JP4387016B2 - Method for producing α, β-unsaturated ketone - Google Patents

Method for producing α, β-unsaturated ketone Download PDF

Info

Publication number
JP4387016B2
JP4387016B2 JP35098999A JP35098999A JP4387016B2 JP 4387016 B2 JP4387016 B2 JP 4387016B2 JP 35098999 A JP35098999 A JP 35098999A JP 35098999 A JP35098999 A JP 35098999A JP 4387016 B2 JP4387016 B2 JP 4387016B2
Authority
JP
Japan
Prior art keywords
reaction
group
water
organic layer
unsaturated ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35098999A
Other languages
Japanese (ja)
Other versions
JP2001163819A (en
Inventor
彰 金子
敦寛 瀬下
剛 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP35098999A priority Critical patent/JP4387016B2/en
Publication of JP2001163819A publication Critical patent/JP2001163819A/en
Application granted granted Critical
Publication of JP4387016B2 publication Critical patent/JP4387016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は農医薬の中間体として有用なα,β−不飽和ケトンの製造方法に関する。
【0002】
【従来の技術】
従来、一般式(I)で表されるα,β−不飽和ケトンを、アセト酢酸アルカリ金属塩とアルデヒドの縮合により合成する方法は幾つか報告されている。
例えば、特開昭57−4930号公報には、アセト酢酸のアルカリ金属塩とアルデヒド類を脂肪族2級アミンを触媒とし、水難溶性有機溶剤と水との混合液中において反応させることが記載されている。
【0003】
また、特開平3−161456号公報には、特に、α位に側鎖を持つアルデヒドを用いて反応させる場合に有用な反応として、前記したのと同様の反応を特定の脂肪族2級アミンを用い、鉱酸によりpHを一定に保持し、水量を調整して反応させることが記載されている。
【0004】
【発明が解決しようとする課題】
しかし、これらの反応系に、数ppm程度の微量な鉄イオンが存在すると反応が阻害され、β−ヒドロキシケトン体を多く副生し収率が著しく低くなってしまうという問題が明らかとなった。こうした鉄イオンの阻害を抑制するため、鉄イオンを捕捉するキレート剤(例えば2,2’−ビピリジル、1,10−フェナントロリン等)の使用を試みたが、抑制効果としては弱く、また塩基を回収する工程でこれらキレート剤が析出してしまい、分液性が非常に悪くなるという問題があった。
【0005】
本発明は、反応の阻害物質となる鉄イオンが反応系に存在している場合でも目的物であるα、β不飽和ケトンが高収率で得られ、しかも工業的問題のない製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、反応系に特定の酸又はそれらのアルカリ金属塩又はアルカリ土類金属塩を存在させることで、収率よく目的とするα、β不飽和ケトンが得られることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明は、(1)塩基存在下、水と水難溶性有機溶媒との混合溶媒中でのアセト酸のアルカリ金属塩又はアルカリ土類金属塩と一般式(I)
【化3】
1CHO
(式中、R1は置換基を有していてもよいアルキル基、置換基を有していてもよいC3以上の脂環式骨格を有する炭化水素基、該脂環式骨格を有する炭化水素基を有するアルキル基、置換基を有していてもよい複数環基、又は置換基を有していてもよいフェニル基を表す。)で表わされるアルデヒドの反応において、鉄イオンの影響を抑制するために、リン酸ポリリン酸、及びそれらのアルカリ金属塩又はアルカリ土類金属塩からなる群から選ばれる少なくとも1種以上を一般式(I)で表されるアルデヒドに対して0.1〜30mol%添加することを特徴とする一般式(II)
【化4】
(式中、R1は前記と同じ基を表す。)で表されるα,β−不飽和ケトンの製造方法に関する。
【0008】
更に詳しくは、(2)塩基が脂肪族2級アミンであることを特徴とする上記(1)に記載のα,β−不飽和ケトンの製造方法関する。
【0009】
又、(3)反応中、pHを一定の範囲に、好ましくはpH6〜8の範囲に保持することを特徴とする上記(1)又は(2)に記載のα,β−不飽和ケトンの製造方法関し、(4)一般式(I)中R1において、1位に少なくとも1以上の置換基を有することを特徴とする上記(1)〜(3)のいずれかに記載のα,β−不飽和ケトンの製造方法関する。
【0010】
【発明の実施の形態】
本発明において用いられるアセト酢酸アルカリ金属塩又はアルカリ土類金属塩は、具体的には、アセト酢酸ナトリウム、アセト酢酸カリウム、アセト酢酸リチウム、アセト酢酸マグネシウム、アセト酢酸カルシウム等を例示することができる。
【0011】
これらの塩は、例えば、ジケテンまたはアセト酢酸エステル類を水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等の水溶液で加水分解した後、副生するアルコールを減圧濃縮により除去することで水溶液として容易に得られる。こうして得られる水溶液の濃度は、次の反応において、水が多量に存在すると収率が低下することから、40〜50%の濃度に調整するのが好ましい。
【0012】
一般式(I)中、R1は、置換基を有していてもよいアルキル基、置換基を有していてもよい基、置換基を有していてもよいC3以上の脂環式骨格を有する炭化水素基、該脂環式骨格を有する炭化水素基を有するアルキル基、置換基を有していてもよい複数環基、置換基を有していてもよい複数環アルキル基、置換基を有していてもよいフェニル基、又は置換基を有していてもよいフェニルアルキル基を表す。
【0013】
一般式(I)で表されるアルデヒドとして、具体的には、イソブチルアルデヒド、2−メチルブタナール、2−メチルペンタナール、2,3−ジメチルブタナール、2−メチルヘキサナール、2−エチルヘキサナール、2−エチルペンタナール、2−メチルヘプタナール、2−メチルノナール等のアルデヒドのα位で分岐している脂肪族アルデヒド、シクロヘキサンカルバルデヒド、2−メチルシクロヘキサンカルバルデヒド、3−メチルシクロヘキサンカルバルデヒド、4−メチルシクロヘキサンカルバルデヒド等の脂環基を持つアルデヒド、4−テトラヒドロピランカルバルデヒド、2−テトラヒドロフランカルバルデヒド、3−テトラヒドロピランカルバルデヒド、3−テトラヒドロチオピランカルバルデヒド等の複素環アルデヒド、ベンズアルデヒド、o−メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−メチルチオベンズアルデヒド、p−クロロベンズアルデヒド等の芳香族アルデヒド、ベンジルアルデヒド、1−メチルベンジルアルデヒド等のフェニルアルキルアルデヒド、2−ピリジルメチルアルデヒド、2−ピリジル−1−メチルアルデヒド等の複素環アルキルアルデヒド等を例示することができる。
【0014】
中でも、一般式(I)中R1において、1位に少なくとも1以上の置換基を有するアルデヒド、その中でも特に水溶性の高いアルデヒドを用いた反応に本発明の方法を適用するのが好ましい。このようなアルデヒドとして、具体的には、4−テトラヒドロピランカルバルデヒド、3−テトラヒドロチオピランカルバルデヒド等の酸素原子または硫黄原子を有する水溶性の高い6員の複素環基を有するアルデヒドを例示することができる。
【0015】
本発明に用いられる塩基としては、具体的には、ピロリジン、モルホリン、ピペラジン、3,5−ジメチルピペリジン、3−ブチルピペリジン、3−ヘキシルピペリジン、3−シクロヘキシルピペリジン、4−ベンジルピペリジン、4−フェニルピペリジン、1,3−ジピペリジルプロパン等のピペリジン類、ヘキサメチレンイミン、ヘプタメチレンイミン、3,3,5−トリメチルヘキサヒドロアゼピン、1,2,3,4−テトラヒドロイソキノリン、デカヒドロイソキノリン、4−メチルデカヒドロイソキノリン、3−アザビシクロ(3,2,2)ノナン等の環状アミン、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、N−メチル−N−n−ブチルアミン、N−エチル−N−n−ブチルアミン、N−メチル−N−n−アミルアミン、N−メチル−N−n−ヘキシルアミン、N−メチル−N−ベンジルアミン等のジアルキルアミン類を例示することができる。但し、ジ−i−プロピルアミン、ジシクロヘキシルアミン等の嵩高いアミン類は好ましくない。
また、R1として1位に1以上の置換基を有する場合、環状アミン類、N−メチル−N−置換メチルアミン類を用いるのが好ましく、中でも、デカヒドロイソキノリンを用いるのが好ましい。
【0016】
本発明の方法は、鉄イオン等の影響を抑制するため、特定の酸又はそれらの塩共存下反応させることを特徴とするが、具体的には、リン酸、メタホウ酸、ケイ酸、ポリリン酸及びそれらのアルカリ金属塩又はアルカリ土類金属塩よりなる群から選ばれる1種以上を用いるのが好ましい。
使用する量は、反応系内に存在する鉄イオンの量にもよるが、鉄イオンに対するモル比で500倍以上、特に1500倍以上用いるのが好ましい。反応系内に混入する鉄イオンの量が把握できれば、モル比から使用量が決められるが、原料のアルデヒドに対するモル分率(モル%)で使用量を決めることもできる。原料のアルデヒドを基準にした場合、使用量としては0.1〜30モル%の範囲で用いるのが好ましい。使用量が30モル%を超えた場合、反応液のpHが6.0を下回るため、反応が遅くなり収率も低下する傾向にある。なおこの量を超えて使用する必要がある場合、反応液のpHが一時的に反応に最適なpHを下回っても、NaOH等のアルカリにより反応開始時のpHを最適pHまで引き上げることで、反応を行う事が出来る。但し、添加するアルカリに水溶液を用いた場合、系内の水量が増加し反応が遅くなり、アセト酢酸塩が分解しやすくなる場合があるため、なるべく少量に抑えるのが好ましい。また、酸性条件下では、アセト酢酸塩が分解しやすくなるため、速やかに最適のpHに調整することが好ましい。
リン酸等のアルカリ金属塩を添加する場合、反応時のpHが最適のpH範囲に管理されていれば特にその使用量は限定されない。
【0017】
リン酸は系内の水量を少なくするため、水の含量の少ないものを使用するのが好ましいが、75%リン酸でも使用することができる。高濃度リン酸は冬季凍結するため、工業的に使用するには75%リン酸が好ましい。
【0018】
本発明に用いられる水難溶性溶媒としては、トルエン、ベンゼン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、シクロヘキサン、デカリン等の脂肪族炭化水素等を例示することができる。これらの溶媒と水の混合比の範囲は、100:5〜100であるが、100:5〜30、更に100:10〜20が好ましい。
【0019】
本発明の方法は、(1)水、水難溶性溶媒にアセト酢酸の塩、塩基、リン酸等を添加し、アルデヒドを添加する方法、(2)水、水難溶性溶媒にアルデヒド、塩基、リン酸等を添加し、アセト酢酸塩を添加する方法、(3)水、水難溶性溶媒にアルデヒド、リン酸等を添加し、アセト酢酸塩、塩基の水溶液を添加する方法等いずれも採用することができる。pH調整を行う必要がある場合、(1)の方法がもっとも好ましい。
【0020】
使用する脂肪族2級アミンにより最適とするpH範囲は異なるが、 反応中の反応液のpH範囲は一定の範囲に保つことが好ましく、更にその範囲としてpH6〜8に保持するのが好ましい。pH6以下では反応が遅く収率も低下する傾向にあり、またpH8以上では、中間体であるβ−ヒドロキシケトン体の副生量が増加する傾向にある。従って、反応中、鉱酸等の酸を用いて上記pH範囲に調整するのが好ましい。
【0021】
pH保持に使用する酸としては、鉱酸が好ましく、系内の水量を少なくするため濃硫酸、85%りん酸等の水の含量の少ない酸、あるいは塩化水素ガス等の酸性ガスあるいは無水硫酸、五酸化りん等の酸無水物を使用することが好ましい。また水の含量の多い濃塩酸でも、原料のアセト酢酸アルカリ金属塩の水溶液を高濃度化して用いることで反応は円滑に進行する。なお鉱酸にリン酸を使用する場合には、鉄イオンが反応系内に存在していても、鉄イオンとリン酸のモル比が十分確保されていれば特に問題無い。
【0022】
反応温度は、通常10〜60℃の範囲であるが、反応温度が高いほど中間体であるβ−ヒドロキシケトン体の副生量が増加するため収率が低下する傾向にある。従って、10〜40℃の温度範囲で反応を行うのが好ましい。
【0023】
本発明の方法の具体例を以下に示す。
一般式(I)で表わされるアルデヒド1モルに対し、1〜3モルのアセト酢酸塩の水溶液に、アルデヒド1モルに対して10〜1000ml、好しくは100〜800mlの水難溶性有機溶媒を加えた後、アルデヒド1モルに対して0.01モル以上、好ましくは0.05〜0.20モルの塩基を加える。十分攪拌した状態でリン酸、メタホウ酸、ケイ酸、及びそれらのアルカリ金属塩よりなる群から選ばれる1種以上をアルデヒド1モルに対して0.001モル〜0.30モルを加え、さらに酸を加えてpHを6.0〜8.0に調整する。
【0024】
ついで10〜60℃で酸によりpH6.0〜8.0に維持しながらアルデヒド1モル相当を加え1〜10時間撹拌する。反応終了後水を加えて酸を加えてpH2以下とし、有機層を水層から分離する。さらに有機層をアルカリで中和後水洗して有機層を水層から分離し、有機層を減圧濃縮することにより目的とするα,β−不飽和ケトンを得ることができる。
【0025】
また有機層より分離した水層を水酸化ナトリウム等のアルカリでpHを13以上とし、水難溶性有機溶媒で抽出することにより触媒として使用した塩基は97%以上回収することができ、回収した塩基は再使用することが可能である。なお、リン酸等の代わりにキレート剤を用いた際に見られた分液性の悪さは、この場合には全く問題にはならなかった。
【0026】
【実施例】
以下に本発明を実施例をもって更に詳細に説明するが、本発明はこの実施例に限定されるものではない。
【0027】
実施例1
内容積1000mlの反応器にアセト酢酸メチルエステル371.6g(3.2モル)およびイオン交換水134.4gを仕込み、水冷攪拌下に内温を35〜40℃に保ちながら鉄イオン2.8ppmを含む25%NaOH水溶液537.6g(3.36モル)を4時間で滴下し、その後35〜40℃で2時間攪拌を続けた後、水およびメタノールを40℃以下の温度で減圧留去した。フラスコ内容物を一部取り出し1規定の塩酸標準水溶液によりpH滴定を実施した結果、得られたアセト酢酸ナトリウム水溶液の濃度は49%であった。このアセト酢酸ナトリウム水溶液から176.7g(0.695モル)を量り取り内容積1000mlの反応器に入れ、ついでトルエン150ml、デカヒドロイソキノリン6.96g(0.05モル)、85%りん酸5.0g(0.043モル)を加え、さらに濃硫酸でpHを7.4とした。この中に4−テトラヒドロピランカルバルデヒド57.1g(0.5モル)を1時間かけて滴下した後3時間攪拌を続けた。反応中温度を20〜25℃に保ち濃硫酸を滴下することによりpHを7.4±0.1に維持した。反応終了後水80.0gを加え、濃硫酸にてpHを1.5として65℃まで昇温した後、有機層を水層から分離した。分離した水層にトルエン37.5mlを加えて抽出し、有機層を水層から分離した後、最初に分離した有機層と混合した。有機層に25%NaOH水溶液2.3gを加えて中和した後有機層を水層から分離した。さらに有機層に水10gを加えて攪拌・水洗し有機層を水層から分離した後、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムを濾別後、溶媒を減圧留去し、残った油状物をさらに減圧留去することにより沸点91〜95℃(0.013kPa)の無色の油状物73.9gを得た。(粗収率95.8%)ガスクロマトグラフィーにより分析したところ、目的物4−(4−テトラヒドロピラニル)−3−ブテン−2−オンの純度は95.1%であった。(収率91.2%)なお副生物である4−ヒドロキシ−4−(4−テトラヒドロピラニル)−ブタン−2オンが4.9%含まれており、4−テトラヒドロピランカルバルデヒドに対する収率は4.2%であった。
【0028】
実施例2
実施例1で合成したものと同じ49%アセト酢酸ナトリウム水溶液176.7g(0.695モル)を内容積1000mlの反応器に入れ、ついでトルエン150ml、デカヒドロイソキノリン6.96g(0.05モル)、85%りん酸2.5g(0.022モル)を加え、さらに濃硫酸でpHを7.4とした。この中に4−テトラヒドロピランカルバルデヒド57.1g(0.5モル)を1時間かけて滴下した後3時間攪拌を続けた。反応中温度を20〜25℃に保ち濃硫酸を滴下することによりpHを7.4±0.1に維持した。反応終了後水80.0gを加え、濃硫酸にてpHを1.5として65℃まで昇温した後、有機層を水層から分離した。分離した水層にトルエン37.5mlを加えて抽出し、有機層を水層から分離した後、最初に分離した有機層と混合した。有機層に25%NaOH水溶液5.2gを加えて中和した後有機層を水層から分離した。さらに有機層に水10gを加えて攪拌・水洗し有機層を水層から分離した後、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムを濾別後256.1gの有機層を得た。有機層の一部をサンプリングし、高速液体クロマトグラフィーにより純度99.9%の標準品を用いた内部標準法で分析したところ、目的物4−(4−テトラヒドロピラニル)−3−ブテン−2−オンの濃度は27.0%であった。(収率89.8%)副生物である4−ヒドロキシ−4−(4−テトラヒドロピラニル)−ブタン−2−オンの濃度は1.4%であり、4−テトラヒドロピランカルバルデヒドに対する収率は4.2%であった。
【0029】
比較例1
実施例1で合成したものと同じ49%アセト酢酸ナトリウム水溶液176.7g(0.695モル)を内容積1000mlの反応器に入れ、ついでトルエン150ml、デカヒドロイソキノリン6.96g(0.05モル)を加え、さらに濃硫酸でpHを7.4とした。この中に4−テトラヒドロピランカルバルデヒド57.1g(0.5モル)を1時間かけて滴下した後4時間攪拌を続けた。反応中温度を20〜25℃に保ち濃硫酸を滴下することによりpHを7.4±0.1に維持した。反応終了後水80.0gを加え、濃硫酸にてpHを1.5として65℃まで昇温した後、有機層を水層から分離した。分離した水層にトルエン37.5mlを加えて抽出し、有機層を水層から分離した後、最初に分離した有機層と混合した。有機層に25%NaOH水溶液5.5gを加えて中和した後有機層を水層から分離した。さらに有機層に水10gを加えて攪拌・水洗し有機層を水層から分離した後、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムを濾別後247.9gの有機層を得た。有機層の一部をサンプリングし、高速液体クロマトグラフィーにより純度99.9%の標準品を用いた内部標準法で分析したところ、目的物4−(4−テトラヒドロピラニル)−3−ブテン−2−オンの濃度は24.9%であった。(収率79.9%)副生物である4−ヒドロキシ−4−(4−テトラヒドロピラニル)−ブタン−2−オンの濃度は3.2%であり、4−テトラヒドロピランカルバルデヒドに対する収率は9.1%であった。
【0030】
実施例3
イオン交換水と試薬特級NaOHで25%の濃度に調整したNaOHを用い、実施例1と同様の条件で合成した47.4%アセト酢酸ナトリウム水溶液109.1g(0.417モル)を内容積1000mlの反応器に入れ、鉄イオン0.004g(0.000075モル)を含む塩化鉄(III)水溶液を0.6g加えた。(加えた鉄イオンは4−テトラヒドロピランカルバルデヒド1モルに対して0.025モルに相当する)ついでトルエン90ml、デカヒドロイソキノリン4.2g(0.03モル)、85%りん酸1.5g(0.015モル)を加え、さらに濃硫酸でpHを7.4とした。この中に4−テトラヒドロピランカルバルデヒド34.2g(0.3モル)を1時間かけて滴下した後3時間攪拌を続けた。反応中温度を20〜25℃に保ち濃硫酸を滴下することによりpHを7.4±0.1に維持した。反応終了後水48.0gを加え、濃硫酸にてpHを1.5として65℃まで昇温した後、有機層を水層から分離した。分離した水層にトルエン22.5mlを加えて抽出し、有機層を水層から分離した後、最初に分離した有機層と混合した。有機層に25%NaOH水溶液1.8gを加えて中和した後有機層を水層から分離した。さらに有機層に水6gを加えて攪拌・水洗し有機層を水層から分離した後、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムを濾別後181.7gの有機層を得た。有機層の一部をサンプリングし、高速液体クロマトグラフィーにより純度99.9%の標準品を用いた内部標準法で分析したところ、目的物4−(4−テトラヒドロピラニル)−3−ブテン−2−オンの濃度は21.3%であった。(収率83.7%)副生物である4−ヒドロキシ−4−(4−テトラヒドロピラニル)−ブタン−2−オンの濃度は1.9%であり、4−テトラヒドロピランカルバルデヒドに対する収率は6.7%であった。
【0031】
比較例2
イオン交換水と試薬特級NaOHで25%の濃度に調整したNaOHを用い、実施例1と同様の条件で合成した47.4%アセト酢酸ナトリウム水溶液179.6g(0.695モル)を内容積1000mlの反応器に入れ、鉄イオン0.007g(0.000125モル)を含む塩化鉄(III)水溶液を1.0g加えた。(加えた鉄イオンは4−テトラヒドロピランカルバルデヒド1モルに対して0.025モルに相当する)ついでトルエン150ml、デカヒドロイソキノリン7.0g(0.05モル)を加え、さらに濃硫酸でpHを7.4とした。この中に4−テトラヒドロピランカルバルデヒド57.1g(0.5モル)を1時間かけて滴下した後4時間攪拌を続けた。反応中温度を20〜25℃に保ち濃硫酸を滴下することによりpHを7.4±0.1に維持した。反応終了後水80.0gを加え、濃硫酸にてpHを1.5として65℃まで昇温した後、有機層を水層から分離した。分離した水層にトルエン37.5mlを加えて抽出し、有機層を水層から分離した後、最初に分離した有機層と混合した。有機層に25%NaOH水溶液2.5gを加えて中和した後有機層を水層から分離した。さらに有機層に水10gを加えて攪拌・水洗し有機層を水層から分離した後、無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムを濾別後279.5gの有機層を得た。有機層の一部をサンプリングし、高速液体クロマトグラフィーにより純度99.9%の標準品を用いた内部標準法で分析したところ、目的物4−(4−テトラヒドロピラニル)−3−ブテン−2−オンの濃度は16.3%であった。(収率59.0%)副生物である4−ヒドロキシ−4−(4−テトラヒドロピラニル)−ブタン−2−オンの濃度は6.9%であり、4−テトラヒドロピランカルバルデヒドに対する収率は22.2%であった。
【0032】
【発明の効果】
以上述べたように、本発明の方法を用いれば、反応に使用する水中に含まれる鉄等の金属イオンにより反応が抑制されることなく反応が進行することから副生物の生成を抑制し、高収率で目的のα,β−不飽和ケトン化合物を合成することができ、しかも分液性等の反応操作上の問題もなく工業的な製造方法として優れている。
[0001]
[Industrial application fields]
The present invention relates to a process for producing an α, β-unsaturated ketone useful as an intermediate for agricultural medicine.
[0002]
[Prior art]
Conventionally, several methods for synthesizing an α, β-unsaturated ketone represented by the general formula (I) by condensation of an alkali metal acetoacetate and an aldehyde have been reported.
For example, Japanese Patent Application Laid-Open No. 57-4930 describes that an alkali metal salt of acetoacetic acid and an aldehyde are reacted in a mixture of a poorly water-soluble organic solvent and water using an aliphatic secondary amine as a catalyst. ing.
[0003]
JP-A-3-161456 discloses a reaction similar to that described above as a useful reaction particularly when an aldehyde having a side chain at the α-position is used. It is described that the reaction is carried out by adjusting the amount of water while keeping the pH constant with a mineral acid.
[0004]
[Problems to be solved by the invention]
However, the presence of a small amount of iron ions of about several ppm in these reaction systems hinders the reaction, revealing a problem that a large amount of β-hydroxyketone is produced as a by-product and the yield is remarkably reduced. In order to suppress such inhibition of iron ions, attempts have been made to use chelating agents that capture iron ions (for example, 2,2′-bipyridyl, 1,10-phenanthroline, etc.), but the suppression effect is weak and the base is recovered. In this process, these chelating agents are precipitated, and there is a problem that the liquid separation property is extremely deteriorated.
[0005]
The present invention provides a production method in which α, β-unsaturated ketone, which is the target product, is obtained in high yield even when iron ions, which are reaction inhibitors, are present in the reaction system, and are free from industrial problems. To do.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have made α and β aimed at high yields by allowing specific acids or their alkali metal salts or alkaline earth metal salts to be present in the reaction system. The inventors have found that an unsaturated ketone can be obtained and have completed the present invention.
[0007]
That is, the present invention relates to (1) an alkali metal salt or alkaline earth metal salt of aceto acid in a mixed solvent of water and a poorly water-soluble organic solvent in the presence of a base and the general formula (I)
[Chemical 3]
R 1 CHO
(In the formula, R 1 is an optionally substituted alkyl group, an optionally substituted hydrocarbon group having a C3 or higher alicyclic skeleton, and a hydrocarbon having the alicyclic skeleton. alkyl group having a group, in a reaction of an aldehyde represented by the representative.) which may have a substituent multiple ring group, or a phenyl group which may have a substituent, suppressing the influence of iron ions for, 0.1~30Mol phosphoric acid, polyphosphoric acid, and with respect to the aldehyde of the general formula (I) at least one or more selected from the group consisting of alkali metal salts or alkaline earth metal salts % General formula (II)
[Formula 4]
(Wherein, R 1 represents. The same group as the) alpha represented by relates to the production how of β- unsaturated ketone.
[0008]
More specifically, (2) base is α according to the above (1), which is a secondary aliphatic amine, relates to the manufacturing method of β- unsaturated ketones.
[0009]
(3) Production of α, β-unsaturated ketone as described in (1) or (2) above , wherein the pH is kept within a certain range during the reaction, preferably within the range of pH 6-8. relates to a method, (4) in the general formula (I) medium-R 1, according to any one of the above and having at least 1 or more substituents at the 1-position (1) ~ (3) alpha, beta - relates to the manufacturing method of the unsaturated ketone.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Specific examples of the alkali metal salt or alkaline earth metal salt used in the present invention include sodium acetoacetate, potassium acetoacetate, lithium acetoacetate, magnesium acetoacetate, and calcium acetoacetate.
[0011]
These salts can be easily prepared as an aqueous solution by, for example, hydrolyzing diketene or acetoacetate with an aqueous solution of sodium hydroxide, potassium hydroxide, magnesium hydroxide, etc., and then removing by-product alcohol by concentration under reduced pressure. can get. In the next reaction, the concentration of the aqueous solution thus obtained is preferably adjusted to a concentration of 40 to 50% because the yield decreases when a large amount of water is present.
[0012]
In general formula (I), R 1 is an alkyl group which may have a substituent, a group which may have a substituent, or an alicyclic skeleton having at least C3 which may have a substituent. A hydrocarbon group having a hydrocarbon group, an alkyl group having a hydrocarbon group having an alicyclic skeleton, a multi-ring group optionally having a substituent, a multi-ring alkyl group optionally having a substituent, and a substituent Represents a phenyl group which may have a substituent, or a phenylalkyl group which may have a substituent.
[0013]
Specific examples of the aldehyde represented by the general formula (I) include isobutyraldehyde, 2-methylbutanal, 2-methylpentanal, 2,3-dimethylbutanal, 2-methylhexanal, 2-ethylhexanal, Aliphatic aldehydes branched at the α-position of aldehydes such as 2-ethylpentanal, 2-methylheptanal, 2-methylnonal, cyclohexanecarbaldehyde, 2-methylcyclohexanecarbaldehyde, 3-methylcyclohexanecarbaldehyde, 4- Aldehydes having an alicyclic group such as methylcyclohexanecarbaldehyde, heterocyclic aldehydes such as 4-tetrahydropyrancarbaldehyde, 2-tetrahydrofurancarbaldehyde, 3-tetrahydropyrancarbaldehyde, 3-tetrahydrothiopyrancarbaldehyde, Aromatic aldehydes such as benzaldehyde, o-methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, p-methylthiobenzaldehyde, p-chlorobenzaldehyde, phenylalkylaldehydes such as benzylaldehyde and 1-methylbenzylaldehyde, 2-pyridyl Examples thereof include heterocyclic alkyl aldehydes such as methyl aldehyde and 2-pyridyl-1-methyl aldehyde.
[0014]
Among these, the method of the present invention is preferably applied to a reaction using an aldehyde having at least one substituent at the 1-position in R 1 in the general formula (I), and particularly an aldehyde having a high water solubility. Specific examples of such aldehydes include aldehydes having a highly water-soluble 6-membered heterocyclic group having an oxygen atom or sulfur atom such as 4-tetrahydropyrancarbaldehyde and 3-tetrahydrothiopyrancarbaldehyde. be able to.
[0015]
Specific examples of the base used in the present invention include pyrrolidine, morpholine, piperazine, 3,5-dimethylpiperidine, 3-butylpiperidine, 3-hexylpiperidine, 3-cyclohexylpiperidine, 4-benzylpiperidine, 4-phenyl. Piperidines such as piperidine and 1,3-dipiperidylpropane, hexamethyleneimine, heptamethyleneimine, 3,3,5-trimethylhexahydroazepine, 1,2,3,4-tetrahydroisoquinoline, decahydroisoquinoline, 4- Cyclic amines such as methyldecahydroisoquinoline and 3-azabicyclo (3,2,2) nonane, dimethylamine, diethylamine, di-n-propylamine, N-methyl-Nn-butylamine, N-ethyl-Nn -Butylamine, N-methyl-Nn-amino Amine, N- methyl -N-n-hexylamine, can be exemplified dialkyl amines such as N- methyl -N- benzylamine. However, bulky amines such as di-i-propylamine and dicyclohexylamine are not preferred.
Further, when R 1 has one or more substituents at the 1-position, it is preferable to use cyclic amines and N-methyl-N-substituted methylamines, and among them, it is preferable to use decahydroisoquinoline.
[0016]
The method of the present invention is characterized by reacting in the presence of specific acids or their salts in order to suppress the influence of iron ions and the like. Specifically, phosphoric acid, metaboric acid, silicic acid, polyphosphoric acid And at least one selected from the group consisting of alkali metal salts or alkaline earth metal salts thereof.
The amount to be used depends on the amount of iron ions present in the reaction system, but it is preferably 500 times or more, particularly 1500 times or more in terms of a molar ratio to iron ions. If the amount of iron ions mixed in the reaction system can be grasped, the amount of use can be determined from the molar ratio, but the amount of use can also be determined by the mole fraction (mol%) relative to the aldehyde of the raw material. When the raw material aldehyde is used as a reference, the amount used is preferably in the range of 0.1 to 30 mol%. When the amount used exceeds 30 mol%, the pH of the reaction solution is below 6.0, so the reaction is slowed and the yield tends to decrease. In addition, when it is necessary to use more than this amount, even if the pH of the reaction solution temporarily falls below the optimum pH for the reaction, the reaction is started by raising the pH at the start of the reaction to the optimum pH with an alkali such as NaOH. Can be done. However, when an aqueous solution is used as the alkali to be added, the amount of water in the system increases, the reaction slows down, and the acetoacetate salt may be easily decomposed. In addition, since the acetoacetate salt is easily decomposed under acidic conditions, it is preferable to quickly adjust the pH to an optimum value.
When adding an alkali metal salt such as phosphoric acid, the amount used is not particularly limited as long as the pH during the reaction is controlled within the optimum pH range.
[0017]
In order to reduce the amount of water in the system, it is preferable to use phosphoric acid having a low water content, but 75% phosphoric acid can also be used. Since high concentration phosphoric acid freezes in winter, 75% phosphoric acid is preferred for industrial use.
[0018]
Examples of the poorly water-soluble solvent used in the present invention include aromatic hydrocarbons such as toluene, benzene and xylene, and aliphatic hydrocarbons such as hexane, heptane, cyclohexane and decalin. The range of the mixing ratio of these solvent and water is 100: 5 to 100, but 100: 5 to 30, more preferably 100: 10 to 20 is preferable.
[0019]
The method of the present invention includes (1) a method of adding acetoacetic acid salt, base, phosphoric acid and the like to water and a poorly water-soluble solvent, and adding an aldehyde, and (2) aldehyde, base and phosphoric acid in water and a poorly water-soluble solvent. Etc., and a method of adding acetoacetate, (3) a method of adding aldehyde, phosphoric acid, etc. to water, a poorly water-soluble solvent, and adding an aqueous solution of acetoacetate or base, etc. can be employed. . When pH adjustment is required, the method (1) is most preferable.
[0020]
The optimum pH range varies depending on the aliphatic secondary amine to be used, but the pH range of the reaction solution during the reaction is preferably kept at a certain range, and more preferably kept at pH 6-8. If the pH is 6 or less, the reaction is slow and the yield tends to decrease. If the pH is 8 or more, the amount of by-product of the intermediate β-hydroxyketone tends to increase. Therefore, it is preferable to adjust to the said pH range using acids, such as a mineral acid, during reaction.
[0021]
The acid used for maintaining the pH is preferably a mineral acid. In order to reduce the amount of water in the system, concentrated sulfuric acid, an acid having a low water content such as 85% phosphoric acid, an acidic gas such as hydrogen chloride gas or sulfuric anhydride, It is preferable to use an acid anhydride such as phosphorus pentoxide. In addition, even with concentrated hydrochloric acid having a high water content, the reaction proceeds smoothly by using an aqueous solution of the alkali metal acetoacetate as a raw material at a high concentration. When phosphoric acid is used as the mineral acid, there is no particular problem even if iron ions are present in the reaction system as long as the molar ratio of iron ions to phosphoric acid is sufficiently secured.
[0022]
The reaction temperature is usually in the range of 10 to 60 ° C., but the higher the reaction temperature, the more the by-product of the intermediate β-hydroxyketone body increases, so the yield tends to decrease. Therefore, it is preferable to perform the reaction in a temperature range of 10 to 40 ° C.
[0023]
Specific examples of the method of the present invention are shown below.
10 to 1000 ml, preferably 100 to 800 ml of poorly water-soluble organic solvent is added to 1 to 3 moles of an acetoacetate aqueous solution with respect to 1 mole of the aldehyde represented by the general formula (I). Thereafter, 0.01 mol or more, preferably 0.05 to 0.20 mol of base is added to 1 mol of aldehyde. In a sufficiently stirred state, 0.001 mol to 0.30 mol is added to 1 mol of aldehyde and at least one selected from the group consisting of phosphoric acid, metaboric acid, silicic acid, and alkali metal salts thereof, and an acid. To adjust the pH to 6.0-8.0.
[0024]
Then, while maintaining the pH at 6.0 to 8.0 with acid at 10 to 60 ° C., 1 mol equivalent of aldehyde is added and stirred for 1 to 10 hours. After completion of the reaction, water is added and an acid is added to bring the pH to 2 or less, and the organic layer is separated from the aqueous layer. Further, the organic layer is neutralized with an alkali and washed with water to separate the organic layer from the aqueous layer, and the organic layer is concentrated under reduced pressure to obtain the desired α, β-unsaturated ketone.
[0025]
In addition, the base used as a catalyst can be recovered by 97% or more by extracting the aqueous layer separated from the organic layer with an alkali such as sodium hydroxide to a pH of 13 or more and extracting with a poorly water-soluble organic solvent. It can be reused. In addition, the poor liquid separation observed when a chelating agent was used instead of phosphoric acid or the like was not a problem in this case.
[0026]
【Example】
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
[0027]
Example 1
A reactor with an internal volume of 1000 ml was charged with 371.6 g (3.2 moles) of acetoacetic acid methyl ester and 134.4 g of ion-exchanged water, and 2.8 ppm of iron ions were maintained while maintaining the internal temperature at 35 to 40 ° C. with stirring with water. 537.6 g (3.36 mol) of a 25% NaOH aqueous solution was added dropwise over 4 hours, and then stirring was continued for 2 hours at 35 to 40 ° C. Then, water and methanol were distilled off under reduced pressure at a temperature of 40 ° C. or lower. A part of the contents of the flask was taken out and subjected to pH titration with a 1N standard hydrochloric acid aqueous solution. As a result, the concentration of the obtained aqueous sodium acetoacetate solution was 49%. From this aqueous sodium acetoacetate solution, 176.7 g (0.695 mol) was weighed and placed in a reactor having an internal volume of 1000 ml, followed by 150 ml of toluene, 6.96 g (0.05 mol) of decahydroisoquinoline, and 85% phosphoric acid. 0 g (0.043 mol) was added, and the pH was adjusted to 7.4 with concentrated sulfuric acid. 4-tetrahydropyran carbaldehyde 57.1g (0.5 mol) was dripped in this over 1 hour, Then, stirring was continued for 3 hours. During the reaction, the temperature was maintained at 20 to 25 ° C., and concentrated sulfuric acid was added dropwise to maintain the pH at 7.4 ± 0.1. After completion of the reaction, 80.0 g of water was added, and the temperature was raised to 65 ° C. with concentrated sulfuric acid at pH 1.5, and then the organic layer was separated from the aqueous layer. To the separated aqueous layer, 37.5 ml of toluene was added for extraction, and the organic layer was separated from the aqueous layer and then mixed with the first separated organic layer. The organic layer was neutralized by adding 2.3 g of 25% NaOH aqueous solution, and then the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the solvent was distilled off under reduced pressure, and the remaining oil was further distilled off under reduced pressure to obtain 73.9 g of a colorless oil having a boiling point of 91 to 95 ° C. (0.013 kPa). When analyzed by gas chromatography (crude yield 95.8%), the purity of the desired product 4- (4-tetrahydropyranyl) -3-buten-2-one was 95.1%. (Yield 91.2%) In addition, 4.9% of 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one as a by-product was contained, and the yield based on 4-tetrahydropyrancarbaldehyde Was 4.2%.
[0028]
Example 2
The same 49% aqueous solution of sodium acetoacetate as synthesized in Example 1 (176.7 g, 0.695 mol) was placed in a reactor having an internal volume of 1000 ml, and then 150 ml of toluene and 6.96 g (0.05 mol) of decahydroisoquinoline. 85% phosphoric acid (2.5 g, 0.022 mol) was added, and the pH was adjusted to 7.4 with concentrated sulfuric acid. 4-tetrahydropyran carbaldehyde 57.1g (0.5 mol) was dripped in this over 1 hour, Then, stirring was continued for 3 hours. During the reaction, the temperature was maintained at 20 to 25 ° C., and concentrated sulfuric acid was added dropwise to maintain the pH at 7.4 ± 0.1. After completion of the reaction, 80.0 g of water was added, and the temperature was raised to 65 ° C. with concentrated sulfuric acid at pH 1.5, and then the organic layer was separated from the aqueous layer. To the separated aqueous layer, 37.5 ml of toluene was added for extraction, and the organic layer was separated from the aqueous layer and then mixed with the first separated organic layer. After neutralizing the organic layer by adding 5.2 g of 25% NaOH aqueous solution, the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer and then dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, 256.1 g of an organic layer was obtained. A part of the organic layer was sampled and analyzed by high performance liquid chromatography by an internal standard method using a standard product having a purity of 99.9%. As a result, the desired product 4- (4-tetrahydropyranyl) -3-butene-2 The concentration of -one was 27.0%. (Yield 89.8%) The concentration of 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one as a by-product is 1.4%, and the yield based on 4-tetrahydropyrancarbaldehyde Was 4.2%.
[0029]
Comparative Example 1
The same 49% aqueous solution of sodium acetoacetate as synthesized in Example 1 (176.7 g, 0.695 mol) was placed in a reactor having an internal volume of 1000 ml, and then 150 ml of toluene and 6.96 g (0.05 mol) of decahydroisoquinoline. And the pH was adjusted to 7.4 with concentrated sulfuric acid. 4-tetrahydropyran carbaldehyde 57.1g (0.5 mol) was dripped in this over 1 hour, Then, stirring was continued for 4 hours. During the reaction, the temperature was maintained at 20 to 25 ° C., and concentrated sulfuric acid was added dropwise to maintain the pH at 7.4 ± 0.1. After completion of the reaction, 80.0 g of water was added, and the temperature was raised to 65 ° C. with concentrated sulfuric acid at pH 1.5, and then the organic layer was separated from the aqueous layer. To the separated aqueous layer, 37.5 ml of toluene was added for extraction, and the organic layer was separated from the aqueous layer and then mixed with the first separated organic layer. After neutralizing the organic layer by adding 5.5 g of 25% NaOH aqueous solution, the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer and then dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, 247.9 g of an organic layer was obtained. A part of the organic layer was sampled and analyzed by high performance liquid chromatography by an internal standard method using a standard product having a purity of 99.9%. As a result, the desired product 4- (4-tetrahydropyranyl) -3-butene-2 The concentration of -one was 24.9%. (Yield 79.9%) The concentration of by-product 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one is 3.2%, and the yield based on 4-tetrahydropyrancarbaldehyde Was 9.1%.
[0030]
Example 3
109.1 g (0.417 mol) of a 47.4% aqueous sodium acetoacetate solution synthesized under the same conditions as in Example 1 using ion-exchanged water and NaOH adjusted to a concentration of 25% with reagent-grade NaOH have an internal volume of 1000 ml. Was added to an aqueous solution of iron (III) chloride containing 0.004 g (0.000075 mol) of iron ions. (The added iron ion corresponds to 0.025 mol per 1 mol of 4-tetrahydropyrancarbaldehyde), then 90 ml of toluene, 4.2 g (0.03 mol) of decahydroisoquinoline, 1.5 g of 85% phosphoric acid ( 0.015 mol) was added, and the pH was adjusted to 7.4 with concentrated sulfuric acid. 4-Tetrahydropyran carbaldehyde (34.2 g, 0.3 mol) was added dropwise thereto over 1 hour, and stirring was continued for 3 hours. During the reaction, the temperature was maintained at 20 to 25 ° C., and concentrated sulfuric acid was added dropwise to maintain the pH at 7.4 ± 0.1. After completion of the reaction, 48.0 g of water was added, the pH was raised to 1.5 with concentrated sulfuric acid and the temperature was raised to 65 ° C., and then the organic layer was separated from the aqueous layer. To the separated aqueous layer, 22.5 ml of toluene was added for extraction, and the organic layer was separated from the aqueous layer and then mixed with the first separated organic layer. The organic layer was neutralized by adding 1.8 g of 25% NaOH aqueous solution, and then the organic layer was separated from the aqueous layer. Further, 6 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, 181.7 g of an organic layer was obtained. A part of the organic layer was sampled and analyzed by high performance liquid chromatography by an internal standard method using a standard product having a purity of 99.9%. As a result, the desired product 4- (4-tetrahydropyranyl) -3-butene-2 was obtained. -The concentration of ON was 21.3%. (Yield 83.7%) The concentration of by-product 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one was 1.9%, and the yield based on 4-tetrahydropyrancarbaldehyde Was 6.7%.
[0031]
Comparative Example 2
177.6 g (0.695 mol) of 47.4% aqueous sodium acetoacetate solution synthesized under the same conditions as in Example 1 using NaOH adjusted to a concentration of 25% with ion-exchanged water and reagent-grade NaOH, with an internal volume of 1000 ml The iron (III) chloride aqueous solution containing iron ion 0.007g (0.000125mol) was added 1.0g. (The added iron ion corresponds to 0.025 mol per 1 mol of 4-tetrahydropyrancarbaldehyde). Then, 150 ml of toluene and 7.0 g (0.05 mol) of decahydroisoquinoline were added, and the pH was adjusted with concentrated sulfuric acid. It was set to 7.4. 4-tetrahydropyran carbaldehyde 57.1g (0.5 mol) was dripped in this over 1 hour, Then, stirring was continued for 4 hours. During the reaction, the temperature was maintained at 20 to 25 ° C., and concentrated sulfuric acid was added dropwise to maintain the pH at 7.4 ± 0.1. After completion of the reaction, 80.0 g of water was added, and the temperature was raised to 65 ° C. with concentrated sulfuric acid at pH 1.5, and then the organic layer was separated from the aqueous layer. To the separated aqueous layer, 37.5 ml of toluene was added for extraction, and the organic layer was separated from the aqueous layer and then mixed with the first separated organic layer. The organic layer was neutralized by adding 2.5 g of 25% NaOH aqueous solution, and then the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer and then dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, 279.5 g of an organic layer was obtained. A part of the organic layer was sampled and analyzed by high performance liquid chromatography by an internal standard method using a standard product having a purity of 99.9%. As a result, the desired product 4- (4-tetrahydropyranyl) -3-butene-2 was obtained. The concentration of -one was 16.3%. (Yield 59.0%) The concentration of by-product 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one was 6.9%, and the yield based on 4-tetrahydropyrancarbaldehyde Was 22.2%.
[0032]
【The invention's effect】
As described above, if the method of the present invention is used, the reaction proceeds without being suppressed by metal ions such as iron contained in the water used for the reaction, thereby suppressing the production of by-products. The target α, β-unsaturated ketone compound can be synthesized in a yield, and it is excellent as an industrial production method without problems in reaction operation such as liquid separation.

Claims (5)

塩基存在下、水と水難溶性有機溶媒との混合溶媒中でのアセト酢酸のアルカリ金属塩又はアルカリ土類金属塩と一般式(I)
【化1】
1CHO
(式中、R1は置換基を有していてもよいアルキル基、置換基を有していてもよいC3以上の脂環式骨格を有する炭化水素基、該脂環式骨格を有する炭化水素基を有するアルキル基、置換基を有していてもよい複数環基、又は置換基を有していてもよいフェニル基を表す。)で表わされるアルデヒドの反応において、鉄イオンの影響を抑制するために、リン酸ポリリン酸及びそれらのアルカリ金属塩又はアルカリ土類金属塩からなる群から選ばれる少なくとも1種以上を一般式(I)で表されるアルデヒドに対して0.1〜30mol%添加することを特徴とする一般式(II)
(式中、R1は前記と同じ基を表す。)で表されるα,β−不飽和ケトンの製造方法。
Alkali metal salt or alkaline earth metal salt of acetoacetic acid in a mixed solvent of water and a poorly water-soluble organic solvent in the presence of a base and the general formula (I)
[Chemical 1]
R 1 CHO
(In the formula, R 1 is an optionally substituted alkyl group, an optionally substituted hydrocarbon group having a C3 or higher alicyclic skeleton, and a hydrocarbon having the alicyclic skeleton. alkyl group having a group, in a reaction of an aldehyde represented by the representative.) which may have a substituent multiple ring group, or a phenyl group which may have a substituent, suppressing the influence of iron ions for, phosphoric acid, 0.1~30Mol% relative aldehyde represented by at least one or more of the general formula selected from polyphosphoric acid and the group consisting of alkali metal salts or alkaline earth metal salt (I) General formula (II) characterized by adding
(In formula, R < 1 > represents the same group as the above.) The manufacturing method of (alpha), (beta) -unsaturated ketone represented.
塩基が脂肪族2級アミンであることを特徴とする請求項に記載のα,β−不飽和ケトンの製造方法。The method for producing an α, β-unsaturated ketone according to claim 1 , wherein the base is an aliphatic secondary amine. 反応中、pHを一定の範囲に保持することを特徴とする請求項1又は2に記載のα,β−不飽和ケトンの製造方法。The method for producing an α, β-unsaturated ketone according to claim 1 or 2 , wherein the pH is maintained within a certain range during the reaction. pHの範囲が6〜8であることを特徴とする請求項に記載のα,β−不飽和ケトンの製造方法。The range of pH is 6-8, The manufacturing method of the alpha, beta-unsaturated ketone of Claim 3 characterized by the above-mentioned. 一般式(I)中R1において、1位に少なくとも1以上の置換基を有することを特徴とする請求項1〜のいずれかに記載のα,β−不飽和ケトンの製造方法。The method for producing an α, β-unsaturated ketone according to any one of claims 1 to 4 , wherein R 1 in the general formula (I) has at least one substituent at the 1-position.
JP35098999A 1999-12-10 1999-12-10 Method for producing α, β-unsaturated ketone Expired - Lifetime JP4387016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35098999A JP4387016B2 (en) 1999-12-10 1999-12-10 Method for producing α, β-unsaturated ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35098999A JP4387016B2 (en) 1999-12-10 1999-12-10 Method for producing α, β-unsaturated ketone

Publications (2)

Publication Number Publication Date
JP2001163819A JP2001163819A (en) 2001-06-19
JP4387016B2 true JP4387016B2 (en) 2009-12-16

Family

ID=18414287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35098999A Expired - Lifetime JP4387016B2 (en) 1999-12-10 1999-12-10 Method for producing α, β-unsaturated ketone

Country Status (1)

Country Link
JP (1) JP4387016B2 (en)

Also Published As

Publication number Publication date
JP2001163819A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP2830211B2 (en) Method for producing β-hydroxyketones
US5416215A (en) Process to preparing 2,2,6,6-tetra-methylpiperidine-n-oxyl and its 4-position substituted derivatives
JP5559066B2 (en) Process for producing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrate
HU198437B (en) Process for producing mono- or bis-carbonyl-compounds
EP1917254B1 (en) Process of producing amorolfine
EP0352456B1 (en) Process for the preparation of alpha, beta-unsaturated ketones
JP4387016B2 (en) Method for producing α, β-unsaturated ketone
US7345206B2 (en) Process for the dimerisation of alkyl glyoxals
EP1819647B1 (en) Method for hydrogenation of , -unsaturated carbonyl compounds
JP2830210B2 (en) Synthesis of α, β-unsaturated ketones
US8129570B2 (en) Process for the preparation of 1,4-dialkyl-2,3-diol-1,4-butanedione
US20040152899A1 (en) Method for the production of biperiden II
JP4027539B2 (en) Process for producing N-benzyl-4-formylpiperidine
JP4294130B2 (en) Method for producing α, β-unsaturated ketone compound
EP0454863B1 (en) Method for the preparation of beta-hydroxyketones
EP1661894A1 (en) Process for production of 4-aminotetrahydropyrans and salts thereof with acids, intermediates for the process, and process for production thereof
JPH05163228A (en) N-acyl-o-(3-chloro-2-propenyl)hydroxylamine and its production
JP2921054B2 (en) Synthesis of alkoxy-α, β-unsaturated ketones
JPH05990A (en) Production of alpha-alkylacrolein
US6414177B2 (en) Method of producing cyclopentanone nitriles
JPS6254296B2 (en)
JPS6254416B2 (en)
EP0163506B1 (en) Process for the preparation of a pyridil-propanoic acid
SU941359A1 (en) Process for producing methylnealkyl derivatives of cyclohexanone
JP2000212152A (en) Production of n-substituted glycinonitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Ref document number: 4387016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term