JP4387008B2 - High frequency electrode device for substrate processing equipment - Google Patents

High frequency electrode device for substrate processing equipment Download PDF

Info

Publication number
JP4387008B2
JP4387008B2 JP31655699A JP31655699A JP4387008B2 JP 4387008 B2 JP4387008 B2 JP 4387008B2 JP 31655699 A JP31655699 A JP 31655699A JP 31655699 A JP31655699 A JP 31655699A JP 4387008 B2 JP4387008 B2 JP 4387008B2
Authority
JP
Japan
Prior art keywords
conductor plate
support structure
frequency
conductor
electrode device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31655699A
Other languages
Japanese (ja)
Other versions
JP2001135499A (en
Inventor
雅彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP31655699A priority Critical patent/JP4387008B2/en
Publication of JP2001135499A publication Critical patent/JP2001135499A/en
Application granted granted Critical
Publication of JP4387008B2 publication Critical patent/JP4387008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は基板処理装置の高周波電極装置に関し、特に、プラズマCVD装置、スパッタ装置、エッチング装置、プラズマ表面処理装置のごとき真空中で高周波放電を用いて基板処理を行う装置において電極用導体板を支持する構造体から導体板への高周波の給電等を有効に行い得る高周波電極装置に関する。
【0002】
【従来の技術】
全体が真空容器で形成され、付設された真空ポンプで真空容器内を所要の真空状態に至るまで排気して必要な真空条件を形成すると共に、真空容器内部に設けた基板ホルダの上に処理対象である基板を搭載させ、基板の上方に例えば高周波電極装置を配備し、導入されたプロセスガスと給電された高周波で放電状態を作り、プラズマを生成し、プラズマ中のラジカル等を取り出して上記の基板を真空加工するように構成された各種の基板処理装置が知られている。高周波を利用して基板に対し真空加工を行うには、高周波印加側の電極に有効に高周波を供給し、アース(接地)側電極を確実にアースに接続することが重要である。
【0003】
図4に、上記基板処理装置の一例として、基板に成膜を行うプラズマCVD装置を示す。図4で、基板成膜空間を形成するチャンバ101は、内部下側に基板ホルダ102を備え、内部上側に電極装置103を備える。チャンバ101は、金属材で作られた真空容器として構成され、内部空間を所要の真空状態に排気するための排気機構(図示せず)を備えている。基板ホルダ102は、チャンバ101の底壁101aに固定され、かつアースされている。基板ホルダ102およびチャンバ101はアース電位に保持されている。基板ホルダ102の上面には基板104が置かれている。かかる基板104に対向するごとく上記電極装置103が設けられる。電極装置103は、チャンバ101の上壁101bに絶縁体105を介して固定されている。電極装置103は、基板104に対向するように配置された平板状の導体板106と、導体板106を固定して支持する導電性材料(アルミニウム等)で作られた支持構造体107から構成される。導体板106には全面的に多数の孔108が形成されている。電極装置103の内部には空間109が形成され、この空間109には、プラズマを生成するためのガスが導入される。導体板106を空間109を覆うようにして支持構造体107の下面に固定されている。また外部に設けられた高周波電源110から支持構造体107を経由して導体板106に対し高周波が供給される。上記の電極装置103では、空間109にガスが導入され、さらに当該ガスは導体板106に形成された多数の孔108を通して基板104の前面空間に供給される。また導体板106と基板ホルダ102の間では、導体板106に高周波が給電されることにより放電が作られプラズマが生成される。生成されたプラズマと別途に供給される反応ガスに基づき基板104の前面空間でプラズマCVD作用を生じ、基板104の表面に対して成膜を行う。
【0004】
上記基板ホルダ102は、ヒータ111を内蔵し、電極装置103の電極板として作用する導体板106に対応する対向電極として作用するもので、加熱サセプタとして機能する。基板ホルダ102の上に基板104を置き、基板の表面に成膜処理を行うときには、基板を所要の温度状態に保つために基板ホルダ102から熱が発っせられる。電極装置103の導体板106は基板ホルダ102から輻射熱等を直接的に受けることになる。さらに導体板106は放電による熱なども受ける。
【0005】
図4では支持構造体107における導体板106の固定構造が示されていなかったが、次に図5〜図7を参照して支持構造体107に取り付けられる導体板106の固定構造について詳述する。
【0006】
図5に示す固定構造では、導体板106に形成された孔112を通してネジ113を支持構造体107のネジ孔114に結合することにより、導体板106を支持構造体107の下面に固定している。ネジ113による固定箇所は複数箇所設けられる。図6に示す固定構造では、図5に示したものと同様なネジ113と支持構造体107のネジ孔114とによる固定構造において、さらにネジ113の頭部113aと導体板106の間に皿バネ115を挟み込んでいる。皿バネ115の弾性によって導体板106は支持構造体107の下面に強く押さえ付けられる。またこの構造によれば導体板106の支持構造体107への押付け力を調整することも可能である。図7では、図5に示したものと類似するネジ113と支持構造体107のネジ孔114とによる固定構造において、導体板106の孔112の径を大きくし、ネジ113と導体板106の間にスペーサ116を介設している。スペーサ116の軸方向の長さは導体板106の厚みよりも若干大きくなるように設定されているため、導体板106と支持構造体107の間には隙間117が生じる。
【0007】
【発明が解決しようとする課題】
図4に示した基板処理装置の電極装置103において、導体板106とこれを支持する支持構造体107との固定構造については次のような問題があった。
【0008】
導体板106と支持構造体107との接触による電気的接続が不十分であると、支持構造体107を経由して効率よく高周波電力を導体板106に伝達できないばかりでなく、放電のむらや偏りなどにより加工品質に重大な影響を与える。そこで、図5に示すごとく支持構造体107に導体板106をネジ止めして固定する構造を採用する。この固定構造によれば、導体板106と支持構造体107がしっかり結合され、良好な接触状態となり、電気的な接続は良好になる。しかしながら、この固定構造によれば、導体板106の延びに起因する他の重要な問題が起きる。つまり、導体板106は、放電による加熱や、対向する加熱サセプタ(ヒータ付き対向電極)から熱輻射や熱伝導など加熱され、そのため温度上昇が大きく特に径方向に延びが生じるのに対して、支持構造体107は放電に晒されず、加熱サセプタからの輻射熱も導体板106によって隔てられているので、導体板106と比較して温度上昇は小さい。このため図5に示したネジ113で導体板106を固定する構造によれば、導体板106の延びは逃げ場を失い、導体板106が湾曲する。導体板106が湾曲すると、対向電極との距離が変化し、放電が不安定になったり、基板104の膜の品質にばらつきが生じるという問題が起きる。
【0009】
図6に示した固定構造では、皿バネ115によって導体板106を支持構造体107に押さえ付けている。ネジ113の捩じ込みの程度を加減することによって皿バネ115を利用して導体板106の押え付け力を調整することができる。皿バネ115による押え付け力を強くすると、導体板106と支持構造体107の接触状態は良好になり、高周波の通電状態は良好になるが、反対に前述のごとく導体板106の湾曲(反り等)の問題が起きる。皿バネ115による押え付け力を弱くすると、導体板106の湾曲の問題は解消されるが、接触状態が不良になり、高周波通電に関する電気的接続が不良になる。
【0010】
図7に示した固定構造では、ネジ113で結合する部分にスペーサ116を設けて径方向に空間を形成し、熱によって導体板106が径方向に延びた場合にこれを逃がし、湾曲が生じないようになっているが、導体板106と支持構造体107の間に隙間117が形成されているので、電気的な接続が不十分になっている。
【0011】
上記のごとく電極装置103における導体板106と支持構造体107との固定構造に関しては、特に支持構造体107を経由して導体板106に例えば60MHz以上の高周波を給電する場合に、導体板106と支持構造体107の電気的な接続状態を良好にすることと、導体板106の熱膨張による径方向の逃げを確保することとを両立させることが難しい課題となっていた。
【0012】
上記説明では電極装置における特に高周波印加側の電極構造に関して課題を指摘したが、先にも述べた通りアース側電極を確実にアースに接続することも重要であることから、同様な構造を有するアース側の電極に関しても同様な問題点が指摘される。
【0013】
本発明の目的は、上記問題を解決することにあり、プラズマCVD装置、スパッタ装置、エッチング装置、プラズマ表面処理装置のごとき真空中で高周波を利用した放電を用いて基板処理を行う装置において、導体板とその支持構造体の電気的接続関係を良好にしかつ導体板の熱膨張による湾曲状態の発生を防止することができる高周波電極装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明に係る基板処理装置の高周波電極装置は、上記目的を達成するために、次のように構成されている。
本発明に係る高周波電極装置は、前提の構成として、基板処理装置内の真空中に配置されるものであり、さらに詳しくは、基板の側に配置された導体板と、この導体板をネジで固定することにより導体板を支持する支持構造体とからなり、例えば、導体板と支持構造体の間にはガスを導入する空間が形成され、かつ導体板には支持構造体を経由して外部の高周波電源から高周波が給電され、この高周波を利用して放電を作り、基板を処理するように構成されている。電極装置の導体板に給電される高周波は好ましくは60MHz以上の高周波である。なお高周波の範囲については、60MHzよりも低い従来からよく利用されている高周波、例えば13.56MHzであってもよい。
さらに上記の高周波電極装置は、ネジが設けられた導体板固定部では、導体板に形成された孔にスペーサを介してネジを設け、孔の径方向にて当該孔とスペーサの間に導体板の当該径方向の延びを可能する隙間が形成され、かつスペーサの軸方向の長さを導体板の厚みよりも長くすることにより導体板と支持構造体の間に隙間を形成し、さらに、導体板と支持構造体の間に、導体板固定部とは別途に、高周波を導体板へ通電するための、導体板と支持構造体の各対向面のいずれか一方に形成される溝と、この溝内に配置される導体板の厚み方向にバネ性を有する導電体とで構成される通電接触部が設けられるている。
上記の本発明では、真空中で高周波放電を利用して基板の表面に対して成膜、エッチング、または表面処理をする装置において、高周波が印加される電極装置の電極用導体板とその支持構造体からなる結合固定構造に、導体板と支持構造体との固定部とは別に高周波通電用の通電接触部を設けるようにした。これにより、導体板と支持構造体の電気的接続関係を良好にすること、および導体板の熱膨張による湾曲状態の発生の防止することの相反する2つの技術的課題を達成することができる。
またバネ性を有する導電体を利用することで導体板と支持構造体の間の電気的接触を確実に得ることが可能となる。
さらに上記の構成では、導体板と支持構造体からなる構造部分が高周波給電側に設けられていたが、その代わりに、導体板と支持構造体からなる構造部分をアース側に設けることもできる。この場合にも、当該構造部分の導体板と支持構造体の間に導体板固定部と通電接触部が設けられ、かつ導体板が支持構造体との間の通電接触部を経由してアースに確実に接続される。
上記の各構成において、さらに好ましくは、溝および導電体はリング状の形態を有するように構成される。リング状形態の溝および導電体はガス導入空間の周囲に設けられる。
さらに上記の各構成において、上記通電接触部は、ガス導入空間の周囲に間隔を開けて複数箇所設けられる。通電接触部の形態は連続的につながったリング状である必要ではなく、高周波を有効に供給することができ、あるいはアースとの間で確実に電気的接続が行えるのであれば、不連続な形態にて分散的に設けることが可能である。
【0015】
【発明の実施の形態】
以下に、本発明の好適な実施形態を添付図面に基づいて説明する。
【0016】
図1は本発明に係る高周波電極装置の要部の構造を示す部分縦断面図、図2は電極装置の下面図である。高周波電極装置の全体的な構成、基板処理装置における配置構造は、前述の図4を参照して説明されたものと同じであるので、図4を援用しながら説明する。図1と図2において、図4および図5〜図7で説明された要素と実質的に同一のものには同一の符号を付している。図1と図2は本発明に係る高周波電極装置の特徴的構成である導体板106と支持構造体107との間の固定部11と電気的接触部12の構成を示している。図4で説明したように、導体板106は、電極装置103において、支持構造体107に形成されたガスが導入される空間109を覆うごとく支持構造体107の下面に取り付けられ、支持構造体107に固定されている。図1と図2に示すごとく導体板106では空間109に対応する部分に全面的に多数の孔108が形成されている。なお図2では便宜上多数の孔108のうち一部のみが示されている。導体板106はネジ113などの結合具を用いて支持構造体107の下面に固定されている。固定部11は、空間109の周囲に複数箇所、好ましくは等間隔で設けられている。図2では複数の固定部11が示されている。図1では、その中の1つの固定部11と、電気的接触部12を含むその周辺部分を拡大して示している。
【0017】
図4に示した基板処理装置において、高周波電源110から電極装置103に給電される高周波の周波数は好ましくは60MHz以上の高周波である。かかる高周波が電極装置103において支持構造体107を経由して電極板としての導体板106に給電されるとき、真空条件、温度条件、プラズマ生成用ガス等の導入等の条件に関連して放電が生成され、プラズマが生成される。
【0018】
上記電極装置103における支持構造体107に対する導体板106の関係では、図1および図2に示すごとく、導体板106を支持構造体107に固定する構造部分(固定部11)と、支持構造体107から導体板106に高周波を与えるための電気的接触部(通電接触部)12とを、異なる部分として別けて設けている。
【0019】
固定部11は、導体板106に径の大きな孔13を形成し、他方、支持構造体107の下面にネジ孔14を形成し、孔13にスペーサ15を配置し、スペーサ15を介してネジ16をネジ孔14にネジ結合することによって構成されている。スペーサ15の軸方向の長さは導体板106の厚みよりも長く、かつスペーサ15の鍔部(フランジ部)が導体板106の下面に当たっている。従って、固定部11での固定構造は、導体板106を支持構造体107の下面に強く押し付けて接触させる構造ではなく、導体板106が支持構造体107から分離するのを禁止する程度に押さえる構造である。固定部11によれば、ネジ止めの構造を採用するが、導体板106と支持構造体107を電気的に接触させる作用を求めるための構造ではない。従って、固定部11において導体板106と支持構造体107との間には望ましい隙間17が作られている。また孔13はその径が大きくなるように形成され、スペーサ15の外面と孔13の内面との間には径方向に隙間18が形成されている。固定部11のかかる構造によれば、導体板106が熱を受けてその径方向に膨脹したときには、固定部11で導体板106は滑ることができ、湾曲状態(反り等)が生じることはない。反面、固定部11では電気的接続部として十分な接触状態を得ることができないので、高周波の通電部として作用させることはできない。
【0020】
支持構造体107から導体板106への高周波の給電は上記の電気的接触部12を介して行われる。電気的接触部12は、この例では、支持構造体107の下面に溝21を形成し、この溝21の中に接電部材22を設けることによって構成される。溝21は、空間109を囲むごとくその周囲にリング状に形成され、また接電部材22もリング状の形態を有している。接電部材22は、溝21の深さ方向(あるいは導体板106の厚み方向)に伸びようとするバネ性を有しており、かつ導電性の材質で形成されている。接電部材22は、図1に示した例では、上下方向にバネ性を有しているので、常に導体板106、および支持構造体107の溝21の底部のそれぞれに接触し、支持導体板106と支持構造体107の間にあって良好な電気的接触状態を作る。この電気的接触状態は、溝21および接電部材22がリング状の形態を有することから、空間109の全周囲に形成され、良好な高周波通電を行うことができる電気的接触部12が形成される。また接電部材22のバネ変形量は適度に設定され、かつ導体板106の延び方向にも多少変形することができるので、導体板106が熱膨張で径方向に延びるときに滑り作用の障害になることはない。
【0021】
上記のごとく、導体板106と支持構造体107の間に設けられた固定部11と電気的接触部12の構造によって、導体板106の延びを逃がすことによる反り等の防止と、良好な電気的接続とを両立することが可能となった。
【0022】
前述の実施形態では、支持構造体107に溝21を設け、そこに接電部材22を組み込んだ構造を示したが、溝が導体板106側にあってもよいし、また溝の断面形状も本実施形態のごとく矩形に限定されるものではなく、半円状などにすることもできる。さらに上記の溝を設けず、導体板106と支持構造体107との間に単に上記のごときバネ性を有する接電部材を挟みつけるように構成することも可能である。
【0023】
高周波電源110から供給される高周波をさらに支持構造体107から導体板106へ供給するための十分な電気的接触状態を作る接電部材22としては、同作用をもたらす部材であれば任意の部材を用いることができるが、例えば特公平7−87275号公報に記載されるような電磁波等をシールする導電性シール材などを応用することもできる。また上記のリング状の接電部材22は好ましくは紐状の線材で形成される。図3の(A)〜(F)に各種のリング状接電部材の形態を示す。接電部材22Aは金属線をコイル状に巻いて形成される。接電部材22Bは金属箔(または金属薄板)をコイル状に巻いて形成される。接電部材22Cは金属箔(または金属薄板)を筒状に巻いて形成される。接電部材22Dは金属箔(または金属薄板)を断面がコ字型の矩形状にしたものに切り込みを入れて上記バネ性を持たせるように形成されている。接電部材22Eは金属の細線を編んで断面が矩形になる(四角筒状)ように整形して形成される。接電部材22Fは金属の細線を円筒状に編んで形成される。この他、金属に代えて、導電性のエストラマ材を用いることも可能である。
【0024】
前述の実施形態は、次のように変形することも可能である。本実施形態では、高周波を印加する側の電極装置の例を示したが、アース側電極が電極用導体板とそれを支持する支持構造体からなる場合にも、同様の構造を採用することが効果を発揮することは自明である。すなわち、導体板は、支持構造体との間の電気的接触部を経由してアースに確実に接続される。
【0025】
また上記実施形態による電極装置103は、基板処理装置がプラズマCVD装置であって、基板に対してCVD成膜等を行う成膜空間と、プラズマが作られるプラズマ生成空間とが分離されたように構成される装置においても適用することができるのは勿論である。この装置の構成例では、電極装置103に形成された空間109がプラズマを生成する空間として利用され、空間109にプラズマ生成用のガスを導入し、高周波を導体板106に給電することによって空間109で放電を発生させてプラズマを生成し、導体板106に形成された複数の孔108からラジカル等を取り出し、基板の前面空間で反応ガスを導入してCVD作用により基板の表面に膜を堆積させる。この例では、通常、導体板はアース側の電極として作用し、当該導体板は上記電気的接触部および支持構造体を経由してアースに確実に接続される。また導体板が熱で膨脹し、その径方向に延びたとしても前述の固定部11の構造によって反りが生じるのを防止することができる。
【0026】
さらに前述の実施形態において、溝21と接電部材22をリング形状に形成することによって電気的接触部12を、空間109の全周囲にリング状に形成したが、電気的接触部12は必要な高周波通電を行うことができれば足りるので、電気的接触部12を完全にリング状に形成する必要は必ずしもない。放電を安定化させるに足る十分な高周波通電を行うことができるのであれば、例えば、リング状の電気的接触部12の途中で隙間部分を複数箇所設けることもできるし、あるいは電気的接触部12を分散的に設けることもできる。
【0027】
なお電極装置103に給電される高周波の周波数としては前述した60MHz以上の周波数に限定されない。例えば従来から利用されている13.56MHzの高周波の場合に適用しても前述と同様な効果が発揮されるのは勿論である。
【0028】
【発明の効果】
以上の説明で明らかなように本発明によれば、導体板とこの導体板を結合具で固定する支持構造体とからなる高周波印加側あるいはアース側の高周波電極装置で、導体板の延びを許容する固定部と、導体板へ高周波を通電する通電接触部を別けて設けるようにしたため、電極板である導体板とその支持構造体との良好な電気的接続と、導体板の熱膨張による延びの逃げを確保することとを両立させることができ、放電の安定性、反り等の防止により真空加工品質を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る高周波電極装置の要部構造を示す部分縦断面図である。
【図2】本発明に係る高周波電極装置の下面図である。
【図3】接電部材の各種の例を示す部分斜視図である。
【図4】従来および本発明が適用される基板処理装置の一例を示す縦断面図である。
【図5】従来の固定構造の第1例を示す部分縦断面図である。
【図6】従来の固定構造の第2例を示す部分縦断面図である。
【図7】従来の固定構造の第3例を示す部分縦断面図である。
【符号の説明】
11 固定部
12 電気的接続部
15 スペーサ
16 ネジ
17 隙間
21 溝
22,22A〜22F 接電部材
103 電極装置
104 基板
106 導体板
107 支持構造体
109 空間
110 高周波電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency electrode device for a substrate processing apparatus, and in particular, supports a conductor plate for an electrode in a device that performs high-frequency discharge in a vacuum, such as a plasma CVD device, a sputtering device, an etching device, or a plasma surface treatment device. The present invention relates to a high-frequency electrode device that can effectively perform high-frequency power supply from a structure to a conductor plate.
[0002]
[Prior art]
The whole is formed of a vacuum vessel, and the vacuum vessel is evacuated to the required vacuum state with the attached vacuum pump to form the necessary vacuum conditions, and the processing target is placed on the substrate holder provided inside the vacuum vessel For example, a high-frequency electrode device is provided above the substrate, and a discharge state is generated at a high frequency fed with the introduced process gas, plasma is generated, radicals in the plasma are extracted, and the above-described Various substrate processing apparatuses configured to vacuum process a substrate are known. In order to perform vacuum processing on a substrate using a high frequency, it is important to effectively supply a high frequency to the electrode on the high frequency application side and to securely connect the ground (ground) side electrode to the ground.
[0003]
FIG. 4 shows a plasma CVD apparatus for forming a film on a substrate as an example of the substrate processing apparatus. In FIG. 4, a chamber 101 that forms a substrate film formation space includes a substrate holder 102 on the inside lower side and an electrode device 103 on the inside upper side. The chamber 101 is configured as a vacuum container made of a metal material, and includes an exhaust mechanism (not shown) for exhausting the internal space to a required vacuum state. The substrate holder 102 is fixed to the bottom wall 101a of the chamber 101 and is grounded. The substrate holder 102 and the chamber 101 are held at ground potential. A substrate 104 is placed on the upper surface of the substrate holder 102. The electrode device 103 is provided so as to face the substrate 104. The electrode device 103 is fixed to the upper wall 101 b of the chamber 101 via an insulator 105. The electrode device 103 includes a flat conductor plate 106 disposed so as to face the substrate 104, and a support structure 107 made of a conductive material (such as aluminum) that fixes and supports the conductor plate 106. The A large number of holes 108 are formed in the entire surface of the conductor plate 106. A space 109 is formed inside the electrode device 103, and a gas for generating plasma is introduced into the space 109. The conductor plate 106 is fixed to the lower surface of the support structure 107 so as to cover the space 109. A high frequency is supplied to the conductor plate 106 from the high frequency power supply 110 provided outside via the support structure 107. In the electrode device 103 described above, a gas is introduced into the space 109, and the gas is supplied to the front space of the substrate 104 through a large number of holes 108 formed in the conductor plate 106. Further, between the conductor plate 106 and the substrate holder 102, a high frequency is supplied to the conductor plate 106 to generate a discharge and generate plasma. A plasma CVD action is generated in the front space of the substrate 104 based on the generated plasma and a reaction gas supplied separately, and film formation is performed on the surface of the substrate 104.
[0004]
The substrate holder 102 incorporates a heater 111 and acts as a counter electrode corresponding to the conductor plate 106 acting as an electrode plate of the electrode device 103, and functions as a heating susceptor. When the substrate 104 is placed on the substrate holder 102 and film formation is performed on the surface of the substrate, heat is generated from the substrate holder 102 in order to keep the substrate at a required temperature state. The conductor plate 106 of the electrode device 103 directly receives radiant heat from the substrate holder 102. Further, the conductor plate 106 receives heat from the discharge.
[0005]
Although FIG. 4 does not show the fixing structure of the conductor plate 106 in the support structure 107, the fixing structure of the conductor plate 106 attached to the support structure 107 will be described in detail with reference to FIGS. .
[0006]
In the fixing structure shown in FIG. 5, the conductor plate 106 is fixed to the lower surface of the support structure 107 by coupling the screw 113 to the screw hole 114 of the support structure 107 through the hole 112 formed in the conductor plate 106. . A plurality of places fixed by the screws 113 are provided. In the fixing structure shown in FIG. 6, in the fixing structure using the screw 113 and the screw hole 114 of the support structure 107 similar to those shown in FIG. 115 is sandwiched. The conductor plate 106 is strongly pressed against the lower surface of the support structure 107 by the elasticity of the disc spring 115. Further, according to this structure, it is possible to adjust the pressing force of the conductor plate 106 to the support structure 107. In FIG. 7, in the fixing structure using the screw 113 similar to that shown in FIG. 5 and the screw hole 114 of the support structure 107, the diameter of the hole 112 of the conductor plate 106 is increased, and the gap between the screw 113 and the conductor plate 106 is increased. A spacer 116 is interposed. Since the axial length of the spacer 116 is set to be slightly larger than the thickness of the conductor plate 106, a gap 117 is generated between the conductor plate 106 and the support structure 107.
[0007]
[Problems to be solved by the invention]
In the electrode apparatus 103 of the substrate processing apparatus shown in FIG. 4, the fixing structure between the conductor plate 106 and the support structure 107 that supports the conductor plate 106 has the following problems.
[0008]
If the electrical connection by the contact between the conductor plate 106 and the support structure 107 is insufficient, not only the high-frequency power cannot be efficiently transmitted to the conductor plate 106 via the support structure 107 but also uneven discharge and unevenness of the discharge. This will have a significant impact on processing quality. Therefore, as shown in FIG. 5, a structure is adopted in which the conductor plate 106 is fixed to the support structure 107 by screws. According to this fixing structure, the conductor plate 106 and the support structure 107 are firmly coupled to form a good contact state, and the electrical connection is improved. However, this fixing structure causes another important problem due to the extension of the conductor plate 106. In other words, the conductor plate 106 is heated by discharge or heated from the opposing heating susceptor (counter electrode with a heater) such as thermal radiation or heat conduction, so that the temperature rise is large and the radial extension occurs in particular. Since the structure 107 is not exposed to the discharge and the radiant heat from the heating susceptor is also separated by the conductor plate 106, the temperature rise is small compared to the conductor plate 106. Therefore, according to the structure in which the conductor plate 106 is fixed with the screw 113 shown in FIG. 5, the extension of the conductor plate 106 loses the escape field, and the conductor plate 106 is curved. If the conductor plate 106 is curved, the distance to the counter electrode changes, causing problems such as unstable discharge and variations in the film quality of the substrate 104.
[0009]
In the fixing structure shown in FIG. 6, the conductor plate 106 is pressed against the support structure 107 by the disc spring 115. By adjusting the degree of screwing of the screw 113, the pressing force of the conductor plate 106 can be adjusted using the disc spring 115. When the pressing force by the disc spring 115 is increased, the contact state between the conductor plate 106 and the support structure 107 is improved and the high-frequency energization state is improved, but conversely, as described above, the conductor plate 106 is bent (warped or the like). ) Problem occurs. If the pressing force by the disc spring 115 is weakened, the problem of bending of the conductor plate 106 is solved, but the contact state becomes poor and the electrical connection related to high-frequency energization becomes poor.
[0010]
In the fixing structure shown in FIG. 7, a spacer 116 is provided in a portion joined by the screw 113 to form a space in the radial direction, and when the conductor plate 106 extends in the radial direction due to heat, it is released and no bending occurs. However, since the gap 117 is formed between the conductor plate 106 and the support structure 107, the electrical connection is insufficient.
[0011]
As described above, regarding the fixing structure of the conductor plate 106 and the support structure 107 in the electrode device 103, particularly when a high frequency of, for example, 60 MHz or more is supplied to the conductor plate 106 via the support structure 107, It has been a difficult task to make both the electrical connection state of the support structure 107 good and ensuring the radial escape due to the thermal expansion of the conductor plate 106.
[0012]
In the above description, problems have been pointed out particularly with respect to the electrode structure on the high frequency application side in the electrode device. However, as described above, it is also important to securely connect the ground side electrode to the ground. The same problem is pointed out for the side electrode.
[0013]
An object of the present invention is to solve the above-mentioned problem. In an apparatus such as a plasma CVD apparatus, a sputtering apparatus, an etching apparatus, or a plasma surface treatment apparatus that performs substrate processing using discharge using high frequency in a vacuum, a conductor An object of the present invention is to provide a high-frequency electrode device capable of improving the electrical connection relationship between a plate and its support structure and preventing the occurrence of a curved state due to thermal expansion of a conductor plate.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the high-frequency electrode device of the substrate processing apparatus according to the present invention is configured as follows.
The high-frequency electrode device according to the present invention is arranged in a vacuum in a substrate processing apparatus as a precondition, and more specifically, a conductor plate arranged on the substrate side and the conductor plate with screws. For example, a space for introducing a gas is formed between the conductor plate and the support structure, and the conductor plate is externally connected via the support structure. A high frequency power is supplied from a high frequency power source, and a discharge is generated using the high frequency to process the substrate. The high frequency fed to the conductor plate of the electrode device is preferably a high frequency of 60 MHz or more. In addition, about the range of a high frequency, the high frequency used conventionally conventionally lower than 60 MHz, for example, 13.56 MHz may be sufficient.
Further, in the above-described high-frequency electrode device, in the conductor plate fixing portion provided with a screw, a screw is provided in a hole formed in the conductor plate via a spacer, and the conductor plate is interposed between the hole and the spacer in the radial direction of the hole. And a gap is formed between the conductor plate and the support structure by making a length in the axial direction of the spacer longer than a thickness of the conductor plate. In addition to the conductor plate fixing portion, a groove formed on either one of the opposing surfaces of the conductor plate and the support structure for supplying a high frequency to the conductor plate is provided between the plate and the support structure. An energizing contact portion formed of a conductor having a spring property is provided in the thickness direction of the conductor plate disposed in the groove.
In the above-described present invention, in an apparatus for forming, etching, or surface-treating the surface of a substrate using high-frequency discharge in a vacuum, an electrode conductor plate for an electrode device to which a high frequency is applied and its support structure In addition to the fixing portion between the conductor plate and the support structure, a current-carrying contact portion for high-frequency current conduction is provided in the body-fixing structure. Thereby, it is possible to achieve two technical problems that are contradictory to improving the electrical connection relationship between the conductor plate and the support structure and preventing the occurrence of a curved state due to thermal expansion of the conductor plate.
Further, by using a conductor having spring properties, it is possible to reliably obtain electrical contact between the conductor plate and the support structure.
Further, in the above configuration, the structure portion including the conductor plate and the support structure is provided on the high-frequency power supply side, but instead, the structure portion including the conductor plate and the support structure can be provided on the ground side. Also in this case, a conductor plate fixing part and a current-carrying contact part are provided between the conductor plate and the support structure of the structural part, and the conductor plate is grounded via a current-carrying contact part between the support structure and the conductor plate. Connected securely.
In each of the above configurations, more preferably, the groove and the conductor are configured to have a ring shape. The ring-shaped groove and the conductor are provided around the gas introduction space.
Furthermore, in each of the above-described configurations, the energization contact portion is provided at a plurality of positions with a gap around the gas introduction space. The shape of the current-carrying contact portion does not need to be a continuously connected ring, but can be a discontinuous shape as long as high-frequency can be effectively supplied or electrical connection can be reliably made to the ground. Can be provided in a distributed manner.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
[0016]
FIG. 1 is a partial longitudinal sectional view showing the structure of a main part of a high-frequency electrode device according to the present invention, and FIG. 2 is a bottom view of the electrode device. The overall configuration of the high-frequency electrode device and the arrangement structure in the substrate processing apparatus are the same as those described with reference to FIG. 4, and will be described with reference to FIG. 1 and 2, elements that are substantially the same as those described in FIGS. 4 and 5 to 7 are denoted by the same reference numerals. FIG. 1 and FIG. 2 show a configuration of the fixing portion 11 and the electrical contact portion 12 between the conductor plate 106 and the support structure 107, which is a characteristic configuration of the high-frequency electrode device according to the present invention. As described with reference to FIG. 4, the conductor plate 106 is attached to the lower surface of the support structure 107 so as to cover the space 109 into which the gas formed in the support structure 107 is introduced in the electrode device 103. It is fixed to. As shown in FIGS. 1 and 2, a large number of holes 108 are formed on the entire surface of the conductor plate 106 corresponding to the space 109. In FIG. 2, only a part of the many holes 108 is shown for convenience. The conductor plate 106 is fixed to the lower surface of the support structure 107 using a coupler such as a screw 113. The fixing portion 11 is provided at a plurality of locations around the space 109, preferably at regular intervals. In FIG. 2, a plurality of fixing portions 11 are shown. In FIG. 1, one fixed portion 11 and the peripheral portion including the electrical contact portion 12 are enlarged.
[0017]
In the substrate processing apparatus shown in FIG. 4, the frequency of the high frequency fed from the high frequency power supply 110 to the electrode device 103 is preferably a high frequency of 60 MHz or more. When such a high frequency is supplied to the conductive plate 106 as the electrode plate via the support structure 107 in the electrode device 103, discharge occurs in relation to conditions such as vacuum conditions, temperature conditions, introduction of plasma generating gas, and the like. Is generated and a plasma is generated.
[0018]
As shown in FIGS. 1 and 2, the electrode plate 103 has a structure portion (fixing portion 11) for fixing the conductor plate 106 to the support structure 107, and the support structure 107. The electrical contact portion (energizing contact portion) 12 for applying a high frequency to the conductor plate 106 is provided separately as a different portion.
[0019]
The fixing portion 11 is formed with a hole 13 having a large diameter in the conductor plate 106, and on the other hand, a screw hole 14 is formed on the lower surface of the support structure 107, a spacer 15 is disposed in the hole 13, and a screw 16 is interposed via the spacer 15. Is screwed into the screw hole 14. The length of the spacer 15 in the axial direction is longer than the thickness of the conductor plate 106, and the flange portion of the spacer 15 is in contact with the lower surface of the conductor plate 106. Therefore, the fixing structure in the fixing portion 11 is not a structure in which the conductor plate 106 is pressed strongly against the lower surface of the support structure 107 and is in contact with the lower surface of the support structure 107, but is suppressed to the extent that the conductor plate 106 is separated from the support structure 107. It is. The fixing portion 11 employs a screwing structure, but is not a structure for obtaining an action of electrically contacting the conductor plate 106 and the support structure 107. Therefore, a desirable gap 17 is formed between the conductor plate 106 and the support structure 107 in the fixed portion 11. The hole 13 is formed to have a large diameter, and a gap 18 is formed in the radial direction between the outer surface of the spacer 15 and the inner surface of the hole 13. According to such a structure of the fixing portion 11, when the conductor plate 106 receives heat and expands in the radial direction, the conductor plate 106 can slide at the fixing portion 11, and a curved state (warp or the like) does not occur. . On the other hand, since the fixed portion 11 cannot obtain a sufficient contact state as an electrical connection portion, it cannot be operated as a high-frequency energizing portion.
[0020]
High-frequency power supply from the support structure 107 to the conductor plate 106 is performed via the electrical contact portion 12 described above. In this example, the electrical contact portion 12 is configured by forming a groove 21 on the lower surface of the support structure 107 and providing a contact member 22 in the groove 21. The groove 21 is formed in a ring shape around the space 109, and the contact member 22 also has a ring shape. The contact member 22 has a spring property that tends to extend in the depth direction of the groove 21 (or the thickness direction of the conductor plate 106), and is formed of a conductive material. In the example shown in FIG. 1, the contact member 22 has a spring property in the vertical direction. Therefore, the contact member 22 always contacts the conductor plate 106 and the bottom of the groove 21 of the support structure 107, thereby supporting the support conductor plate. Good electrical contact is made between 106 and support structure 107. In this electrical contact state, since the groove 21 and the contact member 22 have a ring shape, the electrical contact portion 12 that is formed all around the space 109 and can perform good high-frequency energization is formed. The Further, the amount of spring deformation of the contact member 22 is set moderately and can be slightly deformed in the extending direction of the conductor plate 106, so that the sliding action is obstructed when the conductor plate 106 extends in the radial direction due to thermal expansion. Never become.
[0021]
As described above, the structure of the fixing portion 11 and the electrical contact portion 12 provided between the conductor plate 106 and the support structure 107 prevents warping or the like caused by escaping the extension of the conductor plate 106 and provides good electrical performance. It is possible to achieve both connection and connection.
[0022]
In the above-described embodiment, the structure is shown in which the groove 21 is provided in the support structure 107 and the contact member 22 is incorporated therein. However, the groove may be on the conductor plate 106 side, and the cross-sectional shape of the groove may be It is not limited to a rectangle like this embodiment, It can also be made into a semicircle shape. Furthermore, it is also possible to configure such that the above-mentioned groove is not provided, and the contact member having the spring property as described above is simply sandwiched between the conductor plate 106 and the support structure 107.
[0023]
As the contact member 22 that creates a sufficient electrical contact state for supplying the high frequency power supplied from the high frequency power supply 110 to the conductor plate 106 from the support structure 107, any member can be used as long as it is a member that provides the same action. For example, a conductive sealing material that seals electromagnetic waves and the like as described in Japanese Patent Publication No. 7-87275 can be applied. The ring-shaped contact member 22 is preferably formed of a string-shaped wire. The forms of various ring-shaped contact members are shown in FIGS. The contact member 22A is formed by winding a metal wire in a coil shape. The contact member 22B is formed by winding a metal foil (or a metal thin plate) in a coil shape. The contact member 22C is formed by winding a metal foil (or a metal thin plate) into a cylindrical shape. The contact member 22D is formed such that a metal foil (or a metal thin plate) having a rectangular shape with a U-shaped cross section is cut to give the spring property. The contact member 22E is formed by shaping a thin metal wire so that the cross section is rectangular (square tube shape). The contact member 22F is formed by knitting a thin metal wire into a cylindrical shape. In addition, it is also possible to use conductive elastomer material instead of metal.
[0024]
The above-described embodiment can be modified as follows. In the present embodiment, an example of an electrode device on the side to which a high frequency is applied has been shown. However, a similar structure can be adopted even when the ground side electrode is composed of an electrode conductor plate and a support structure that supports the electrode conductor plate. It is obvious that it is effective. That is, the conductor plate is reliably connected to the ground via the electrical contact portion with the support structure.
[0025]
In the electrode device 103 according to the above embodiment, the substrate processing apparatus is a plasma CVD apparatus, and the film formation space for performing CVD film formation on the substrate and the plasma generation space for generating plasma are separated. Of course, the present invention can also be applied to a configured apparatus. In the configuration example of this device, the space 109 formed in the electrode device 103 is used as a space for generating plasma, a plasma generating gas is introduced into the space 109, and a high frequency is supplied to the conductor plate 106 to supply the space 109. A discharge is generated to generate plasma, radicals and the like are taken out from the plurality of holes 108 formed in the conductor plate 106, a reaction gas is introduced into the front space of the substrate, and a film is deposited on the surface of the substrate by the CVD action. . In this example, the conductor plate normally acts as an electrode on the ground side, and the conductor plate is reliably connected to the ground via the electrical contact portion and the support structure. Further, even when the conductor plate expands due to heat and extends in the radial direction, it is possible to prevent warping from occurring due to the structure of the fixing portion 11 described above.
[0026]
Further, in the above-described embodiment, the groove 21 and the contact member 22 are formed in a ring shape, so that the electrical contact portion 12 is formed in a ring shape all around the space 109. However, the electrical contact portion 12 is necessary. Since it is sufficient that high-frequency energization can be performed, it is not always necessary to form the electrical contact portion 12 in a ring shape. If sufficient high-frequency energization sufficient to stabilize the discharge can be performed, for example, a plurality of gap portions can be provided in the middle of the ring-shaped electrical contact portion 12, or the electrical contact portion 12 can be provided. Can also be provided in a distributed manner.
[0027]
The frequency of the high frequency fed to the electrode device 103 is not limited to the above-described frequency of 60 MHz or more. For example, even if it is applied to a high frequency of 13.56 MHz that has been conventionally used, it goes without saying that the same effect as described above is exhibited.
[0028]
【The invention's effect】
As is apparent from the above description, according to the present invention, the extension of the conductor plate is allowed in the high-frequency application side or the ground-side high-frequency electrode device comprising the conductor plate and the support structure that fixes the conductor plate with a coupler. And a conductive contact portion for energizing a high frequency to the conductor plate are provided separately, so that a good electrical connection between the conductor plate as an electrode plate and its support structure and the extension due to the thermal expansion of the conductor plate It is possible to achieve both of ensuring the escape of the vacuum and to improve the vacuum processing quality by preventing discharge stability and warpage.
[Brief description of the drawings]
FIG. 1 is a partial longitudinal sectional view showing a main structure of a high-frequency electrode device according to the present invention.
FIG. 2 is a bottom view of the high-frequency electrode device according to the present invention.
FIG. 3 is a partial perspective view showing various examples of a contact member.
FIG. 4 is a longitudinal sectional view showing an example of a substrate processing apparatus to which a conventional and the present invention is applied.
FIG. 5 is a partial longitudinal sectional view showing a first example of a conventional fixing structure.
FIG. 6 is a partial longitudinal sectional view showing a second example of a conventional fixing structure.
FIG. 7 is a partial longitudinal sectional view showing a third example of a conventional fixing structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Fixing part 12 Electrical connection part 15 Spacer 16 Screw 17 Gap 21 Groove 22, 22A-22F Electrical contact member 103 Electrode device 104 Substrate 106 Conductor plate 107 Support structure 109 Space 110 High frequency power supply

Claims (4)

基板の側に配置された導体板と、この導体板をネジで固定することにより前記導体板を支持する支持構造体とからなり、前記導体板と前記支持構造体の間にはガスを導入する空間が形成され、かつ前記導体板には前記支持構造体を経由して外部の高周波電源から高周波が給電され、この高周波を利用して放電を作り、前記基板を処理する基板処理装置の高周波電極装置において、
前記ネジが設けられた導体板固定部では、前記導体板に形成された孔にスペーサを介して前記ネジを設け、前記孔の径方向にて前記孔と前記スペーサの間に前記導体板の前記径方向の延びを可能する隙間が形成され、かつ前記スペーサの軸方向の長さを前記導体板の厚みよりも長くすることにより前記導体板と前記支持構造体の間に隙間を形成し、さらに、
前記導体板と前記支持構造体の間に、前記導体板固定部とは別途に、前記高周波を前記導体板へ通電するための、前記導体板と前記支持構造体の各対向面のいずれか一方に形成される溝と、この溝内に配置される前記導体板の厚み方向にバネ性を有する導電体とで構成される通電接触部が設けられる、
ことを特徴とする基板処理装置の高周波電極装置。
A conductor plate disposed on the substrate side and a support structure that supports the conductor plate by fixing the conductor plate with screws, and gas is introduced between the conductor plate and the support structure. A high-frequency electrode of a substrate processing apparatus for processing the substrate is formed, and a high-frequency power is supplied to the conductor plate from an external high-frequency power source via the support structure, and discharge is generated using the high frequency. In the device
In the screw conductor plate fixing portion provided via a spacer to the holes formed in the conductor plate provided with the screw, the said conductive plate between the said hole spacer in the radial direction of the hole A gap that allows radial extension is formed, and a gap is formed between the conductor plate and the support structure by making the axial length of the spacer longer than the thickness of the conductor plate; ,
Any one of the opposing surfaces of the conductive plate and the support structure for energizing the high frequency to the conductive plate separately from the conductive plate fixing portion between the conductive plate and the support structure. An energizing contact portion is provided that is formed by a groove formed in the conductor plate and a conductor having a spring property in the thickness direction of the conductor plate disposed in the groove;
A high-frequency electrode device for a substrate processing apparatus.
前記導体板と前記支持構造体からなる構造部分が高周波給電側に設けられる代わりにアース側に設けられ、前記構造部分の前記導体板と前記支持構造体の間に前記導体板固定部と前記通電接触部が設けられ、かつ前記導体板が前記支持構造体の前記通電接触部を経由してアースに接続されることを特徴とする請求項1記載の基板処理装置の高周波電極装置。  A structure portion composed of the conductor plate and the support structure is provided on the ground side instead of being provided on the high-frequency power supply side, and the conductor plate fixing portion and the energization are provided between the conductor plate and the support structure of the structure portion. 2. The high-frequency electrode device for a substrate processing apparatus according to claim 1, wherein a contact portion is provided, and the conductor plate is connected to ground via the energization contact portion of the support structure. 前記溝および前記導電体はリング状の形態を有することを特徴とする請求項1記載の基板処理装置の高周波電極装置。  The high-frequency electrode device for a substrate processing apparatus according to claim 1, wherein the groove and the conductor have a ring shape. 前記通電接触部は、前記ガス導入空間の周囲に間隔を開けて複数箇所設けられることを特徴とする請求項1〜3のいずれか1項に記載の基板処理装置の高周波電極装置。  4. The high-frequency electrode device for a substrate processing apparatus according to claim 1, wherein a plurality of the current-carrying contact portions are provided at intervals around the gas introduction space.
JP31655699A 1999-11-08 1999-11-08 High frequency electrode device for substrate processing equipment Expired - Fee Related JP4387008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31655699A JP4387008B2 (en) 1999-11-08 1999-11-08 High frequency electrode device for substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31655699A JP4387008B2 (en) 1999-11-08 1999-11-08 High frequency electrode device for substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2001135499A JP2001135499A (en) 2001-05-18
JP4387008B2 true JP4387008B2 (en) 2009-12-16

Family

ID=18078424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31655699A Expired - Fee Related JP4387008B2 (en) 1999-11-08 1999-11-08 High frequency electrode device for substrate processing equipment

Country Status (1)

Country Link
JP (1) JP4387008B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461435B1 (en) * 2000-06-22 2002-10-08 Applied Materials, Inc. Showerhead with reduced contact area
TWI224815B (en) * 2001-08-01 2004-12-01 Tokyo Electron Ltd Gas processing apparatus and gas processing method
US6827815B2 (en) 2002-01-15 2004-12-07 Applied Materials, Inc. Showerhead assembly for a processing chamber
JP2007251014A (en) * 2006-03-17 2007-09-27 Hitachi Kokusai Electric Inc Substrate-treating device
US20080087641A1 (en) * 2006-10-16 2008-04-17 Lam Research Corporation Components for a plasma processing apparatus
KR101378160B1 (en) * 2007-02-16 2014-03-27 엘아이지에이디피 주식회사 Upper electrode assembly and manufacturing machine FPD having the same
JP4705967B2 (en) * 2008-02-26 2011-06-22 東京エレクトロン株式会社 Plasma processing equipment
JP4593652B2 (en) * 2008-06-06 2010-12-08 東京エレクトロン株式会社 Microwave plasma processing equipment
JP2010182729A (en) * 2009-02-03 2010-08-19 Fuji Electric Holdings Co Ltd Plasma cvd device
JP5544907B2 (en) 2010-02-04 2014-07-09 東京エレクトロン株式会社 Structure for gas shower and substrate processing apparatus
JP2011159638A (en) * 2011-05-18 2011-08-18 Shimadzu Corp Plasma treatment device
CN111383892B (en) * 2018-12-29 2023-03-07 中微半导体设备(上海)股份有限公司 Grounding connection structure of gas spray header in plasma processing device
US20220102117A1 (en) 2020-09-25 2022-03-31 Applied Materials, Inc. Thread profiles for semiconductor process chamber components

Also Published As

Publication number Publication date
JP2001135499A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP4387008B2 (en) High frequency electrode device for substrate processing equipment
TWI679295B (en) Deposition apparatus including an isothermal processing zone
KR101810065B1 (en) Tightly-fitted ceramic insulator on large-area electrode
JP6442463B2 (en) Annular baffle
JP3310171B2 (en) Plasma processing equipment
JP2018117024A (en) Plasma processing apparatus
JP2003506889A (en) Plasma reactor for processing large area substrates
JP2000077335A (en) Plasma treating device
JP2008108703A (en) Planar heater and semiconductor heat treatment device equipped with this heater
KR20030066118A (en) Showerhead type gas supplier which minimizes thermal expansion-induced deformation
JPH05299382A (en) Method and apparatus for plasma processing
KR101410820B1 (en) Upper Electrode Assembly and Thin-film Processing Apparatus Having the Same
TW202042274A (en) Mounting structure of plasma processor and corresponding plasma processor
JP2701242B2 (en) Electrode structure for plasma CVD equipment
JP2004128379A (en) Plasma process apparatus
JPH06310436A (en) Thin-film forming apparatus
JPS622544A (en) Noiseless discharge type gas plasma treating device
JP2781757B2 (en) Plasma CVD equipment
JP4831803B2 (en) Substrate processing equipment
KR20030085932A (en) Antenna structure having inductive antenna for excitation of plasma and apparatus for generating plasma using inductive antenna
JP3924096B2 (en) Heater device for plasma processing equipment
JP3976902B2 (en) Plasma processing equipment
TW202243550A (en) Fastening structure, plasma processing apparatus, and fastening method
JP2010098327A (en) Substrate processing device
KR20230139097A (en) Diamond film forming apparatus using microwave plasma chemical vapor deposition having a ring shaped electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Ref document number: 4387008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees