JP4386521B2 - High density semiconductor adhesive - Google Patents

High density semiconductor adhesive Download PDF

Info

Publication number
JP4386521B2
JP4386521B2 JP2000008421A JP2000008421A JP4386521B2 JP 4386521 B2 JP4386521 B2 JP 4386521B2 JP 2000008421 A JP2000008421 A JP 2000008421A JP 2000008421 A JP2000008421 A JP 2000008421A JP 4386521 B2 JP4386521 B2 JP 4386521B2
Authority
JP
Japan
Prior art keywords
adhesive
silica
spherical fine
semiconductor device
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000008421A
Other languages
Japanese (ja)
Other versions
JP2000299326A (en
Inventor
茂 越部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIIMA ELECTRONICS INC.
Toagosei Co Ltd
Original Assignee
SHIIMA ELECTRONICS INC.
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIIMA ELECTRONICS INC., Toagosei Co Ltd filed Critical SHIIMA ELECTRONICS INC.
Priority to JP2000008421A priority Critical patent/JP4386521B2/en
Publication of JP2000299326A publication Critical patent/JP2000299326A/en
Application granted granted Critical
Publication of JP4386521B2 publication Critical patent/JP4386521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive for use in manufacturing a reliable, high- density semiconductor device at a low cost, which has superior adhesive property, storability, stability and workability and can relax thermal stresses generated in the semiconductor device at assembling and using of the semiconductor device. SOLUTION: A flexible, tough adhesive 26 for semiconductor contains spherical fine silica particles, having hydroxyl groups on their surfaces and containing and ultrrafine silica particles in optimum quantity and ratio. The adhesive contains two types of silica, having optimum particle diameters and playing different roles as solid state, adhering and viscous adjusting components in suitable quantities. The two types of silica are of spherical fine particles, having hydroxyl groups on their surfaces and having a mean particle diameter of 2-8 μm and of ultrafine particles having a means particle diameter of 2-80 μm. The two types of silica has a total content of 5-70 weight %, and the content of the spherical fine particle silica is larger than that of the ultrafine particle silica.

Description

【0001】
【発明が属する技術分野】
本発明は、高密度半導体用の接着剤に関するものである。ここでいう接着剤とは、半導体装置を組み立てるに際し、半導体チップ、放熱板、回路基板等を取り付けるため異種素材を接着するとともに衝撃緩衝の役目をするものである。
【0002】
【従来の技術】
情報及び通信分野に於ける技術の急速な進歩に呼応して、電子機器の性能向上、小型化、軽量化及び低コスト化が強く求められている。これらの要望を満たすため、電子機器の心臓部である半導体装置の高密度化が必須のものとなっている。半導体装置の高密度化は、例えば、半導体ベアチップを基板に直接取り付けるフリップチップ・ボンディング加工法、更には、電極を面状に配置したBGA(ボール・グリッド・アレイ)加工法やCSP(チップ・サイズ・パッケージ)加工法等の技術によりその実現が図られている。
【0003】
半導体装置の高密度化に当たって、接着剤を使用して半導体チップ、放熱板、回路基板等を取り付ける技術が進歩している。この技術は、異種素材同士を接着するとともに半導体装置の熱応力による衝撃を緩和する役目もするものである。半導体装置を接着剤を用いて組み立てるに際しては、半導体を精密に基板等に接着させる必要がある。このため接着剤には品質の均一性及び安定性が求められる。従来の接着剤は液状接着成分を主に構成されているので、部分的に組成変動を生じ高精度接着用途には不向きであった。接着力がバラツク、不均一に滲み出すといった問題を生じていた。また、半導体装置の組立に当たっては、異種素材を接着しなければならず、従来の接着剤では接着力が不足するという問題がある。
【0004】
半導体装置には組立時及び使用時に熱がかかり、これが半導体に熱応力を生じさせ、この応力を緩和しなければならないという問題がある。熱がかかった場合、半導体チップ自身の熱膨張は小さく、接着剤の熱膨張が大きいので、接着剤は膨張しようとし、半導体がその膨張を抑えようとするので応力が発生し、それが半導体装置の故障原因になり、最悪の場合半導体装置自身の破壊の原因にもなる。
【0005】
従来の接着剤は、熱膨張を小さくするために充填剤としてシリカが使用されるが、多量に添加すると柔軟性や強度の低下を招く。また、粒径の大きな異方性充填剤は、局部応力を発生するという問題がある。さらに、接着補強剤として超微粒子異方性シリカを用いることも知られているが、添加により粘度が上昇し流動性を失って加工性が悪くなるという問題がある。このため、液状の接着成分を添加する方法が採用されているが、滲み出しや接着力の不均一性という問題を抱えている。
【0006】
【発明が解決しようとする課題】
本発明は、高密度化する半導体装置を、低コストで組立可能とする半導体用接着剤を提供するものである。この接着剤は、寸法精度、保存性及び接着力に優れ、かつ、半導体装置の組立時及び使用時にかかる熱によって半導体装置に生じる熱応力を緩和することのできるものである。即ち、表面に水酸基を有する球状細粒シリカ、及び超微粒シリカを、固形接着成分及び粘性調整成分として適切な量及び比率で使用することにより柔軟性・均一性・安定性及び加工性に優れる高強度の接着剤を提供しようとするものである。
【0007】
【課題を解決するための手段】
請求項1の発明は、表面に水酸基を有する平均粒径2〜8μmの球状細粒シリカ、及び平均粒径が2〜80nmの超微粒シリカを含有する半導体用接着剤である。請求項2の発明は、球状細粒シリカ及び微粒シリカの合計含有率が、5〜70重量%であることを特徴とする請求項1に記載の半導体用接着剤である。請求項3の発明は球状細粒シリカの含有量が超微粒シリカの含有量より多いことを特徴とする請求項1又は請求項2に記載の半導体用接着剤である。
【0008】
請求項4は球状細粒シリカが、その粒径分布がCV値で60%以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の半導体用接着剤である。請求項5は球状細粒シリカの水酸基の量が、該シリカに対し0.01〜1.0mmol/gであることを特徴とする請求項1から請求項4のいずれか1項に記載の半導体用接着剤である。
【0009】
請求項6の発明は、ベースとなる接着剤が柔軟性接着剤、シリコーン系・柔軟エポキシ系・エラストマー系の柔軟性接着剤より選択される少なくとも1種であることを特徴とする請求項1から請求項5のいずれか1項に記載の半導体用接着剤である。
【0010】
本発明は、表面に水酸基を有する球状細粒シリカ、及び超微粒シリカを最適な量・比率で含有する柔軟で強靭な半導体用接着剤を提供するものである。最適な粒径を有する役割の異なる2種のシリカを固形接着成分及び粘性調整成分として適量含有する接着剤は、柔軟性・保存性・加工性・接着性に優れたものである。そして、本発明の接着剤を用いて組み立てた半導体装置は、熱応力の緩和に優れ、高密度化が可能で、信頼性が高く、製造コストも低いものである。
【0011】
本発明は、表面に水酸基を有する球状細粒シリカを使用する。水酸基はベース樹脂と物理的・化学的結合を形成し強度や信頼性面で効果を発揮する。従来の球状細粒シリカは水酸基をほとんど持たないため、樹脂の滲み出し、強度及び信頼性の低下といった問題を生じる。
【0012】
超微粒シリカは、特に表面に水酸基等の官能基を有する必要はない。表面積即ちベース接着剤との接触面積が大きいため、相溶性や反応性の官能基がなくても強度低下といった問題を生じない。但し、市販品は表面に水酸基又はアルコキシ基を有するものがほとんどであり、ベース樹脂との馴染みは良い。
【0013】
本発明は複数種のシリカを使用する。接着剤に無機系粒子を添加した場合、一般に、接着剤の粘度が高くなり接着加工性が極端に悪くなる。この点、球状の粒子を使用すると、粘度の上昇を抑え充填性を高めることができ、超微粒子を使用することにより接着剤のチキソ性を高め滲み出しを防止することができる。即ち、球状細粒シリカと超微粒シリカをバランスよく添加することが重要である。また、シリカの含有量が多すぎると、接着剤の粘度上昇により加工性が低下する等の問題がある。よって、球状細粒シリカ及び微粒シリカの含有量は5〜70重量%が好ましく、球状細粒シリカの含有量が超微粒シリカの含有量より多いことが好ましい。さらに、他のシリカ又は及び他種の充填剤を接着剤特性に悪影響を与えない範囲で使用しても良い。
【0014】
シリカの粒径が大きいと、接着剤の加工性が損なわれ、また、局部的に応力が集中するという問題がある。このような観点から、球状細粒シリカとしては平均粒径は2〜8μm、CV値が60%以下が好ましい。ここでCV値というのは、下記式から求められるものである。
CV値(%)=(D1−D2)÷2Dp×100
上式中D2は累計16重量%のときの粒径、D1は累計84重量%のときの粒径、Dpは平均粒径、即ち、累計50重量%のときの粒径を表す。
【0015】
更に、本発明に使用する球状細粒シリカは、その表面に有する水酸基の量が該球状シリカに対し0.01〜1.0mmol/gであることが好ましい。水酸基の量が多過ぎると、チキソ性が増し加工性を低下させたり、空気中の水分を吸着し半導体装置の信頼性を低下させるという問題を生じる。ちなみに、水酸基の最少被覆面積を1770平方メートル/g及び球状シリカ(平均粒径5μm)の理論比表面積を0.5平方メートル/gとすると、球状シリカの表面を全て水酸基で被覆するのに必要な量は1.6mmol/gとなる。
【0016】
水酸基量の下限値は、水酸基の測定精度及び従来の球状シリカの測定値より定めた。水酸基が少ない場合には含有量が極めて小さくなり測定精度の問題が大きくなるためである。ちなみに、シリカ粒子に水酸基が1000個存在する場合、平均粒径が2μmでは水酸基量は1.7×10E−6mmol/gになる。又、2000℃程度で熔射した理論上は水酸基をほとんど有しないとされている従来の球状シリカの水酸基量を測定した結果は、現在の測定精度である0.01mmol/gより小さい数値(検出限界以下)を示した。
【0017】
本発明に使用する接着剤は通常の接着剤を使用することができるが、応力の緩和に有効に作用することから柔軟性接着剤を使用するのが好ましい。具体的には、シリコーン系接着剤・エポキシ系柔軟接着剤・エラストマー系接着剤から選択される少なくとも1種の接着剤が好ましい。そして、各柔軟性接着剤は、エポキシ基・カルビノール基・水酸基・アミノ基・アルコキシ基・ビニル基等の接着性官能基のうち少なくとも1種を骨格に持つことが好ましい。
【0018】
シリコーン系接着剤としては、ビニル基含有型ポリシロキサンを好ましく使用することができる。該ポリシロキサンは各種添加剤を加えることができ、硬化剤や触媒類の存在下硬化しゴム弾性を有するシリコーンゴムとなる。このゴム弾性により半導体装置の組立時又は使用時に発生する熱応力を緩和することができる。硬化剤や触媒類はシリコーンメーカーのカタログ等に記載の通りである。
【0019】
エポキシ樹脂は一般的に硬化後は柔軟性を持たない硬質なものが多い。本発明では柔軟性を有するエポキシ樹脂及び硬化剤を使用するのが好ましく、具体的には炭化水素変性・エラストマー変性・ゴム変性・シリコーン変性等の変性樹脂を用いる。これらの樹脂に、各種添加剤を加えた硬化物は弾性を持ち応力を緩和することができる。
【0020】
次に、エラストマー系接着剤としては、スチレン系・オレフィン系・ポリエステル系・ポリアミド系・ウレタン系等のものである。ビニル基・エポキシ基・水酸基・アルコキシ基・アクリル基・イソシアネート基等の反応性官能基を有するものが使用される。
【0021】
本発明の接着剤には悪影響を与えない範囲で他の接着成分を添加しても良い。エポキシ基・水酸基・アミノ基・アルコキシ基等の官能基を有する化合物が使用できる。
【0022】
従来の接着剤は、液状接着成分や超微粒シリカを多量に用いるため、接着精度が悪い、加工性が悪い、接着力がバラツク、不均一に滲み出す、歩留まりが悪いといった問題を有している。
【0023】
本発明の接着剤は、ペースト状又は固形状で使用でき、テープ状等に加工することもできる。テープ状にした場合も、安定した高い接着力を保持することができる。
【0024】
本発明の接着剤は、接着すべき素材間に該接着剤をつけて硬化させるものである。即ち、接着剤本体が未硬化の状態で、半導体チップ等を貼付硬化させ半導体装置を組立てるものである。その際、表面に水酸基を有する球状細粒シリカと超微粒シリカを固形接着成分及び粘性調整成分として用いることにより、接着効果を一層大きく安定なものにすることができる。
【0025】
本発明者は、既に表面に水酸基を有する球状セラミックの効果を特願平10−330463にて発表している。本発明は、さらに大きさの異なる複数のシリカを併用することにより、抜群に優れた効果があることを見い出したものである。
【0026】
図1は、BGAに本発明の接着剤を適用したものである。半導体チップ25は、接着剤26を介して基板28に取り付けられている。29は半田ボールである。半導体チップ25が接着剤26を介して基板28に取り付けられており、これら全体がフレーム30で囲まれている。外部へは配線27により接続されている。接着剤26は、半導体チップ25を基板28に接着させるとともに、半導体装置に加わる熱応力を緩和する機能をもつ。
【0027】
図2は、ワイヤーボンディング方式への適用例である。半導体チップ47は、接着剤43を介して基板44に取り付けられている。42は半田ボールであり、46は封止材料である。外部へは配線45で接続されている。接着剤43は、半導体チップ47を基板44に接着させるとともに、半導体装置にかかる熱応力を緩和する機能をもつ。
【0028】
以下、本発明を検討例にて具体的に説明する。ここで、部は全て重量部である。
【実施例1】
表面に水酸基を有する(高活性と称する)球状細粒シリカA45部、超微粒シリカ(DM−10、トクヤマ)5部、シクロペンタジエン変性エポキシ樹脂(XD−1000、日本化薬)80部、キシレン変性フェノール樹脂(XL−225、三井化学)20部及び触媒(TPP−K、北興化学工業)1部を混合し3本ロールにて5分間混練し接着剤を製造した。この接着剤を模擬BGAにおいて、FPC(フレキシブル・プリント・サーキット)上に厚み150μmでスクリーン印刷し、半導体チップを装着した。その後180℃で5分間加熱した。この接着層の厚み精度は±10μm以下で、樹脂の滲み出しもなく基板との実装は全く問題なかった。又、この模擬BGAの吸湿半田テストを行ったところ、クラックやポップコーン等の不良発生は認められなかった。更に、耐湿性テストを実施したところ回路の電流漏れや断線等の不良は発生しなかった。
【0029】
本実施例で使用した球状細粒シリカAは特開平10−287415に準じて製造(焼成温度950℃)したもので、平均粒径は3.8μm、CV値56%、水酸基含有量0.2mmol/gである。又、超微粒シリカDM−10は、平均粒径10nmのメトキシ変性品である。
【0030】
試験方法は、以下の通りである。
吸湿半田テスト:温度125℃・湿度100%の条件下にて24時間放置した後、赤外線炉で260℃・10秒で3回加熱する。
耐湿性テスト :半田吸湿テストを施したものを、温度125℃・湿度100%で1000時間放置する。
【0031】
水酸基量の測定 :検体にシリカゲルを内部標準物質として添加し、FT−IR拡散反射法により3740cm−1の吸収を測定し水酸基量を算出する。尚、検体とトリメチルシランを反応させ、シランの消費量より水酸基量を算出する方法では測定精度は0.1mmol/gであった。今後、高精度の測定方法を検討することにより、水酸基量の最適範囲はより明確になると考えれる。
【0032】
【実施例2】
ビニル基含有型ポリシロキサン(TSE260−3U、東芝シリコーン)95部、テルペン系重合体(YS−125、ヤスハラケミカル)5部、高活性球状細粒シリカB24部及び超微粒シリカ(#200、日本アエロジル)1部、触媒(TC−8、東芝シリコーン)0.5部を使用し実施例1同様に接着剤を製造した。印刷では優れた加工性を示し滲み出し等の問題もなかった。又、実施例1同様に吸湿半田テスト及び耐湿性テストを実施したところ不良は発生しなかった。
【0033】
高活性球状細粒シリカBは、珪酸ナトリウムの水溶液を乳化させ酸添加により球状化し、これを濾過乾燥した後、700℃で焼成したものである。平均粒径は6.2μm、CV値は27%、水酸基量は0.8mmol/gであった。又、超微粒シリカは平均粒径が15nmで水酸基を有するものである。
【0034】
【実施例3】
高活性球状細粒シリカC185部及び超微粒シリカ(L−90、CABOT)15部、熱可塑系エラストマー(D−1117、シェルジャパン)95部及び液状合成ゴム(B−1000、日本曹達)5部、ベンゾイルパーオキサイド0.5部を2本ロールにて5分間混練し、固形接着剤を得た。次にFPC上に加熱圧縮成形により150μmの接着剤層を加工した後、吸湿半田テスト及び耐湿テストを実施した。厚み精度は良く、模擬BGAのテストでも不良発生はなかった。
【0035】
高活性球状細粒シリカCは市販品(TSS−4、龍森)をフツ酸で洗い表面に水酸基を生成させたものである。平均粒径は2.8μm、CV値32%、水酸基量0.15mmol/gであった。超微粒シリカは平均粒径8nmで水酸基を有するものである。
【0036】
【実施例4】
高活性球状細粒シリカA47部、超微粒シリカ(MIBK−ST、日産化学工業)10部、シリコーン変性エポキシ樹脂(SIN−620、大日本インキ化学工業)90部及びポリブタジエングリコール(G−1000、日本曹達)10部を、真空加熱ニーダ中で混合加熱し超微粒シリカを分散させていた溶媒を除去した。その後、当該混合物に触媒(TPP−K、北興化学工業)1部を混合し3本ロールにて5分間混練し接着剤を製造した。実施例1同様に印刷加工及び吸湿半田・耐湿性テストを行ったが全く問題はなかった。
【0037】
超微粒シリカは平均粒径15nmのコロイダルシリカの30重量%溶液である。本シリカは表面に水酸基を有するもので、分散溶媒はメチルイソブチルケトン(MIBK)である。
【0038】
【比較例1】
実施例1で高活性球状細粒シリカAの代わりに、熔射法で製造された不活性シリカの空気分級品(TSS−4、龍森)、即ち、表面に水酸基をほとんど持たない平均粒径3.8μm、CV値51%の球状細粒シリカを用いて同様に処理した。得られた接着剤はスクリーン印刷時に樹脂分が滲み出し、印刷加工時に15%が不良となった。良品を実施例1同様に吸湿半田テストしたところ40%にクラックが発生した。不良が多いので次の耐湿性テストは中止した。球状細粒シリカが表面に水酸基を持たないため、ベース樹脂との相溶性が悪く分離現象を起こしたものと思われる。即ち、ベース樹脂との接着強度が低いため界面破壊を起こしたと考えられる。尚、本シリカの水酸基測定結果は検出限界以下の数値を示した。
【0039】
【比較例2】
実施例1で超微粒シリカを添加せずに、同様に接着剤を製造した。この接着剤は、印刷時に滲み出し不良4%、厚み精度不良1%を発生した。良品で吸湿半田テスト及び耐湿性テストを行ったところ不良率は0.1%以下で問題はなかった。即ち、超微粒シリカを添加しないと、加工時の歩留まりが悪くなりコストが高くなる。
【0040】
【比較例3】
実施例3にて、高活性球状細粒シリカCを285部として接着剤を製造した。この接着剤はシリカ含有量が約75重量%と多く流動性が悪く、圧縮成形時に7%の未充填不良を発生した。
【0041】
【比較例4】
実施例2にて、高活性球状細粒シリカBの代わりに、熔射法で製造された不活性球状シリカ(FB−6S、電気化学工業)、平均粒径6μmでCV値が83%、を用いて接着剤を製造した。この接着剤は印刷時に滲み出しで20%、厚み精度で10%の不良を発生した。粒径の大きなシリカは加工性に大きな悪影響を及ぼす。尚、本シリカの水酸基量は検出限界以下であった。
【0042】
【比較例5】
実施例3にて、高活性球状細粒シリカAの代わりに、同製法で焼成温度を450℃に低下させた水酸基が1.2mmol/gのシリカを用いて接着剤を製造した。この接着剤は成形時に未充填不良を10%発生した。又、良品は吸湿率が0.3重量%と実施例3の0.2重量%の1.5倍であった。水酸基が多いと樹脂との相溶性や反応性が高くなりすぎ、流動性の低下やゲル化を招く。又、水分を吸収するため耐湿性の低下が危惧される。
【0043】
【比較例6】
実施例1に於いて、2種のシリカ50部に代えて、シランカップリング剤(A−186、日本ユニカー)5部を使用して、実施例1と同様に処理した。この接着剤は、印刷時に不均一な滲み出不良45%、厚み精度不良25%を発生した。数少ない良品を吸湿半田テスト及び耐湿性テストにて評価したところ、部分剥離や部分腐食によりテスト品の86%が不良となった。シランカップリング剤のような液状の接着性成分を主体に接着剤を設計すると、接着力及び品質がバラツクといった重大な問題を発生することが明らかである。
【0044】
【発明の効果】
本発明は、超小型、かつ高性能な半導体装置を低コストで加工するための接着剤を提供するものである。即ち、半導体チップ、放熱板等と回路基板等を接着させるための高密度半導体用接着剤である。さらに、本接着剤は。半導体装置の組立時及び使用時に半導体装置に生ずる熱応力を緩和することができ、本発明によって製造した半導体装置は、その作動が安定した信頼性の高いものである。
【0045】
また、本接着剤は、保存性に優れており、安定性に優れており、作業性に優れたものとなっている。さらに、本接着剤は、接着力に優れており、必要な部品を互いに強力に接着するものである。このため、できあがった半導体装置は構造的に強靭堅固なものである。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示す図である。
【図2】本発明をワイヤーボンディングに適用した例である。
【符号の説明】
25、47 半導体チップ
28、41、44 基板
29、42 半田ボール
26、43 接着剤
46 封止樹脂
27、45 配線
30 フレーム
[0001]
[Technical field to which the invention belongs]
The present invention relates to an adhesive for high-density semiconductors. The adhesive referred to here is used to attach a semiconductor chip, a heat radiating plate, a circuit board, etc., and to dissipate different materials and to cushion the shock when assembling a semiconductor device.
[0002]
[Prior art]
In response to rapid advances in technology in the information and communication fields, there is a strong demand for improved performance, miniaturization, weight reduction, and cost reduction of electronic devices. In order to satisfy these demands, it is essential to increase the density of a semiconductor device that is the heart of an electronic device. High density semiconductor devices include, for example, a flip chip bonding method in which a semiconductor bare chip is directly attached to a substrate, a BGA (ball grid array) processing method in which electrodes are arranged in a plane, and a CSP (chip size).・ Packaging) This has been realized by technologies such as processing methods.
[0003]
In order to increase the density of a semiconductor device, a technique for attaching a semiconductor chip, a heat sink, a circuit board, and the like using an adhesive has been advanced. This technique serves to bond dissimilar materials to each other and to mitigate the impact caused by the thermal stress of the semiconductor device. When assembling a semiconductor device using an adhesive, it is necessary to precisely bond the semiconductor to a substrate or the like. For this reason, the adhesive is required to have quality uniformity and stability. Since conventional adhesives are mainly composed of liquid adhesive components, they partially change in composition and are not suitable for high-precision adhesive applications. There was a problem in that the adhesive strength was uneven and oozed out unevenly. Further, when assembling a semiconductor device, different materials must be bonded, and there is a problem that the adhesive strength is insufficient with a conventional adhesive.
[0004]
The semiconductor device has a problem that heat is applied at the time of assembly and use, which causes a thermal stress in the semiconductor, and this stress must be relieved. When the heat is applied, the thermal expansion of the semiconductor chip itself is small, and the thermal expansion of the adhesive is large. Therefore, the adhesive tries to expand, and the semiconductor tries to suppress the expansion. Cause the failure of the semiconductor device itself in the worst case.
[0005]
In conventional adhesives, silica is used as a filler in order to reduce thermal expansion. However, when a large amount is added, flexibility and strength are reduced. Moreover, the anisotropic filler with a large particle size has a problem of generating local stress. Furthermore, it is also known to use ultrafine particle anisotropic silica as an adhesion reinforcing agent, but there is a problem in that the viscosity increases and fluidity is lost due to the addition, resulting in poor processability. For this reason, a method of adding a liquid adhesive component has been adopted, but it has problems such as bleeding and non-uniform adhesion.
[0006]
[Problems to be solved by the invention]
The present invention provides a semiconductor adhesive that enables a semiconductor device to be densified to be assembled at low cost. This adhesive is excellent in dimensional accuracy, storage stability, and adhesive force, and can relieve thermal stress generated in the semiconductor device due to heat applied during assembly and use of the semiconductor device. That is, by using spherical fine silica having a hydroxyl group on the surface and ultrafine silica in an appropriate amount and ratio as a solid adhesive component and a viscosity adjusting component, high flexibility, uniformity, stability and processability are excellent. It is intended to provide a strong adhesive.
[0007]
[Means for Solving the Problems]
The invention of claim 1 is an adhesive for semiconductor containing spherical fine silica having an average particle diameter of 2 to 8 μm having a hydroxyl group on the surface and ultrafine silica having an average particle diameter of 2 to 80 nm. The invention according to claim 2 is the adhesive for semiconductor according to claim 1, wherein the total content of the spherical fine silica and the fine silica is 5 to 70% by weight. The invention according to claim 3 is the adhesive for semiconductor according to claim 1 or 2, wherein the content of the spherical fine silica is larger than the content of the ultrafine silica.
[0008]
A fourth aspect of the adhesive for a semiconductor according to any one of claims 1 to 3, wherein the spherical fine-grained silica has a particle size distribution of 60% or less in terms of CV value. [5] The semiconductor according to any one of [1] to [4], wherein the amount of hydroxyl groups in the spherical fine-grained silica is 0.01 to 1.0 mmol / g with respect to the silica. Adhesive.
[0009]
The invention of claim 6 is characterized in that the base adhesive is at least one selected from a flexible adhesive and a silicone-based / flexible epoxy-based / elastomer-based flexible adhesive. It is an adhesive for semiconductors of any one of Claim 5.
[0010]
The present invention provides a flexible and tough adhesive for semiconductors containing spherical fine silica having a hydroxyl group on the surface and ultrafine silica in an optimum amount and ratio. An adhesive containing appropriate amounts of two types of silica having different particle diameters as solid adhesive components and viscosity adjusting components is excellent in flexibility, storage stability, workability, and adhesiveness. A semiconductor device assembled using the adhesive of the present invention has excellent thermal stress relaxation, high density, high reliability, and low manufacturing cost.
[0011]
The present invention uses spherical fine-grain silica having a hydroxyl group on the surface. Hydroxyl groups form physical and chemical bonds with the base resin and are effective in terms of strength and reliability. Since conventional spherical fine silica has almost no hydroxyl group, it causes problems such as resin oozing, deterioration of strength and reliability.
[0012]
The ultrafine silica does not need to have a functional group such as a hydroxyl group on the surface. Since the surface area, that is, the contact area with the base adhesive is large, there is no problem of strength reduction even if there is no compatible or reactive functional group. However, most of the commercially available products have a hydroxyl group or an alkoxy group on the surface, and are familiar with the base resin.
[0013]
The present invention uses multiple types of silica. In general, when inorganic particles are added to the adhesive, the viscosity of the adhesive is increased and the adhesive processability is extremely deteriorated. In this regard, when spherical particles are used, the increase in viscosity can be suppressed and the filling property can be increased. By using ultrafine particles, the thixotropy of the adhesive can be increased and bleeding can be prevented. That is, it is important to add spherical fine silica and ultrafine silica in a balanced manner. Moreover, when there is too much content of a silica, there exists a problem that workability falls by the viscosity increase of an adhesive agent. Therefore, the content of spherical fine silica and fine silica is preferably 5 to 70% by weight, and the content of spherical fine silica is preferably larger than the content of ultrafine silica. Furthermore, other silicas or other types of fillers may be used within a range that does not adversely affect the adhesive properties.
[0014]
When the particle diameter of silica is large, there are problems that the processability of the adhesive is impaired and stress is concentrated locally. From such a viewpoint, the spherical fine particle silica preferably has an average particle diameter of 2 to 8 μm and a CV value of 60% or less. Here, the CV value is obtained from the following equation.
CV value (%) = (D1−D2) ÷ 2Dp × 100
In the above formula, D2 represents the particle diameter when the cumulative total is 16% by weight, D1 represents the particle diameter when the cumulative total is 84% by weight, and Dp represents the average particle diameter, that is, the particle diameter when the cumulative total is 50% by weight.
[0015]
Furthermore, the spherical fine-grained silica used in the present invention preferably has an amount of hydroxyl groups on the surface of 0.01 to 1.0 mmol / g with respect to the spherical silica. When the amount of the hydroxyl group is too large, thixotropy is increased and workability is lowered, or moisture in the air is adsorbed to reduce the reliability of the semiconductor device. Incidentally, if the minimum covering area of hydroxyl groups is 1770 square meters / g and the theoretical specific surface area of spherical silica (average particle size 5 μm) is 0.5 square meters / g, the amount necessary to coat the entire surface of the spherical silica with hydroxyl groups. Is 1.6 mmol / g.
[0016]
The lower limit of the amount of hydroxyl groups was determined from the measurement accuracy of hydroxyl groups and the measured values of conventional spherical silica. This is because when the number of hydroxyl groups is small, the content becomes extremely small and the problem of measurement accuracy increases. Incidentally, when 1000 hydroxyl groups are present in the silica particles, the amount of hydroxyl groups is 1.7 × 10E-6 mmol / g when the average particle size is 2 μm. Moreover, the result of measuring the amount of hydroxyl group of conventional spherical silica, which is theoretically considered to have almost no hydroxyl group sprayed at about 2000 ° C., is a numerical value smaller than 0.01 mmol / g (detection) which is the current measurement accuracy. Below the limit).
[0017]
As the adhesive used in the present invention, a normal adhesive can be used, but it is preferable to use a flexible adhesive because it effectively acts to relieve stress. Specifically, at least one adhesive selected from a silicone-based adhesive, an epoxy-based flexible adhesive, and an elastomer-based adhesive is preferable. Each flexible adhesive preferably has at least one adhesive functional group such as an epoxy group, a carbinol group, a hydroxyl group, an amino group, an alkoxy group, and a vinyl group in the skeleton.
[0018]
As the silicone-based adhesive, a vinyl group-containing polysiloxane can be preferably used. Various additives can be added to the polysiloxane, and the polysiloxane is cured in the presence of a curing agent or a catalyst to form a silicone rubber having rubber elasticity. This rubber elasticity can relieve the thermal stress generated when the semiconductor device is assembled or used. Curing agents and catalysts are as described in the catalog of silicone manufacturers.
[0019]
Epoxy resins are generally hard and have no flexibility after curing. In the present invention, it is preferable to use a flexible epoxy resin and a curing agent, and specifically, a modified resin such as hydrocarbon modified, elastomer modified, rubber modified or silicone modified is used. Cured products obtained by adding various additives to these resins have elasticity and can relieve stress.
[0020]
Next, examples of the elastomer adhesive include styrene, olefin, polyester, polyamide, and urethane. Those having a reactive functional group such as a vinyl group, an epoxy group, a hydroxyl group, an alkoxy group, an acrylic group, and an isocyanate group are used.
[0021]
You may add another adhesive component in the range which does not have a bad influence on the adhesive agent of this invention. A compound having a functional group such as an epoxy group, a hydroxyl group, an amino group, or an alkoxy group can be used.
[0022]
Since conventional adhesives use a large amount of liquid adhesive components and ultrafine silica, they have problems such as poor adhesion accuracy, poor processability, uneven adhesion, uneven bleeding, and poor yield. .
[0023]
The adhesive of the present invention can be used in the form of a paste or solid, and can also be processed into a tape or the like. Even in the case of a tape, a stable and high adhesive force can be maintained.
[0024]
The adhesive of the present invention is one that is cured by attaching the adhesive between the materials to be bonded. That is, a semiconductor device is assembled by pasting and curing a semiconductor chip or the like with the adhesive body uncured. At that time, by using spherical fine silica having a hydroxyl group on the surface and ultrafine silica as a solid adhesive component and a viscosity adjusting component, the adhesive effect can be made larger and more stable.
[0025]
The present inventor has already announced the effect of a spherical ceramic having a hydroxyl group on the surface in Japanese Patent Application No. 10-330463. The present invention has been found to have an excellent effect by using a plurality of silicas of different sizes in combination.
[0026]
FIG. 1 shows an application of the adhesive of the present invention to BGA. The semiconductor chip 25 is attached to the substrate 28 via an adhesive 26. Reference numeral 29 denotes a solder ball. A semiconductor chip 25 is attached to a substrate 28 via an adhesive 26 and is entirely surrounded by a frame 30. The wiring 27 is connected to the outside. The adhesive 26 has a function of adhering the semiconductor chip 25 to the substrate 28 and relaxing thermal stress applied to the semiconductor device.
[0027]
FIG. 2 shows an application example to the wire bonding method. The semiconductor chip 47 is attached to the substrate 44 via an adhesive 43. Reference numeral 42 is a solder ball, and 46 is a sealing material. The wiring is connected to the outside. The adhesive 43 has a function of adhering the semiconductor chip 47 to the substrate 44 and relaxing thermal stress applied to the semiconductor device.
[0028]
Hereinafter, the present invention will be described in detail by way of study examples. Here, all parts are parts by weight.
[Example 1]
45 parts of spherical fine-grained silica A having a hydroxyl group on the surface (called high activity), 5 parts of ultrafine silica (DM-10, Tokuyama), 80 parts of cyclopentadiene-modified epoxy resin (XD-1000, Nippon Kayaku), xylene-modified 20 parts of phenolic resin (XL-225, Mitsui Chemicals) and 1 part of a catalyst (TPP-K, Hokuko Chemical Industries) were mixed and kneaded with 3 rolls for 5 minutes to produce an adhesive. This adhesive was screen printed with a thickness of 150 μm on an FPC (flexible printed circuit) in a simulated BGA, and a semiconductor chip was mounted. Thereafter, it was heated at 180 ° C. for 5 minutes. The thickness accuracy of the adhesive layer was ± 10 μm or less, and there was no problem of mounting on the substrate without seepage of the resin. Further, when the moisture absorption solder test of this simulated BGA was performed, no occurrence of defects such as cracks and popcorn was observed. Furthermore, when a moisture resistance test was performed, no defects such as circuit current leakage or disconnection occurred.
[0029]
The spherical fine silica A used in this example was produced according to JP-A-10-287415 (calcination temperature 950 ° C.), the average particle size was 3.8 μm, the CV value was 56%, and the hydroxyl group content was 0.2 mmol. / G. Ultrafine silica DM-10 is a methoxy modified product having an average particle size of 10 nm.
[0030]
The test method is as follows.
Moisture-absorbing solder test: after being left for 24 hours under conditions of a temperature of 125 ° C. and a humidity of 100%, it is heated three times in an infrared furnace at 260 ° C. for 10 seconds.
Moisture resistance test: A solder moisture absorption test is left at a temperature of 125 ° C. and a humidity of 100% for 1000 hours.
[0031]
Measurement of the amount of hydroxyl group: Silica gel is added to the specimen as an internal standard substance, the absorption at 3740 cm-1 is measured by the FT-IR diffuse reflection method, and the amount of hydroxyl group is calculated. In the method of reacting the sample with trimethylsilane and calculating the amount of hydroxyl group from the amount of silane consumed, the measurement accuracy was 0.1 mmol / g. In the future, it is considered that the optimum range of the amount of hydroxyl groups will become clearer by examining highly accurate measurement methods.
[0032]
[Example 2]
95 parts of vinyl group-containing polysiloxane (TSE260-3U, Toshiba Silicone), 5 parts of terpene polymer (YS-125, Yasuhara Chemical), 24 parts of highly active spherical fine silica B and ultrafine silica (# 200, Nippon Aerosil) An adhesive was produced in the same manner as in Example 1 using 1 part and 0.5 part of catalyst (TC-8, Toshiba Silicone). Printing showed excellent processability and no problems such as bleeding. Further, when the moisture absorption solder test and the moisture resistance test were carried out in the same manner as in Example 1, no defect occurred.
[0033]
The highly active spherical fine silica B is obtained by emulsifying an aqueous solution of sodium silicate and spheronizing it by adding an acid, filtering and drying it, and firing at 700 ° C. The average particle size was 6.2 μm, the CV value was 27%, and the amount of hydroxyl group was 0.8 mmol / g. The ultrafine silica has an average particle size of 15 nm and has a hydroxyl group.
[0034]
[Example 3]
Highly active spherical fine silica C185 parts and ultrafine silica (L-90, CABOT) 15 parts, thermoplastic elastomer (D-1117, Shell Japan) 95 parts and liquid synthetic rubber (B-1000, Nippon Soda) 5 parts Then, 0.5 part of benzoyl peroxide was kneaded with two rolls for 5 minutes to obtain a solid adhesive. Next, after a 150 μm adhesive layer was processed on the FPC by heat compression molding, a hygroscopic solder test and a moisture resistance test were performed. Thickness accuracy was good, and there was no defect in the simulated BGA test.
[0035]
Highly active spherical fine silica C is a product obtained by washing a commercial product (TSS-4, Tatsumori) with hydrofluoric acid to generate hydroxyl groups on the surface. The average particle size was 2.8 μm, the CV value was 32%, and the hydroxyl group amount was 0.15 mmol / g. The ultrafine silica has an average particle size of 8 nm and has a hydroxyl group.
[0036]
[Example 4]
47 parts of highly active spherical fine silica A, 10 parts of ultrafine silica (MIBK-ST, Nissan Chemical Industries), 90 parts of silicone-modified epoxy resin (SIN-620, Dainippon Ink and Chemicals) and polybutadiene glycol (G-1000, Japan) 10 parts of the soda were mixed and heated in a vacuum heating kneader to remove the solvent in which the ultrafine silica was dispersed. Thereafter, 1 part of a catalyst (TPP-K, Hokuko Chemical Co., Ltd.) was mixed with the mixture, and kneaded for 5 minutes with a three roll to produce an adhesive. As in Example 1, printing and hygroscopic solder / moisture resistance tests were performed, but there was no problem.
[0037]
Ultrafine silica is a 30% by weight solution of colloidal silica having an average particle size of 15 nm. This silica has a hydroxyl group on its surface, and the dispersion solvent is methyl isobutyl ketone (MIBK).
[0038]
[Comparative Example 1]
An air classification product (TSS-4, Tatsumori) of inert silica produced by a spraying method instead of the highly active spherical fine silica A in Example 1, that is, an average particle diameter having almost no hydroxyl group on the surface It processed similarly using the spherical fine-grain silica of 3.8 micrometers and CV value 51%. The obtained adhesive oozed out of the resin during screen printing, and 15% became defective during printing. When a good product was subjected to a hygroscopic solder test in the same manner as in Example 1, cracks occurred in 40%. Since there were many defects, the next moisture resistance test was stopped. Since spherical fine silica does not have a hydroxyl group on the surface, it seems that the compatibility with the base resin is poor and the separation phenomenon occurs. That is, it is considered that the interface breakage occurred due to the low adhesive strength with the base resin. In addition, the hydroxyl group measurement result of this silica showed the numerical value below a detection limit.
[0039]
[Comparative Example 2]
In Example 1, an adhesive was prepared in the same manner without adding ultrafine silica. This adhesive generated 4% bleeding failure and 1% thickness accuracy failure during printing. When a hygroscopic solder test and a moisture resistance test were performed on non-defective products, the defect rate was 0.1% or less, and there was no problem. That is, if ultrafine silica is not added, the yield at the time of processing deteriorates and the cost increases.
[0040]
[Comparative Example 3]
In Example 3, an adhesive was produced using 285 parts of highly active spherical fine silica C. This adhesive had a silica content of about 75% by weight and poor fluidity, and 7% unfilled defects occurred during compression molding.
[0041]
[Comparative Example 4]
In Example 2, instead of the highly active spherical fine silica B, an inert spherical silica (FB-6S, Denki Kagaku Kogyo) produced by a spraying method, an average particle size of 6 μm, and a CV value of 83%, Used to produce an adhesive. This adhesive produced a 20% defect when exuded during printing and a 10% defect in thickness accuracy. Silica with a large particle size has a significant adverse effect on processability. In addition, the amount of hydroxyl groups of this silica was below the detection limit.
[0042]
[Comparative Example 5]
In Example 3, instead of the highly active spherical fine-grain silica A, an adhesive was produced using silica having a hydroxyl group of 1.2 mmol / g, the firing temperature of which was lowered to 450 ° C. by the same production method. This adhesive generated 10% unfilled defects during molding. Further, the non-defective product had a moisture absorption rate of 0.3% by weight, 1.5 times that of 0.2% by weight of Example 3. If there are many hydroxyl groups, the compatibility and reactivity with the resin will become too high, leading to a decrease in fluidity and gelation. Moreover, since moisture is absorbed, there is a concern that the moisture resistance may be lowered.
[0043]
[Comparative Example 6]
In Example 1, it processed like Example 1 using 5 parts of silane coupling agents (A-186, Nippon Unicar) instead of 50 parts of 2 types of silica. This adhesive generated 45% non-uniform bleeding failure and 25% thickness accuracy failure during printing. When a few good products were evaluated by a moisture absorption solder test and a moisture resistance test, 86% of the test products were defective due to partial peeling and partial corrosion. It is apparent that when an adhesive is designed mainly based on a liquid adhesive component such as a silane coupling agent, a serious problem such as variation in adhesive strength and quality occurs.
[0044]
【The invention's effect】
The present invention provides an adhesive for processing an ultra-small and high-performance semiconductor device at low cost. That is, it is an adhesive for high-density semiconductors for bonding a semiconductor chip, a heat sink and the like to a circuit board. Furthermore, this adhesive. The thermal stress generated in the semiconductor device during assembly and use of the semiconductor device can be alleviated, and the semiconductor device manufactured according to the present invention has a stable operation and high reliability.
[0045]
Moreover, this adhesive agent is excellent in preservability, excellent in stability, and excellent in workability. Furthermore, this adhesive agent is excellent in adhesive force, and strongly adheres necessary parts to each other. Therefore, the completed semiconductor device is structurally strong and robust.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of the present invention.
FIG. 2 is an example in which the present invention is applied to wire bonding.
[Explanation of symbols]
25, 47 Semiconductor chips 28, 41, 44 Substrate 29, 42 Solder balls 26, 43 Adhesive 46 Sealing resin 27, 45 Wiring 30 Frame

Claims (5)

表面に水酸基を有する平均粒径が2〜8μmの球状細粒シリカであって、3740cm −1 の吸収を測定して算出した表面水酸基量が該シリカに対して0.01〜1.0mmol/gである球状細粒シリカ、及び平均粒径が2〜80nmの超微粒シリカを含有する半導体用接着剤。Spherical fine silica having an average particle diameter of 2 to 8 μm having hydroxyl groups on the surface, and the amount of surface hydroxyl groups calculated by measuring absorption at 3740 cm −1 is 0.01 to 1.0 mmol / g with respect to the silica. The adhesive for semiconductors containing the spherical fine -particle silica which is these, and the ultrafine silica whose average particle diameter is 2-80 nm. 球状細粒シリカ及び超微粒シリカの合計含有量が5〜70重量%であることを特徴とする請求項1に記載の半導体用接着剤。2. The adhesive for semiconductor according to claim 1, wherein the total content of spherical fine silica and ultrafine silica is 5 to 70 wt%. 球状細粒シリカの含有量が超微粒シリカの含有量より多いことを特徴とする請求項1又は請求項2に記載の半導体用接着剤。The semiconductor adhesive according to claim 1 or 2, wherein the content of the spherical fine silica is greater than the content of the ultrafine silica. 球状細粒シリカが、その粒径分布がCV値で60%以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の半導体用接着剤。4. The adhesive for semiconductor according to claim 1, wherein the spherical fine silica has a particle size distribution of 60% or less in terms of CV value. 5. ベースとなる接着剤が、シリコーン系接着剤・柔軟エポキシ系接着剤・エラストマー系接着剤から選択される少なくとも1種であることを特徴とする請求項1から請求項のいずれか1項に記載の半導体用接着剤。The underlying adhesive, according to any one of claims 1 to 4, characterized in that at least one selected from silicone-based adhesives, flexible epoxy adhesives, elastomeric adhesives Adhesive for semiconductors.
JP2000008421A 1999-02-12 2000-01-18 High density semiconductor adhesive Expired - Fee Related JP4386521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008421A JP4386521B2 (en) 1999-02-12 2000-01-18 High density semiconductor adhesive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-33722 1999-02-12
JP3372299 1999-02-12
JP2000008421A JP4386521B2 (en) 1999-02-12 2000-01-18 High density semiconductor adhesive

Publications (2)

Publication Number Publication Date
JP2000299326A JP2000299326A (en) 2000-10-24
JP4386521B2 true JP4386521B2 (en) 2009-12-16

Family

ID=26372467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008421A Expired - Fee Related JP4386521B2 (en) 1999-02-12 2000-01-18 High density semiconductor adhesive

Country Status (1)

Country Link
JP (1) JP4386521B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302416A1 (en) 2003-01-21 2004-07-29 Röhm GmbH & Co. KG Polymerization adhesive, useful for the bonding of matt objects, comprises a silicic acid powder with two average particle size ranges
JP2008274044A (en) * 2007-04-26 2008-11-13 Fujitsu Ltd Adhesive material, touch panel input device using the same, and method of manufacturing the input device
JP2008300862A (en) * 2008-07-25 2008-12-11 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor and semiconductor device

Also Published As

Publication number Publication date
JP2000299326A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
JP4238124B2 (en) Curable resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, conductive connection paste, conductive connection sheet, and electronic component assembly
EP1085790B9 (en) Connecting material
JP2008274300A (en) Curable resin composition
JPH07230840A (en) Connecting member and electrode connecting structure using the same
KR100590146B1 (en) Semiconductor device and method for manufacturing the same
JP3999840B2 (en) Resin sheet for sealing
JP4321932B2 (en) Adhesive for high density semiconductors
EP2282328B1 (en) Adhesive film
JP4386521B2 (en) High density semiconductor adhesive
JP2001223227A (en) Resin composition for sealing semiconductor material and semiconductor device
JP4876317B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
KR100421517B1 (en) Insulating adhesive for electronic parts, and lead frame and semiconductor device using the same
JP4446552B2 (en) Adhesives for ultra-high density semiconductors
JP3779091B2 (en) Resin composition for sealing
JP2001207031A (en) Resin composition for semiconductor sealing and semiconductor device
JP4249824B2 (en) Adhesive for semiconductor
JP4742402B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, and semiconductor device
JP3214266B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2001164231A (en) High-purity adhesive for semiconductor
JP3968302B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2001291804A (en) Semiconductor element and semiconductor device and semiconductor mounting structure
JPH1197578A (en) Semiconductor device and manufacture therefor
JP2000036506A (en) Manufacture of semiconductor device
JP2002309221A (en) High purity adhesive for semiconductor
JP2003026957A (en) Filler and resin composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees