JP2701242B2 - Electrode structure for plasma CVD equipment - Google Patents

Electrode structure for plasma CVD equipment

Info

Publication number
JP2701242B2
JP2701242B2 JP1199933A JP19993389A JP2701242B2 JP 2701242 B2 JP2701242 B2 JP 2701242B2 JP 1199933 A JP1199933 A JP 1199933A JP 19993389 A JP19993389 A JP 19993389A JP 2701242 B2 JP2701242 B2 JP 2701242B2
Authority
JP
Japan
Prior art keywords
substrate
substrate holder
gas dispersion
electrode
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1199933A
Other languages
Japanese (ja)
Other versions
JPH0362923A (en
Inventor
富実雄 森田
雅行 鈴木
大也 青木
文雄 村松
Original Assignee
国際電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際電気株式会社 filed Critical 国際電気株式会社
Priority to JP1199933A priority Critical patent/JP2701242B2/en
Publication of JPH0362923A publication Critical patent/JPH0362923A/en
Application granted granted Critical
Publication of JP2701242B2 publication Critical patent/JP2701242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prevention Of Fouling (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子などの製造工程において各種の
薄膜を基板に形成するために使用されるプラズマCVD装
置の電極構造に係り、特に運転中のCVD(Chemical Vapo
r Deposition)生成物の剥離による塵埃粒子の発生を抑
制し、それによって膜面欠陥の防止と装置の連続運転時
間の延長を可能ならしめる平行平板型シャワー方式のプ
ラズマCVD装置用電極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure of a plasma CVD apparatus used for forming various thin films on a substrate in a process of manufacturing a semiconductor device or the like. CVD (Chemical Vapo
r Deposition) The present invention relates to an electrode structure for a parallel plate shower type plasma CVD apparatus, which suppresses generation of dust particles due to exfoliation of a product, thereby preventing a film surface defect and extending a continuous operation time of the apparatus.

〔従来技術〕(Prior art)

プラズマCVD装置は、高周波電圧が印加される1対の
電極が真空容器内に設置され、容器内に導入された稀薄
プロセスガスを電極間のグロー放電によって分解・励起
してプラズマ状態とすることにより電極上に装着された
基板表面にガス分子を選択的に固着堆積させて薄膜を形
成するものであって、ガス分子の選択性および固着の度
合は基板温度に支配されるものである。
In a plasma CVD apparatus, a pair of electrodes to which a high-frequency voltage is applied are installed in a vacuum vessel, and a dilute process gas introduced into the vessel is decomposed and excited by glow discharge between the electrodes to form a plasma state. Gas molecules are selectively fixed and deposited on the surface of a substrate mounted on an electrode to form a thin film. The selectivity of gas molecules and the degree of fixation are governed by the substrate temperature.

従来のプラズマCVD装置用電極としては、例えば第7
図示のような平行平板型シャワー方式のものがある。真
空容器1の内に、基板ホルダ2と多数の細孔7を有する
ガス分散板3とからなるプラズマ発生電極が設けられ、
1対の平行平板型電極を構成している。薄膜が形成され
る基板4は基板ホルダ2に装着され、基板ホルダ2と対
向するガス分散板3にある基板ヒータ5によってガス分
散板3が加熱されることは勿論、基板4は基板ホルダ2
と共にプロセス条件温度まで加熱される。
As an electrode for a conventional plasma CVD apparatus, for example,
There is a parallel plate type shower system as shown in the figure. A plasma generating electrode comprising a substrate holder 2 and a gas dispersion plate 3 having a large number of pores 7 is provided in a vacuum vessel 1,
It constitutes a pair of parallel plate type electrodes. The substrate 4 on which the thin film is formed is mounted on the substrate holder 2, and the gas dispersion plate 3 is heated by the substrate heater 5 on the gas dispersion plate 3 facing the substrate holder 2, and the substrate 4 is
And is heated to the process condition temperature.

基板ホルダ2をアノード側電極,基板ヒータ5を有す
るガス分散板3をカソード側電極とする二極構成の電極
が形成されている。
An electrode having a two-pole configuration is formed in which the substrate holder 2 is an anode electrode and the gas dispersion plate 3 having the substrate heater 5 is a cathode electrode.

6はガス導入口6aを有するガス導入管、8は高周波絶
縁処理された真空シール、9は絶縁物、10は高周波シー
ルド、11は加熱用シース線、12は高周波電源である。
Reference numeral 6 denotes a gas inlet pipe having a gas inlet 6a, 8 denotes a vacuum seal subjected to high-frequency insulation treatment, 9 denotes an insulator, 10 denotes a high-frequency shield, 11 denotes a heating sheath wire, and 12 denotes a high-frequency power supply.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記従来例にあっては、基板ヒータ5によって基板4
の加熱を行った場合、輻射伝熱により基板ホルダ2が加
熱され、その接触伝熱により基板4がプロセス条件温度
まで加熱されるが、プロセス条件を左右する基板温度が
直接加熱でないため、プロセス条件の温度コントロール
が難しいばかりでなく、基板4がコールドウォールにな
るため、良好な薄膜を生成できず、かつコールドウォー
ルの存在のためプラズマによって励起されたガス分子が
温度の低いアノード側に固着する度合は弱いので、この
固着物はCVD操作中に剥離を生じ易く、剥離による塵埃
粒子が基板4上に生成する薄膜に表面欠陥を生じる主因
となるので、プラズマCVD装置の運転に際してはアノー
ド側固着物の除去を頻繁に行うことが現状では不可避の
条件とされ、これが従来のプラズマCVD装置の連続運転
を大きく阻害する要因となっている。
In the conventional example, the substrate heater 5
Is performed, the substrate holder 2 is heated by radiant heat transfer, and the substrate 4 is heated to the process condition temperature by the contact heat transfer. However, since the substrate temperature which affects the process condition is not directly heated, the process condition Not only is it difficult to control the temperature, but also because the substrate 4 serves as a cold wall, a good thin film cannot be formed, and the degree of gas molecules excited by plasma sticking to the lower temperature side of the anode due to the presence of the cold wall. Since the adhered substance is weak, the adhered substance is liable to peel during the CVD operation, and dust particles due to the peeling are the main causes of surface defects in a thin film formed on the substrate 4. Frequent removal of impurities is considered an inevitable condition at present, and this is a factor that greatly hinders the continuous operation of conventional plasma CVD equipment. You have me.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記の課題を解決するべく、基板ホルダ及び
ガス分散板にそれぞれセラミックスを溶射した熱放射用
部材を設けて輻射伝熱効率を高めることによりアノード
側,カソード側電極及び基板の温度差を最小限にしてプ
ロセス条件の温度を容易にコントロールし、また基板ヒ
ータを持たないアノード側電極又はカソード側電極に
も、固着物を強固に形成させ、操作中の固着物の剥離を
回避し塵埃粒子の発生を抑制すると共に実装置における
連続運転時間の延長を可能とし、良好な薄膜を形成し品
質向上を図ろうとするものである。
In order to solve the above-mentioned problems, the present invention minimizes the temperature difference between the anode side, the cathode side electrode and the substrate by providing a heat radiation member in which ceramics are sprayed on the substrate holder and the gas dispersion plate to increase the radiation heat transfer efficiency. The temperature of the process conditions can be easily controlled by minimizing the temperature, and the adhered substance can be formed firmly on the anode or cathode electrode without a substrate heater, avoiding the detachment of the adhered substance during operation and eliminating dust particles. It is intended to suppress the generation and extend the continuous operation time in the actual apparatus, to form a good thin film and improve the quality.

即ち、本発明の電極構造は、真空容器1内に設けられ
基板4が装着される基板ホルダ2と、これに対向配置し
たガス分散板3とよりなり、基板ホルダ2又はガス分散
板3に基板ヒータ5を設け、基板ホルダ2及びガス分散
板3にそれぞれセラミックスを溶射した熱放射用部材14
を設けてなる構成としたものである。
That is, the electrode structure of the present invention comprises a substrate holder 2 provided in a vacuum vessel 1 and on which a substrate 4 is mounted, and a gas distribution plate 3 disposed opposite to the substrate holder 2. Heat radiation member 14 provided with heater 5 and ceramics sprayed on substrate holder 2 and gas dispersion plate 3 respectively.
Is provided.

〔作 用〕(Operation)

本発明電極構造は上記のような構成であるから、基板
ヒータ5により基板ホルダ2及び基板ホルダのセラミッ
クスを溶射した熱放射用部材14上の基板4を直接加熱す
ると共に基板ホルダのセラミックスを溶射した熱放射用
部材14の加熱により放射する赤外線をガス分散板のセラ
ミックスを溶射した熱放射用部材14で熱吸収し、該セラ
ミックスを溶射した熱放射用部材14によりガス分散板3
を加熱するか又は基板ヒータ5によりガス分散板3及び
ガス分散板のセラミックスを溶射した熱放射用部材14を
加熱し、これより放射する赤外線を基板ホルダのセラミ
ックスを溶射した熱放射用部材14で熱吸収し、これより
放射する赤外線により基板ホルダ2及び基板4を直接加
熱することになり、基板4はプロセス条件まで加熱され
ることになる。
Since the electrode structure of the present invention is configured as described above, the substrate heater 5 directly heats the substrate 4 on the substrate holder 2 and the heat radiation member 14 on which the ceramic of the substrate holder has been sprayed, and sprays the ceramic of the substrate holder. The infrared radiation emitted by heating the heat radiation member 14 is absorbed by the heat radiation member 14 sprayed with ceramics of the gas dispersion plate, and the gas dispersion plate 3 is diffused by the heat radiation member 14 sprayed with the ceramic.
Or by heating the gas dispersion plate 3 and the heat radiation member 14 sprayed with the ceramic of the gas dispersion plate by the substrate heater 5, and radiating infrared rays from the heat by the heat radiation member 14 sprayed with the ceramic of the substrate holder. The substrate holder 2 and the substrate 4 are directly heated by infrared rays which absorb heat and radiate therefrom, and the substrate 4 is heated to the process conditions.

このように基板ヒータ5を有する電極(基板ホルダ2
又はガス分散板3)及び基板4が加熱されることは勿
論、基板ヒータ5を持たない電極(ガス分散板3又は基
板ホルダ2)及び基板4も加熱されることになるため輻
射伝熱効率を高めることができ、カソード側電極,基板
4,アノード側電極の温度差が少なくなり、プラズマ発生
と反応ガスにより基板4上に薄膜が強固に生成される
が、余分な反応ガスは上記従来電極構造と相違し、ホッ
トウォール化により基板ヒータ5を持たない電極にも固
着物(薄膜)が強固に付着し、剥離による塵埃粒子の発
生が抑制されることになり、運転中のアノード側電極ま
たはカソード側電極の固着物を頻繁に除去することが回
避されると共に均一な薄膜の形成が可能となり品質の向
上が図れる。
Thus, the electrode having the substrate heater 5 (the substrate holder 2)
Alternatively, not only the gas dispersion plate 3) and the substrate 4 are heated, but also the electrode (gas dispersion plate 3 or the substrate holder 2) without the substrate heater 5 and the substrate 4 are also heated, so that the radiation heat transfer efficiency is improved. Can be cathode side electrode, substrate
4. The temperature difference between the anode side electrode is reduced, and a thin film is firmly formed on the substrate 4 by the plasma generation and the reaction gas. The adhered substance (thin film) is firmly adhered to the electrode having no electrode 5, and the generation of dust particles due to peeling is suppressed, and the adhered substance of the anode electrode or the cathode electrode during operation is frequently removed. In addition, a uniform thin film can be formed and the quality can be improved.

〔実施例〕〔Example〕

以下図面により本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明電極構造の第1実施例を適用したプラ
ズマCVD装置の構成を示す断面図で、1は真空容器、2,3
はそれぞれこの真空容器1内に対向配設した基板ホルダ
及び多数の細孔7を有するガス分散板である。基板ホル
ダ2には基板4が装着され、基板ホルダ2の背面に基板
ヒータ5が取付けられており、ヒータ加熱用シース線11
は、真空容器1に貫通して支持され接地されている。
FIG. 1 is a cross-sectional view showing the configuration of a plasma CVD apparatus to which a first embodiment of the electrode structure of the present invention is applied.
Numeral denotes a gas dispersion plate having a substrate holder and a number of fine holes 7 disposed opposite to each other in the vacuum vessel 1. A substrate 4 is mounted on the substrate holder 2, and a substrate heater 5 is mounted on the back of the substrate holder 2.
Are supported through the vacuum vessel 1 and grounded.

基板ホルダ2及びガス分散板3にそれぞれ無孔のセラ
ミックスからなる熱放射用部材14及び該ガス分散板3の
細孔7と同一孔径の孔を有する同様の熱放射用部材14が
溶射により設けられており、基板ヒータ5を有する基板
ホルダ2はアノード側電極を,ガス分散板3はカソード
側電極を構成している。
A heat radiation member 14 made of non-porous ceramic and a similar heat radiation member 14 having the same hole diameter as the pores 7 of the gas dispersion plate 3 are provided on the substrate holder 2 and the gas dispersion plate 3 by thermal spraying, respectively. The substrate holder 2 having the substrate heater 5 constitutes an anode electrode, and the gas dispersion plate 3 constitutes a cathode electrode.

6はガス分散板3のガス導入管で、ガス導入口6aを有
する。10はガス分散板3の背面及びガス導入管6の周囲
に設けられた高周波シールド、8は高周波シールド10と
ガス導入管6との間に埋設され高周波絶縁処理された真
空シール、9はガス分散板3と高周波シールド10との間
に設けられた絶縁物、12はヒータ加熱用シース線11とガ
ス導入管6との間に接続された高周波電源である。
Reference numeral 6 denotes a gas introduction pipe of the gas dispersion plate 3, which has a gas introduction port 6a. 10 is a high-frequency shield provided on the back of the gas dispersion plate 3 and around the gas introduction pipe 6, 8 is a vacuum seal buried between the high-frequency shield 10 and the gas introduction pipe 6 and subjected to high-frequency insulation treatment, and 9 is a gas dispersion. An insulator 12 provided between the plate 3 and the high-frequency shield 10 is a high-frequency power supply connected between the heater heating sheath wire 11 and the gas introduction pipe 6.

第2図は第2実施例を適用したプラズマCVD装置の構
成を示す断面図で、この第2実施例は、基板ヒータ5を
有するガス分散板3及び基板ホルダ2に、それぞれ有孔
及び無孔の、セラミックスを溶射した熱放射用部材14が
設けられており、基板ホルダ2はアノード側電極を,基
板ヒータ5を有するガス分散板3はカソード側電極を構
成している。
FIG. 2 is a sectional view showing a configuration of a plasma CVD apparatus to which the second embodiment is applied. In the second embodiment, a gas dispersion plate 3 having a substrate heater 5 and a substrate holder 2 are provided with holes and holes, respectively. A heat radiation member 14 sprayed with ceramics is provided, the substrate holder 2 constitutes an anode electrode, and the gas dispersion plate 3 having the substrate heater 5 constitutes a cathode electrode.

基板ヒータ5により基板ホルダ2及び無孔の、セラミ
ックスを溶射した熱放射用部材14上の基板4を直接加熱
すると共に無孔の、セラミックスを溶射した熱放射用部
材14の加熱により放射する赤外線を有孔の、セラミック
スを溶射した熱放射用部材14で熱吸収し、該有孔の、セ
ラミックスを溶射した熱放射用部材14によりガス分散板
3を加熱するか又は基板ヒータ5によりガス分散板3及
び有孔の、セラミックスを溶射した熱放射用部材14を加
熱し、これより放射する赤外線を無孔の、セラミックス
を溶射した熱放射用部材14で熱吸収し、これより放射す
る赤外線により基板ホルダ2及び基板4を直接加熱する
ことになり、基板4はプロセス条件まで加熱されること
になる。
The substrate heater 5 directly heats the substrate holder 2 and the substrate 4 on the non-porous, ceramic-sprayed thermal radiation member 14 and also emits infrared radiation radiated by heating the non-porous, ceramic-sprayed thermal radiation member 14. The perforated, ceramic-sprayed heat radiation member 14 absorbs heat, and the perforated, ceramic-sprayed heat radiation member 14 heats the gas dispersion plate 3 or the substrate heater 5 heats the gas dispersion plate 3. And heats the perforated, ceramic-sprayed heat radiation member 14 and absorbs the infrared radiation radiated therefrom by the non-porous, ceramic-sprayed heat radiation member 14, and emits the substrate holder with the infrared radiation radiated from this. 2 and the substrate 4 will be directly heated, and the substrate 4 will be heated to process conditions.

このように基板ヒータ5を有する電極(基板ホルダ2
又はガス分散板3)及び基板4が加熱されることは勿
論、基板ヒータ5を持たない電極(ガス分散板3又は基
板ホルダ2)及び基板4も加熱されることになるため輻
射伝熱効率を高めることができ、カソード側電極,基板
4,アノード側電極の温度差が少なくなり、プラズマ発生
と反応ガスにより基板4上に薄膜が強固に生成される
が、余分な反応ガスは上記従来電極構造と相違し、ホッ
トウォール化により基板ヒータ5を持たない電極にも固
着物(薄膜)が強固に付着し、剥離による塵埃粒子の発
生が抑制されることになり、運転中のアノード側電極ま
たはカソード側電極の固着物を頻繁に除去することが回
避されると共に均一な薄膜の形成が可能となり品質の向
上が図れる。
Thus, the electrode having the substrate heater 5 (the substrate holder 2)
Alternatively, not only the gas dispersion plate 3) and the substrate 4 are heated, but also the electrode (gas dispersion plate 3 or the substrate holder 2) without the substrate heater 5 and the substrate 4 are also heated, so that the radiation heat transfer efficiency is improved. Can be cathode side electrode, substrate
4. The temperature difference between the anode side electrode is reduced, and a thin film is firmly formed on the substrate 4 by the plasma generation and the reaction gas. The adhered substance (thin film) is firmly adhered to the electrode having no electrode 5, and the generation of dust particles due to peeling is suppressed, and the adhered substance of the anode electrode or the cathode electrode during operation is frequently removed. In addition, a uniform thin film can be formed and the quality can be improved.

第3図は第3実施例を適用したプラズマCVD装置の構
成を示す断面図で、この第3実施例は、上記第1または
第2実施例において、基板ホルダ2の軸2aに軸封じ部32
を摺動自在に取付け、この軸封じ部32と真空容器1との
間を可撓性接手31で連結せしめてなる。
FIG. 3 is a sectional view showing a configuration of a plasma CVD apparatus to which the third embodiment is applied. This third embodiment is different from the first or second embodiment in that a shaft sealing portion 32 is attached to the shaft 2a of the substrate holder 2.
Is slidably mounted, and the shaft sealing portion 32 and the vacuum vessel 1 are connected by a flexible joint 31.

このような構成の第3実施例にあっては、基板ホルダ
2の回転,水平または垂直移動等が容易に行なえるの
で、カソード側電極とアノード側電極間の間隔の調整,
基板4の着脱が短時間で可能となり、従来電極構造に比
べて操作性を改善することができる。
In the third embodiment having such a configuration, since the rotation, horizontal or vertical movement, etc. of the substrate holder 2 can be easily performed, the distance between the cathode side electrode and the anode side electrode can be adjusted,
The substrate 4 can be attached and detached in a short time, and operability can be improved as compared with the conventional electrode structure.

第4図は第4実施例を適用したプラズマCVD装置の構
成を示す断面図で、この第4実施例は、第1,第2または
第3実施例において、真空容器1内に基板ホルダ2,基板
ヒータ5及びガス分散板3の直角方向に加熱板41を収設
し、加熱板41の軸41aと基板ホルダ2の軸2aとを接続せ
しめ、加熱板41にセラミックスを溶射した熱放射用部材
14を設けてなる。
FIG. 4 is a sectional view showing the configuration of a plasma CVD apparatus to which the fourth embodiment is applied. This fourth embodiment is different from the first, second or third embodiment in that the substrate holder A heating plate 41 is provided in a direction perpendicular to the substrate heater 5 and the gas dispersion plate 3, and a shaft 41a of the heating plate 41 and a shaft 2a of the substrate holder 2 are connected to each other.
14 is provided.

カソード側電極,アノード側電極を直立配置した場
合、電極上方の真空容器器壁に温度の低い部分が存在
し、そこからの固着物の剥離による塵埃粒子の落下が膜
面欠陥発生の原因となるが、第4実施例では電極上方に
も図示のような加熱板41を設け、これにもセラミックス
を溶射した熱放射用部材14を設けたので、電極上方の真
空容器器壁にホットウォールが形成されることになり、
器壁からの塵埃粒子の直接の落下を防止し膜面欠陥発生
の効果を更に強化することができる。
When the cathode side electrode and the anode side electrode are arranged upright, there is a low temperature part on the vacuum vessel wall above the electrode, and the fall of dust particles due to the detachment of the adhered substance from the part causes the film surface defect. However, in the fourth embodiment, a heating plate 41 as shown is also provided above the electrodes, and a heat-radiating member 14 sprayed with ceramic is also provided thereon, so that a hot wall is formed on the vacuum vessel wall above the electrodes. Will be
It is possible to prevent dust particles from directly falling from the container wall, and to further enhance the effect of generating a film surface defect.

第5図は第5実施例を適用したプラズマCVD装置の構
成を示す断面図で、この第5実施例は、真空容器1内に
基板ヒータ5を有するガス分散板3を2枚,対向収設
し、その間に基板ホルダ2を配置せしめ、2組のガス分
散板3,3及び基板ホルダ2の両面に、それぞれ有孔及び
無孔の、セラミックスを溶射した熱放射用部材14を設け
てなる。
FIG. 5 is a cross-sectional view showing the configuration of a plasma CVD apparatus to which the fifth embodiment is applied. In the fifth embodiment, two gas dispersion plates 3 each having a substrate heater 5 are installed in a vacuum vessel 1 in opposition. Then, the substrate holder 2 is disposed therebetween, and two sets of gas dispersion plates 3 and 3 and the substrate holder 2 are provided with perforated and non-perforated ceramic radiation-spreading members 14 on both surfaces thereof.

この第5実施例にあっては、基板ホルダ2及び基板4
は両側のカソード側電極に設けた有孔の、セラミックス
を溶射した熱放射用部材14からの赤外線により直接加熱
されるので、片側加熱の場合に比べて加熱効率を大幅に
改善することができ、更に基板装着枚数を2倍とするこ
とができるので、装置効率の大幅改善が可能である。
In the fifth embodiment, the substrate holder 2 and the substrate 4
Is heated directly by the infrared rays from the ceramic-sprayed heat-radiating member 14, which is a perforated hole provided in the cathode electrodes on both sides, so that the heating efficiency can be greatly improved compared to the case of single-side heating. Further, since the number of mounted substrates can be doubled, the efficiency of the apparatus can be greatly improved.

第6図は第6実施例を適用したプラズマCVD装置の構
成を示す断面図で、この第6実施例は、第5実施例にお
いて基板ホルダ2にホルダ移送機構61を設けてなる。
FIG. 6 is a sectional view showing a configuration of a plasma CVD apparatus to which the sixth embodiment is applied. In the sixth embodiment, a holder transfer mechanism 61 is provided on the substrate holder 2 in the fifth embodiment.

この第6実施例によれば、第5実施例と同様の作用効
果を奏する以外に、アノード側電極を共通の単板型基板
ホルダ(両面装着)2とし、下部にホルダ移送機構61
(接地機構を含む)を設けたので基板ホルダ2の送入送
出を容易に行うことができ、基板の着脱の操作軸を改善
することが可能である。
According to the sixth embodiment, besides having the same operation and effect as the fifth embodiment, the anode-side electrode is a common single-plate type substrate holder (both sides mounted) 2 and the holder transfer mechanism 61 is provided below.
Since a grounding mechanism (including a grounding mechanism) is provided, the substrate holder 2 can be easily fed in and out, and the operation axis for attaching and detaching the substrate can be improved.

本発明を実施することにより、プラズマCVD装置の操
作時における基板周辺部分,カソード側またはアノード
側電極面からの固着物の剥離による塵埃粒子発生の抑制
効果は実験により明らかであった。実装置の連続運転時
間の延長が可能になること、また第2図に示す第2実施
例ではアノード側(接地側)電極が極めて単純化される
ので装置の操作性向上が可能となることなどにより装置
のスループットの改善効果は極めて大きい。
By executing the present invention, the effect of suppressing the generation of dust particles due to the peeling of the adhered matter from the peripheral portion of the substrate, the cathode side or the anode side electrode surface during the operation of the plasma CVD apparatus was apparent from the experiment. The continuous operation time of the actual device can be extended, and in the second embodiment shown in FIG. 2, the anode side (ground side) electrode is extremely simplified, so that the operability of the device can be improved. Accordingly, the effect of improving the throughput of the apparatus is extremely large.

〔発明の効果〕〔The invention's effect〕

上述の説明より明らかなように本発明によれば、基板
ヒータ5を有する電極(基板ホルダ2又はガス分散板
3)及び基板4が基板ヒータ5により加熱されることは
勿論、基板ヒータ5を持たない電極(ガス分散板3又は
基板ホルダ2)及び基板4も、基板ヒータ5により熱さ
れて、基板ヒータ5を有する電極側のセラミックスを溶
射した熱放射用部材14より放射する赤外線を、基板ヒー
タ5を持たない電極側のセラミックスを溶射した熱放射
用部材14に熱吸収し、これより放射する赤外線で加熱さ
れるので、輻射伝熱効率を高めることができ、カソード
側電極,アノード側電極,基板4の温度差を少なくで
き、プラズマ発生と反応ガスにより基板4上に薄膜を強
固に生成するが、余分な反応ガスはホットウォール化に
より基板ヒータ5を持たない電極にも固着物(薄膜)を
強固に付着できるため、剥離による塵埃粒子の発生を抑
制でき、運転中のアノード側電極またはカソード側電極
の固着物を頻繁に除去することを回避できると共に、均
一な膜質の形成ができ、品質の向上を図ることができ
る。また、基板4を両電極に設けられたセラミックスを
溶射した熱放射用部材14により直接加熱できるため、プ
ロセス条件の温度コントロールが容易になり、また基板
4部分がホットウォールになるため、良好な薄膜を生成
できるばかりでなく、プラズマCVD装置の連続運転時間
の延長を図ることができる等の効果を奏する。
As is clear from the above description, according to the present invention, not only the electrode (substrate holder 2 or gas dispersion plate 3) having the substrate heater 5 and the substrate 4 are heated by the substrate heater 5, but also the substrate heater 5 is provided. The non-electrodes (gas dispersion plate 3 or substrate holder 2) and the substrate 4 are also heated by the substrate heater 5, and the infrared radiation radiated from the thermal radiation member 14 sprayed with the ceramics on the electrode side having the substrate heater 5 is also applied to the substrate heater. The ceramics on the electrode side having no electrode 5 are thermally absorbed by the thermally radiating member 14 and heated by infrared rays radiated therefrom, so that the radiation heat transfer efficiency can be increased, and the cathode side electrode, anode side electrode, substrate 4 can reduce the temperature difference, and a thin film is firmly formed on the substrate 4 by the plasma generation and the reaction gas, but the excess reaction gas does not have the substrate heater 5 due to hot wall formation. The adhered substance (thin film) can be firmly adhered to the non-conductive electrode, so that the generation of dust particles due to peeling can be suppressed, and it is possible to avoid frequently removing the adhered substance of the anode electrode or the cathode electrode during operation. Uniform film quality can be formed, and quality can be improved. Further, since the substrate 4 can be directly heated by the heat-radiating member 14 sprayed with ceramics provided on both electrodes, the temperature control of the process conditions becomes easy. Not only can be generated, but also the effect that the continuous operation time of the plasma CVD apparatus can be extended can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電極構造の第1実施例を適用したプラズ
マCVD装置の構成を示す断面図、第2図は第2実施例を
適用したプラズマCVD装置の構成を示す断面図、第3図
は第3実施例を適用したプラズマCVD装置の構成を示す
断面図、第4図は第4実施例を適用したプラズマCVD装
置の構成を示す断面図、第5図は第5実施例を適用した
プラズマCVD装置の構成を示す断面図、第6図は第6実
施例を適用したプラズマCVD装置の構成を示す断面図、
第7図は従来の電極構造の一例を適用したプラズマCVD
装置の構成を示す断面図である。 1……真空容器、2……基板ホルダ、2a……軸、3……
ガス分散板、4……基板、5……基板ヒータ、14……セ
ラミックスを溶射した熱放射用部材、31……可撓性接
手、32……軸封じ部、41……加熱板、41a……軸、61…
…ホルダ移送機構。
FIG. 1 is a sectional view showing the structure of a plasma CVD apparatus to which the first embodiment of the electrode structure of the present invention is applied, FIG. 2 is a sectional view showing the structure of a plasma CVD apparatus to which the second embodiment is applied, and FIG. Is a sectional view showing a configuration of a plasma CVD apparatus to which the third embodiment is applied, FIG. 4 is a cross-sectional view showing a configuration of a plasma CVD apparatus to which the fourth embodiment is applied, and FIG. 5 is a section to which the fifth embodiment is applied. FIG. 6 is a cross-sectional view illustrating a configuration of a plasma CVD apparatus, FIG. 6 is a cross-sectional view illustrating a configuration of a plasma CVD apparatus to which the sixth embodiment is applied,
FIG. 7 shows a plasma CVD using an example of a conventional electrode structure.
It is sectional drawing which shows the structure of an apparatus. 1 ... vacuum container, 2 ... substrate holder, 2a ... shaft, 3 ...
Gas dispersion plate, 4 ... substrate, 5 ... substrate heater, 14 ... heat radiation member sprayed with ceramic, 31 ... flexible joint, 32 ... shaft sealing part, 41 ... heating plate, 41a ... … Axis, 61…
... holder transfer mechanism.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 大也 東京都西多摩郡羽村町神明台2―1―1 国際電気株式会社羽村工場内 (72)発明者 村松 文雄 東京都西多摩郡羽村町神明台2―1―1 国際電気株式会社羽村工場内 (56)参考文献 特開 昭62−299014(JP,A) 特開 昭62−218577(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Daiya Aoki 2-1-1 Shinmeidai, Hamura-cho, Nishitama-gun, Tokyo Inside the Hamura Plant of Kokusai Electric Co., Ltd. (72) Fumio Muramatsu 2- Shinmeidai, Hamura-cho, Nishitama-gun, Tokyo 1-1 Inside the Hamura Plant of Kokusai Electric Inc. (56) References JP-A-62-299014 (JP, A) JP-A-62-218577 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空容器(1)内に設けられ基板(4)が
装着された基板ホルダ(2)と、これに対向配置したガ
ス分散板(3)とよりなり、基板ホルダ(2)又はガス
分散板(3)に基板ヒータ(5)を設け、基板ホルダ
(2)及びガス分散板(3)にそれぞれセラミックスを
溶射した熱放射用部材(14)を設けてなるプラズマCVD
装置用電極構造。
1. A substrate holder (2) provided in a vacuum vessel (1) and having a substrate (4) mounted thereon, and a gas dispersion plate (3) disposed opposite to the substrate holder (2). Plasma CVD comprising a substrate heater (5) provided on a gas dispersion plate (3), and a thermal radiation member (14) obtained by spraying ceramics on a substrate holder (2) and a gas dispersion plate (3).
Electrode structure for device.
【請求項2】基板ホルダ(2)の軸(2a)に軸封じ部
(32)を摺動自在に取付け、この軸封じ部(32)と真空
容器(1)との間を可撓性接手(31)で連結せしめてな
る請求項第1項に記載のプラズマCVD装置用電極構造。
2. A shaft seal (32) is slidably mounted on a shaft (2a) of a substrate holder (2), and a flexible joint is provided between the shaft seal (32) and the vacuum vessel (1). 2. The electrode structure for a plasma CVD apparatus according to claim 1, wherein the electrode structure is connected by (31).
【請求項3】真空容器(1)内に基板ホルダ(2)及び
ガス分散板(3)の直角方向に加熱板(41)を収設し、
加熱板(41)の軸(41a)と基板ホルダ(2)の軸(2
a)とを接続せしめ、加熱板(41)にセラミックスを溶
射した熱放射用部材(14)を設けてなる請求項第1項,
第2項のいずれかに記載のプラズマCVD装置用電極構
造。
3. A heating plate (41) is provided in a vacuum vessel (1) in a direction perpendicular to the substrate holder (2) and the gas dispersion plate (3).
The shaft (41a) of the heating plate (41) and the shaft (2) of the substrate holder (2)
a) a heat radiation member (14) sprayed with ceramics is provided on the heating plate (41).
3. The electrode structure for a plasma CVD apparatus according to claim 2.
【請求項4】真空容器(1)内に基板ヒータ(5)を有
するガス分散板(3)を2枚,対向収設し、その間に基
板ホルダ(2)を配置せしめ、2組のガス分散板(3,
3)及び基板ホルダ(2)の両面にそれぞれセラミック
スを溶射した熱放射用部材(14)を設けてなるプラズマ
CVD装置用電極構造。
4. A vacuum vessel (1) comprising two gas dispersion plates (3) having substrate heaters (5) opposed to each other, and a substrate holder (2) arranged therebetween, and two sets of gas dispersion plates. Board (3,
3) Plasma that has thermal radiation members (14) with ceramics sprayed on both sides of the substrate holder (2)
Electrode structure for CVD equipment.
【請求項5】基板ホルダ(2)にホルダ移送機構(61)
を設けてなる請求項第4項記載のプラズマCVD装置用電
極構造。
5. A holder transfer mechanism (61) for a substrate holder (2).
The electrode structure for a plasma CVD apparatus according to claim 4, further comprising:
JP1199933A 1989-07-31 1989-07-31 Electrode structure for plasma CVD equipment Expired - Fee Related JP2701242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199933A JP2701242B2 (en) 1989-07-31 1989-07-31 Electrode structure for plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199933A JP2701242B2 (en) 1989-07-31 1989-07-31 Electrode structure for plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH0362923A JPH0362923A (en) 1991-03-19
JP2701242B2 true JP2701242B2 (en) 1998-01-21

Family

ID=16416009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199933A Expired - Fee Related JP2701242B2 (en) 1989-07-31 1989-07-31 Electrode structure for plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP2701242B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532401Y2 (en) * 1991-04-16 1997-04-16 ソニー株式会社 Bias ECR plasma CVD equipment
JP2007279440A (en) * 2006-04-07 2007-10-25 Toshiba Corp Halftone phase shift mask and its manufacturing method
CN104772306A (en) * 2015-04-20 2015-07-15 大连理工大学 Method for cleaning first mirror for tokamak device by direct-current cascade arc plasma torch
CN104772305B (en) * 2015-04-20 2017-12-26 大连理工大学 Direct current cascade arcs plasma torch cleans the device of the mirror of tokamak first

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218577A (en) * 1986-03-19 1987-09-25 Hitachi Electronics Eng Co Ltd Electrode for vapor phase reactor
JPS62299014A (en) * 1986-06-18 1987-12-26 Fujitsu Ltd Manufacture of semiconductor film and mask for plasma assisted cvd

Also Published As

Publication number Publication date
JPH0362923A (en) 1991-03-19

Similar Documents

Publication Publication Date Title
EP0763149B1 (en) Method and apparatus for low temperature deposition of cvd and pecvd films
TWI355674B (en) Showerhead assembly and apparatus for manufacturin
US5626678A (en) Non-conductive alignment member for uniform plasma processing of substrates
TWI407530B (en) Electrostatic chuck and apparatus for treating substrate including the same
JP2009239300A (en) Anodized substrate support
JP2005051200A5 (en)
JPH0387372A (en) Formation of deposited film
JPH1030185A (en) Plasma treating device
JP2004285479A (en) Stacked showerhead assembly for delivering gas and rf (radio frequency) power to reaction chamber
KR20040028989A (en) Showerhead electrode design for semiconductor processing reactor
JP3990867B2 (en) Deposited film forming apparatus and deposited film forming method
JP2001523038A (en) Annealing method of amorphous film using microwave energy
JP2701242B2 (en) Electrode structure for plasma CVD equipment
CN100479111C (en) Plasma processing apparatus
JPH0663098B2 (en) Plasma CVD equipment
JP3267306B2 (en) Method for manufacturing semiconductor device
JP4890313B2 (en) Plasma CVD equipment
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH0411628B2 (en)
JPS6086277A (en) Formation of deposited film by discharge
JP2621197B2 (en) Barrel type vapor phase growth equipment
TW202342806A (en) Showerhead assembly with heated showerhead
JP2582012Y2 (en) Wafer heater
JPH05291148A (en) Heating device and method of semiconductor substrate
JP2000054141A (en) Substrate placing stand in vapor growth device and vapor growth device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees