JP2001163819A - METHOD OF MANUFACTURING alpha,beta-UNSATURATED KETONE - Google Patents

METHOD OF MANUFACTURING alpha,beta-UNSATURATED KETONE

Info

Publication number
JP2001163819A
JP2001163819A JP35098999A JP35098999A JP2001163819A JP 2001163819 A JP2001163819 A JP 2001163819A JP 35098999 A JP35098999 A JP 35098999A JP 35098999 A JP35098999 A JP 35098999A JP 2001163819 A JP2001163819 A JP 2001163819A
Authority
JP
Japan
Prior art keywords
acid
reaction
water
unsaturated ketone
organic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35098999A
Other languages
Japanese (ja)
Other versions
JP4387016B2 (en
Inventor
Akira Kaneko
彰 金子
Atsuhiro Seshimo
敦寛 瀬下
Takeshi Nishiwaki
剛 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP35098999A priority Critical patent/JP4387016B2/en
Publication of JP2001163819A publication Critical patent/JP2001163819A/en
Application granted granted Critical
Publication of JP4387016B2 publication Critical patent/JP4387016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an α,β-unsaturated ketone expressed by general formula (II) in a high yield without industrial problem even in the presence of an iron ion in the reaction system which is a reaction inhibitor, in reacting an aldehyde expressed by general formula (I) R1CHO (R1 is a (substituted)alkyl, a hydrocarbon group having a >3C (substituted) alicyclic skeleton, an alkyl having a hydrocarbon group having the alicyclic skeleton, a (substituted)heterocycle or a (substituted)phenyl.), and an alkali metal acetoacetate or an alkali earth metal acetoacetate in the presence of a base in a mixed solvent of water and an organic solvent sparingly soluble in water. SOLUTION: In the reaction system, an aldehyde is allowed to coexist with at least one kind selected from the group consisting of phosphoric acid, metaboric acid, silicic acid, polyphosphoric acid and their alkali metal salt or alkali earth metal salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は農医薬の中間体として有
用なα,β−不飽和ケトンの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing an .alpha.,. Beta.-unsaturated ketone which is useful as an intermediate for agrochemicals.

【0002】[0002]

【従来の技術】従来、一般式(I)で表されるα,β−
不飽和ケトンを、アセト酢酸アルカリ金属塩とアルデヒ
ドの縮合により合成する方法は幾つか報告されている。
例えば、特開昭57−4930号公報には、アセト酢酸
のアルカリ金属塩とアルデヒド類を脂肪族2級アミンを
触媒とし、水難溶性有機溶剤と水との混合液中において
反応させることが記載されている。
2. Description of the Related Art Conventionally, α, β- represented by the general formula (I)
Several methods have been reported for synthesizing unsaturated ketones by condensation of alkali metal acetoacetate with aldehydes.
For example, JP-A-57-4930 describes that an alkali metal salt of acetoacetic acid and an aldehyde are reacted in a mixed solution of a water-insoluble organic solvent and water using an aliphatic secondary amine as a catalyst. ing.

【0003】また、特開平3−161456号公報に
は、特に、α位に側鎖を持つアルデヒドを用いて反応さ
せる場合に有用な反応として、前記したのと同様の反応
を特定の脂肪族2級アミンを用い、鉱酸によりpHを一
定に保持し、水量を調整して反応させることが記載され
ている。
Japanese Patent Application Laid-Open No. 161456/1991 discloses that a reaction similar to that described above is carried out for a specific aliphatic carboxylic acid, particularly as a useful reaction when an aldehyde having a side chain at the α-position is used. It is described that a grade amine is used to keep the pH constant with a mineral acid and to adjust the amount of water for the reaction.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの反応
系に、数ppm程度の微量な鉄イオンが存在すると反応
が阻害され、β−ヒドロキシケトン体を多く副生し収率
が著しく低くなってしまうという問題が明らかとなっ
た。こうした鉄イオンの阻害を抑制するため、鉄イオン
を捕捉するキレート剤(例えば2,2’−ビピリジル、
1,10−フェナントロリン等)の使用を試みたが、抑
制効果としては弱く、また塩基を回収する工程でこれら
キレート剤が析出してしまい、分液性が非常に悪くなる
という問題があった。
However, when a small amount of iron ions of about several ppm is present in these reaction systems, the reaction is inhibited, and a large amount of β-hydroxyketone is by-produced, and the yield becomes extremely low. The problem of getting lost became apparent. In order to suppress such inhibition of iron ions, chelating agents that capture iron ions (for example, 2,2′-bipyridyl,
Attempts to use 1,10-phenanthroline, etc.) have had the problem that the inhibitory effect is weak, and these chelating agents are precipitated in the step of recovering the base, resulting in extremely poor liquid separation.

【0005】本発明は、反応の阻害物質となる鉄イオン
が反応系に存在している場合でも目的物であるα、β不
飽和ケトンが高収率で得られ、しかも工業的問題のない
製造方法を提供するものである。
[0005] The present invention provides a process for producing an α, β unsaturated ketone, which is a target substance, in high yield even when iron ions which are inhibitors of the reaction are present in the reaction system, and which has no industrial problem. It provides a method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、反応系に特定の酸又は
それらのアルカリ金属塩又はアルカリ土類金属塩を存在
させることで、収率よく目的とするα、β不飽和ケトン
が得られることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, by allowing a specific acid or an alkali metal salt or an alkaline earth metal salt thereof to be present in a reaction system, The present inventors have found that the desired α, β unsaturated ketone can be obtained in good yield, and have completed the present invention.

【0007】即ち、本発明は、塩基存在下、水と水難溶
性有機溶媒との混合溶媒中でのアセト酸のアルカリ金属
塩又はアルカリ土類金属塩と一般式(I)
That is, the present invention relates to an alkali metal salt or an alkaline earth metal salt of acetoic acid in a mixed solvent of water and a poorly water-soluble organic solvent in the presence of a base and a compound of the formula (I)

【化3】R1CHO (式中、R1は置換基を有していてもよいアルキル基、
置換基を有していてもよいC3以上の脂環式骨格を有す
る炭化水素基、該脂環式骨格を有する炭化水素基を有す
るアルキル基、置換基を有していてもよい複数環基、又
は置換基を有していてもよいフェニル基を表す。)で表
わされるアルデヒドの反応において、リン酸、メタホウ
酸、ケイ酸、ポリリン酸、及びそれらのアルカリ金属塩
又はアルカリ土類金属塩からなる群から選ばれる少なく
とも1種以上を共存させることを特徴とする一般式(I
I)
Embedded image R 1 CHO (wherein, R 1 represents an optionally substituted alkyl group,
A hydrocarbon group having a C3 or more alicyclic skeleton which may have a substituent, an alkyl group having a hydrocarbon group having the alicyclic skeleton, a plurality of cyclic groups which may have a substituent, Or a phenyl group which may have a substituent. In the reaction of the aldehyde represented by), at least one selected from the group consisting of phosphoric acid, metaboric acid, silicic acid, polyphosphoric acid, and alkali metal salts or alkaline earth metal salts thereof is coexistent. The general formula (I
I)

【化4】 (式中、R1は前記と同じ基を表す。)で表されるα,
β−不飽和ケトンの製造方法(請求項1)に関する。
Embedded image (In the formula, R 1 represents the same group as described above.)
The present invention relates to a method for producing a β-unsaturated ketone (Claim 1).

【0008】更に詳しくは、リン酸、メタホウ酸、ケイ
酸、及びポリリン酸からなる群から選ばれる少なくとも
1種以上を一般式(I)で表されるアルデヒドに対して
0.1〜30mol%添加することを特徴とする請求項
1に記載のα,β−不飽和ケトンの製造方法(請求項
2)に関し、塩基が脂肪族2級アミンであることを特徴
とする請求項1又は2に記載のα,β−不飽和ケトンの
製造方法(請求項3)に関する。
More specifically, at least one selected from the group consisting of phosphoric acid, metaboric acid, silicic acid and polyphosphoric acid is added in an amount of 0.1 to 30 mol% based on the aldehyde represented by the general formula (I). The method for producing an α, β-unsaturated ketone according to claim 1 (claim 2), wherein the base is an aliphatic secondary amine. The present invention relates to a method for producing an α, β-unsaturated ketone (claim 3).

【0009】又、反応中、pHを一定の範囲に、好まし
くはpH6〜8の範囲に保持することを特徴とする請求
項1〜3のいずれかに記載のα,β−不飽和ケトンの製
造方法(請求項4、5)に関し、また一般式(I)中R
1において、1位に少なくとも1以上の置換基を有する
ことを特徴とする請求項1〜6のいずれかに記載のα,
β−不飽和ケトンの製造方法(請求項6)に関する。
The process for producing an α, β-unsaturated ketone according to any one of claims 1 to 3, wherein the pH is maintained in a certain range during the reaction, preferably in a range of 6 to 8. The method (Claims 4 and 5) and R in the general formula (I)
1, wherein at least one or more substituents are provided at the 1-position.
The present invention relates to a method for producing a β-unsaturated ketone (Claim 6).

【0010】[0010]

【発明の実施の形態】本発明において用いられるアセト
酢酸アルカリ金属塩又はアルカリ土類金属塩は、具体的
には、アセト酢酸ナトリウム、アセト酢酸カリウム、ア
セト酢酸リチウム、アセト酢酸マグネシウム、アセト酢
酸カルシウム等を例示することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The alkali metal salt or alkaline earth metal acetoacetate used in the present invention includes, specifically, sodium acetoacetate, potassium acetoacetate, lithium acetoacetate, magnesium acetoacetate, calcium acetoacetate and the like. Can be exemplified.

【0011】これらの塩は、例えば、ジケテンまたはア
セト酢酸エステル類を水酸化ナトリウム、水酸化カリウ
ム、水酸化マグネシウム等の水溶液で加水分解した後、
副生するアルコールを減圧濃縮により除去することで水
溶液として容易に得られる。こうして得られる水溶液の
濃度は、次の反応において、水が多量に存在すると収率
が低下することから、40〜50%の濃度に調整するの
が好ましい。
These salts are obtained, for example, by hydrolyzing diketene or acetoacetates with an aqueous solution of sodium hydroxide, potassium hydroxide, magnesium hydroxide or the like.
It is easily obtained as an aqueous solution by removing the by-produced alcohol by concentration under reduced pressure. The concentration of the aqueous solution obtained in this manner is preferably adjusted to a concentration of 40 to 50%, since the yield decreases when a large amount of water is present in the next reaction.

【0012】一般式(I)中、R1は、置換基を有して
いてもよいアルキル基、置換基を有していてもよい基、
置換基を有していてもよいC3以上の脂環式骨格を有す
る炭化水素基、該脂環式骨格を有する炭化水素基を有す
るアルキル基、置換基を有していてもよい複数環基、置
換基を有していてもよい複数環アルキル基、置換基を有
していてもよいフェニル基、又は置換基を有していても
よいフェニルアルキル基を表す。
In the general formula (I), R 1 represents an alkyl group which may have a substituent, a group which may have a substituent,
A hydrocarbon group having a C3 or more alicyclic skeleton which may have a substituent, an alkyl group having a hydrocarbon group having the alicyclic skeleton, a plurality of cyclic groups which may have a substituent, It represents a multi-ring alkyl group which may have a substituent, a phenyl group which may have a substituent, or a phenylalkyl group which may have a substituent.

【0013】一般式(I)で表されるアルデヒドとし
て、具体的には、イソブチルアルデヒド、2−メチルブ
タナール、2−メチルペンタナール、2,3−ジメチル
ブタナール、2−メチルヘキサナール、2−エチルヘキ
サナール、2−エチルペンタナール、2−メチルヘプタ
ナール、2−メチルノナール等のアルデヒドのα位で分
岐している脂肪族アルデヒド、シクロヘキサンカルバル
デヒド、2−メチルシクロヘキサンカルバルデヒド、3
−メチルシクロヘキサンカルバルデヒド、4−メチルシ
クロヘキサンカルバルデヒド等の脂環基を持つアルデヒ
ド、4−テトラヒドロピランカルバルデヒド、2−テト
ラヒドロフランカルバルデヒド、3−テトラヒドロピラ
ンカルバルデヒド、3−テトラヒドロチオピランカルバ
ルデヒド等の複素環アルデヒド、ベンズアルデヒド、o
−メチルベンズアルデヒド、m−メチルベンズアルデヒ
ド、p−メチルベンズアルデヒド、p−メチルチオベン
ズアルデヒド、p−クロロベンズアルデヒド等の芳香族
アルデヒド、ベンジルアルデヒド、1−メチルベンジル
アルデヒド等のフェニルアルキルアルデヒド、2−ピリ
ジルメチルアルデヒド、2−ピリジル−1−メチルアル
デヒド等の複素環アルキルアルデヒド等を例示すること
ができる。
Specific examples of the aldehyde represented by the general formula (I) include isobutyraldehyde, 2-methylbutanal, 2-methylpentanal, 2,3-dimethylbutanal, 2-methylhexanal and 2-methylhexanal. Aliphatic aldehydes branched at the α-position of aldehydes such as ethylhexanal, 2-ethylpentanal, 2-methylheptanal, and 2-methylnonal, cyclohexanecarbaldehyde, 2-methylcyclohexanecarbaldehyde, and 3
Aldehydes having an alicyclic group such as -methylcyclohexanecarbaldehyde, 4-methylcyclohexanecarbaldehyde, 4-tetrahydropyrancarbaldehyde, 2-tetrahydrofurancarbaldehyde, 3-tetrahydropyrancarbaldehyde, 3-tetrahydrothiopyrancarbaldehyde, etc. Heterocyclic aldehyde, benzaldehyde, o
Aromatic aldehydes such as -methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, p-methylthiobenzaldehyde and p-chlorobenzaldehyde; phenylalkylaldehydes such as benzylaldehyde and 1-methylbenzylaldehyde; 2-pyridylmethylaldehyde; And heterocyclic alkyl aldehydes such as -pyridyl-1-methyl aldehyde.

【0014】中でも、一般式(I)中R1において、1
位に少なくとも1以上の置換基を有するアルデヒド、そ
の中でも特に水溶性の高いアルデヒドを用いた反応に本
発明の方法を適用するのが好ましい。このようなアルデ
ヒドとして、具体的には、4−テトラヒドロピランカル
バルデヒド、3−テトラヒドロチオピランカルバルデヒ
ド等の酸素原子または硫黄原子を有する水溶性の高い6
員の複素環基を有するアルデヒドを例示することができ
る。
In particular, in R 1 in the general formula (I), 1
It is preferable to apply the method of the present invention to a reaction using an aldehyde having at least one substituent at the position, particularly an aldehyde having high water solubility. As such an aldehyde, specifically, a highly water-soluble 6 having an oxygen atom or a sulfur atom, such as 4-tetrahydropyrancarbaldehyde and 3-tetrahydrothiopyrancarbaldehyde, is used.
An aldehyde having a membered heterocyclic group can be exemplified.

【0015】本発明に用いられる塩基としては、具体的
には、ピロリジン、モルホリン、ピペラジン、3,5−
ジメチルピペリジン、3−ブチルピペリジン、3−ヘキ
シルピペリジン、3−シクロヘキシルピペリジン、4−
ベンジルピペリジン、4−フェニルピペリジン、1,3
−ジピペリジルプロパン等のピペリジン類、ヘキサメチ
レンイミン、ヘプタメチレンイミン、3,3,5−トリ
メチルヘキサヒドロアゼピン、1,2,3,4−テトラ
ヒドロイソキノリン、デカヒドロイソキノリン、4−メ
チルデカヒドロイソキノリン、3−アザビシクロ(3,
2,2)ノナン等の環状アミン、ジメチルアミン、ジエ
チルアミン、ジ−n−プロピルアミン、N−メチル−N
−n−ブチルアミン、N−エチル−N−n−ブチルアミ
ン、N−メチル−N−n−アミルアミン、N−メチル−
N−n−ヘキシルアミン、N−メチル−N−ベンジルア
ミン等のジアルキルアミン類を例示することができる。
但し、ジ−i−プロピルアミン、ジシクロヘキシルアミ
ン等の嵩高いアミン類は好ましくない。また、R1とし
て1位に1以上の置換基を有する場合、環状アミン類、
N−メチル−N−置換メチルアミン類を用いるのが好ま
しく、中でも、デカヒドロイソキノリンを用いるのが好
ましい。
As the base used in the present invention, specifically, pyrrolidine, morpholine, piperazine, 3,5-
Dimethylpiperidine, 3-butylpiperidine, 3-hexylpiperidine, 3-cyclohexylpiperidine, 4-
Benzylpiperidine, 4-phenylpiperidine, 1,3
Piperidines such as dipiperidylpropane, hexamethyleneimine, heptamethyleneimine, 3,3,5-trimethylhexahydroazepine, 1,2,3,4-tetrahydroisoquinoline, decahydroisoquinoline, 4-methyldecahydroisoquinoline, 3-azabicyclo (3,
2,2) Cyclic amines such as nonane, dimethylamine, diethylamine, di-n-propylamine, N-methyl-N
-N-butylamine, N-ethyl-NNn-butylamine, N-methyl-NNn-amylamine, N-methyl-
Examples include dialkylamines such as Nn-hexylamine and N-methyl-N-benzylamine.
However, bulky amines such as di-i-propylamine and dicyclohexylamine are not preferred. When R 1 has one or more substituents at the 1-position, cyclic amines,
It is preferable to use N-methyl-N-substituted methylamines, and it is particularly preferable to use decahydroisoquinoline.

【0016】本発明の方法は、鉄イオン等の影響を抑制
するため、特定の酸又はそれらの塩共存下反応させるこ
とを特徴とするが、具体的には、リン酸、メタホウ酸、
ケイ酸、ポリリン酸及びそれらのアルカリ金属塩又はア
ルカリ土類金属塩よりなる群から選ばれる1種以上を用
いるのが好ましい。使用する量は、反応系内に存在する
鉄イオンの量にもよるが、鉄イオンに対するモル比で5
00倍以上、特に1500倍以上用いるのが好ましい。
反応系内に混入する鉄イオンの量が把握できれば、モル
比から使用量が決められるが、原料のアルデヒドに対す
るモル分率(モル%)で使用量を決めることもできる。
原料のアルデヒドを基準にした場合、使用量としては
0.1〜30モル%の範囲で用いるのが好ましい。使用
量が30モル%を超えた場合、反応液のpHが6.0を
下回るため、反応が遅くなり収率も低下する傾向にあ
る。なおこの量を超えて使用する必要がある場合、反応
液のpHが一時的に反応に最適なpHを下回っても、N
aOH等のアルカリにより反応開始時のpHを最適pH
まで引き上げることで、反応を行う事が出来る。但し、
添加するアルカリに水溶液を用いた場合、系内の水量が
増加し反応が遅くなり、アセト酢酸塩が分解しやすくな
る場合があるため、なるべく少量に抑えるのが好まし
い。また、酸性条件下では、アセト酢酸塩が分解しやす
くなるため、速やかに最適のpHに調整することが好ま
しい。リン酸等のアルカリ金属塩を添加する場合、反応
時のpHが最適のpH範囲に管理されていれば特にその
使用量は限定されない。
The method of the present invention is characterized in that the reaction is carried out in the coexistence of a specific acid or a salt thereof in order to suppress the influence of iron ions and the like. Specifically, phosphoric acid, metaboric acid,
It is preferable to use one or more selected from the group consisting of silicic acid, polyphosphoric acid, and alkali metal salts or alkaline earth metal salts thereof. The amount to be used depends on the amount of iron ions present in the reaction system, but is 5 moles to iron ions.
It is preferably used at least 00 times, especially at least 1500 times.
If the amount of iron ions mixed into the reaction system can be ascertained, the amount used can be determined from the molar ratio, but the amount used can also be determined based on the mole fraction (mol%) based on the aldehyde as the raw material.
Based on the starting aldehyde, it is preferable to use the aldehyde in an amount of 0.1 to 30 mol%. If the amount used exceeds 30 mol%, the pH of the reaction solution falls below 6.0, so that the reaction tends to be slow and the yield tends to decrease. If it is necessary to use more than this amount, even if the pH of the reaction solution temporarily falls below the optimum pH for the reaction, N
Optimum pH at the start of the reaction with alkali such as aOH
The reaction can be performed by raising it to the maximum. However,
When an aqueous solution is used as the alkali to be added, the amount of water in the system increases, the reaction slows down, and the acetoacetate may be easily decomposed. In addition, under acidic conditions, the acetoacetate salt is easily decomposed, so that it is preferable to quickly adjust the pH to the optimum. When an alkali metal salt such as phosphoric acid is added, the amount used is not particularly limited as long as the pH during the reaction is controlled in an optimum pH range.

【0017】リン酸は系内の水量を少なくするため、水
の含量の少ないものを使用するのが好ましいが、75%
リン酸でも使用することができる。高濃度リン酸は冬季
凍結するため、工業的に使用するには75%リン酸が好
ましい。
It is preferable to use phosphoric acid having a low water content in order to reduce the amount of water in the system.
Phosphoric acid can also be used. Since high concentration phosphoric acid freezes in winter, 75% phosphoric acid is preferable for industrial use.

【0018】本発明に用いられる水難溶性溶媒として
は、トルエン、ベンゼン、キシレン等の芳香族炭化水
素、ヘキサン、ヘプタン、シクロヘキサン、デカリン等
の脂肪族炭化水素等を例示することができる。これらの
溶媒と水の混合比の範囲は、100:5〜100である
が、100:5〜30、更に100:10〜20が好ま
しい。
Examples of the poorly water-soluble solvent used in the present invention include aromatic hydrocarbons such as toluene, benzene and xylene, and aliphatic hydrocarbons such as hexane, heptane, cyclohexane and decalin. The mixing ratio of these solvents to water is 100: 5 to 100, preferably 100: 5 to 30, more preferably 100: 10 to 20.

【0019】本発明の方法は、(1)水、水難溶性溶媒
にアセト酢酸の塩、塩基、リン酸等を添加し、アルデヒ
ドを添加する方法、(2)水、水難溶性溶媒にアルデヒ
ド、塩基、リン酸等を添加し、アセト酢酸塩を添加する
方法、(3)水、水難溶性溶媒にアルデヒド、リン酸等
を添加し、アセト酢酸塩、塩基の水溶液を添加する方法
等いずれも採用することができる。pH調整を行う必要
がある場合、(1)の方法がもっとも好ましい。
The method of the present invention comprises: (1) a method of adding an aldehyde by adding a salt of acetoacetic acid, a base, phosphoric acid, or the like to water or a poorly water-soluble solvent, and (2) a method of adding an aldehyde or base to water or a poorly water-soluble solvent. , Phosphoric acid, etc., and acetoacetate, and (3) aldehyde, phosphoric acid, etc. to water or a poorly water-soluble solvent, and an acetoacetate, base aqueous solution. be able to. When it is necessary to adjust the pH, the method (1) is most preferable.

【0020】使用する脂肪族2級アミンにより最適とす
るpH範囲は異なるが、 反応中の反応液のpH範囲は
一定の範囲に保つことが好ましく、更にその範囲として
pH6〜8に保持するのが好ましい。pH6以下では反
応が遅く収率も低下する傾向にあり、またpH8以上で
は、中間体であるβ−ヒドロキシケトン体の副生量が増
加する傾向にある。従って、反応中、鉱酸等の酸を用い
て上記pH範囲に調整するのが好ましい。
Although the optimum pH range varies depending on the aliphatic secondary amine used, the pH range of the reaction solution during the reaction is preferably maintained in a certain range, and more preferably in the range of pH 6 to 8. preferable. When the pH is 6 or lower, the reaction tends to be slow and the yield tends to decrease. When the pH is 8 or higher, the amount of by-product β-hydroxyketone as an intermediate tends to increase. Therefore, during the reaction, it is preferable to adjust the pH range using an acid such as a mineral acid.

【0021】pH保持に使用する酸としては、鉱酸が好
ましく、系内の水量を少なくするため濃硫酸、85%り
ん酸等の水の含量の少ない酸、あるいは塩化水素ガス等
の酸性ガスあるいは無水硫酸、五酸化りん等の酸無水物
を使用することが好ましい。また水の含量の多い濃塩酸
でも、原料のアセト酢酸アルカリ金属塩の水溶液を高濃
度化して用いることで反応は円滑に進行する。なお鉱酸
にリン酸を使用する場合には、鉄イオンが反応系内に存
在していても、鉄イオンとリン酸のモル比が十分確保さ
れていれば特に問題無い。
The acid used for maintaining the pH is preferably a mineral acid. In order to reduce the amount of water in the system, an acid having a low water content such as concentrated sulfuric acid or 85% phosphoric acid, or an acid gas such as hydrogen chloride gas or the like is used. It is preferable to use acid anhydrides such as sulfuric anhydride and phosphorus pentoxide. Even with concentrated hydrochloric acid having a high water content, the reaction proceeds smoothly by using a high-concentration aqueous solution of the raw material alkali metal acetoacetate. When phosphoric acid is used as the mineral acid, there is no particular problem even if iron ions are present in the reaction system, provided that the molar ratio between iron ions and phosphoric acid is sufficiently ensured.

【0022】反応温度は、通常10〜60℃の範囲であ
るが、反応温度が高いほど中間体であるβ−ヒドロキシ
ケトン体の副生量が増加するため収率が低下する傾向に
ある。従って、10〜40℃の温度範囲で反応を行うの
が好ましい。
The reaction temperature is usually in the range of 10 to 60 ° C., but as the reaction temperature increases, the yield tends to decrease because the amount of by-product β-hydroxyketone as an intermediate increases. Therefore, it is preferable to carry out the reaction in a temperature range of 10 to 40 ° C.

【0023】本発明の方法の具体例を以下に示す。一般
式(I)で表わされるアルデヒド1モルに対し、1〜3
モルのアセト酢酸塩の水溶液に、アルデヒド1モルに対
して10〜1000ml、好しくは100〜800ml
の水難溶性有機溶媒を加えた後、アルデヒド1モルに対
して0.01モル以上、好ましくは0.05〜0.20
モルの塩基を加える。十分攪拌した状態でリン酸、メタ
ホウ酸、ケイ酸、及びそれらのアルカリ金属塩よりなる
群から選ばれる1種以上をアルデヒド1モルに対して
0.001モル〜0.30モルを加え、さらに酸を加え
てpHを6.0〜8.0に調整する。
Specific examples of the method of the present invention are shown below. 1 to 3 relative to 1 mol of the aldehyde represented by the general formula (I)
10 to 1000 ml, preferably 100 to 800 ml, per mole of aldehyde in an aqueous solution of acetoacetate
After addition of the poorly water-soluble organic solvent of 0.01 mol or more, preferably 0.05 to 0.20 mol per mol of aldehyde.
Add mole of base. With sufficient stirring, at least one selected from the group consisting of phosphoric acid, metaboric acid, silicic acid, and alkali metal salts thereof is added in an amount of 0.001 mol to 0.30 mol per 1 mol of the aldehyde. To adjust the pH to 6.0-8.0.

【0024】ついで10〜60℃で酸によりpH6.0
〜8.0に維持しながらアルデヒド1モル相当を加え1
〜10時間撹拌する。反応終了後水を加えて酸を加えて
pH2以下とし、有機層を水層から分離する。さらに有
機層をアルカリで中和後水洗して有機層を水層から分離
し、有機層を減圧濃縮することにより目的とするα,β
−不飽和ケトンを得ることができる。
Then, at 10 to 60 ° C., pH 6.0 with acid.
While maintaining at ~ 8.0, 1 mole equivalent of aldehyde was added and
Stir for ~ 10 hours. After the completion of the reaction, water is added, and an acid is added to adjust the pH to 2 or less, and the organic layer is separated from the aqueous layer. Further, the organic layer is neutralized with an alkali and then washed with water to separate the organic layer from the aqueous layer, and the organic layer is concentrated under reduced pressure to obtain the desired α, β.
An unsaturated ketone can be obtained.

【0025】また有機層より分離した水層を水酸化ナト
リウム等のアルカリでpHを13以上とし、水難溶性有
機溶媒で抽出することにより触媒として使用した塩基は
97%以上回収することができ、回収した塩基は再使用
することが可能である。なお、リン酸等の代わりにキレ
ート剤を用いた際に見られた分液性の悪さは、この場合
には全く問題にはならなかった。
The aqueous layer separated from the organic layer is adjusted to a pH of 13 or more with an alkali such as sodium hydroxide and extracted with a poorly water-soluble organic solvent, whereby 97% or more of the base used as a catalyst can be recovered. The used base can be reused. The poor liquid separation observed when using a chelating agent instead of phosphoric acid or the like did not cause any problem in this case.

【0026】[0026]

【実施例】以下に本発明を実施例をもって更に詳細に説
明するが、本発明はこの実施例に限定されるものではな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0027】実施例1 内容積1000mlの反応器にアセト酢酸メチルエステ
ル371.6g(3.2モル)およびイオン交換水13
4.4gを仕込み、水冷攪拌下に内温を35〜40℃に
保ちながら鉄イオン2.8ppmを含む25%NaOH
水溶液537.6g(3.36モル)を4時間で滴下
し、その後35〜40℃で2時間攪拌を続けた後、水お
よびメタノールを40℃以下の温度で減圧留去した。フ
ラスコ内容物を一部取り出し1規定の塩酸標準水溶液に
よりpH滴定を実施した結果、得られたアセト酢酸ナト
リウム水溶液の濃度は49%であった。このアセト酢酸
ナトリウム水溶液から176.7g(0.695モル)
を量り取り内容積1000mlの反応器に入れ、ついで
トルエン150ml、デカヒドロイソキノリン6.96
g(0.05モル)、85%りん酸5.0g(0.04
3モル)を加え、さらに濃硫酸でpHを7.4とした。
この中に4−テトラヒドロピランカルバルデヒド57.
1g(0.5モル)を1時間かけて滴下した後3時間攪
拌を続けた。反応中温度を20〜25℃に保ち濃硫酸を
滴下することによりpHを7.4±0.1に維持した。
反応終了後水80.0gを加え、濃硫酸にてpHを1.
5として65℃まで昇温した後、有機層を水層から分離
した。分離した水層にトルエン37.5mlを加えて抽
出し、有機層を水層から分離した後、最初に分離した有
機層と混合した。有機層に25%NaOH水溶液2.3
gを加えて中和した後有機層を水層から分離した。さら
に有機層に水10gを加えて攪拌・水洗し有機層を水層
から分離した後、無水硫酸マグネシウムにより乾燥し
た。硫酸マグネシウムを濾別後、溶媒を減圧留去し、残
った油状物をさらに減圧留去することにより沸点91〜
95℃(0.013kPa)の無色の油状物73.9g
を得た。(粗収率95.8%)ガスクロマトグラフィー
により分析したところ、目的物4−(4−テトラヒドロ
ピラニル)−3−ブテン−2−オンの純度は95.1%
であった。(収率91.2%)なお副生物である4−ヒ
ドロキシ−4−(4−テトラヒドロピラニル)−ブタン
−2オンが4.9%含まれており、4−テトラヒドロピ
ランカルバルデヒドに対する収率は4.2%であった。
EXAMPLE 1 371.6 g (3.2 mol) of acetoacetic acid methyl ester and 13 parts of ion-exchanged water were placed in a reactor having a capacity of 1000 ml.
4.4 g, 25% NaOH containing 2.8 ppm of iron ions while maintaining the internal temperature at 35 to 40 ° C. while stirring with water cooling.
537.6 g (3.36 mol) of an aqueous solution was added dropwise over 4 hours, and then stirring was continued at 35 to 40 ° C for 2 hours. Then, water and methanol were distilled off under reduced pressure at a temperature of 40 ° C or lower. A part of the contents of the flask was taken out and subjected to pH titration with a 1N hydrochloric acid standard aqueous solution. As a result, the concentration of the obtained sodium acetoacetate aqueous solution was 49%. 176.7 g (0.695 mol) from this sodium acetoacetate aqueous solution
And placed in a reactor having an internal volume of 1000 ml, then 150 ml of toluene and 6.96 of decahydroisoquinoline.
g (0.05 mol), 5.0 g of 85% phosphoric acid (0.04
3 mol), and the pH was further adjusted to 7.4 with concentrated sulfuric acid.
Among them, 4-tetrahydropyrancarbaldehyde 57.
After 1 g (0.5 mol) was added dropwise over 1 hour, stirring was continued for 3 hours. During the reaction, the temperature was maintained at 20 to 25 ° C., and the pH was maintained at 7.4 ± 0.1 by dropwise addition of concentrated sulfuric acid.
After completion of the reaction, 80.0 g of water was added, and the pH was adjusted to 1.
After heating to 65 ° C. as 5, the organic layer was separated from the aqueous layer. To the separated aqueous layer, 37.5 ml of toluene was added for extraction, the organic layer was separated from the aqueous layer, and then mixed with the first separated organic layer. 2.3% 25% aqueous NaOH solution in the organic layer
After adding g to neutralize, the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer, and dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, the solvent was distilled off under reduced pressure, and the remaining oily substance was further distilled off under reduced pressure to give a boiling point of 91 to 91.
73.9 g of a colorless oil at 95 ° C. (0.013 kPa)
I got (Crude yield 95.8%) When analyzed by gas chromatography, the purity of the target product, 4- (4-tetrahydropyranyl) -3-buten-2-one, was 95.1%.
Met. (Yield: 91.2%) In addition, 4.9% of 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one as a by-product was contained, and the yield based on 4-tetrahydropyrancarbaldehyde was contained. Was 4.2%.

【0028】実施例2 実施例1で合成したものと同じ49%アセト酢酸ナトリ
ウム水溶液176.7g(0.695モル)を内容積1
000mlの反応器に入れ、ついでトルエン150m
l、デカヒドロイソキノリン6.96g(0.05モ
ル)、85%りん酸2.5g(0.022モル)を加
え、さらに濃硫酸でpHを7.4とした。この中に4−
テトラヒドロピランカルバルデヒド57.1g(0.5
モル)を1時間かけて滴下した後3時間攪拌を続けた。
反応中温度を20〜25℃に保ち濃硫酸を滴下すること
によりpHを7.4±0.1に維持した。反応終了後水
80.0gを加え、濃硫酸にてpHを1.5として65
℃まで昇温した後、有機層を水層から分離した。分離し
た水層にトルエン37.5mlを加えて抽出し、有機層
を水層から分離した後、最初に分離した有機層と混合し
た。有機層に25%NaOH水溶液5.2gを加えて中
和した後有機層を水層から分離した。さらに有機層に水
10gを加えて攪拌・水洗し有機層を水層から分離した
後、無水硫酸マグネシウムにより乾燥した。硫酸マグネ
シウムを濾別後256.1gの有機層を得た。有機層の
一部をサンプリングし、高速液体クロマトグラフィーに
より純度99.9%の標準品を用いた内部標準法で分析
したところ、目的物4−(4−テトラヒドロピラニル)
−3−ブテン−2−オンの濃度は27.0%であった。
(収率89.8%)副生物である4−ヒドロキシ−4−
(4−テトラヒドロピラニル)−ブタン−2−オンの濃
度は1.4%であり、4−テトラヒドロピランカルバル
デヒドに対する収率は4.2%であった。
Example 2 176.7 g (0.695 mol) of the same 49% aqueous solution of sodium acetoacetate as used in Example 1 was used.
2,000 ml reactor, then 150 m
1, 6.96 g (0.05 mol) of decahydroisoquinoline and 2.5 g (0.022 mol) of 85% phosphoric acid were added, and the pH was further adjusted to 7.4 with concentrated sulfuric acid. 4-
57.1 g of tetrahydropyrancarbaldehyde (0.5
Mol) was added dropwise over 1 hour, and then stirring was continued for 3 hours.
During the reaction, the temperature was maintained at 20 to 25 ° C., and the pH was maintained at 7.4 ± 0.1 by dropwise addition of concentrated sulfuric acid. After completion of the reaction, 80.0 g of water was added, and the pH was adjusted to 1.5 with concentrated sulfuric acid to 65.
After raising the temperature to ° C., the organic layer was separated from the aqueous layer. To the separated aqueous layer, 37.5 ml of toluene was added for extraction, the organic layer was separated from the aqueous layer, and then mixed with the first separated organic layer. The organic layer was neutralized by adding 5.2 g of a 25% aqueous NaOH solution, and then the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer, and dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, 256.1 g of an organic layer was obtained. A part of the organic layer was sampled and analyzed by an internal standard method using a standard having a purity of 99.9% by high performance liquid chromatography to find that the target product was 4- (4-tetrahydropyranyl).
The concentration of -3-buten-2-one was 27.0%.
(89.8% yield) 4-hydroxy-4- by-product
The concentration of (4-tetrahydropyranyl) -butan-2-one was 1.4%, and the yield based on 4-tetrahydropyrancarbaldehyde was 4.2%.

【0029】比較例1 実施例1で合成したものと同じ49%アセト酢酸ナトリ
ウム水溶液176.7g(0.695モル)を内容積1
000mlの反応器に入れ、ついでトルエン150m
l、デカヒドロイソキノリン6.96g(0.05モ
ル)を加え、さらに濃硫酸でpHを7.4とした。この
中に4−テトラヒドロピランカルバルデヒド57.1g
(0.5モル)を1時間かけて滴下した後4時間攪拌を
続けた。反応中温度を20〜25℃に保ち濃硫酸を滴下
することによりpHを7.4±0.1に維持した。反応
終了後水80.0gを加え、濃硫酸にてpHを1.5と
して65℃まで昇温した後、有機層を水層から分離し
た。分離した水層にトルエン37.5mlを加えて抽出
し、有機層を水層から分離した後、最初に分離した有機
層と混合した。有機層に25%NaOH水溶液5.5g
を加えて中和した後有機層を水層から分離した。さらに
有機層に水10gを加えて攪拌・水洗し有機層を水層か
ら分離した後、無水硫酸マグネシウムにより乾燥した。
硫酸マグネシウムを濾別後247.9gの有機層を得
た。有機層の一部をサンプリングし、高速液体クロマト
グラフィーにより純度99.9%の標準品を用いた内部
標準法で分析したところ、目的物4−(4−テトラヒド
ロピラニル)−3−ブテン−2−オンの濃度は24.9
%であった。(収率79.9%)副生物である4−ヒド
ロキシ−4−(4−テトラヒドロピラニル)−ブタン−
2−オンの濃度は3.2%であり、4−テトラヒドロピ
ランカルバルデヒドに対する収率は9.1%であった。
Comparative Example 1 176.7 g (0.695 mol) of the same 49% aqueous solution of sodium acetoacetate as that synthesized in Example 1 was used.
2,000 ml reactor, then 150 m
l, 6.96 g (0.05 mol) of decahydroisoquinoline was added, and the pH was further adjusted to 7.4 with concentrated sulfuric acid. 57.1 g of 4-tetrahydropyrancarbaldehyde was added thereto.
(0.5 mol) was added dropwise over 1 hour, and then stirring was continued for 4 hours. During the reaction, the temperature was maintained at 20 to 25 ° C., and the pH was maintained at 7.4 ± 0.1 by dropwise addition of concentrated sulfuric acid. After completion of the reaction, 80.0 g of water was added, and the pH was raised to 65 ° C. with concentrated sulfuric acid to 1.5, and then the organic layer was separated from the aqueous layer. To the separated aqueous layer, 37.5 ml of toluene was added for extraction, the organic layer was separated from the aqueous layer, and then mixed with the first separated organic layer. 5.5 g of 25% NaOH aqueous solution in the organic layer
After the addition, the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer, and dried over anhydrous magnesium sulfate.
After filtering off magnesium sulfate, 247.9 g of an organic layer was obtained. A part of the organic layer was sampled and analyzed by high performance liquid chromatography using an internal standard method using a standard having a purity of 99.9% to find that the target product, 4- (4-tetrahydropyranyl) -3-butene-2, was obtained. -On concentration of 24.9
%Met. (Yield: 79.9%) By-product 4-hydroxy-4- (4-tetrahydropyranyl) -butane-
The concentration of 2-one was 3.2%, and the yield based on 4-tetrahydropyrancarbaldehyde was 9.1%.

【0030】実施例3 イオン交換水と試薬特級NaOHで25%の濃度に調整
したNaOHを用い、実施例1と同様の条件で合成した
47.4%アセト酢酸ナトリウム水溶液109.1g
(0.417モル)を内容積1000mlの反応器に入
れ、鉄イオン0.004g(0.000075モル)を
含む塩化鉄(III)水溶液を0.6g加えた。(加えた
鉄イオンは4−テトラヒドロピランカルバルデヒド1モ
ルに対して0.025モルに相当する)ついでトルエン
90ml、デカヒドロイソキノリン4.2g(0.03
モル)、85%りん酸1.5g(0.015モル)を加
え、さらに濃硫酸でpHを7.4とした。この中に4−
テトラヒドロピランカルバルデヒド34.2g(0.3
モル)を1時間かけて滴下した後3時間攪拌を続けた。
反応中温度を20〜25℃に保ち濃硫酸を滴下すること
によりpHを7.4±0.1に維持した。反応終了後水
48.0gを加え、濃硫酸にてpHを1.5として65
℃まで昇温した後、有機層を水層から分離した。分離し
た水層にトルエン22.5mlを加えて抽出し、有機層
を水層から分離した後、最初に分離した有機層と混合し
た。有機層に25%NaOH水溶液1.8gを加えて中
和した後有機層を水層から分離した。さらに有機層に水
6gを加えて攪拌・水洗し有機層を水層から分離した
後、無水硫酸マグネシウムにより乾燥した。硫酸マグネ
シウムを濾別後181.7gの有機層を得た。有機層の
一部をサンプリングし、高速液体クロマトグラフィーに
より純度99.9%の標準品を用いた内部標準法で分析
したところ、目的物4−(4−テトラヒドロピラニル)
−3−ブテン−2−オンの濃度は21.3%であった。
(収率83.7%)副生物である4−ヒドロキシ−4−
(4−テトラヒドロピラニル)−ブタン−2−オンの濃
度は1.9%であり、4−テトラヒドロピランカルバル
デヒドに対する収率は6.7%であった。
Example 3 109.1 g of a 47.4% aqueous sodium acetoacetate solution synthesized under the same conditions as in Example 1 using ion-exchanged water and NaOH adjusted to a concentration of 25% with reagent-grade NaOH.
(0.417 mol) was placed in a reactor having an internal volume of 1000 ml, and 0.6 g of an aqueous solution of iron (III) chloride containing 0.004 g (0.000075 mol) of iron ions was added. (The added iron ion is equivalent to 0.025 mol per 1 mol of 4-tetrahydropyrancarbaldehyde) Then, 90 ml of toluene and 4.2 g of decahydroisoquinoline (0.03 mol
Mol) and 1.5 g (0.015 mol) of 85% phosphoric acid, and the pH was further adjusted to 7.4 with concentrated sulfuric acid. 4-
34.2 g of tetrahydropyrancarbaldehyde (0.3
Mol) was added dropwise over 1 hour, and then stirring was continued for 3 hours.
During the reaction, the temperature was maintained at 20 to 25 ° C., and the pH was maintained at 7.4 ± 0.1 by dropwise addition of concentrated sulfuric acid. After the completion of the reaction, 48.0 g of water was added, and the pH was adjusted to 1.5 with concentrated sulfuric acid to 65.
After raising the temperature to ° C., the organic layer was separated from the aqueous layer. To the separated aqueous layer, 22.5 ml of toluene was added for extraction, and the organic layer was separated from the aqueous layer and then mixed with the first separated organic layer. The organic layer was neutralized by adding 1.8 g of a 25% aqueous NaOH solution, and then the organic layer was separated from the aqueous layer. Further, 6 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer, and dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, 181.7 g of an organic layer was obtained. A part of the organic layer was sampled and analyzed by an internal standard method using a standard having a purity of 99.9% by high performance liquid chromatography to find that the target product was 4- (4-tetrahydropyranyl).
The concentration of -3-buten-2-one was 21.3%.
(83.7% yield) 4-hydroxy-4- by-product
The concentration of (4-tetrahydropyranyl) -butan-2-one was 1.9%, and the yield based on 4-tetrahydropyrancarbaldehyde was 6.7%.

【0031】比較例2 イオン交換水と試薬特級NaOHで25%の濃度に調整
したNaOHを用い、実施例1と同様の条件で合成した
47.4%アセト酢酸ナトリウム水溶液179.6g
(0.695モル)を内容積1000mlの反応器に入
れ、鉄イオン0.007g(0.000125モル)を
含む塩化鉄(III)水溶液を1.0g加えた。(加えた
鉄イオンは4−テトラヒドロピランカルバルデヒド1モ
ルに対して0.025モルに相当する)ついでトルエン
150ml、デカヒドロイソキノリン7.0g(0.0
5モル)を加え、さらに濃硫酸でpHを7.4とした。
この中に4−テトラヒドロピランカルバルデヒド57.
1g(0.5モル)を1時間かけて滴下した後4時間攪
拌を続けた。反応中温度を20〜25℃に保ち濃硫酸を
滴下することによりpHを7.4±0.1に維持した。
反応終了後水80.0gを加え、濃硫酸にてpHを1.
5として65℃まで昇温した後、有機層を水層から分離
した。分離した水層にトルエン37.5mlを加えて抽
出し、有機層を水層から分離した後、最初に分離した有
機層と混合した。有機層に25%NaOH水溶液2.5
gを加えて中和した後有機層を水層から分離した。さら
に有機層に水10gを加えて攪拌・水洗し有機層を水層
から分離した後、無水硫酸マグネシウムにより乾燥し
た。硫酸マグネシウムを濾別後279.5gの有機層を
得た。有機層の一部をサンプリングし、高速液体クロマ
トグラフィーにより純度99.9%の標準品を用いた内
部標準法で分析したところ、目的物4−(4−テトラヒ
ドロピラニル)−3−ブテン−2−オンの濃度は16.
3%であった。(収率59.0%)副生物である4−ヒ
ドロキシ−4−(4−テトラヒドロピラニル)−ブタン
−2−オンの濃度は6.9%であり、4−テトラヒドロ
ピランカルバルデヒドに対する収率は22.2%であっ
た。
Comparative Example 2 179.6 g of a 47.4% aqueous sodium acetoacetate solution synthesized under the same conditions as in Example 1 using ion-exchanged water and NaOH adjusted to a concentration of 25% with reagent-grade NaOH.
(0.695 mol) was placed in a reactor having an internal volume of 1000 ml, and 1.0 g of an aqueous solution of iron (III) chloride containing 0.007 g (0.000125 mol) of iron ions was added. (The added iron ion corresponds to 0.025 mol per 1 mol of 4-tetrahydropyrancarbaldehyde) Then, 150 ml of toluene and 7.0 g of decahydroisoquinoline (0.0 g
5 mol), and the pH was further adjusted to 7.4 with concentrated sulfuric acid.
Among them, 4-tetrahydropyrancarbaldehyde 57.
After 1 g (0.5 mol) was added dropwise over 1 hour, stirring was continued for 4 hours. During the reaction, the temperature was maintained at 20 to 25 ° C., and the pH was maintained at 7.4 ± 0.1 by dropwise addition of concentrated sulfuric acid.
After completion of the reaction, 80.0 g of water was added, and the pH was adjusted to 1.
After heating to 65 ° C. as 5, the organic layer was separated from the aqueous layer. To the separated aqueous layer, 37.5 ml of toluene was added for extraction, the organic layer was separated from the aqueous layer, and then mixed with the first separated organic layer. 25% NaOH aqueous solution 2.5 in organic layer
After adding g to neutralize, the organic layer was separated from the aqueous layer. Further, 10 g of water was added to the organic layer, and the mixture was stirred and washed with water. The organic layer was separated from the aqueous layer, and dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, 279.5 g of an organic layer was obtained. A part of the organic layer was sampled and analyzed by high performance liquid chromatography using an internal standard method using a standard having a purity of 99.9% to find that the target product, 4- (4-tetrahydropyranyl) -3-butene-2, was obtained. The concentration of -one is 16.
3%. (Yield 59.0%) The concentration of by-product 4-hydroxy-4- (4-tetrahydropyranyl) -butan-2-one was 6.9%, and the yield based on 4-tetrahydropyrancarbaldehyde Was 22.2%.

【0032】[0032]

【発明の効果】以上述べたように、本発明の方法を用い
れば、反応に使用する水中に含まれる鉄等の金属イオン
により反応が抑制されることなく反応が進行することか
ら副生物の生成を抑制し、高収率で目的のα,β−不飽
和ケトン化合物を合成することができ、しかも分液性等
の反応操作上の問題もなく工業的な製造方法として優れ
ている。
As described above, when the method of the present invention is used, the reaction proceeds without being suppressed by metal ions such as iron contained in the water used in the reaction, so that by-products are formed. , And the desired α, β-unsaturated ketone compound can be synthesized in a high yield, and is excellent as an industrial production method without problems in the reaction operation such as liquid separation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西脇 剛 新潟県中頸城郡中郷村大字藤沢950日本曹 達株式会社二本木工場生産技術研究所内 Fターム(参考) 4H006 AA02 AC22 AC25 BA33 BA35 BA51 BB11 BB31 BC16 4H039 CA62 CD40 CD90  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tsuyoshi Nishiwaki 950, Fujisawa 950, Nakago-mura, Nakakushijo-gun, Niigata Japan F-term in Nihon Soda Co., Ltd. Nihongi Plant Production Engineering Laboratory 4H006 AA02 AC22 AC25 BA33 BA35 BA51 BB11 BB31 BC16 4H039 CA62 CD40 CD90

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】塩基存在下、水と水難溶性有機溶媒との混
合溶媒中でのアセト酢酸のアルカリ金属塩又はアルカリ
土類金属塩と一般式(I) 【化1】R1CHO (式中、R1は置換基を有していてもよいアルキル基、
置換基を有していてもよいC3以上の脂環式骨格を有す
る炭化水素基、該脂環式骨格を有する炭化水素基を有す
るアルキル基、置換基を有していてもよい複数環基、又
は置換基を有していてもよいフェニル基を表す。)で表
わされるアルデヒドの反応において、リン酸、メタホウ
酸、ケイ酸、ポリリン酸及びそれらのアルカリ金属塩又
はアルカリ土類金属塩からなる群から選ばれる少なくと
も1種以上を共存させることを特徴とする一般式(I
I) 【化2】 (式中、R1は前記と同じ基を表す。)で表されるα,
β−不飽和ケトンの製造方法。
An alkali metal salt or an alkaline earth metal salt of acetoacetic acid in a mixed solvent of water and a poorly water-soluble organic solvent in the presence of a base, and a compound represented by the general formula (I): R 1 CHO , R 1 is an alkyl group which may have a substituent,
A hydrocarbon group having a C3 or more alicyclic skeleton which may have a substituent, an alkyl group having a hydrocarbon group having the alicyclic skeleton, a plurality of cyclic groups which may have a substituent, Or a phenyl group which may have a substituent. In the reaction of the aldehyde represented by the formula (1), at least one selected from the group consisting of phosphoric acid, metaboric acid, silicic acid, polyphosphoric acid and their alkali metal salts or alkaline earth metal salts is coexistent. The general formula (I
I) (In the formula, R 1 represents the same group as described above.)
Method for producing β-unsaturated ketone.
【請求項2】リン酸、メタホウ酸、ケイ酸、及びポリリ
ン酸からなる群から選ばれる少なくとも1種以上を一般
式(I)で表されるアルデヒドに対して0.1〜30m
ol%添加することを特徴とする請求項1に記載のα,
β−不飽和ケトンの製造方法。
2. The method according to claim 1, wherein at least one selected from the group consisting of phosphoric acid, metaboric acid, silicic acid and polyphosphoric acid is used in an amount of 0.1 to 30 m with respect to the aldehyde represented by the formula (I).
ol%, α, according to claim 1, characterized in that
Method for producing β-unsaturated ketone.
【請求項3】塩基が脂肪族2級アミンであることを特徴
とする請求項1又は2に記載のα,β−不飽和ケトンの
製造方法。
3. The method for producing an α, β-unsaturated ketone according to claim 1, wherein the base is an aliphatic secondary amine.
【請求項4】反応中、pHを一定の範囲に保持すること
を特徴とする請求項1〜3のいずれかに記載のα,β−
不飽和ケトンの製造方法。
4. The method according to claim 1, wherein the pH is maintained within a certain range during the reaction.
A method for producing an unsaturated ketone.
【請求項5】pHの範囲が6〜8であることを特徴とす
る請求項4に記載のα,β−不飽和ケトンの製造方法。
5. The method for producing an α, β-unsaturated ketone according to claim 4, wherein the pH range is from 6 to 8.
【請求項6】一般式(I)中R1において、1位に少な
くとも1以上の置換基を有することを特徴とする請求項
1〜6のいずれかに記載のα,β−不飽和ケトンの製造
方法。
6. The α, β-unsaturated ketone according to claim 1, wherein R 1 in the general formula (I) has at least one substituent at the 1-position. Production method.
JP35098999A 1999-12-10 1999-12-10 Method for producing α, β-unsaturated ketone Expired - Lifetime JP4387016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35098999A JP4387016B2 (en) 1999-12-10 1999-12-10 Method for producing α, β-unsaturated ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35098999A JP4387016B2 (en) 1999-12-10 1999-12-10 Method for producing α, β-unsaturated ketone

Publications (2)

Publication Number Publication Date
JP2001163819A true JP2001163819A (en) 2001-06-19
JP4387016B2 JP4387016B2 (en) 2009-12-16

Family

ID=18414287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35098999A Expired - Lifetime JP4387016B2 (en) 1999-12-10 1999-12-10 Method for producing α, β-unsaturated ketone

Country Status (1)

Country Link
JP (1) JP4387016B2 (en)

Also Published As

Publication number Publication date
JP4387016B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US6011181A (en) Triphenylphosphine oxide complex process
US4165341A (en) Process for preparing protocatechualdehyde and its derivatives
JP2740270B2 (en) Production of α, β-unsaturated ketone
JP2001163819A (en) METHOD OF MANUFACTURING alpha,beta-UNSATURATED KETONE
US20030125355A1 (en) Processes for preparing quinoline derivatives and intermedias thereof
EP1577287A2 (en) Cycloalkanone composition
JP2776801B2 (en) Method for producing N-monosubstituted hydroxylamine
JP4306662B2 (en) Method for producing α-methylene aldehyde compound
AU638769B2 (en) A method for the synthesis of alpha, beta -unsaturated ketones
WO2006048792A1 (en) A new process for the dimerisation of alkyl glyoxals
JP5001549B2 (en) Process for producing α-alkylcinnamaldehydes
US20100137620A1 (en) Process for the preparation of 1,4-dialkyl-2,3-diol-1,4-butanedione
JP4027539B2 (en) Process for producing N-benzyl-4-formylpiperidine
EP0454863B1 (en) Method for the preparation of beta-hydroxyketones
JP2922674B2 (en) Method for producing α-alkylacrolein
JP4294130B2 (en) Method for producing α, β-unsaturated ketone compound
US6288276B1 (en) Salicylaldoximes and method of preparation
JPH1059892A (en) Production of alpha,beta-unsaturated aldehyde
JP2921054B2 (en) Synthesis of alkoxy-α, β-unsaturated ketones
US20020123655A1 (en) Process for preparing alkoxy- and aryloxy-phenols
EP1184378B1 (en) Process for producing chroman-carboxylic acid
EP0035060B1 (en) Process for preparing cyclopentenolones
JPS6254296B2 (en)
JP2009155233A (en) Method for producing mixture of 2-(1-hydroxyalkyl)cycloalkanone and dehydrated material of the same
JPH04173761A (en) Production of alpha-alkylacrolein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Ref document number: 4387016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term