JP4389244B2 - Vehicle contact surface frictional force improving device - Google Patents

Vehicle contact surface frictional force improving device Download PDF

Info

Publication number
JP4389244B2
JP4389244B2 JP2003200754A JP2003200754A JP4389244B2 JP 4389244 B2 JP4389244 B2 JP 4389244B2 JP 2003200754 A JP2003200754 A JP 2003200754A JP 2003200754 A JP2003200754 A JP 2003200754A JP 4389244 B2 JP4389244 B2 JP 4389244B2
Authority
JP
Japan
Prior art keywords
nozzle
road surface
frictional force
wheel
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003200754A
Other languages
Japanese (ja)
Other versions
JP2005008136A5 (en
JP2005008136A (en
Inventor
健太郎 潮田
Original Assignee
健太郎 潮田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健太郎 潮田 filed Critical 健太郎 潮田
Priority to JP2003200754A priority Critical patent/JP4389244B2/en
Publication of JP2005008136A publication Critical patent/JP2005008136A/en
Publication of JP2005008136A5 publication Critical patent/JP2005008136A5/ja
Application granted granted Critical
Publication of JP4389244B2 publication Critical patent/JP4389244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Description

【0001】
【発明の所属する技術分野】
本発明は濡れた路面での車輪の接地性能を向上し、制動、加速、操舵などの運動性を確保するものである。
【0002】
【従来の技術】
従来、濡れた路面で車輪と路面との摩擦係数が大幅に低下し、制動、加速、操舵性に大きな悪影響がでる。
タイヤのトレッドパターンの工夫により接地面からの排水性能を高める努力がなされている。また、急制動による車輪のロックを防ぐため、各車輪の制動力を調整する仕組み(ABS:Anti−Skid Brake System)や、加速時のスリップを検出して車輪への過剰トルクを押さえる仕組み(トラクションコントロール)が考案・実用化されてきた。
しかし、それらの工夫をもってしても濡れた路面では制動距離は乾燥路面より大幅に伸びる。また、車輪のスリップに起因する車体の横流れ等、安全性、操縦性は濡れた路面では大幅に低下する。それは、路面が濡れているという、根本原因を放置しているからである。
また、圧雪面や凍結面上のスリップ防止には、スパイクタイヤが有効であるが、舗装面が露出した部分や、圧雪面や凍結面の層が薄い部分ではその層の下にある舗装面を傷つける。また削られたアスファルトが粉となって飛散し公害となるなどの問題がある。従って現状ではスパイクタイヤの一般使用は制限されている。
【0003】
【発明が解決しようとする課題】
本発明は、路面上の接地面直前を必要時にのみ瞬間的かつ局地的に排水し、乾燥路面に近い状態にして、路面が濡れているという原因そのものを除去する原理的解決により、接地力を確保する。
また、圧雪面や凍結面に対しても、高圧空気や高圧水蒸気を用いるので、舗装面に対して作用しても影響がない。
【0004】
【課題を解決するための手段】
車輪接地面直前に配置された高圧空気噴射ノズルにより、接地直前にその部分の路面上の水分を吹き飛ばす。圧雪路面等では噴射を間欠的に行うことにより圧雪面上に凹凸を作り摩擦力を向上させる。さらに、タイヤのトレッド面にも圧縮空気を吹付け、トレッド面やトレッド溝内の水分や雪を除去する。
圧雪面や凍結面においては、高圧空気の代わりに高圧水蒸気を用いる、あるいは高圧水蒸気を高圧空気と併用する。
【0005】
【発明の実施の形態】
図1に示すように、車輪1002の接地面1003の直前に配置された高圧空気噴射ノズル1001により、接地直前にその部分の路面上の水分を吹き飛ばす。接地面直前は一瞬の間、乾燥状態あるいはそれに近い状態となり、その直後に車輪が通過する。
図2に示すように、噴射用の高圧空気はコンプレッサー2003によりタンク2004に蓄積されており、制動時などの必要時にノズルより噴射される。通常走行中も常時噴射する方式も考えられるが、コンプレッサーは大容量となる。
限定された時間のみ使用する競技用車両等の用途では、コンプレッサーを用いず、圧縮空気ボンベのみを用いても良い。
接地面を排水するには、接地面直前にブラシやブレードを用いることも考えられるが、細かな路面の凹凸に溜まった水に対して排水が効果的に行われないことが予想される。また、ブラシやブレードの磨耗、高速走行時に作動した場合路面との間に強烈な摩擦が起きブレーキバランスに影響する、部材が引きちぎられて飛散するなどかえって危険な副作用が予想されるので、非接触で排水が行われる圧縮空気による方法が最も理想的である。
【0006】
図2のように、噴射ユニット2005は車輪支持部(車輪裏側のブレーキ取付け部やサスペンションの車輪側支点など、いわゆるバネ下)を基部とすれば、車輪の上下動(サスペンションのストローク)や操舵時にも車輪と共に動くので、常に接地部直前に噴射を行うことが出来る。この場合、コンプレッサー2003や圧縮空気のタンク2004は車体側にあり、バネ下の側にある噴射ユニットとは可撓性のあるホース2002でつながれ、圧縮空気を噴射ユニットに送る。2001は5ポート弁であり、噴射ユニットの伸張時に圧縮空気流路を開く。また、制動後には、伸張した噴射ユニットの復帰のために、圧縮空気方向を切換える。サスペンションが非常に硬く、制動時にもほとんど車体が前のめりしない(サスペンションのストロークが小さい)場合や、操舵時にも向きを変えない後輪などの場合は、ノズルも車体側に取付けられていても良い。
乗用車の場合はノズルは前輪につけるのみで十分制動効果をあげることが出来るが、車体の長い重車両やトレーラには前輪以外の車輪にノズルを装着すると一層効果的である。
特に重車両は慣性が大きく、濡れた路面での接地力が低下すると制動距離が伸びる。また、慣性質量が大きいため事故での破壊エネルギーが大きい。反面、これら重車両には空気ブレーキを装着したものが多く見られ、そのためのコンプレッサーをすでに備えている。したがってそれを本発明の用途に兼用することが出来る。
【0007】
圧縮空気の圧力を路面に有効に作用させるためにノズルは出来るだけ路面に近い方が良い。
限定されたほぼ平坦な路面を走る競技用車両では、雨天走行においてノズルは接地面直前に常時露出していてもよいが、通常の用途の車両では、路面すれすれにノズルが常にあると、路面の段差、傾斜、突起などに触れてノズルを破損する可能性が高い。そのため、平常の走行で予想される段差、傾斜、突起、石ころなどによる接触を起こさない十分な路面からの高さにノズルが引込まれており(第2の位置:図3b)、必要時のみ瞬時にノズルが路面すれすれの位置に展開する(第1の位置:図3a)ことが実用的である(請求項)。
ノズルは路面近くまで降りてくるがあくまでも路面と非接触であるので、路面の細かな凹凸や起伏に影響されない。
【0008】
図4にこのように展開を行う噴射ユニットの機構例を示す。
展開時には、シリンダー4001のポート4002から圧縮空気が流入し、ピストン4013を押し、ノズル管4004が伸張する。ノズル管表面には案内溝4006があるので、伸張の終点近くでノズルヘッド4005は約90度回転し、接地面に平行になる。この位置(第1の位置)で、シリンダー4001内の高圧空気が、バイパス流路4014を通じてノズル管ポート4005からノズル管に流入し、ノズル1001から噴出する。つまり、バイパス流路4014、ピストンスカート4007、シリンダ内壁、ノズル管ポート4008は、ノズル管へ圧縮空気を導くためのスライド弁を形成している。
これら一連の展開動作は一瞬の間に行われる。また、噴射持続時間は通常の停止にかかる数秒間である。
制動終了後は、ポート4003から圧縮空気が流入し、ノズルヘッド部は元の回転位置に戻り、ピストンが収縮して、ノズル管が元に位置(第2の位置)に引込まれる。
【0009】
ノズルが第1の位置に展開している時、うねりのある路面とノズルの衝突を避けクリアランスを制御にするには、ノズル支持部にノズルを路面方向に付勢するバネを備え、第1の位置に展開した状態において、バネによりノズル先端部を路面方向へ押し付けようとする力と、高圧空気あるいは高圧水蒸気の噴射空気圧によってもたらされる路面からの反力のバランスにより、ノズルと路面との空隙を一定に保つオープン制御(請求項2)、あるいは空気圧センサや超音波センサなどによりノズルから路面までの距離を検出し、ノズルを上下する手段を動作させノズル位置を制御するフィードバック制御を行う(請求項3)。
特に、噴射ノズルを純流体センサの一部として構成する事が出来る。純流体センサによる近接距離検知には、背圧形と環状噴流形があるが、環状噴流形を用いた実施例を図5に示す。
センサ管5001は、噴射対象面(路面)5008が遠い場合は、噴流の巻込み現象のため、負圧であるが、噴射対象面が近接すると正圧に転じる。正圧はベローズ5002を膨張させる。
噴射ユニットはピボット5003を中心に揺動可能となってバネ下の支持部5004に取付けられているので、ベローズが膨張すると噴射ユニットは上方に持上げられノズルが路面から離れる方向へ動く。
つまりこの実施例では、センサ管の圧力が路面までの距離の検出信号であり、その検出レベルに応じて膨張・収縮するベローズがノズルを上下する手段となっている。
また、弱いバネ5007はノズル先端を路面方向に付勢するバネであり、ノズル先端部の路面方向への押し付け圧を発生する。噴射の力(噴射の反力)はノズルを路面から押し上げるように働くので、バネ5007は圧縮方向の力を受け反発力が増す。このようにして、バネ5007は、ノズルが路面から離れる力(噴射の反力)と押し付け圧とのバランスとり、ノズルの路面からの空隙を一定に保つ。
5005はソリ状のノズルプロテクタであり、突起物からノズルを保護すると共に、突起物に乗り上げた時は、強いバネ5006の反発力に抗して噴射ユニットを上方に突上げてノズルを路面から離す(弱いバネ5007は縮みきって強いバネ5006が働くようになる)。
つまり、緩やかな路面のうねりについては噴射の反力と環状噴流の圧力により、これら力との弱いバネ5007の反発力とのバランスでノズルの路面からの距離を適正に追従させる。路面上の突起物のように大きく急峻な変化に対しては、プロテクタ5005が突上げる力と強いバネ5006の反発力とのバランスで、ノズルの衝突を防ぐよう路面からの高さを制御する。
以上、機械的手段と空気圧手段だけにより、路面のうねりや突起物に対し、ノズルを保護し適正位置を保つ実施例にについて述べた。
さらに、環状噴流の圧力を電気信号に変換したり、超音波センサ、光学センサなどを用いてノズルから路面までの距離を検知し、その検知信号を従って、ノズル支持部に設けられた電気的なアクチュエータによりノズルを上下させ、ノズル位置を制御する方法などがある。
【0010】
図6に示すように、タイヤのトレッド面にも高圧空気を吹付けるノズル6001を付加えることにより、トレッド面やトレッド溝内の水分や雪を除去すると、タイヤと路面との摩擦力が向上する。とくにトレッド溝に圧雪が詰まると剪断力が発揮できなくなるので、これを吹飛ばすことは効果的である。圧雪の場合などは、圧縮空気の代わりに高圧水蒸気を用いると、より効果的である。また、トレッド面に付着した油分なども除去できる。
【0011】
次に噴射を間欠的に行う場合について述べる。
図7に示すように、圧雪路においては噴射を間欠的に行う。噴射が行われた時は圧雪面に断続的に窪み7001が出来る。従って圧雪面に凹凸ができ、窪みの角部分がタイヤとの剪断力を発生し滑りにくくなる。また、噴射が間欠的なので圧縮空気の消費量を押さえることができる。
寒冷地においては、高圧空気の代わりに高圧水蒸気を用いると、圧雪だけでなく、氷結面にも有効である。
【0012】
図8に高圧水蒸気と高圧空気とを併用する場合を示す。
1001、6001は、高圧水蒸気ノズルであり、8001、8002は高圧水蒸気ノズルである。
高圧水蒸気ノズル8001は間欠的噴射により、圧雪または氷結路面を融かし断続的に溝7001を形成する。高圧空気ノズル1001は融けた水を吹飛ばす。2005は高圧空気の噴射ユニット、8003は高圧水蒸気の噴射ユニットである。
高圧水蒸気ノズル8002はトレッド溝内に入り込んだ圧雪を融かして吹飛ばす。さらに断続的に溝7001を形成する。高圧空気ノズル6001は融けた水をトレッド面から吹飛ばし乾燥させる。このとき,乾燥度合によっては、トレッド面の残留水分が接地した際に再氷結し接地面との間に吸着力を生じて,接地力を増大させる効果が生じる。
【0013】
本機能の第一義の必要時は、急制動時である。通常の穏やかなブレーキ操作時には作動せず、ある程度の急ブレーキ操作時にのみに作動するようにすれば、圧縮空気の平均使用量は少なく、コンプレレッサは小型のものですむ。また、噴射時間は数秒間であるし、すぐに再び急制動を行うことはまず無いので、圧縮空気の貯蔵タンクも噴射一回分に見合った容量でよい。
急ブレーキ操作の検出には、パニックブレーキ検出機能を流用することも考えられる。ABSにはパニックブレーキ操作の検出機能が付加されるようになった。これは、いざという時全力でブレーキを踏み続ける操作に慣れていない運転者の場合、肝心のABSの効果を十分発揮できないという事例に鑑み付加された機能であり、ブレーキがある程度急速に踏みこまれた場合、自動的にフルブレーキをかけてしまう(ブレーキ踏力最大としABSコントロールを効かせる)機能である。このパニックブレーキ検出信号に本発明を連動させると、ABSによるブレーキ制御とあいまって高い制動効果が得られ、かつ、緊急制動としての作動原因も自然である。
【0014】
本発明はさらに急制動時以外でも必要とされる場合がある。すなわち急加速操作検出時あるいはスリップ検出時に本発明の機能を起動する。
急な加速操作や旋回操作をを検知したとき、または各方向の車体加速度が一定値を超えた時に起動する。
又は、トラクションコントロールと連動させる。トラクションコントロールは路面状態に対しての過剰なトルクによる車輪のスリップを予測または検出して、エンジン出力を適性値まで下げたり、駆動系の制御やブレーキを作動させたりするものであるが、この機能を起動させる信号を、本発明の起動信号に兼用させると、自然な状況でのスリップ防止制御が可能となる。
【0015】
【発明の効果】
本発明は路面の濡れを除去するという根本的原因除去により、車輪のスリップを防止するものであり、また圧縮空気を用いるため路面に細かい凹凸があっても、排水が可能であり、非接触であるので路面との摩擦による操縦性への影響や部材の破損の恐れが無い。また、圧雪や氷結などの道路状況にも応用出来、路面に対する影響も無い。比較的簡単・軽量・安価で信頼性の高い装置として実現可能である。
また、本発明は乗用車、重車両のような自動車だけでなく、航空機の着陸用車輪、新交通システムや鉄道の車輪にも応用できる。
【図面の簡単な説明】
【図1】本発明の基本構成。
【図2】本発明の全体構成。
【図3】必要時のみ本発明の機能を行う機構を展開する様子を示す。
【図4】必要時に展開する噴射ユニットの実施例。
【図5】空気圧および機械的手段によりノズル位置を制御する実施例。
【図6】タイヤトレッド面にも噴射を行う実施例。
【図7】間欠的噴射を行う実施例。
【図8】高圧空気と高圧水蒸気とを併用する実施例。
【符号の説明】
1001 噴射ノズル
1002 車輪
1003 接地面
2002 可撓性ホース
2003 コンプレッサ
2004 圧縮空気タンク
2005 噴射ユニット
4002 伸張ポート
4003 収縮ポート
4004 ノズル管
4005 ノズルヘッド
4006 案内溝
4007 ピストンスカート
4008 ノズル管ポート
4013 ピストン
4014 バイパス流路
5001 センサ管
5002 ベローズ
5003 ピボット(噴射ユニットの揺動中心)
5004 噴射ユニット支持部
5005 ノズルプロテクタ
5006 強いばね
5007 弱いバネ
5008 噴射対象面(路面)
6001 噴射ノズル(トレッド面用)
7001 窪み(圧雪面または氷結面に形成される)
8001 高圧蒸気ノズル(路面用)
8002 高圧蒸気ノズル(トレッド面用)
高圧蒸気噴射ユニット
[0001]
[Technical field to which the invention belongs]
The present invention improves the ground contact performance of a wheel on a wet road surface and secures motility such as braking, acceleration, and steering.
[0002]
[Prior art]
Conventionally, the coefficient of friction between the wheel and the road surface is greatly reduced on a wet road surface, and the braking, acceleration, and steering performance are greatly adversely affected.
Efforts are being made to improve drainage performance from the contact surface by devising tire tread patterns. In addition, a mechanism that adjusts the braking force of each wheel (ABS: Anti-Skid Brake System) or a mechanism that detects slip during acceleration and suppresses excessive torque to the wheel to prevent the wheels from locking due to sudden braking (traction) Control) has been devised and put to practical use.
However, even with these contrivances, on a wet road surface, the braking distance is significantly longer than on a dry road surface. In addition, safety and maneuverability such as the lateral flow of the vehicle body caused by wheel slip are greatly reduced on wet road surfaces. This is because the root cause that the road surface is wet is left unattended.
Spike tires are effective for preventing slippage on snow-capped surfaces and frozen surfaces, but in areas where the pavement surface is exposed or where the surface of the snow-capped surface or frozen surface is thin, the pavement surface under that layer is removed. hurt. In addition, there is a problem that the asphalt that has been cut off is scattered and becomes pollution. Therefore, at present, the general use of spike tires is limited.
[0003]
[Problems to be solved by the invention]
In the present invention, the ground contact force on the road surface is drained instantaneously and locally only when necessary , and is brought into a state close to a dry road surface to eliminate the cause of the wet road surface. Secure.
In addition, since high-pressure air or high-pressure steam is used for the snow-capped surface or the frozen surface, there is no effect even if it acts on the pavement surface.
[0004]
[Means for Solving the Problems]
The high-pressure air injection nozzle disposed immediately before the wheel contact surface blows away moisture on the road surface immediately before the contact with the wheel. On the snow-capped road surface, etc., by intermittently injecting, unevenness is created on the snow-capped surface to improve the frictional force. Further, compressed air is blown onto the tread surface of the tire to remove moisture and snow in the tread surface and tread groove.
On the snow-capped surface and the frozen surface, high-pressure steam is used instead of high-pressure air, or high-pressure steam is used in combination with high-pressure air.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the high-pressure air injection nozzle 1001 disposed immediately before the ground contact surface 1003 of the wheel 1002 blows away moisture on the road surface immediately before the ground contact. Immediately before the ground contact surface, it is in a dry state or a state close to it for a moment, and the wheel passes immediately after that.
As shown in FIG. 2, high-pressure air for injection is accumulated in a tank 2004 by a compressor 2003, and is injected from a nozzle when necessary, such as during braking. A method of always injecting during normal driving is also conceivable, but the compressor has a large capacity.
In an application such as a competition vehicle that uses only a limited time, a compressed air cylinder may be used instead of a compressor.
In order to drain the ground surface, it is conceivable to use a brush or a blade immediately before the ground surface, but it is expected that drainage will not be effectively performed on the water accumulated on the unevenness of the fine road surface. In addition, there is a risk of non-contact because there are dangerous side effects such as wear of brushes and blades, strong friction with the road surface when operating at high speed, affecting brake balance, and parts being torn and scattered. The ideal method is by compressed air where the water is drained.
[0006]
As shown in FIG. 2, when the injection unit 2005 is based on a wheel support portion (a brake attachment portion on the rear side of the wheel or a so-called unsprung portion such as a wheel side fulcrum of the suspension), the vertical movement of the wheel (suspension stroke) or steering is performed. Since it also moves with the wheel, it can always inject just before the grounding part. In this case, the compressor 2003 and the compressed air tank 2004 are on the vehicle body side, and are connected to the injection unit on the unsprung side by a flexible hose 2002 to send the compressed air to the injection unit. 2001 is a 5-port valve which opens the compressed air flow path when the injection unit is extended. In addition, after braking, the compressed air direction is switched to restore the extended injection unit. In the case where the suspension is very hard and the vehicle body hardly turns forward even when braking (the suspension stroke is small), or in the case of a rear wheel that does not change its direction during steering, the nozzle may be attached to the vehicle body side.
In the case of a passenger car, a sufficient braking effect can be obtained simply by attaching the nozzle to the front wheel. However, it is more effective to install the nozzle on wheels other than the front wheel for heavy vehicles and trailers with a long vehicle body.
In particular, heavy vehicles have large inertia, and the braking distance increases when the ground contact force on a wet road surface decreases. In addition, because of the large inertial mass, the energy to break in an accident is large. On the other hand, many of these heavy vehicles are equipped with air brakes and already have a compressor for this purpose. Therefore, it can be used for the purpose of the present invention.
[0007]
In order to effectively apply the pressure of compressed air to the road surface, the nozzle should be as close to the road surface as possible.
In competition vehicles running on limited, almost flat road surfaces, the nozzles may always be exposed just before the ground contact surface in rainy weather, but in normal use vehicles, if there are always nozzles on the road surface, There is a high possibility of damaging the nozzle by touching steps, slopes, or protrusions. Therefore, the nozzle is drawn to a sufficient height from the road surface that does not cause contact due to steps, slopes, protrusions, stone rollers, etc. that are expected in normal driving ( second position: FIG. 3b), and instantaneously only when necessary. nozzle is expanded at the position grazing the road surface (a first position: Figure 3a) it is practical (claim 1).
The nozzle descends to near the road surface but is not in contact with the road surface, so it is not affected by fine irregularities or undulations on the road surface.
[0008]
FIG. 4 shows an example of the mechanism of the injection unit that performs the expansion in this way.
At the time of deployment, compressed air flows from the port 4002 of the cylinder 4001, pushes the piston 4013, and the nozzle tube 4004 expands. Since there is a guide groove 4006 on the surface of the nozzle tube, the nozzle head 4005 rotates about 90 degrees near the end point of expansion and becomes parallel to the ground contact surface. At this position (first position) , high-pressure air in the cylinder 4001 flows into the nozzle pipe from the nozzle pipe port 4005 through the bypass flow path 4014 and is ejected from the nozzle 1001. That is, the bypass flow path 4014, the piston skirt 4007, the cylinder inner wall, and the nozzle pipe port 4008 form a slide valve for guiding compressed air to the nozzle pipe.
A series of these unfolding operations are performed in an instant. Moreover, the injection duration is several seconds required for normal stop.
After braking, compressed air flows from the port 4003, the nozzle head portion returns to the original rotational position, the piston contracts, and the nozzle tube is pulled back to the original position (second position) .
[0009]
In order to control the clearance while avoiding the collision between the undulating road surface and the nozzle when the nozzle is deployed at the first position , the nozzle support portion is provided with a spring for urging the nozzle in the road surface direction. In the state where the nozzle is deployed to the position, the gap between the nozzle and the road surface is created by the balance between the force to push the nozzle tip portion toward the road surface by the spring and the reaction force from the road surface caused by the jet air pressure of high pressure air or high pressure steam. Open control that keeps constant (Claim 2), or feedback control that detects the distance from the nozzle to the road surface by an air pressure sensor or an ultrasonic sensor and operates the means for moving the nozzle up and down to control the nozzle position (Claim) 3).
In particular, the spray nozzle can be configured as part of a pure fluid sensor. The proximity distance detection by the pure fluid sensor includes a back pressure type and an annular jet type. FIG. 5 shows an embodiment using the annular jet type.
When the injection target surface (road surface) 5008 is far away, the sensor tube 5001 has a negative pressure due to the entanglement phenomenon of the jet flow. However, when the injection target surface approaches, the sensor tube 5001 changes to a positive pressure. Positive pressure causes bellows 5002 to expand.
Since the injection unit can swing about the pivot 5003 and is attached to the unsprung support portion 5004, when the bellows expands, the injection unit is lifted upward and the nozzle moves away from the road surface.
That is, in this embodiment, the pressure of the sensor tube is a detection signal of the distance to the road surface, and the bellows that expands and contracts according to the detection level is a means for moving the nozzle up and down.
Further, the weak spring 5007 is a spring that biases the nozzle tip in the road surface direction, and generates a pressure for pressing the nozzle tip in the road surface direction. Since the injection force (reaction force of injection) works to push the nozzle up from the road surface, the spring 5007 receives a force in the compression direction and the repulsion force increases. In this way, the spring 5007 balances the force with which the nozzle moves away from the road surface (reaction force of injection) and the pressing pressure, and keeps the gap from the road surface of the nozzle constant.
Reference numeral 5005 denotes a sledge-shaped nozzle protector that protects the nozzle from the protrusion and, when riding on the protrusion, pushes up the injection unit against the repulsive force of the strong spring 5006 to separate the nozzle from the road surface. (The weak spring 5007 is fully contracted and the strong spring 5006 is activated).
In other words, with respect to the gentle undulation of the road surface, the distance from the road surface of the nozzle is appropriately followed by the balance between the reaction force of the injection and the pressure of the annular jet, and the balance of the repulsive force of the spring 5007 with these forces. For large and steep changes such as protrusions on the road surface, the height from the road surface is controlled so as to prevent the nozzle from colliding with the balance between the force that the protector 5005 pushes up and the repulsive force of the strong spring 5006.
As described above, the embodiment has been described in which only the mechanical means and the pneumatic means are used to protect the nozzle and keep the proper position against road surface undulation and protrusions.
Furthermore, the pressure of the annular jet is converted into an electric signal, or the distance from the nozzle to the road surface is detected using an ultrasonic sensor, an optical sensor, etc. , and the detection signal is accordingly applied to the electric signal provided on the nozzle support section. There is a method of controlling the nozzle position by moving the nozzle up and down by an actuator .
[0010]
As shown in FIG. 6, by adding a nozzle 6001 that blows high-pressure air to the tread surface of the tire, removing moisture and snow in the tread surface and the tread groove improves the frictional force between the tire and the road surface. . In particular, if the snow is clogged in the tread groove, the shearing force cannot be exerted, so it is effective to blow it off. In the case of compressed snow, it is more effective to use high-pressure steam instead of compressed air. Also, oil and the like attached to the tread surface can be removed.
[0011]
Next, the case where injection is performed intermittently will be described.
As shown in FIG. 7, the injection is intermittently performed on the snowy road. When jetting is performed, a depression 7001 is intermittently formed on the snow-capped surface. Accordingly, the pressure snow surface is uneven, and the corners of the depressions generate shearing force with the tire and are difficult to slip. Further, since the injection is intermittent, the consumption of compressed air can be suppressed.
In cold regions, using high-pressure steam instead of high-pressure air is effective not only for compressed snow but also for icing surfaces.
[0012]
FIG. 8 shows a case where high-pressure steam and high-pressure air are used in combination.
Reference numerals 1001 and 6001 denote high-pressure steam nozzles, and 8001 and 8002 denote high-pressure steam nozzles.
The high-pressure steam nozzle 8001 melts the pressure snow or icing road surface intermittently and intermittently forms grooves 7001. The high pressure air nozzle 1001 blows away the melted water. Reference numeral 2005 denotes a high-pressure air injection unit, and reference numeral 8003 denotes a high-pressure steam injection unit.
The high pressure steam nozzle 8002 melts and blows off the pressure snow that has entered the tread groove. Further, the groove 7001 is formed intermittently. The high-pressure air nozzle 6001 blows away the melted water from the tread surface and dries it. At this time, depending on the degree of dryness, when the residual moisture on the tread surface comes into contact with the ground, re-freezing occurs, and an adsorbing force is generated between the tread surface and the grounding surface, thereby increasing the grounding force.
[0013]
The primary need for this function is during sudden braking. If it does not operate during normal gentle braking operation, but only during certain sudden braking operations, the average amount of compressed air used is small and the compressor can be small. Further, since the injection time is several seconds, and sudden braking is rarely performed immediately, the storage tank for compressed air may have a capacity corresponding to one injection.
It is conceivable to use a panic brake detection function for detecting a sudden braking operation. The ABS has a function to detect panic brake operation. This is a function added in view of the case where drivers who are not accustomed to the operation of continuing to step on the brake in the event of an emergency cannot fully demonstrate the effect of the essential ABS. In this case, the full brake is automatically applied (the brake pedal force is maximized and the ABS control is applied). When the present invention is linked to this panic brake detection signal, a high braking effect is obtained together with the brake control by ABS, and the cause of operation as emergency braking is natural.
[0014]
The present invention may be further required even during sudden braking. That is, the function of the present invention is activated when a sudden acceleration operation is detected or when a slip is detected.
It is activated when a sudden acceleration or turning operation is detected, or when the vehicle acceleration in each direction exceeds a certain value.
Or linked to traction control. Traction control predicts or detects wheel slip due to excessive torque with respect to the road surface condition, and lowers engine output to an appropriate value or activates drive system control and brakes. If the signal that activates is also used as the activation signal of the present invention, slip prevention control in a natural situation becomes possible.
[0015]
【The invention's effect】
The present invention prevents the slipping of the wheel by removing the root cause of removing the wetness of the road surface, and because it uses compressed air, it can drain even if there are fine irregularities on the road surface, and it is non-contact As a result, there is no risk of influence on maneuverability or damage to members due to friction with the road surface. It can also be applied to road conditions such as snow pressure and freezing, and there is no impact on the road surface. It can be realized as a relatively simple, lightweight, inexpensive and highly reliable device.
Further, the present invention can be applied not only to automobiles such as passenger cars and heavy vehicles, but also to aircraft landing wheels, new traffic systems, and railway wheels.
[Brief description of the drawings]
FIG. 1 shows a basic configuration of the present invention.
FIG. 2 is an overall configuration of the present invention.
FIG. 3 shows how a mechanism that performs the functions of the present invention is deployed only when necessary.
FIG. 4 shows an embodiment of an injection unit that is deployed when necessary.
FIG. 5 shows an embodiment in which the nozzle position is controlled by air pressure and mechanical means.
FIG. 6 shows an embodiment in which injection is also performed on the tire tread surface.
FIG. 7 shows an embodiment in which intermittent injection is performed.
FIG. 8 shows an example in which high-pressure air and high-pressure steam are used in combination.
[Explanation of symbols]
1001 Injection nozzle 1002 Wheel 1003 Ground surface 2002 Flexible hose 2003 Compressor 2004 Compressed air tank 2005 Injection unit 4002 Expansion port 4003 Contraction port 4004 Nozzle pipe 4005 Nozzle head 4006 Guide groove 4007 Piston skirt 4008 Nozzle pipe port 4013 Piston 4014 Bypass flow path 5001 Sensor tube 5002 Bellows 5003 Pivot (Oscillation center of injection unit)
5004 Injection unit support 5005 Nozzle protector 5006 Strong spring 5007 Weak spring 5008 Injection target surface (road surface)
6001 Injection nozzle (for tread surface)
7001 Indentation (formed on the surface of snow or ice)
8001 High-pressure steam nozzle (for road surface)
8002 High-pressure steam nozzle (for tread surface)
High pressure steam injection unit

Claims (3)

路面と車輪のトレッド面との間の摩擦力により加速、制動、旋回を行う車両において、摩擦力を発生する前記2つの面、すなわち路面および車輪のトレッド面、の摩擦力を向上するため、タイヤと路面が接する面、すなわち接地面、の直前の路面に対して、あるいは接地面直前の路面と車輪のトレッド面との両方に対して、高圧空気あるいは高圧水蒸気を噴射するノズルを設け、前記ノズルは、急ブレーキ操作を検出した場合、急加速操作を検出した場合、あるいはスリップを検出した場合に、車輪の接地面直前で路面に極めて接近する第1の位置に自動的かつ瞬間的に展開し、上記の場合以外には平常走行時に予想される路面の段差、傾斜、突起、石ころなどを回避できるに十分な路面からの高さにある第2の位置に保持されている接地面摩擦力向上装置。In a vehicle that accelerates, brakes, and turns by frictional force between a road surface and a tread surface of a wheel, a tire is used to improve the frictional force between the two surfaces that generate the frictional force, that is, the road surface and the tread surface of the wheel. A nozzle that injects high-pressure air or high-pressure steam to the road surface immediately before the contact surface, that is, the road surface immediately before the ground contact surface, or to both the road surface immediately before the ground contact surface and the tread surface of the wheel, When a sudden braking operation is detected, a sudden acceleration operation is detected, or a slip is detected, it automatically and instantaneously expands to the first position that is very close to the road surface just before the wheel contact surface. a step of the road anticipated during normal traveling in addition to the above case, the inclination, the projection, the ground plane which is held in the second position in the height from sufficient road surface and the like can be avoided stone Friction force improvement equipment. ノズル支持部にノズルを路面方向に付勢するバネを備え、第1の位置に展開した状態において、前記ノズルを路面方向に押し付けようとする前記バネの力と、高圧空気あるいは高圧水蒸気の噴射圧力に対する路面からの反力とのバランスにより、第1の位置において路面から一定の高さにノズルを保つ、請求項1の接地面摩擦力向上装置。 The nozzle support portion includes a spring that biases the nozzle in the road surface direction, and in the state where the nozzle is deployed to the first position, the spring force that presses the nozzle in the road surface direction and the injection pressure of high-pressure air or high-pressure steam The contact surface frictional force improving device according to claim 1, wherein the nozzle is maintained at a constant height from the road surface at the first position by a balance with a reaction force from the road surface against the road surface. ノズルの位置と路面との距離を検出するセンサーと、ノズルを上下する手段とを備え、センサーからの検出信号に応じてノズルを上下する前記手段を動作させノズルの路面から位置を制御することにより、第1の位置において路面から一定の高さにノズルを保つ、請求項1の接地面摩擦力向上装置。 A sensor for detecting the distance between the position and the road surface of the nozzle, and means for lowering the nozzle by controlling the position from the road surface of the nozzle by operating the means for lowering the nozzle in response to the detection signal from the sensor The contact surface frictional force improving device according to claim 1, wherein the nozzle is maintained at a constant height from the road surface at the first position .
JP2003200754A 2003-06-19 2003-06-19 Vehicle contact surface frictional force improving device Expired - Fee Related JP4389244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200754A JP4389244B2 (en) 2003-06-19 2003-06-19 Vehicle contact surface frictional force improving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200754A JP4389244B2 (en) 2003-06-19 2003-06-19 Vehicle contact surface frictional force improving device

Publications (3)

Publication Number Publication Date
JP2005008136A JP2005008136A (en) 2005-01-13
JP2005008136A5 JP2005008136A5 (en) 2006-08-31
JP4389244B2 true JP4389244B2 (en) 2009-12-24

Family

ID=34100435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200754A Expired - Fee Related JP4389244B2 (en) 2003-06-19 2003-06-19 Vehicle contact surface frictional force improving device

Country Status (1)

Country Link
JP (1) JP4389244B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7621285B2 (en) 2005-09-15 2009-11-24 Steris Inc. Tunnel washer system with improved cleaning efficiency
ITPN20120028A1 (en) * 2012-06-01 2013-12-02 Giovanni Amos Blandina DEVICE FOR AVOIDING THE AQUAPLANING PHENOMENON IN A VEHICLE
GB2540782B (en) * 2015-07-27 2019-04-03 Ehab Bashir El Ajtel Method and apparatus for improving wheel grip
GB201613121D0 (en) 2016-07-29 2016-09-14 Univ Coventry Vehicle traction enhancement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229461A (en) * 1992-02-19 1993-09-07 Hitachi Ltd Automobile with control means of friction coefficient between road surface and tire
JPH08188007A (en) * 1995-01-09 1996-07-23 Railway Technical Res Inst Wheel slip preventing method, its device, and its controlling method
JPH0948204A (en) * 1995-08-07 1997-02-18 Calsonic Corp Hydroplanting preventing device
JPH09188103A (en) * 1996-01-10 1997-07-22 Sumitomo Rubber Ind Ltd Vehicle
JP3947800B2 (en) * 2001-10-16 2007-07-25 株式会社日立製作所 In-vehicle fuel cell air supply system

Also Published As

Publication number Publication date
JP2005008136A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US6170594B1 (en) Method and apparatus for reducing vehicle rollover
CN100393561C (en) Hybrid vehicle slip prevention apparatus
KR20150016990A (en) Anti-aquaplaning device for a vehicle
US6954690B2 (en) Vehicle movement stabilizing device
JP4389244B2 (en) Vehicle contact surface frictional force improving device
KR100799854B1 (en) Subsidiary braking device using pressured air for automobiles
JP6913739B2 (en) Vehicles with enhanced traction and equipment on vehicles
KR102088946B1 (en) Tube-type emergency braking system
JP2004161110A (en) Lateral movement stabilizing device for vehicle
CN110816492B (en) Anti-sliding device for snowy ramp and control method thereof
FI108418B (en) Method and device for vehicle safety management
JPH07309101A (en) Auxiliary device and method for preventing slip of vehicle
JP2005297929A (en) Vehicular slip preventive supporting device
JPH08188007A (en) Wheel slip preventing method, its device, and its controlling method
KR200268573Y1 (en) Auxiliary braking system for iced road
KR20030012947A (en) Auxiliary braking system for iced road
WO2011102775A1 (en) System and method for improving traction on wet road surfaces
JPH05116604A (en) Emergency brake device
JPS60248409A (en) Car tire having changeable grounded pattern
KR200259390Y1 (en) Automobile break system by spraing the pressured air to the road in the rain
CN2595616Y (en) Spreading type urgent braking device
CN2789088Y (en) Multifunction fast emergency antisliding braking device
JP2004123004A (en) Slip suppressing device for vehicle
RU148136U1 (en) SYSTEM FOR ELIMINATION OF AQUA PLANING OF A CAR
KR20200133604A (en) Safety Device Using Dispensing Nozzle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees