JPS6254296B2 - - Google Patents

Info

Publication number
JPS6254296B2
JPS6254296B2 JP5847580A JP5847580A JPS6254296B2 JP S6254296 B2 JPS6254296 B2 JP S6254296B2 JP 5847580 A JP5847580 A JP 5847580A JP 5847580 A JP5847580 A JP 5847580A JP S6254296 B2 JPS6254296 B2 JP S6254296B2
Authority
JP
Japan
Prior art keywords
general formula
group
formula
compound represented
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5847580A
Other languages
Japanese (ja)
Other versions
JPS56154430A (en
Inventor
Kenji Saito
Hiroshi Yamachika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5847580A priority Critical patent/JPS56154430A/en
Priority to US06/256,570 priority patent/US4347386A/en
Priority to HU111681A priority patent/HU188043B/en
Priority to DK190981A priority patent/DK151796C/en
Priority to DE8181103288T priority patent/DE3161108D1/en
Priority to EP19810103288 priority patent/EP0039089B1/en
Publication of JPS56154430A publication Critical patent/JPS56154430A/en
Publication of JPS6254296B2 publication Critical patent/JPS6254296B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシクロペンテノロン類の新規な製造方
法に関し、更に詳しくは一般式() 〔式中、R1は炭素数6までのアルキル基、ア
ルケニル基、アルキニル基または一般式
The present invention relates to a new method for producing cyclopentenolones, more specifically, the general formula () [In the formula, R 1 is an alkyl group, alkenyl group, alkynyl group having up to 6 carbon atoms, or a general formula

【式】で示される基を表わし、こ こにR2は水素原子、メチル基またはハロゲン原
子を表わす。〕 で示される化合物を水溶媒中、マグネシウム塩、
マンガン塩、亜鉛塩、銅塩またはコバルト塩の存
在下に処理することを特徴とする一般式() 〔式中、R1は前述と同じ意味を表わす。〕 で示されるシクロペンテノロン類の工業的に極め
て有利な製造方法に関する。 上記一般式()で示される化合物は、例えば
有用な農薬として知られるアレスリンのアルコー
ル成分(R1=アリル基)など農薬、医薬の重要
な中間体であり、その一部は既に工業的に製造さ
れているものもある。 従来、一般式()で示されるシクロペンテノ
ロン類を一般式()で示される化合物から製造
する方法としては、 一般式()で示される化合物に塩基性アル
ミナをベンゼン―エーテル混合溶媒中で作用さ
せる方法(G.Piancatelliら、Tetrahedron,
Vol34,2775(1978))。 一般式()で示される化合物に5%炭酸水
素ナトリウム水を作用させる方法(特開昭53−
21146号公報)。 が知られている。 しかしながら塩基性アルミナを使用する方法で
は高価なアルミナを多量必要とし、また炭酸水素
ナトリウム水溶液を用いる方法では、一般式
()で示される化合物が炭素水素ナトリウム水
溶液に難溶であるために、均一に分散溶解させる
には強力な撹拌を必要とし、さらに副生成物およ
び収率などの面でも問題点を有し、これらの方法
は何れも工業的には必ずしも満足のいく方法では
ない。 また、本発明方法に関連の転移反応として式 で示されるプロスタグランジン中間体に水―ジオ
キサンの混合溶媒中で1N―H2SO4を作用させる
ことにより式 で示されるプロスタグランジンを得る方法(M.
B.フロイド,ジヤーナルオブオルガニツクケミス
トリー(M.B.Floyd,J.Org.chem.)43,(No.9)
1641(1978))が知られている。しかしながら、
本発明に係わる一般式()で示される化合物を
該反応条件で反応させた場合、副生物が多く、ま
た収率も極めて低く、一般式()で示されるシ
クロペンテノン類の製造法には到底適用し得な
い。 このような状況の下に本発明者らは前記一般式
()で示される化合物から、一般式()で示
されるシクロペンテノロン類を工業的に有利に製
造する方法につき鋭意検討した結果、意外にも一
般式()で示される化合物を水性溶媒中、金属
塩の存在下中性付近のPHで反応させることにより
容易に且つ収率よく短時間で一般式()で示さ
れるシクロペンテノロン類が得られることを見出
し、これに種々の検討を加え本発明を完成するに
至つた。 本発明の反応機構については必ずしも明らかで
はないものの、酸触媒の場合とまつたく同一と考
えられているが、本発明は酸触媒の反応とは異な
り、中性付近で反応が行えるため、生成したシク
ロペンテノロンのアルドール縮合によると考えら
れる副成物を極度に抑制でき、しかも反応時間が
短時間ですむことを見い出したもので、このよう
な事実は極めて驚くべき事実である。以下、本発
明を具体的に説明する。 一般式()で示される化合物においてR1
具体例としては、メチル基、プロピル基、ヘキシ
ル基、シクロヘキシル基、アリル基、4―ペンテ
ニル基、プロパルギル基、ベンジル基、p―メチ
ル―ベンジル基、p―クロル―ベンジル基などが
あげられる。また、本発明で用いる金属塩は、マ
グネシウム塩、マンガン塩、亜鉛塩、銅塩または
コバルト塩であつて、例えば塩化マグネシウム、
臭化マグネシウム、硝酸マグネシウム、硫酸マグ
ネシウム、塩化マンガン、塩化亜鉛、塩化銅、硫
酸銅、酢酸コバルト、塩化コバルト等が例示され
る。 かかる金属塩の使用量は、一般式()で示さ
れる化合物に対して0.001〜10倍モル、さらに好
ましくは0.01〜1倍モルである。 本発明におけるPHは4〜8であり、好ましくは
4.5〜7.5である。 酸性およびアルカリ性が強すぎると共にアルド
ール型の縮合物と思われる副成物が増加する。 本発明においては金属塩を水に溶解した時のPH
で反応を行うことも可能であるが、少量の塩基を
加えて各金属塩の最適PHにし、反応速度をあげる
ことも可能である。 たとえば塩化マグネシウムを使用する場合は、
塩化マグネシウムを溶解したままのPH約6.1で反
応を行つても良いが、少量の塩基を加え、PH7.3
にすると約3倍の速度で反応は進行する。 本発明に使用する水溶媒とは、実質的には水単
独または少量の非水有機溶媒(トルエン、キシレ
ン、ジイソプロピルエーテル、ベンゼンなど)ま
たは水性有機溶媒(アセトン、THF、ジオキサ
ンなど)を含んだ水性溶媒を意味する。 かかる水溶媒の使用量は、一般式()で示さ
れる化合物に対して0.5倍〜100倍、好ましくは5
倍〜40倍重量使用するのがよい。 反応温度は通常20℃〜200℃であり、好ましく
は80℃〜150℃である。 本発明の出発原料である一般式()で示され
る化合物は、一般式() R1X ……() 〔式中、R1は前述と同じ意味を表わし、Xは
塩素、臭素またはヨウ素原子を表わす。〕 で示される化合物にMg、Zn、Al金属を作用さ
せ、一般式() R1MX ……() 〔式中、R1、Xは前述の意味を表わし、Mは
Mg、ZnまたはAl2/3原子を表わす。〕 で示される化合物を合成した後、これを5―メチ
ルフルフラールと反応させることにより、一般式
() 〔式中、R1は前述と同じ意味を表わす。〕 で示される化合物を得、該化合物を水および金属
塩の存在下に加温処理することにより容易に得る
ことができる。また、下記に示す特開昭53−
21146号公報に記載の方法。 さらにはG.Piancatelliらの方法
(Tetrahedron,Vol34、2775(1978)) によつても得ることができる。 以下、実施例で具体的に説明する。 実施例 1 4―ハイドロオキシ―4―メチル―5―アリル
―2―シクロペンテノン3gとMgCl2・6H2O4.0
gを水120mlに溶解した液を仕込み、100℃に昇温
した後、0.1N NaOH液でPH7.3にする。PH7.0〜
7.3を保持しながら100℃で4時間撹拌した。冷却
後NaCl40gを加えた後、エーテル120mlで4回抽
出した。抽出液を無水硫酸マグネシウムで乾燥
後、40℃で減圧下にエーテルを留去し、2.7gの
油状物を得た。次にシリカゲル30gを使用して酢
酸エチル―ヘキサン(1容対2容)で展開して、
2―アリル―3―メチル―4―ハイドロオキシ―
2―シクロペンテノン2.6gを得た。収率87% N.M.Rデータ(CDCl3、内部標準TMS、δ
ppm、90MHz) 5.71(complex m,1H,―CH2―C
CHaHb) 5.06(m、1H、―CH2―CH=CHaHb) 4.93(m、1H、―CH2―CH=CHaH) 4.74(broad d、1H、4―H) 3.94(broad S、1H、4―O) 2.96(d、2H、―CH ―CH=CHaHb) 2.85(d of d、1H、5―H) 2.27(d of d、1H、5―H) 2.11(s、3H、3―CH3) 実施例 2 4―ハイドロオキシ―4―メチル―5―プロパ
ルギル―2―シクロペンテノン3gとMgCl2
6H2O4.0gを水120mlに溶解した液を仕込み、100
℃に昇温した後、0.1N NaOH液でPH6.8にする。
PH6.8〜7.0を保持しながら100℃で4時間撹拌し
た。冷却後NaCl40gを加えた後、エーテル120ml
で4回抽出した。抽出液を無水硫酸マグネシウム
で乾燥後、40℃で減圧下にエーテルを留去した所
2.5gの油状物を得た。 次にシリカゲル30gを使用して酢酸エチル―ヘ
キサン(1容対2容)で展開して、2―プロパル
ギル―3―メチル―4―ハイドロキシ―2―シク
ロペンテノン2.3gを得た。 収率77% N.M.Rデータ(CDCl3、内部標準TMS、δ
ppm、90MHz) 4.60(broad d、1H、4―H) 3.95(broad s、1H、4―O) 3.04(d、2H、―C ―C≡CH) 2.65(dofd、1H、5―H) 2.38(dofd、1H、5―H) 2.20(s、3H、3―C ) 1.98(s、1H、C≡C) 実施例 3〜10 下記3―オキソシクロペンテン化合物3gを使
用して下記の条件下で実施例1と同様の操作を行
い、夫々のシクロペンテノロン化合物を得た。
It represents a group represented by the formula: where R 2 represents a hydrogen atom, a methyl group or a halogen atom. ] In an aqueous solvent, the compound represented by magnesium salt,
General formula () characterized by treatment in the presence of manganese, zinc, copper or cobalt salts [In the formula, R 1 represents the same meaning as above. ] This invention relates to an industrially extremely advantageous manufacturing method for cyclopentenolones shown in the following. The compound represented by the above general formula () is an important intermediate for agricultural chemicals and medicines, such as the alcohol component (R 1 = allyl group) of allethrin, which is known as a useful agricultural chemical, and some of them have already been manufactured industrially. Some have been. Conventionally, the method for producing cyclopentenolones represented by the general formula () from the compound represented by the general formula () is to treat the compound represented by the general formula () with basic alumina in a benzene-ether mixed solvent. (G. Piancatelli et al., Tetrahedron,
Vol34, 2775 (1978)). A method of reacting 5% sodium bicarbonate water on the compound represented by the general formula () (JP-A-53-
Publication No. 21146). It has been known. However, the method using basic alumina requires a large amount of expensive alumina, and the method using sodium bicarbonate aqueous solution requires that the compound represented by the general formula () is sparingly soluble in the sodium bicarbonate aqueous solution, so Dispersion and dissolution require strong stirring, and furthermore, there are problems in terms of by-products and yield, and none of these methods is necessarily industrially satisfactory. In addition, as a transfer reaction related to the method of the present invention, the formula By reacting 1N-H 2 SO 4 in a mixed solvent of water and dioxane with the prostaglandin intermediate represented by the formula How to obtain prostaglandin shown in (M.
B. Floyd, Journal of Organ Chemistry (MBFloyd, J.Org.chem.) 43 , (No.9)
1641 (1978)) is known. however,
When the compound represented by the general formula () according to the present invention is reacted under the above reaction conditions, there are many by-products and the yield is extremely low. It cannot be applied at all. Under these circumstances, the present inventors conducted intensive studies on an industrially advantageous method for producing cyclopentenolones represented by the general formula () from the compound represented by the general formula (), and as a result, unexpectedly Cyclopentenolones represented by the general formula (2) can be easily produced in a short time with good yield by reacting the compound represented by the general formula (2) in an aqueous solvent in the presence of a metal salt at a pH around neutrality. The present inventors have found that the following can be obtained, and have completed the present invention by making various studies. Although the reaction mechanism of the present invention is not necessarily clear, it is thought to be exactly the same as that of acid catalysts. It was discovered that by-products thought to be caused by aldol condensation of cyclopentenolone can be extremely suppressed, and the reaction time is short, which is an extremely surprising fact. The present invention will be specifically explained below. Specific examples of R 1 in the compound represented by the general formula () include methyl group, propyl group, hexyl group, cyclohexyl group, allyl group, 4-pentenyl group, propargyl group, benzyl group, p-methyl-benzyl group, Examples include p-chlorobenzyl group. Further, the metal salt used in the present invention is a magnesium salt, a manganese salt, a zinc salt, a copper salt or a cobalt salt, such as magnesium chloride,
Examples include magnesium bromide, magnesium nitrate, magnesium sulfate, manganese chloride, zinc chloride, copper chloride, copper sulfate, cobalt acetate, and cobalt chloride. The amount of the metal salt to be used is 0.001 to 10 times, more preferably 0.01 to 1 times, the amount of the compound represented by the general formula (). The PH in the present invention is 4 to 8, preferably
It is 4.5 to 7.5. If the acidity and alkalinity are too strong, the amount of by-products that are considered to be aldol-type condensates increases. In the present invention, the pH when the metal salt is dissolved in water is
Although it is possible to carry out the reaction with a small amount of base, it is also possible to increase the reaction rate by adding a small amount of base to the optimum pH for each metal salt. For example, when using magnesium chloride,
The reaction may be carried out at a pH of approximately 6.1 with magnesium chloride dissolved, but by adding a small amount of base, the pH may be reduced to 7.3.
The reaction proceeds about three times faster. The aqueous solvent used in the present invention is essentially water alone or an aqueous solvent containing a small amount of a non-aqueous organic solvent (toluene, xylene, diisopropyl ether, benzene, etc.) or an aqueous organic solvent (acetone, THF, dioxane, etc.). means solvent. The amount of the water solvent used is 0.5 to 100 times, preferably 5 times, the amount of the compound represented by the general formula ().
It is best to use between twice and 40 times the weight. The reaction temperature is usually 20°C to 200°C, preferably 80°C to 150°C. The compound represented by the general formula (), which is the starting material of the present invention, has the general formula () R 1 represents. [In the formula, R 1 and
Represents Mg, Zn or Al2/3 atoms. ] After synthesizing the compound represented by the formula (), by reacting it with 5-methylfurfural, the compound represented by the general formula () is synthesized. [In the formula, R 1 represents the same meaning as above. ] It can be easily obtained by heating the compound in the presence of water and a metal salt. In addition, the following JP-A-53-
The method described in Publication No. 21146. Furthermore, the method of G. Piancatelli et al. (Tetrahedron, Vol34, 2775 (1978)) It can also be obtained by Hereinafter, this will be specifically explained in Examples. Example 1 3 g of 4-hydroxy-4-methyl-5-allyl-2-cyclopentenone and MgCl 2.6H 2 O4.0
Pour a solution prepared by dissolving 1.0 g of 100 g in 120 ml of water, raise the temperature to 100°C, and then adjust the pH to 7.3 with 0.1N NaOH solution. PH7.0~
The mixture was stirred at 100°C for 4 hours while maintaining the temperature of 7.3. After cooling, 40 g of NaCl was added, followed by extraction four times with 120 ml of ether. After drying the extract over anhydrous magnesium sulfate, the ether was distilled off under reduced pressure at 40°C to obtain 2.7 g of oil. Next, using 30 g of silica gel, develop with ethyl acetate-hexane (1 volume to 2 volumes),
2-allyl-3-methyl-4-hydroxy-
2.6 g of 2-cyclopentenone was obtained. Yield 87% NMR data (CDCl 3 , internal standard TMS, δ
ppm, 90MHz) 5.71 (complex m, 1H, -CH 2 -CH =
CH a H b ) 5.06 (m, 1H, -CH 2 -CH=CH a H b ) 4.93 (m, 1H, -CH 2 -CH=CH a H b ) 4.74 (broad d, 1H, 4-H) 3.94 (broad S, 1H, 4- OH ) 2.96 (d, 2H, - CH 2 - CH=CH a H b ) 2.85 (d of d, 1H, 5-H) 2.27 (d of d, 1H, 5 -H) 2.11 (s, 3H, 3-CH 3 ) Example 2 3 g of 4-hydroxy-4-methyl-5-propargyl-2-cyclopentenone and MgCl 2 .
Prepare a solution of 4.0 g of 6H 2 O dissolved in 120 ml of water, and
After raising the temperature to ℃, adjust the pH to 6.8 with 0.1N NaOH solution.
The mixture was stirred at 100° C. for 4 hours while maintaining pH 6.8 to 7.0. After cooling, add 40g of NaCl, then add 120ml of ether.
Extracted 4 times. After drying the extract over anhydrous magnesium sulfate, the ether was distilled off under reduced pressure at 40°C.
2.5 g of oil was obtained. Next, 30 g of silica gel was developed with ethyl acetate-hexane (1 volume to 2 volumes) to obtain 2.3 g of 2-propargyl-3-methyl-4-hydroxy-2-cyclopentenone. Yield 77% NMR data ( CDCl3 , internal standard TMS, δ
ppm, 90MHz) 4.60 (broad d, 1H, 4-H) 3.95 (broad s, 1H, 4- OH ) 3.04 (d, 2H, -CH 2 -C≡CH) 2.65 (dofd, 1H, 5- H) 2.38 (dofd, 1H, 5-H) 2.20 (s, 3H, 3-C H 3 ) 1.98 (s, 1H, C≡C H ) Examples 3 to 10 Using 3 g of the following 3-oxocyclopentene compound The same operation as in Example 1 was carried out under the following conditions to obtain each cyclopentenolone compound.

【表】 実施例 11 4―ハイドロオキシ―4―メチル―5―アリル
―2―シクロペンテノン3gとZnCl25gを水120
mlに溶解した液を仕込み、100℃に昇温した後、
15時間還流下撹拌した。冷却後NaCl40gを加え
た後、トルエン120mlで4回抽出した。この抽出
液より50℃減圧下にトルエンを留去し、2.5gの
油状物を得た。次にシリカゲル30gを使用して酢
酸エチル―ヘキサン(1容対2容)で展開して、
実施例1で得たものと同質の2―アリル―3―メ
チル―4―ハイドロオキシ―2―シクロペンテノ
ン2.4gを得た。収率80% 実施例 12〜15 4―ハイドロオキシ―4―メチル―5―アリル
―2―シクロペンテノ3gを使用して下記の金属
塩について、下記の条件下で実施例11と同様の操
作を行い、2―アリル―3―メチル―4―ハイド
ロオキシ―2―シクロペンテノンを得た。
[Table] Example 11 Add 3 g of 4-hydroxy-4-methyl-5-allyl-2-cyclopentenone and 5 g of ZnCl 2 to 120 g of water.
After preparing the solution dissolved in ml and raising the temperature to 100℃,
The mixture was stirred under reflux for 15 hours. After cooling, 40 g of NaCl was added, followed by extraction four times with 120 ml of toluene. Toluene was distilled off from this extract under reduced pressure at 50°C to obtain 2.5 g of oil. Next, using 30 g of silica gel, develop with ethyl acetate-hexane (1 volume to 2 volumes),
2.4 g of 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone of the same quality as that obtained in Example 1 was obtained. Yield 80% Examples 12 to 15 Using 3 g of 4-hydroxy-4-methyl-5-allyl-2-cyclopenteno, the following metal salts were subjected to the same operation as in Example 11 under the following conditions. , 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone was obtained.

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 〔式中、R1は炭素数6までのアルキル基、ア
ルケニル基、アルキニル基または一般式
【式】で示される基を表わし、こ こにR2は水素原子、メチル基またはハロゲン原
子を表わす。〕 で示される化合物を水溶媒中、マグネシウム塩、
マンガン塩、亜鉛塩、銅塩またはコバルト塩の存
在下に処理することを特徴とする一般式 〔式中、R1は前述と同じ意味を表わす。〕 で示されるシクロペンテノロン類の製造方法。 2 処理を20〜200℃で行う特許請求の範囲第1
項に記載の方法。
[Claims] 1. General formula [In the formula, R 1 represents an alkyl group, alkenyl group, alkynyl group having up to 6 carbon atoms, or a group represented by the general formula [Formula], and R 2 represents a hydrogen atom, a methyl group, or a halogen atom. ] In an aqueous solvent, the compound represented by magnesium salt,
General formula characterized by treatment in the presence of manganese, zinc, copper or cobalt salts [In the formula, R 1 represents the same meaning as above. ] A method for producing a cyclopentenolone. 2 Claim 1 where the treatment is carried out at 20 to 200°C
The method described in section.
JP5847580A 1980-04-30 1980-04-30 Preparation of cyclopentenolone Granted JPS56154430A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5847580A JPS56154430A (en) 1980-04-30 1980-04-30 Preparation of cyclopentenolone
US06/256,570 US4347386A (en) 1980-04-30 1981-04-22 Process for preparing cyclopentenolones
HU111681A HU188043B (en) 1980-04-30 1981-04-29 Process for producing cyclopentenolene derivatives
DK190981A DK151796C (en) 1980-04-30 1981-04-29 PROCEDURE FOR THE PREPARATION OF CYCLOPENTENOLONS
DE8181103288T DE3161108D1 (en) 1980-04-30 1981-04-30 Process for preparing cyclopentenolones
EP19810103288 EP0039089B1 (en) 1980-04-30 1981-04-30 Process for preparing cyclopentenolones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5847580A JPS56154430A (en) 1980-04-30 1980-04-30 Preparation of cyclopentenolone

Publications (2)

Publication Number Publication Date
JPS56154430A JPS56154430A (en) 1981-11-30
JPS6254296B2 true JPS6254296B2 (en) 1987-11-13

Family

ID=13085452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5847580A Granted JPS56154430A (en) 1980-04-30 1980-04-30 Preparation of cyclopentenolone

Country Status (1)

Country Link
JP (1) JPS56154430A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615486B2 (en) * 1983-02-03 1994-03-02 住友化学工業株式会社 Process for producing optically active 4-hydroxy-2-cyclopentenones
JP2518499B2 (en) * 1992-11-30 1996-07-24 住友化学工業株式会社 Process for producing optically active 4-hydroxy-2-cyclopentenones

Also Published As

Publication number Publication date
JPS56154430A (en) 1981-11-30

Similar Documents

Publication Publication Date Title
JPS6113449B2 (en)
CZ281890B6 (en) Process for preparing derivatives of cyclopropane
EP0113107B1 (en) Process for preparing alcohols
JPS6254296B2 (en)
US4347386A (en) Process for preparing cyclopentenolones
JPS60136532A (en) Substituted acetylene ketone
JPS6254416B2 (en)
JPS6113696B2 (en)
US5169974A (en) Process for manufacturing aryloxyaldehydes
EP0039089B1 (en) Process for preparing cyclopentenolones
EP0031909B1 (en) 3-hydroxy-4-cyclopentenones and process for their production
JPS6254417B2 (en)
US4356326A (en) Process for producing 3-oxocyclopentenes
JP4018816B2 (en) Cycloheptenone derivative and method for producing the same, and method for producing cycloheptimidazole derivative using the same
EP0053842B1 (en) Process for preparing cyclopentenolones
US4510329A (en) Process for preparing cyclopentenolones
US6812355B2 (en) Process for the manufacture of citalopram hydrobromide from 5-bromophthalide
JPS6254413B2 (en)
EP0038053B1 (en) Method for the preparation of cis-nonen-6-yl chloride
US6096894A (en) Production method of 2-(p-alkylphenyl)pyridine compound
JPS58185535A (en) Halogeno-3-phenylbutylaldehyde and its preparation
JP4831897B2 (en) Method for producing (2,6-dichloropyridin-4-yl) methanol
JPH0434531B2 (en)
JP2002212149A (en) METHOD FOR PRODUCING TETRAALKYLAMMONIUM FLUORIDE AND METHOD FOR PRODUCING beta-HYDROXYKETONE BY USING THE SAME
EP1288211A1 (en) Improved process for the manufacture of citalopram hydrobromide from 5-bromophthalide