患者に圧接する程度のばらつきを判断することが容易になる。
また、上記構成の少なくとも1つにより、しこり検査装置を患者に圧接する際のばらつきを抑え、信頼度の高いしこり表示を行うことができる。また、上記構成の少なくとも1つにより、しこり検査装置を生体組織に圧接しながら、リアルタイム的にしこりの2次元分布を把握することができる。
また、2次元表示する表示器をプローブ基体の裏面側に一体として配置することで、検査者は、プローブ基体を生体組織に例えば圧接しながら、リアルタイム的に生体のしこりの2次元分布を把握することができる。また、表示器をプローブ基体から着脱可能とし、信号線によりプローブ基体と接続することで、患者自身がプローブ基体を生体組織に例えば圧接しながら、観察できる位置に表示器をおいて、リアルタイム的に生体のしこりの2次元分布を把握することができる。
上記のように、本発明に係る生体のしこり検査装置によれば、生体のしこりについて定量的な2次元的分布の測定が可能となる。
以下に、図面を用いて本発明に係る実施の形態につき詳細に説明する。図1から図3は、生体のしこり検査装置10の上面側から見た斜視図、側面図、下面側から見た斜視図である。図に示すように、生体しこり検査装置10は、円板状のプローブ基体12と、プローブ基体12から延びて、手で把持されるつかみ部14とからなる。
プローブ基体12は、下面側に生体の表面に圧接される複数の探触素子20を2次元的に配置して保持し、上面側に複数の表示素子40を各探触素子20に対応して2次元的に配置して保持する円板状の部材である。例えば直径が約60mm、厚みが約20mmのプラスチック成形品に、探触素子20及び表示素子40をそれぞれ40−50個程度2次元的に配置したものを用いることができる。また、上面側に、小型のディスプレイ42を配置することもできる。
つかみ部14は、プローブ基体12と固定接続され、手で安定して把持できる程度の大きさを有する取っ手状の部材である。例えば上記のプローブ基体12にあわせて、厚みを約20mmとし、取っ手部の幅を約45mm、長さを約100mmのプラスチック成形品を用いることができる。
つかみ部14の内部には、各探触素子20の入出力信号信号に基づき各探触素子20が接触する部分の生体組織の硬さを算出し、それを2次元分布として表示する信号処理を行う電子回路部50が収納される。電子回路部50の出力は、外部インタフェイス51を介し、図示されていない外部の診断装置等に接続することもできる。また、電子回路部50の一部または全部をつかみ部14の外部に出し、信号線で探触素子20や表示素子40と接続してもよい。電子回路部50の詳細については後述する。
図4は、探触素子20周りの詳細図である。探触素子20は、圧力センサ22を取り付ける圧力センサ取り付け台24の上に(図4においては紙面の下方向になる)、振動子26と振動検出センサ28が、さらにその上に略半球状のプラスチック製の接触ボール30が積層されて構成される。探触素子20は、圧力センサ取り付け台24側の底面でプローブ基体12に接着等で固定される。
圧力センサ22は、探触素子20が生体組織16に圧接されるときの押し付け圧を検出する機能を有する素子である。圧力センサ22としては、例えばひずみゲージを用いることができる。ひずみゲージは所定のゲージ接着剤等を用いて圧力センサ取り付け台24に固定できる。圧力センサ22がひずみゲージの場合は、押し付け圧に応じて抵抗値が変化し、その抵抗値変化信号は、プローブ基体12の内部を通る信号線52a,52bを介して電子回路部50に伝達される。
振動子26は、生体組織16に入射波を入射する機能を有し、振動検出センサ28は、生体組織16、例えばその内部におけるしこりの部分18からの反射波を検出する機能を有する素子である。振動子26と、振動検出センサ28は、例えば圧電素子を用い、交流信号を印加することでその交流信号の周波数で機械的な振動を生じさせる電気−機械変換機能を振動子として、振動を加えることでその振動の周波数の交流信号を生じさせる機械−電気変換機能を振動検出センサとして利用することができる。
振動子、振動検出センサの上に設けられる接触ボール30は、例えばナイロン樹脂等のプラスチック樹脂で成形され、その半球状の表面で生体組織にスムーズに圧接する機能を有する部材である。半球の半径は、例えば5mm程度を用いることができる。
図5は、振動子と振動検出センサを積層して構成する例を示す図である。この例では、2個の圧電素子を直列に接続し、接続点を接地したもので、一方の圧電素子を振動子26として用い、他方の圧電素子を振動検出センサ28として用いる。振動子26は信号線54aから供給される交流信号に応じて入射波を発生し、生体組織に向けて入射される。振動検出センサ28は、生体組織からの反射波を検出し、信号線54bに交流信号として出力する。信号線54a,54bは、プローブ基体12の内部を通り電子回路部50に接続される。
図6は、振動子と振動検出センサを1個の圧電素子の上に構成する例を示す図である。この例では、1個の圧電素子32を用い、圧電素子32における2個の圧電面のうち片方の面34を接地し、もう片方の面に設けられる電極パターンを外側リング電極36と、中心側円電極38としたものである。外側リング電極36に入力される交流信号に応じ、圧電素子の外周部分が振動するので振動子として働き、圧電素子の中央部分が検出する振動に応じた交流信号が中心側円電極38に現れて振動検出センサとして働く。
図7は、電子回路部50のブロック図である。図7の中の硬さ算出切替回路60は、硬さ算出部64に接続される探触素子を選択する機能を有する選択スイッチ回路である。すなわち、各振動子26からの信号線54a、各振動検出素子28からの信号線54bを、複数のスイッチ80により順次切り替えて硬さ算出部64に接続するスイッチ回路である。同様に、圧力算出切替回路62は、圧力算出部66に接続される探触素子を選択する機能を有する選択スイッチ回路である。すなわち、各圧力センサ22からの信号線52a,52bを、複数のスイッチ82により順次切り替えて圧力算出部66に接続するスイッチ回路である。スイッチ80,82には半導体スイッチを用いることができる。接続の順次切り替えは、各探触素子20ごとの逐次切り替え、例えば、各探触素子20にアドレスを付し、アドレスの順に、硬さ算出切替回路60への接続と、圧力算出切替回路62への接続とを同期して行うことができる。
このように、硬さ算出切替回路60により、選択された探触素子20について、その振動子26の信号線54aは信号線84aを介し、振動検出センサ28の信号線54bは信号線84bを介し、それぞれ硬さ算出部64に接続される。同様に、圧力算出切替回路62により、選択された探触素子20について、その圧力センサ22の信号線52a,52b4aはそれぞれ信号線86a,86bを介し、圧力算出部66に接続される。
硬さ算出部64は、硬さ算出切替回路60により選択された各探触素子20について、振動子26の信号入力端の信号、すなわち信号線54aの信号、および、振動検出センサ28の信号出力端の信号、すなわち信号線54bの信号とに基づいて、その探触素子20が接触する生体組織の部分の硬さを算出する回路である。算出された硬さデータは、各探触素子20ごとに対応付けられてデータ収集部70に送られる。対応付けには、例えば上記の探触素子アドレスを用いることができる。
図8は、硬さ算出部64のブロック図である。硬さ算出部64は、探触素子20における振動子26と信号線(54a),84aを介して接続される端子94と、振動検出センサ28と信号線(54b),84bを介して接続される端子92を備える。また、硬さ算出部64は、端子92に入力端が接続される増幅器96と、増幅器96の出力端と端子94との間に設けられ、振動子26への入力波形と振動検出センサ28からの出力波形との間に位相差が生じるときは、周波数を変化させて前記位相差をゼロにシフトする位相シフト回路98とを備える。かかる機能を持つ位相シフト回路の内容については、特開平9−145691号公報に詳しく述べられている。
このような構成で、振動子26、振動検出センサ28と生体組織を含む閉ループの共振状態を維持しつつ、生体組織の硬さが変化することで生ずる周波数変化を、周波数変化量検出部100で検出し、硬さ変換器102により周波数変化を生体組織の硬さに変換する。周波数変化を生体組織の硬さに変換するには、例えば較正テーブル等を用いることができる。較正テーブルは、硬さの基準とできる基準物質を接触ボールの先端に押し当て、そのときの周波数変化を得ることで作成できる。基準物質として、例えばしこりのない標準的な乳部の脂肪または筋肉や、または標準的な乳部の脂肪または筋肉とあらかじめ対応を取ってあるシリコンゴム等の標準物質を用いることができる。変換された硬さ信号は、必要に応じディジタル信号に変換されて端子104から出力される。
振動子26、振動検出センサ28と生体組織を含む閉ループの共振状態における振動の周波数は、位相シフト回路98により周波数を変化させることができるように、振動子26においてQの高い固有振動数以外の周波数に選ばれるのが好ましい。例えば、振動子26において、1次固有振動数が1MHzとすると、この周波数を避けて、400kHz等に設定することが好ましい。
圧力算出部66は、圧力算出切替回路62により選択された各探触素子20について、圧力センサ22の信号線(54a,54b),86a,86bの信号に基づいて、上記の例では、抵抗値変化を押し付け圧に変換し、その探触素子20の生体組織に対する押し付け圧を算出する回路である。押し付け圧への変換は、ひずみゲージのゲージファクタ等に基づき、例えば較正テーブル等を用いることができる。
素子選別部68は、圧力算出部66で算出された押し付け圧を所定の許容幅と比較し、許容幅以内か否かの判断を行う回路である。判断は、例えば押し付け圧が許容幅以内のときは「1」を出力し、押し付け圧が許容幅を超えて大きいときまたは許容幅を超えて小さいときに「0」を出力してもよい。判断結果は、各探触素子20ごとに対応付けられてデータ収集部70に送られる。対応付けには、例えば上記の探触素子アドレスを用いることができる。
データ収集部70は、各探触素子20ごとに、その硬さデータと、押し付け圧判断データとを対応付けて記憶する記憶装置である。対応付けには上記の探触素子アドレスを用い、探触素子アドレスごとにその硬さデータと押し付け圧判断データとを配列して記憶することができる。
表示処理部72は、データ収集部70から必要なデータを読み出し、硬さの2次元表示をするための信号処理を行う回路である。例えば、図1に示すように、表示部74が複数の表示素子40の2次元配列であるときは、各表示素子への出力を、各探触素子20の2次元配列に対応付ける処理を行う。すなわち、表示部74を観察したときに、各表示素子40は、プローブ基体12に対し、ちょうど各表示素子40の真下の探触素子20が検出した硬さを表すように対応付け処理を行う。
また、各探触素子20の押し付け圧が許容幅以内にないときは、その硬さを表示しない選別処理を行う。このことで、押し付け圧が許容幅以内にある硬さのみが表示処理され、しこり検査装置を患者に圧接する際のばらつきを抑えた表示をすることが可能になる。
また、測定領域全体の硬さについて、平均値、最大値、最小値、標準偏差等を求め、あるいは硬さ分布のヒストグラ化等の統計処理を行った後、テキストデータ等により表示が可能な処理を行ってもよい。
表示処理されたデータは、表示部74に出力される。また、図1に示すように外部との信号伝達を行うインタフェイス51を設け、外部の診断装置等に出力することもできる。
表示部74は、複数の表示素子40を2次元配置したものであり、上記のように、複数の探触素子の2次元配置に対応した配置とすることが好ましい。複数の表示素子としては、発光ダイオード等の発光素子、液晶ディスプレイの2次元配置された各画素等を用いることができる。
硬さをあらわすのには、表示素子の輝度を用い、例えば、生体組織の硬さが大きい値を示すに従い、すなわち、しこりの程度が悪化するに従い、輝度を強くして表現することができる。また、可変色型発光ダイオードあるいはカラー液晶ディスプレイを用い、硬さを色の相違あるいは色の濃淡で示すこともできる。例えば、生体組織の硬さが小さい値から大きい値に移るに従い、青−黄−赤と色を変えることで、しこりの程度をビジュアルに表現できる。
また、各探触素子20に対応付けられて配置される各表示素子40以外に、図1に示すような一般的な小型ディスプレイ42を設けることもできる。この小型ディスプレイ42を用い、例えば、測定領域全体の硬さについての平均値等の統計処理データ等を表示してもよい。
図9は、他の実施の形態に係る電子回路部150のブロック図である。この実施の形態では、パルス波を生体組織に入射し、生体組織から反射してくる反射波を検出し、入射されたパルス波の周波数成分と検出された反射波の周波数成分との間の変化に基づいて生体組織の硬さを算出する。したがって、パルス波発生器176が新たに設けられ、硬さ算出部164の内容が異なるほかは、図7と同様の要素をそのまま用いることができる。図7に対応する要素には、図7と同一の符号を用いて、説明の重複を避けることとする。
パルス波発生器176は、市販のパルス波発生器を用いることができる。パルス波のパルス幅は、上記のように振動子26の1次固有振動数が1MHzとして、1/400kHzの数倍程度を用いるのが好ましい。あるいは、400kHzを重畳した矩形パルスを用いてもよい。
パルス波発生器176の出力は、硬さ算出部164の信号線84aに接続される。信号線84aは、硬さ算出切替回路60を介し、各振動子26の入力端子に接続される。つまり、パルス波発生器176からのパルス波は、硬さ算出切替回路60による各探触素子20の順次選択に従って各振動子26から生体組織に入射されるとともに、硬さ算出部164に入力される。また、生体組織からの反射波は、各振動検出センサ28により検出され、硬さ算出切替回路60を介し、信号線84bにより硬さ算出部164に入力される。このように、硬さ算出部164には、生体組織に入射されるパルス波と、生体組織からの反射波とが入力される。
パルス波発生器176の出力側に、パルス波の出力を規制するゲート回路等を設け、硬さ算出切替回路60の切り替えに連動させて、1個のパルス波を出力することが好ましい。また、パルス波発生器176より出力するパルス波の繰り返し周波数を、硬さ算出切替回路60の切り替え周波数と同じにして、ゲート回路等を省略することもできる。
図10は、硬さ算出部164のブロック図である。硬さ算出部164は、端子194,192から入力される生体組織への入射波、生体組織からの反射波の電気信号を適切な信号レベルに増幅する増幅器195b,195aを備え、増幅器195b,195aの各出力は周波数成分分析部196に入力される。
図10における周波数成分分析部196は、その入射波、反射波の周波数成分分析を行い、入射波、反射波それぞれにつき周波数に対する位相のスペクトル分布を求める機能を有する。ここで位相とは、各周波数成分における正弦波成分と余弦波成分の割合で定まる位相のことである。求められた入射波、反射波の位相スペクトル分布は、位相差算出部198に入力される。
位相差算出部198は、入射波の位相スペクトル分布と反射波の位相スペクトル分布とを比較し、入射波と反射波との間の周波数成分の変化を表すものとして、それぞれの周波数fxについて、その入射波の位相と反射波の位相の差である位相差θxを求めて特定する機能を有する。求められた周波数fxと位相差θxのデータは、周波数変化量検出部200に入力される。
周波数変化量検出部200は、入射波の周波数に対する反射波の振幅ゲイン及び位相差の関係を表す基準伝達特性曲線を用い、周波数fxにおける位相差θxについて、周波数を変化させることで位相差θxをゼロにシフトさせるための周波数変化量dfを算出する機能を有する。周波数変化量算出の機能は、位相差を補償するのに要する周波数の変化をもとめるので、いわば位相差補償演算機能ということもできる。
周波数fxと位相差θxのデータは、生体組織の硬さに対応する物質特性を反映している。そのなかで、最も位相差の変化が大きい周波数f0とその最大位相差θ0は、測定対象である生体組織の硬さを特に代表しているものと考えられる。したがって、最大位相差θ0をゼロにシフトさせるための周波数変化量dfを算出し、これをもって生体組織の硬さを代表する特性値とすることができる。
上記周波数成分分析部196、位相差算出部198(周波数位相差特定)、周波数変化量検出部200(位相差補償演算)のさらに詳細な内容については、特開2002−272743号公報に述べられている。
硬さ変換器202は、周波数変化量を生体組織の硬さに変換する機能を有する。周波数変化を生体組織の硬さに変換するには、較正テーブル等を用いることができる。較正テーブルは、硬さの基準とできる基準物質を接触ボールの先端に押し当て、パルス波を入射し、反射波を検出して周波数成分分析を行い、そのときの周波数変化を得ることで作成できる。基準物質として、図8で説明したと同様の物質を用いることができる。変換された硬さ信号は、必要に応じディジタル信号に変換されて端子204から出力される。
このようにして得られる生体組織の硬さデータは、圧力算出部66及び素子選別部68により得られる押し付け圧判断データとともに、各探触素子に対応付けてデータ収集部70に記憶される。そして、表示処理部72により適当なデータ処理とともに信号処理が行われ、表示部74に、生体組織の硬さの2次元分布、すなわち、定量的なしこりの分布が表示される。
図11は、他の実施形態における生体のしこり検査装置210の構成を示す図である。この生体のしこり検査装置210は、本体部分220と表示器部分230とを別体構造とし、コネクタを介して着脱可能としたものである。ここで表示器部分230は、複数の表示素子240が2次元配置されたもので、信号線232を備え、信号線232の一端には表示側コネクタ234が設けられる。これに対応して、本体部分220には基体側コネクタ252が設けられる。基体側コネクタ252は電子回路部250に接続される。また、電子回路部250からは、基体側コネクタ252と並列に外部インタフェイス254が設けられる。表示側コネクタ234は、基体側コネクタ252にも外部インタフェイス254にも接続可能な構造を有している。
本体部分220と表示器部分230とは図示されていないはめあい部分によりはまりあい、一体化することができる。すなわち、表示側コネクタ234を基体側コネクタ252に接続し、信号線232を折畳んで本体部分220又は表示器部分230の接続部分の空間に収納し、本体部分220と表示器部分230とをはめあい部分にはめあわすことで、一体化した生体のしこり検査装置210が得られる。この一体化した物質特性検査装置210の外観は、図1で説明した生体のしこり検査装置10と同じとなり、その形態での使用法も同じとなる。
この生体のしこり検査装置210によれば、物質特性の表示の自由度が格段に増大する。図12−14に、この生体のしこり検査装置210のしこり表示方法の例を示す。
図12は、第1の用い方の例を示す図で、この方法は図1で説明した生体のしこり検査装置10でも可能な方法である。すなわち、本体部分220と表示器部分230とを一体化して用い、外部インタフェイス254を用いて外部の診断装置300に接続する。外部診断装置300としては、例えばより大きな表示画面とデータ処理能力とを有するコンピュータを用いることができる。この方法においては、例えば、検査者が生体のしこり検査装置210を手にもち、被検査者の体表に対して生体のしこり検査装置210を圧接してそのしこりの状態について表示器部分230を用いて観察できるとともに、被検査者も外部診断装置300の画面をみてその様子を知ることができる。
図13は、第2の用い方の例を示す図である。ここでは、表示側コネクタ234と基体側コネクタ252との接続はそのままにして、本体部分220と表示器部分230とのはめあわせを外し、信号線232を延ばして用いる。この方法においては、例えば、被検査者が自分で生体のしこり検査装置210を手にもち、自分の体表に対して生体のしこり検査装置210を圧接しつつ、表示器部分230の画面により、そのしこりの状態等の様子を知ることができる。
図14は、第3の用い方の例を示す図である。ここでは、本体部分220から表示器部分230を外すとともに、表示側コネクタ234と基体側コネクタ252との接続も外し、表示側コネクタ234を外部インタフェイス254に接続する。この方法においては、図13で説明した第2の用い方と同じ用い方が可能であるが、信号線232が本体部分220の端部に接続されるため、本体部分220を手で持って操作することがより容易となる。
本発明に係る実施の形態における生体のしこり検査装置の上面側から見た斜視図である。 本発明に係る実施の形態における生体のしこり検査装置の側面図である。 本発明に係る実施の形態における生体のしこり検査装置の下面側から見た斜視図である。 本発明に係る実施の形態における探触素子周りの詳細図である。 振動子と振動検出センサを積層して構成する例を示す図である。 振動子と振動検出センサを1個の圧電素子の上に構成する例を示す図である。 本発明に係る実施の形態における電子回路部のブロック図である。 本発明に係る実施の形態における硬さ算出部のブロック図である。 他の実施の形態に係る電子回路部のブロック図である。 他の実施の形態に係る硬さ算出部のブロック図である。 さらなる他の実施の形態における生体のしこり検査装置の構成を示す図である。 さらなる他の実施の形態における第1の用い方を説明する図である。 さらなる他の実施の形態における第2の用い方を説明する図である。 さらなる他の実施の形態における第3の用い方を説明する図である。
符号の説明
10,210 生体のしこり検査装置、12 プローブ基体、14 つかみ部、16 生体組織、20 探触素子、22 圧力センサ、24 圧力センサ取り付け台、26 振動子、28 振動検出センサ、30 接触ボール、40 表示素子、50,150 電子回路部、51,254 外部インタフェイス、60 硬さ算出切替回路、62 圧力算出切替回路、64,164 硬さ算出部、66 圧力算出部、68 素子選別部、70 データ収集部、72 表示処理部、74 表示部、96,195b,195a 増幅器、98 位相シフト回路、100,200 周波数変化量検出部、102,202 硬さ変換器、176 パルス波発生器、196 周波数成分分析部、198 位相差算出部、220 本体部分、230 表示器部分、232 信号線、234 表示側コネクタ、252 基体側コネクタ。

Claims (7)

  1. プローブ基体と、
    プローブ基体に2次元に配列されて保持され、生体表面に圧接される複数の探触素子であって、各探触素子は、生体に振動を入射する振動子と、生体からの反射波を検出する振動検出センサとをそれぞれ有する複数の探触素子と、
    振動子の信号入力端と振動検出センサの信号出力端との間に設けられ、探触素子に接触する部分の生体の硬さを算出する硬さ算出器と、
    各探触素子と硬さ算出器との接続を順次切り替える硬さ算出切替回路と、
    各探触素子について算出された硬さを2次元表示する表示器と、
    を備え、
    硬さ算出器は、
    振動検出センサの信号出力端に入力端が接続された増幅器と、
    増幅器の出力端と振動子の信号入力端との間に設けられ、振動子への入力波形と振動検出センサからの出力波形との間に位相差が生じるときは、周波数を変化させて前記位相差をゼロにシフトする位相シフト回路と、
    位相差をゼロにシフトさせるための周波数変化量を検出する周波数変化量検出手段と、
    を含み、探触素子と生体との間の閉ループの共振を維持しつつ、生体の硬さに応じて生ずる周波数変化量の2次元分布から生体のしこり検査を行うことを特徴とする生体のしこり検査装置。
  2. プローブ基体と、
    プローブ基体に2次元に配列されて保持され、生体表面に圧接される複数の探触素子であって、各探触素子は、生体にパルス波を入射する振動子と、生体からの反射波を検出する振動検出センサとをそれぞれ有する複数の探触素子と、
    振動子のパルス波入射端と振動検出センサの反射波検出端との間に設けられ、探触素子に接触する部分の生体の硬さを算出する硬さ算出部と、
    各探触素子と硬さ算出器との接続を順次切り替える硬さ算出切替回路と、
    各探触素子について算出された硬さを2次元表示する表示器と、
    を備え、
    硬さ算出部は、
    入射されるパルス波の周波数成分分析を行い、各正弦波成分の周波数と、その周波数における正弦波成分と余弦波成分とから求められる位相差のスペクトル分布を求める入射波周波数成分分析手段と、
    反射波の周波数成分分析を行い、各正弦波成分の周波数と、その周波数における正弦波成分と余弦波成分とから求められる位相差のスペクトル分布を求める反射波周波数成分分析手段と、
    入射波のスペクトル分布と反射波のスペクトル分布とを比較し、それぞれの周波数fxにおける、その入射波の位相と反射波の位相の差である位相差θxを求める周波数変化算出手段と、
    入射波の周波数に対する反射波の振幅ゲイン及び位相差の関係を表す基準伝達特性曲線を用い、周波数fxにおける位相差θxについて、周波数を変化させることで位相差θxをゼロにシフトさせるための周波数変化量dfを算出する周波数変化量検出手段と、
    を備え、生体の硬さに応じて生ずるdfの2次元分布から生体のしこり検査を行うことを特徴とする生体のしこり検査装置。
  3. 請求項1または2に記載の生体のしこり検査装置において、
    各探触素子に設けられた複数の圧力センサと、
    圧力センサの端子間に設けられ、探触素子に接触する部分の生体組織への押し付け圧を算出する押し付け圧算出器と、
    各探触素子と押し付け圧算出器との接続を順次切り替える圧力算出切替回路と、
    各圧力センサの押し付け圧を所定の許容幅と比較し、許容幅以内の押し付け圧が検出される探触素子を選別する素子選別手段と、
    を備えることを特徴とする生体のしこり検査装置。
  4. 請求項3に記載の生体のしこり検査装置において、
    表示器は、選別された探触素子について算出された硬さに基づいて、生体のしこりの表示を行うことを特徴とする生体のしこり検査装置。
  5. 請求項1または2に記載の生体のしこり検査装置において、
    表示器は、プローブ基体において各探触素子が配列される側の裏面に設けられることを特徴とする生体のしこり検査装置。
  6. 請求項5に記載の生体のしこり検査装置において、
    プローブ基体の裏面側に設けられ、表示器を収納する収納部と、
    収納部の一部に設けられ、表示器と接続される基体側接続部と、
    表示器から引き出され、一端に基体側接続部に着脱可能に接続される表示側接続部を有する信号線と、
    を備え、信号線の表示側接続部を基体側接続部に接続したまま、表示器がプローブ基体の収納部に収納されることを特徴とする生体のしこり検査装置。
  7. 請求項6に記載の生体のしこり検査装置において、
    さらに、プローブ基体は、外部機器に接続するための外部接続部を有し、
    表示側接続部は、外部接続部にも接続可能である構造を有していることを特徴とする生体のしこり検査装置。
JP2003341875A 2003-03-05 2003-09-30 生体のしこり検査装置 Expired - Fee Related JP4392516B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341875A JP4392516B2 (ja) 2003-03-05 2003-09-30 生体のしこり検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003059097 2003-03-05
JP2003341875A JP4392516B2 (ja) 2003-03-05 2003-09-30 生体のしこり検査装置

Publications (3)

Publication Number Publication Date
JP2004283547A JP2004283547A (ja) 2004-10-14
JP2004283547A5 JP2004283547A5 (ja) 2006-11-16
JP4392516B2 true JP4392516B2 (ja) 2010-01-06

Family

ID=33302102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341875A Expired - Fee Related JP4392516B2 (ja) 2003-03-05 2003-09-30 生体のしこり検査装置

Country Status (1)

Country Link
JP (1) JP4392516B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230657A (ja) * 2005-02-24 2006-09-07 Spectratech Inc 可視化装置
JP4517149B2 (ja) * 2005-03-09 2010-08-04 国立大学法人高知大学 硬さ測定器および硬さ測定装置、ならびに硬さ評価方法
JP5071767B2 (ja) * 2006-12-08 2012-11-14 学校法人日本大学 生体組織血流量測定装置
JP5190979B2 (ja) * 2007-06-05 2013-04-24 学校法人日本大学 2次元的硬さ測定装置
JP5234545B2 (ja) * 2008-11-13 2013-07-10 学校法人日本大学 物質の硬さ分布表示システム及び物質の硬さ分布表示方法
US9618319B2 (en) * 2011-02-18 2017-04-11 The General Hospital Corporation Laser speckle microrheometer for measuring mechanical properties of biological tissue
KR102279341B1 (ko) 2019-07-23 2021-07-20 한국과학기술원 진동 특성의 변화를 이용한 비침습적 생체지표 측정 방법 및 장치
JP6954667B2 (ja) * 2019-10-17 2021-10-27 吉田 哲男 皮膚の粘弾性特性の測定方法および皮膚の粘弾性特性の測定装置

Also Published As

Publication number Publication date
JP2004283547A (ja) 2004-10-14

Similar Documents

Publication Publication Date Title
US10517626B2 (en) Semiconductor tweezers and instrumentation for tissue detection and characterization
KR100427559B1 (ko) 생체 변수 측정장치
AU2020202142A1 (en) Personal health data collection
JP2011131059A (ja) 感圧性カテーテルの校正システム
JP4392516B2 (ja) 生体のしこり検査装置
JP2007222605A (ja) 超音波診断装置
JP2000051156A (ja) 触覚センサ信号処理装置
JP2005087226A (ja) 体組成情報取得装置
JP4654352B2 (ja) 超音波検査方法、及び超音波検査装置
US20130172696A1 (en) Medical hand-held measuring device with exchangeable probe
US10390919B2 (en) Inspection apparatus for osseointegration of implants
TW200933127A (en) Pressure-sensing apparatus
JP4348467B2 (ja) 光を用いた生体の物質特性検査装置
CN1524490A (zh) 压力型脉搏波检测装置及使用该装置的血压计
JP5190979B2 (ja) 2次元的硬さ測定装置
US8167614B2 (en) Apparatus and method of irregular bone defect detection of dental implant
JP5234545B2 (ja) 物質の硬さ分布表示システム及び物質の硬さ分布表示方法
KR20070056886A (ko) 맥파측정용 압전 센서 및 이를 이용한 맥파 측정 시스템
JP2014094246A (ja) 医療画像測定装置及び医療画像測定方法
JP6150331B2 (ja) 舌測定装置
KR200378923Y1 (ko) 휴대형 맥파 측정장치
JP7441390B1 (ja) ゲルシート、超音波検査システム、及びゲルシートの製造方法
KR100447827B1 (ko) 생체전기 임피던스법에 의한 맥진기
JP2010256307A (ja) 硬さ測定装置
JP4747300B2 (ja) 音響インピーダンス測定方法、音響インピーダンス測定装置、物体特性評価方法、及び物体特性評価装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees