JP4294130B2 - Method for producing α, β-unsaturated ketone compound - Google Patents

Method for producing α, β-unsaturated ketone compound Download PDF

Info

Publication number
JP4294130B2
JP4294130B2 JP32542298A JP32542298A JP4294130B2 JP 4294130 B2 JP4294130 B2 JP 4294130B2 JP 32542298 A JP32542298 A JP 32542298A JP 32542298 A JP32542298 A JP 32542298A JP 4294130 B2 JP4294130 B2 JP 4294130B2
Authority
JP
Japan
Prior art keywords
organic layer
water
reaction
mol
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32542298A
Other languages
Japanese (ja)
Other versions
JP2000143655A (en
Inventor
彰 金子
敦寛 瀬下
悟 山崎
剛 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP32542298A priority Critical patent/JP4294130B2/en
Publication of JP2000143655A publication Critical patent/JP2000143655A/en
Application granted granted Critical
Publication of JP4294130B2 publication Critical patent/JP4294130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は農医薬、特に除草剤の中間体として有用な一般式〔I〕
【化2】

Figure 0004294130
(式中R1は1位に側鎖を持つ脂肪族基、脂環基、置換された脂環基、複素環基、置換された複素環基、フェニル基または置換されたフェニル基を示す) で表されるα,β−不飽和ケトン類(以下化合物〔I〕という)の製造方法に関するものである。
【0002】
【従来の技術】
従来、α,β−不飽和ケトンの合成法において、アルデヒドを出発原料とする種々の合成法が知られているが、それらの合成法を工業的に採用するには種々の問題がある。
例えば、アルデヒドとアセトンのアルドール縮合があるが、一般に副生物が多く、目的物の単離が困難で収率が低く、また大過剰のアセトンを必要とする。
また、アルデヒドとアセトンとを、ピペリジン−酢酸を触媒として縮合せしめる合成法〔INDIAN J.Chem.Vol.16B 970〜972(1978)等に記載〕においては、高価な触媒を大量に必要とし、また大過剰のアセトンを必要とする。
特開平3−161456号ではアセト酢酸のアルカリ金属塩とアルデヒドとを3,5−ジメチルピペリジン等の触媒下反応させ、γ位に水素原子を0ないし1個もつα,β−不飽和ケトンを収率良く合成する方法が記載されており、その中で、反応溶媒としてトルエンあるいはクロロホルムが用いられている。しかしクロロホルムは近年、公害問題・毒性等の点から鎖状塩素系炭化水素溶媒であるジクロロメタン、クロロホルム、ジクロロエタン等は排水規制が敷かれ、これらを工業的に用いる場合には特別な回収設備が必要となってきた。一方トルエン溶媒を用い、水溶性の高いR1 が4−テトラヒドロピラニル基、あるいは3−テトラヒドロチオピラニル基等の酸素原子または硫黄原子を有する複素環基の場合、一般式〔III 〕R1 ・CH(OH)CH2 C(=O)CH3 で表わされるβ−ヒドロキシケトン体が多く副生するため、脱水反応を行って目的物を得る必要があった。
【0003】
【発明が解決しようとする課題】
本発明は前記のような水溶性の高い化合物の場合でも、脱水工程を設けずに目的物が好収率で得られ、しかも、工業的問題のない製造方法を提供するものである。
【0004】
【課題を解決するための手段】
本発明はアセト酢酸のアルカリ金属塩と一般式〔I〕R1 CHO(式中、R1は1位に側鎖を持つ脂肪族基、脂環基、置換された脂環基、複素環基、置換された複素環基、フェニル基または置換されたフェニル基を示す)で表わされるアルデヒドとをデカヒドロイソキノリン存在下、水と水難溶性有機溶媒との混合溶媒中で反応させることを特徴とする
一般式〔II〕
【化3】
Figure 0004294130
(ここにR1は前記と同じ意味を表す)
で表されるα,β−不飽和ケトン類の製造方法である。
【0005】
本発明において原料のアセト酢酸アルカリ金属塩は、アセト酢酸ナトリウム、アセト酢酸カリウム、アセト酢酸リチウム等であり、ジケテンまたはアセト酢酸エステル類を苛性ソーダ、苛性カリ等の苛性アルカリ水溶液で加水分解した後、副生するアルコールを減圧濃縮により除去することで水溶液として容易に得られる。こうして得られる水溶液の濃度は、次の反応において、水が多量に存在すると収率が低下することから通常、40〜50%の濃度に調整して用いる。
【0006】
反応中のpHとしては6〜8、特に好ましくは7.1〜7.5である。pH6以下では反応が遅く収率も低下する。またpH8以上では一般式〔III〕R1CH(OH)CH2C(=O)CH3で表されるβ−ヒドロキシケトン体の副生量が増加する。従って、反応中、鉱酸を用いて上記pHに調整する。
pH保持に使用する鉱酸としては系内の水量を少なくするため濃硫酸、85%リン酸等の水の含量の少ない酸、あるいは塩化水素ガス等の酸性ガスあるいは無水硫酸、五酸化リン等の酸無水物を使用することが望ましい。また水の含量の多い濃塩酸でも、原料のアセト酢酸アルカリ金属塩の水溶液を高濃度化して用いることで反応は円滑に進行する。
【0007】
本発明に使用する水難溶性有機溶媒としてはジクロロメタン、クロロホルム、ジクロロエタン等の塩素化炭化水素系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、トルエン、キシレン等の芳香族系溶媒、ヘキサン等の炭化水素系溶媒が使用できる。特に本発明では溶媒の極性のいかんによらず高収率で目的物を得ることができるので、水難溶性有機溶媒としては汎用性が高く安価なトルエン、キシレン等の芳香族系溶媒、ヘキサン等の炭化水素系溶媒が使用できる。
【0008】
一般式〔I〕で表わされるアルデヒドとしてはα位に水素原子を0ないし1個持つアルデヒドであり、たとえばイソブチルアルデヒド、2−メチルブタナール、2−メチルペンタナール、2,3−ジメチルブタナール、2−メチルヘキサナール、2−エチルヘキサナール、2−エチルペンタナール、2−メチルヘプタナール、2−メチルノナール等のアルデヒドのα位で分岐している脂肪族アルデヒド、シクロヘキサンカルバルデヒド、2−メチルシクロヘキサンカルバルデヒド、3−メチルシクロヘキサンカルバルデヒド、4−メチルシクロヘキサンカルバルデヒド等の脂環基を持つアルデヒド、4−テトラヒドロピランカルバルデヒド、2−テトラヒドロフランカルバルデヒド、3−テトラヒドロピランカルバルデヒド、3−テトラヒドロチオピランカルバルデヒド等の複素環アルデヒド、ベンズアルデヒド、o−メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−メチルチオベンズアルデヒド、p−クロロベンズアルデヒド等の芳香族アルデヒドである。
本発明は特に4−テトラヒドロピランカルバルデヒド、3−テトラヒドロチオピランカルバルデヒド等の水溶性の高い酸素原子または硫黄原子を有する6員の複素環基を有する化合物に適している。
【0009】
本発明において反応温度としては10〜60℃であるが、反応温度が高いほど一般式〔III〕R1CH(OH)CH2C(=O)CH3で表されるβ−ヒドロキシケトン体の副生量が増加するため収率が低下する。従って特に好ましい反応温度としては10〜40℃である。
【0010】
本発明を実施するには一般式〔I〕で表わされるアルデヒド1モルに対し、1〜3モルのアセト酢酸のアルカリ金属塩の水溶液に、アルデヒド1モルに対して10〜1000ml、好しくは100〜800mlの水難溶性有機溶媒を加えた後、アルデヒド1モルに対して0.01モル以上、好しくは0.05〜0.20モルのデカヒドロイソキノリンを加える。さらに鉱酸を加えpHを6.0〜8.0に調製する。
ついで10〜60℃で鉱酸によりpH6.0〜8.0に維持しながらアルデヒド1モル相当を加え1〜10時間攪拌せしめて反応を行う。反応終了後水を加えて鉱酸でpH2以下とし、有機層を水層から分離する。さらに有機層をアルカリで中和後水洗して有機層を水層から分離し、有機層を減圧濃縮することにより目的とするα,β−不飽和ケトン化合物を得る。
また有機層より分離した水層を苛性ソーダ等の苛性アルカリでpHを13以上とし、水難溶性有機溶媒で抽出することにより触媒として使用したデカヒドロイソキノリンは90%以上回収され再使用が可能である。
【0011】
【実施例】
以下に本発明の実施態様を実施例をもって説明する。ただし本発明はこの実施例に限定されるものではない。
【0012】
実施例1
内容積1000mlの反応器を用いてこれにアセト酢酸メチルエステル371.6g(3.2モル)および水134.4gを仕込み、水冷攪拌下に内温を35〜40℃に保ちながら25%NaOH水溶液537.6g(3.36モル)を4時間で滴下し、その後35〜40℃で1時間攪拌を続けた後、水およびメタノールを40℃で減圧留去した。フラスコ内容物を一部取り出し1規定の塩酸標準水溶液によりpH滴定を実施した結果、得られたアセト酢酸ナトリウム水溶液の濃度は50%であった。このアセト酢酸ナトリウム水溶液から169.2g(0.68モル)を量り取り内容積1000mlの反応器に入れ、ついでトルエン150ml、デカヒドロイソキノリン6.96g(0.05モル)を加え、濃硫酸でpHを7.4とした。この中に4−テトラヒドロピランカルバルデヒド57.1g(0.5モル)を20分かけて滴下した後3時間攪拌を続けた。反応中温度を20±2℃に保ち濃硫酸を滴下することによりpHを7.4±0.1に維持した。反応終了後水72.6gを加え、濃硫酸にてpHを1.5として60℃まで昇温した後有機層を水層から分離した。有機層に25%NaOH水溶液を5g加えて中和した後有機層を水層から分離した。さらに有機層に水10gを加えて攪拌・水洗し有機層を水層から分離した後無水硫酸マグネシウムにより乾燥した。硫酸マグネシウムを濾別後溶媒を減圧留去し、残った油状物をさらに減圧蒸留することにより沸点91〜95℃(0.1mmHg)の無色の油状物69.0gを得た。(粗収率89.5%)ガスクロマトグラフィーにより分析したところ、目的物4−(4−テトラヒドロピラニル)−3−ブテン−2−オンの純度は96.5%であった。(収率86.4%)なお副生物である4−ヒドロキシ−4−(4−テトラヒドロピラニル)−ブタン−2オンが3.5%含まれていた。
【0013】
実施例2、3
実施例1において反応温度を30±2℃または40±2℃に変え、実施例1と同様な方法により反応を行った。結果を表1に示す。
【0014】
実施例4
実施例1と同様の条件で合成した50%アセト酢酸ナトリウム水溶液169.2g(0.68モル)を内容積1000mlの反応器に入れ、ついでトルエン150ml、デカヒドロイソキノリン6.96g(0.05モル)を加え、35%塩酸でpHを7.3とした。この中に4−テトラヒドロピランカルバルデヒド57.1g(0.5モル)を20分かけて滴下した後2時間攪拌を続けた。反応中温度を35〜40℃に保ち35%塩酸を滴下することによりpHを7.3±0.2に維持した。反応終了後35%塩酸にてpHを1.5として60℃まで昇温した後有機層を水層から分離した。有機層に無水硫酸マグネシウムを添加して乾燥し、硫酸マグネシウムを濾別後240.0gの有機層を得た。有機層の一部をサンプリングし、高速液体クロマトグラフィーにより純度99.9%の標準品を用いた内部標準法で分析したところ、目的物4−(4−テトラヒドロピラニル)−3−ブテン−2−オンの濃度は27.0%であった。(収率84.0%)副生物である4−ヒドロキシ−4−(4−テトラヒドロピラニル)−ブタン−2オンの濃度は2.4%であり、4−テトラヒドロピランカルバルデヒドに対する収率は6.6%であった。
【0015】
実施例5
実施例1と同様の条件で合成した48%アセト酢酸ナトリウム水溶液536.9g(2.08モル)を内容積1000mlの反応器に入れ、ついでトルエン150ml、デカヒドロイソキノリン20.9g(0.15モル)を加え、濃硫酸でpHを7.2とした。この中に3−テトラヒドロチオピランカルバルデヒド195.7g(1.5モル)を40分かけて滴下した後2時間攪拌を続けた。反応中温度を22〜24℃に保ち濃硫酸を滴下することによりpHを7.4±0.1に維持した。反応終了後濃硫酸にてpHを1.5とした後60℃まで昇温し、水120gを添加した。60℃で30分攪拌した後、有機層を水層から分離した。有機層に25%NaOH水溶液6gを加えて中和した後、有機層を水層から分離した。さらに有機層に水30gを加えて攪拌・水洗し有機層を水層から分離した後溶媒を減圧留去した。残った油状物をさらに減圧蒸留することにより沸点107〜108℃(0.1mmHg)の無色の油状物232.7gを得た。(粗収率91.1%)ガスクロマトグラフィーにより分析したところ、目的物4−(3−テトラヒドロチオピラニル)−3−ブテン−2−オンの純度は98.0%であった。(収率89.3%)
【0016】
比較例1
実施例1と同様の条件で合成した50%アセト酢酸ナトリウム水溶液357.9g(1.36モル)を内容積1000mlの反応器に入れ、ついでトルエン300ml、3,5−ジメチルピペリジン11.3g(0.1モル)を加え、濃硫酸でpHを7.5とした。この中に4−テトラヒドロピランカルバルデヒド114.2g(1.0モル)を1時間かけて滴下した後3時間攪拌を続けた。反応中温度を35〜40℃に保ち濃硫酸を滴下することによりpHを7.3±0.2に維持した。反応終了後水125.7gを加え、濃硫酸にてpHを1.5として60℃まで昇温した後有機層を水層から分離した。有機層に25%NaOH水溶液を9g加えて中和した後有機層を水層から分離した。さらに有機層に水20gを加えて攪拌・水洗し、有機層を水層から分離した後トルエンの一部を減圧留去し、318.7gの有機層を得た。有機層の一部をサンプリングし、高速液体クロマトグラフィーにより純度99.9%の標準品を用いた内部標準法で分析したところ、目的物4−(4−テトラヒドロピラニル)−3−ブテン−2オンの濃度は38.0%であった。(収率78.5%)なお副生物である4−ヒドロキシ−4−(4−テトラヒドロピラニル)−ブタン−2−オンの濃度は7.3%であり、4−テトラヒドロピラニルカルバルデヒドに対する収率は13.5%であった。
【表1】
Figure 0004294130
【0017】
【発明の効果】
本発明の製造方法は4−テトラヒドロピラニル基等の水溶性の高い置換基を有する化合物でも好収率で目的のα,β−不飽和ケトン化合物が得られ、しかも毒性等の問題もなく工業的に優れた製造方法である。[0001]
[Industrial application fields]
The present invention is a general formula [I] useful as an intermediate for agricultural medicine, particularly herbicides.
[Chemical formula 2]
Figure 0004294130
(Wherein R 1 represents an aliphatic group having a side chain at the 1-position, an alicyclic group, a substituted alicyclic group, a heterocyclic group, a substituted heterocyclic group, a phenyl group or a substituted phenyl group) In the production method of α, β-unsaturated ketones (hereinafter referred to as Compound [I]).
[0002]
[Prior art]
Conventionally, various methods for synthesizing α, β-unsaturated ketones using aldehyde as a starting material are known. However, there are various problems in industrially adopting these methods.
For example, there is aldol condensation of aldehyde and acetone, but generally there are many by-products, it is difficult to isolate the target product, the yield is low, and a large excess of acetone is required.
Further, a synthesis method in which aldehyde and acetone are condensed using piperidine-acetic acid as a catalyst [INDIAN J. et al. Chem. Vol. 16B 970-972 (1978) etc.] require a large amount of expensive catalyst and a large excess of acetone.
In JP-A-3-161456, an alkali metal salt of acetoacetic acid and an aldehyde are reacted under a catalyst such as 3,5-dimethylpiperidine to collect an α, β-unsaturated ketone having 0 to 1 hydrogen atom at the γ position. Methods for efficient synthesis are described, and among them, toluene or chloroform is used as a reaction solvent. However, in recent years, chloroform is a chain chlorinated hydrocarbon solvent such as dichloromethane, chloroform, dichloroethane, etc. due to pollution problems and toxicity, and effluent regulations are put in place. When these are used industrially, special recovery facilities are required. It has become. On the other hand, when a toluene solvent is used and R 1 having high water solubility is a heterocyclic group having an oxygen atom or sulfur atom such as 4-tetrahydropyranyl group or 3-tetrahydrothiopyranyl group, the general formula [III] R 1 -Since a large amount of β-hydroxyketone represented by CH (OH) CH 2 C (═O) CH 3 is by-produced, it was necessary to perform a dehydration reaction to obtain the desired product.
[0003]
[Problems to be solved by the invention]
The present invention provides a production method in which the desired product can be obtained in good yield without providing a dehydration step even in the case of a compound having high water solubility as described above, and which is free from industrial problems.
[0004]
[Means for Solving the Problems]
The present invention relates to an alkali metal salt of acetoacetic acid and a general formula [I] R 1 CHO (wherein R 1 is an aliphatic group having a side chain at the 1-position, an alicyclic group, a substituted alicyclic group, a heterocyclic group. And an aldehyde represented by a substituted heterocyclic group, a phenyl group or a substituted phenyl group) in the presence of decahydroisoquinoline in a mixed solvent of water and a poorly water-soluble organic solvent. General formula [II]
[Chemical 3]
Figure 0004294130
(Where R 1 has the same meaning as above)
It is a manufacturing method of (alpha), (beta)-unsaturated ketone represented by these.
[0005]
In the present invention, the raw material alkali metal acetoacetate is sodium acetoacetate, potassium acetoacetate, lithium acetoacetate or the like. After diketene or acetoacetate is hydrolyzed with a caustic alkali aqueous solution such as caustic soda or caustic potash, a by-product is produced. It is easily obtained as an aqueous solution by removing the alcohol to be removed by concentration under reduced pressure. The concentration of the aqueous solution thus obtained is usually adjusted to a concentration of 40 to 50% because the yield decreases when a large amount of water is present in the next reaction.
[0006]
The pH during the reaction is 6 to 8, particularly preferably 7.1 to 7.5. Below pH 6, the reaction is slow and the yield decreases. On the other hand, when the pH is 8 or more, the by-product amount of the β-hydroxyketone compound represented by the general formula [III] R 1 CH (OH) CH 2 C (═O) CH 3 increases. Therefore, during the reaction, the above pH is adjusted using a mineral acid.
Mineral acids used to maintain pH include acids with low water content such as concentrated sulfuric acid and 85% phosphoric acid to reduce the amount of water in the system, acid gases such as hydrogen chloride gas, sulfuric acid anhydride, phosphorus pentoxide, etc. It is desirable to use an acid anhydride. In addition, even with concentrated hydrochloric acid having a high water content, the reaction proceeds smoothly by using an aqueous solution of the alkali metal acetoacetate as a raw material at a high concentration.
[0007]
Examples of the poorly water-soluble organic solvent used in the present invention include chlorinated hydrocarbon solvents such as dichloromethane, chloroform and dichloroethane, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, aromatic solvents such as toluene and xylene, and carbonization such as hexane. A hydrogen-based solvent can be used. In particular, in the present invention, the target product can be obtained in a high yield regardless of the polarity of the solvent. Therefore, the poorly water-soluble organic solvent is a versatile and inexpensive aromatic solvent such as toluene or xylene, hexane or the like. Hydrocarbon solvents can be used.
[0008]
The aldehyde represented by the general formula [I] is an aldehyde having 0 to 1 hydrogen atom at the α-position, such as isobutyraldehyde, 2-methylbutanal, 2-methylpentanal, 2,3-dimethylbutanal, Aliphatic aldehydes branched at the α-position of aldehydes such as 2-methylhexanal, 2-ethylhexanal, 2-ethylpentanal, 2-methylheptanal, and 2-methylnonal, cyclohexanecarbaldehyde, 2-methylcyclohexanecarbaldehyde Aldehydes having an alicyclic group such as 3-methylcyclohexanecarbaldehyde, 4-methylcyclohexanecarbaldehyde, 4-tetrahydropyrancarbaldehyde, 2-tetrahydrofurancarbaldehyde, 3-tetrahydropyrancarbaldehyde, 3-tetrahydro Heterocyclic aldehydes such as o-pyran-carbaldehyde, benzaldehyde, o- methylbenzaldehyde, m- methylbenzaldehyde, p- methylbenzaldehyde, p- methylthiobenzaldehyde, aromatic aldehydes such as p- chlorobenzaldehyde.
The present invention is particularly suitable for compounds having a 6-membered heterocyclic group having a highly water-soluble oxygen atom or sulfur atom, such as 4-tetrahydropyrancarbaldehyde and 3-tetrahydrothiopyrancarbaldehyde.
[0009]
In the present invention, the reaction temperature is 10 to 60 ° C., but the higher the reaction temperature is, the higher the reaction temperature of the β-hydroxyketone represented by the general formula [III] R 1 CH (OH) CH 2 C (═O) CH 3 . Since the amount of by-products increases, the yield decreases. Therefore, a particularly preferred reaction temperature is 10 to 40 ° C.
[0010]
For carrying out the present invention, 1 to 1 mol of an aqueous solution of an alkali metal salt of acetoacetic acid per 1 mol of the aldehyde represented by the general formula [I], 10 to 1000 ml, preferably 100 After adding ~ 800 ml of poorly water-soluble organic solvent, 0.01 mol or more, preferably 0.05 to 0.20 mol of decahydroisoquinoline is added to 1 mol of aldehyde. Further, a mineral acid is added to adjust the pH to 6.0 to 8.0.
Next, while maintaining the pH at 6.0 to 8.0 with a mineral acid at 10 to 60 ° C., 1 mol equivalent of aldehyde is added and the reaction is carried out by stirring for 1 to 10 hours. After completion of the reaction, water is added to bring the pH to 2 or less with a mineral acid, and the organic layer is separated from the aqueous layer. Further, the organic layer is neutralized with an alkali and washed with water to separate the organic layer from the aqueous layer, and the organic layer is concentrated under reduced pressure to obtain the desired α, β-unsaturated ketone compound.
The aqueous layer separated from the organic layer is extracted with a caustic such as caustic soda to have a pH of 13 or more and extracted with a poorly water-soluble organic solvent, so that 90% or more of decahydroisoquinoline used as a catalyst is recovered and can be reused.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to examples. However, the present invention is not limited to this embodiment.
[0012]
Example 1
Using a reactor with an internal volume of 1000 ml, 371.6 g (3.2 mol) of acetoacetic acid methyl ester and 134.4 g of water were charged, and a 25% NaOH aqueous solution was maintained while maintaining the internal temperature at 35-40 ° C. with water cooling. 537.6 g (3.36 mol) was added dropwise over 4 hours, and then stirring was continued at 35 to 40 ° C. for 1 hour, and then water and methanol were distilled off under reduced pressure at 40 ° C. A part of the contents of the flask was taken out and subjected to pH titration with a 1N standard hydrochloric acid aqueous solution. As a result, the concentration of the obtained aqueous sodium acetoacetate solution was 50%. 169.2 g (0.68 mol) was weighed from this aqueous solution of sodium acetoacetate and placed in a reactor having an internal volume of 1000 ml, and then 150 ml of toluene and 6.96 g (0.05 mol) of decahydroisoquinoline were added, and the pH was adjusted with concentrated sulfuric acid. Was 7.4. 4-tetrahydropyran carbaldehyde 57.1g (0.5 mol) was dripped in this over 20 minutes, Then, stirring was continued for 3 hours. During the reaction, the temperature was kept at 20 ± 2 ° C., and the pH was maintained at 7.4 ± 0.1 by adding concentrated sulfuric acid dropwise. After completion of the reaction, 72.6 g of water was added, the pH was raised to 1.5 with concentrated sulfuric acid and the temperature was raised to 60 ° C., and then the organic layer was separated from the aqueous layer. The organic layer was neutralized by adding 5 g of 25% NaOH aqueous solution, and then the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer and then dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, the solvent was distilled off under reduced pressure, and the remaining oil was further distilled under reduced pressure to obtain 69.0 g of a colorless oil having a boiling point of 91 to 95 ° C. (0.1 mmHg). When analyzed by gas chromatography (crude yield: 89.5%), the purity of the desired product 4- (4-tetrahydropyranyl) -3-buten-2-one was 96.5%. (Yield 86.4%) In addition, 3.5% of 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one as a by-product was contained.
[0013]
Examples 2 and 3
In Example 1, the reaction temperature was changed to 30 ± 2 ° C. or 40 ± 2 ° C., and the reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.
[0014]
Example 4
169.2 g (0.68 mol) of a 50% aqueous sodium acetoacetate solution synthesized under the same conditions as in Example 1 was placed in a reactor having an internal volume of 1000 ml, and then 150 ml of toluene and 6.96 g (0.05 mol of decahydroisoquinoline). ) And the pH was adjusted to 7.3 with 35% hydrochloric acid. 4-tetrahydropyran carbaldehyde 57.1g (0.5 mol) was dripped in this over 20 minutes, Then, stirring was continued for 2 hours. During the reaction, the temperature was maintained at 35 to 40 ° C., and 35% hydrochloric acid was added dropwise to maintain the pH at 7.3 ± 0.2. After completion of the reaction, the pH was adjusted to 1.5 with 35% hydrochloric acid, the temperature was raised to 60 ° C., and then the organic layer was separated from the aqueous layer. Anhydrous magnesium sulfate was added to the organic layer for drying, and magnesium sulfate was filtered off to obtain 240.0 g of an organic layer. A part of the organic layer was sampled and analyzed by high performance liquid chromatography by an internal standard method using a standard product having a purity of 99.9%. As a result, the desired product 4- (4-tetrahydropyranyl) -3-butene-2 was obtained. The concentration of -one was 27.0%. (Yield 84.0%) The concentration of by-product 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one is 2.4%, and the yield based on 4-tetrahydropyrancarbaldehyde is It was 6.6%.
[0015]
Example 5
A 48% aqueous solution of sodium acetoacetate (536.9 g, 2.08 mol) synthesized under the same conditions as in Example 1 was placed in a reactor having an internal volume of 1000 ml, and then 150 ml of toluene and 20.9 g (0.15 mol) of decahydroisoquinoline. ) And the pH was adjusted to 7.2 with concentrated sulfuric acid. To this, 195.7 g (1.5 mol) of 3-tetrahydrothiopyrancarbaldehyde was added dropwise over 40 minutes, and stirring was continued for 2 hours. During the reaction, the temperature was maintained at 22 to 24 ° C., and concentrated sulfuric acid was added dropwise to maintain the pH at 7.4 ± 0.1. After completion of the reaction, the pH was adjusted to 1.5 with concentrated sulfuric acid, the temperature was raised to 60 ° C., and 120 g of water was added. After stirring at 60 ° C. for 30 minutes, the organic layer was separated from the aqueous layer. After neutralizing the organic layer by adding 6 g of 25% aqueous NaOH, the organic layer was separated from the aqueous layer. Further, 30 g of water was added to the organic layer and the mixture was stirred and washed with water to separate the organic layer from the aqueous layer, and then the solvent was distilled off under reduced pressure. The remaining oil was further distilled under reduced pressure to obtain 232.7 g of a colorless oil having a boiling point of 107 to 108 ° C. (0.1 mmHg). When analyzed by gas chromatography (crude yield 91.1%), the purity of the desired product 4- (3-tetrahydrothiopyranyl) -3-buten-2-one was 98.0%. (Yield 89.3%)
[0016]
Comparative Example 1
357.9 g (1.36 mol) of a 50% aqueous sodium acetoacetate solution synthesized under the same conditions as in Example 1 was placed in a reactor having an internal volume of 1000 ml, and then 300 ml of toluene and 11.3 g (0,3) of 3,5-dimethylpiperidine. 0.1 mol) and the pH was adjusted to 7.5 with concentrated sulfuric acid. 4-tetrahydropyran carbaldehyde 114.2g (1.0mol) was dripped in this over 1 hour, Then, stirring was continued for 3 hours. During the reaction, the temperature was maintained at 35 to 40 ° C., and pH was maintained at 7.3 ± 0.2 by adding concentrated sulfuric acid dropwise. After completion of the reaction, 125.7 g of water was added, the pH was raised to 1.5 with concentrated sulfuric acid, the temperature was raised to 60 ° C., and the organic layer was separated from the aqueous layer. The organic layer was neutralized by adding 9 g of 25% NaOH aqueous solution, and then the organic layer was separated from the aqueous layer. Further, 20 g of water was added to the organic layer, and the mixture was stirred and washed with water. After separating the organic layer from the aqueous layer, a part of toluene was distilled off under reduced pressure to obtain 318.7 g of an organic layer. A part of the organic layer was sampled and analyzed by high performance liquid chromatography by an internal standard method using a standard product having a purity of 99.9%. As a result, the desired product 4- (4-tetrahydropyranyl) -3-butene-2 was obtained. The ON concentration was 38.0%. (Yield 78.5%) The concentration of 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one as a by-product is 7.3%, based on 4-tetrahydropyranyl carbaldehyde. The yield was 13.5%.
[Table 1]
Figure 0004294130
[0017]
【The invention's effect】
The production method of the present invention can produce the desired α, β-unsaturated ketone compound in good yield even with a compound having a highly water-soluble substituent such as 4-tetrahydropyranyl group, and is industrially free from problems such as toxicity. This is an excellent manufacturing method.

Claims (1)

アセト酢酸のアルカリ金属塩と4−テトラヒドロピランカルバルデヒドとをデカヒドロイソキノリン存在下、水とトルエンとの混合溶媒中で反応することを特徴とする4−(4−テトラヒドロピラニル)−3−ブテン−2−オンの製造方法。 4- (4-tetrahydropyranyl) -3-butene characterized by reacting an alkali metal salt of acetoacetic acid and 4-tetrahydropyrancarbaldehyde in a mixed solvent of water and toluene in the presence of decahydroisoquinoline -2-one production method.
JP32542298A 1998-11-16 1998-11-16 Method for producing α, β-unsaturated ketone compound Expired - Fee Related JP4294130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32542298A JP4294130B2 (en) 1998-11-16 1998-11-16 Method for producing α, β-unsaturated ketone compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32542298A JP4294130B2 (en) 1998-11-16 1998-11-16 Method for producing α, β-unsaturated ketone compound

Publications (2)

Publication Number Publication Date
JP2000143655A JP2000143655A (en) 2000-05-26
JP4294130B2 true JP4294130B2 (en) 2009-07-08

Family

ID=18176685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32542298A Expired - Fee Related JP4294130B2 (en) 1998-11-16 1998-11-16 Method for producing α, β-unsaturated ketone compound

Country Status (1)

Country Link
JP (1) JP4294130B2 (en)

Also Published As

Publication number Publication date
JP2000143655A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP2830211B2 (en) Method for producing β-hydroxyketones
EP2262756B1 (en) Process for preparing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrates
JPS632247B2 (en)
WO2011086570A1 (en) Process for preparation of cyanoalkylpropionate derivatives
JP2830210B2 (en) Synthesis of α, β-unsaturated ketones
JP4294130B2 (en) Method for producing α, β-unsaturated ketone compound
US4076732A (en) Derivatives of α-(6-carboxyhexyl) furfuryl alcohol
JP2001252570A (en) Chiral rare earth metallic catalyst and asymmetric aldol reaction process
JP3795970B2 (en) Method for producing α, β-unsaturated aldehyde
JP2006513246A (en) Production of water-soluble β-hydroxynitrile
JP4687464B2 (en) Process for producing tetrahydropyran-4-one and pyran-4-one
US4334087A (en) Process for preparing α-ketocarboxylic acids
EP0053408B1 (en) Process for the preparation of substituted glyoxylic acid derivatives
JP2921054B2 (en) Synthesis of alkoxy-α, β-unsaturated ketones
RU2026857C1 (en) Method of synthesis of 2-methoxyisobutylisocyanide
RU2100345C1 (en) Method of synthesis of fluorine-containing $$$-diketones
HU190939B (en) Process for preparing cyanohydrines
GB2088354A (en) Preparation of a-pivaloyl acetic esters
JPS584698B2 (en) Method for producing 2-(3-benzoylphenyl)propionic acid
SU1205756A3 (en) Method of producing 1,1-dichlor-4-methylpentadiens
EP1018503B1 (en) Process of producing cyclopropanecarboxylate compounds
JP4387016B2 (en) Method for producing α, β-unsaturated ketone
JPS6254416B2 (en)
EP0097839B1 (en) Process for preparing 2-amino-2-arylacetonitriles
SU941359A1 (en) Process for producing methylnealkyl derivatives of cyclohexanone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees