JP4385043B2 - Magnetic film manufacturing method and magnetic film - Google Patents

Magnetic film manufacturing method and magnetic film Download PDF

Info

Publication number
JP4385043B2
JP4385043B2 JP2006251390A JP2006251390A JP4385043B2 JP 4385043 B2 JP4385043 B2 JP 4385043B2 JP 2006251390 A JP2006251390 A JP 2006251390A JP 2006251390 A JP2006251390 A JP 2006251390A JP 4385043 B2 JP4385043 B2 JP 4385043B2
Authority
JP
Japan
Prior art keywords
underlayer
plating layer
magnetic
plating
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006251390A
Other languages
Japanese (ja)
Other versions
JP2008072055A (en
Inventor
京 平田
山口  淳
晋吾 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006251390A priority Critical patent/JP4385043B2/en
Priority to US11/765,069 priority patent/US8568908B2/en
Publication of JP2008072055A publication Critical patent/JP2008072055A/en
Application granted granted Critical
Publication of JP4385043B2 publication Critical patent/JP4385043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/115Magnetic layer composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1157Substrate composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Heads (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は、例えば、磁気ヘッドを構成するための、めっき法により形成される磁性膜の製造方法及び磁性膜に関する。   The present invention relates to a method for manufacturing a magnetic film formed by a plating method and a magnetic film, for example, for constituting a magnetic head.

磁気ヘッドにおいては、下地層の上にFeCo、NiFe等の磁性材料からなる磁性層を積層した構造の磁性膜を、書き込みポールやヨーク、シールドとして用いる。この種の磁性膜では、下地層をRu等の貴金属から構成することで、保磁力を低下させると共に透磁率を向上させることができる。例えば、特許文献1の段落番号0016には、Ruからなる下地層の上に、FeCoからなる磁性層を積層した構造が開示されている。   In a magnetic head, a magnetic film having a structure in which a magnetic layer made of a magnetic material such as FeCo or NiFe is stacked on an underlayer is used as a write pole, yoke, or shield. In this type of magnetic film, the underlayer is made of a noble metal such as Ru, so that the coercive force can be reduced and the magnetic permeability can be improved. For example, paragraph No. 0016 of Patent Document 1 discloses a structure in which a magnetic layer made of FeCo is laminated on a base layer made of Ru.

また、実際に磁性層を形成する際は、例えば0.2μm以上と厚く形成するのが一般的である。磁性層を形成するための手法としては、めっき液中に下地層を浸漬し、電流を印加することで磁性層を下地層上に析出させるめっき法が有効である。特に、パルス波形の電流を印加するパルスめっき法が好ましい。パルスめっき法によれば、パルス状の電流波形でめっきを断続的に行うので、磁性層の厚さを確保しながら結晶粒の成長を抑えることができ、厚く且つ緻密な磁性層が得られると期待される。
特開2005−25890号公報
Further, when the magnetic layer is actually formed, it is generally formed to a thickness of, for example, 0.2 μm or more. As a method for forming the magnetic layer, a plating method in which the underlayer is immersed in a plating solution and a magnetic layer is deposited on the underlayer by applying a current is effective. In particular, a pulse plating method in which a current having a pulse waveform is applied is preferable. According to the pulse plating method, since plating is performed intermittently with a pulsed current waveform, the growth of crystal grains can be suppressed while ensuring the thickness of the magnetic layer, and a thick and dense magnetic layer can be obtained. Be expected.
JP 2005-25890 A

以上述べた点を考慮し、発明者らは、貴金属からなる下地層にパルスめっき法を適用して磁性層を析出させてみたが、磁性層に気泡が取り込まれてピンホールが発生するといった問題や、電位差による腐食といった問題が生じた。   In consideration of the above points, the inventors tried to deposit a magnetic layer by applying a pulse plating method to an underlayer made of a noble metal, but there was a problem that bubbles were taken into the magnetic layer and pinholes were generated. In addition, problems such as corrosion due to potential difference occurred.

本発明は、上記問題点に鑑みてなされたものであり、軟磁気特性を向上させながら、パルスめっきによるピンホールの発生を抑制することができる磁性膜の製造方法及び磁性膜を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a magnetic film manufacturing method and a magnetic film capable of suppressing the generation of pinholes by pulse plating while improving the soft magnetic characteristics. Objective.

上述した課題を解決するため、本発明は、貴金属元素及び卑金属元素を含有する下地層にパルスめっきを施して、前記下地層上に、磁性材料からなるめっき層を析出させる磁性膜の製造方法を提供する。   In order to solve the above-described problems, the present invention provides a method for producing a magnetic film in which a base layer containing a noble metal element and a base metal element is subjected to pulse plating, and a plating layer made of a magnetic material is deposited on the base layer. provide.

発明者らは、パルスめっきによるピンホールの発生について研究を行い、そのメカニズムを、必ずしも明確ではないが次のように推測した。   The inventors have studied the generation of pinholes by pulse plating, and the mechanism has been presumed as follows although it is not necessarily clear.

即ち、パルスめっきでは、めっき層を成長させる第1の期間と、めっき層の成長を停止、またはめっき層をエッチングする第2の期間とを、極めて短い時間の単位で交互に繰り返す。仮に、下地層が貴金属のみから構成されたことで下地層の標準電極電位が高い場合、第2の期間では、下地層に印加される電圧に、下地層自体が持つ高い標準電極電位が加算されるので、下地層の電位は、本来よりも高い正の値となる。このため、下地層周囲のめっき液が分解されて、酸素ガス等の気泡が発生する。そして、その後の第1の期間でめっき層を成長させる際、めっき層に気泡が取り込まれてピンホールが発生するというものである。   That is, in the pulse plating, the first period for growing the plating layer and the second period for stopping the growth of the plating layer or etching the plating layer are alternately repeated in units of extremely short time. If the standard electrode potential of the base layer is high because the base layer is composed of only a noble metal, the high standard electrode potential of the base layer itself is added to the voltage applied to the base layer in the second period. Therefore, the potential of the base layer becomes a positive value higher than the original value. For this reason, the plating solution around the base layer is decomposed to generate bubbles such as oxygen gas. Then, when the plating layer is grown in the first period thereafter, bubbles are taken into the plating layer and pinholes are generated.

また、一般的に、磁性層は、卑な電位を有する金属であるため、貴金属との電位差によって電池効果による腐食が生じることが知られている。   In general, since the magnetic layer is a metal having a base potential, it is known that corrosion due to the battery effect occurs due to a potential difference from the noble metal.

そこで、本発明では、貴金属元素及び卑金属元素を含有する下地層を採用する。かかる下地層は、貴金属元素のみからなる下地層と比較して標準電極電位が低くなるので、パルスめっきを施しても、めっき層のピンホール発生や腐食を抑制することができる。   Therefore, in the present invention, an underlayer containing a noble metal element and a base metal element is employed. Such an underlayer has a lower standard electrode potential than an underlayer made of only a noble metal element. Therefore, even if pulse plating is performed, pinhole generation and corrosion of the plating layer can be suppressed.

また、上述した下地層は貴金属元素を含有しているから、下地層上に形成され且つ磁性材料からなるめっき層に、優れた軟磁気特性を与えることができる。   Further, since the above-described underlayer contains a noble metal element, excellent soft magnetic properties can be imparted to the plating layer formed on the underlayer and made of a magnetic material.

更に、本発明は、貴金属元素及び卑金属元素を含有する下地層と、前記下地層上に形成され、磁性材料からなるめっき層とを備えた磁性膜を提供する。   Furthermore, the present invention provides a magnetic film comprising an underlayer containing a noble metal element and a base metal element, and a plating layer formed on the underlayer and made of a magnetic material.

上述した本発明に係る磁性膜において、下地層は貴金属元素及び卑金属元素を含有しているから、標準電極電位が低い。よって、下地層上にめっき層を形成するため、パルスめっきを施してめっき層を析出させても、めっき層のピンホール発生を抑制することができる。   In the magnetic film according to the present invention described above, since the underlayer contains a noble metal element and a base metal element, the standard electrode potential is low. Therefore, since the plating layer is formed on the base layer, the occurrence of pinholes in the plating layer can be suppressed even if pulse plating is performed to deposit the plating layer.

また、下地層は貴金属元素を含有してるから、磁気材料からなるめっき層の軟磁気特性を向上させることができる。   Moreover, since the underlayer contains a noble metal element, the soft magnetic properties of the plating layer made of a magnetic material can be improved.

本発明は、更に、上述した磁性膜を用いた薄膜磁気ヘッドについても開示する。   The present invention further discloses a thin film magnetic head using the magnetic film described above.

以上述べたように、本発明によれば、軟磁気特性を向上させながら、パルスめっきによるピンホールの発生を抑制することができる磁性膜の製造方法及び磁性膜を提供することができる。   As described above, according to the present invention, it is possible to provide a magnetic film manufacturing method and a magnetic film that can suppress the generation of pinholes due to pulse plating while improving the soft magnetic characteristics.

図1は、本発明に係る磁性膜の一実施形態を示す断面図である。図示の磁性膜5は、下地層2と、めっき層3とを含み、基板1上に形成されている。基板1は、例えばアルティック(Al・TiC)等のセラミック材料からなる。 FIG. 1 is a cross-sectional view showing an embodiment of a magnetic film according to the present invention. The illustrated magnetic film 5 includes an underlayer 2 and a plating layer 3 and is formed on the substrate 1. The substrate 1 is made of a ceramic material such as Altic (Al 2 O 3 .TiC).

下地層2は、基板1の上面に、厚みZ2が例えば20nm〜100nm程度で形成されている。下地層2は、貴金属及び卑金属を含む合金材料からなる。合金材料を構成するための貴金属としては、Cu、Ru、Rh、Pd、Ag、Re、Ir、Pt及びAuからなる群から選択された一つまたは複数の元素を採用することができる。また、卑金属としては、非磁性の卑金属を用いることが好ましく、例えば、Ti、V、Cr、Zr、Nb及びMoからなる群から選択された一つまたは複数の元素を採用することができる。貴金属及び卑金属の組み合わせは任意ではあるが、一例としては、Ru及びCrの組み合わせを挙げることができる。また、貴金属に対する卑金属の添加量は、5at%以上50at%以下の範囲とすることが好ましく、より好ましくは5at%以上20at%以下の範囲とする。   The underlayer 2 is formed on the upper surface of the substrate 1 with a thickness Z2 of, for example, about 20 nm to 100 nm. The underlayer 2 is made of an alloy material containing a noble metal and a base metal. As the noble metal for constituting the alloy material, one or more elements selected from the group consisting of Cu, Ru, Rh, Pd, Ag, Re, Ir, Pt and Au can be adopted. Further, as the base metal, a nonmagnetic base metal is preferably used, and for example, one or a plurality of elements selected from the group consisting of Ti, V, Cr, Zr, Nb, and Mo can be employed. Although the combination of a noble metal and a base metal is arbitrary, the combination of Ru and Cr can be mentioned as an example. The amount of the base metal added to the noble metal is preferably in the range of 5 at% to 50 at%, more preferably in the range of 5 at% to 20 at%.

下地層2の標準電極電位は、−1.00V以上0.70V以下の範囲にあることが好ましい。下地層2の標準電極電位は、合金材料を構成する貴金属元素及び卑金属元素の種類を変更したり、または、貴金属に対する卑金属の添加量を変化させることにより調整することができる。   The standard electrode potential of the underlayer 2 is preferably in the range of −1.00V to 0.70V. The standard electrode potential of the underlayer 2 can be adjusted by changing the types of noble metal elements and base metal elements constituting the alloy material or changing the amount of base metal added to the noble metal.

めっき層3は、下地層2の上面に形成されている。詳しくは、めっき層3は、下地層2の上面に直接に付着され、厚みZ3が例えば0.3μm〜3.0μm程度である。めっき層3は、磁性材料からなる。磁性材料としては、FeCo、NiFeなどを採用することができる。めっき層3は、他の方法で形成された層、例えば、真空蒸着法やスパッタ法で形成された層と、めっき液中の硫黄や硼素などの不純物を含有している点で区別することができる。   The plating layer 3 is formed on the upper surface of the foundation layer 2. Specifically, the plating layer 3 is directly attached to the upper surface of the base layer 2, and the thickness Z3 is, for example, about 0.3 μm to 3.0 μm. The plating layer 3 is made of a magnetic material. As the magnetic material, FeCo, NiFe, or the like can be employed. The plating layer 3 can be distinguished from a layer formed by another method, for example, a layer formed by vacuum deposition or sputtering, in that it contains impurities such as sulfur and boron in the plating solution. it can.

別の実施形態として、めっき層3上に、磁性材料からなる第2のめっき層が形成されていてもよい。例えば、めっき層3の磁性材料としてFeCoを採用した場合、第2のめっき層の磁性材料としてNiFeを採用することができる。   As another embodiment, a second plating layer made of a magnetic material may be formed on the plating layer 3. For example, when FeCo is adopted as the magnetic material of the plating layer 3, NiFe can be adopted as the magnetic material of the second plating layer.

上述した磁性膜5は、エッチングなどの必要な工程を経ることにより、磁気ヘッドの書き込みポール、ヨークまたはシールドとして用いることができる。   The magnetic film 5 described above can be used as a write pole, a yoke or a shield of a magnetic head through a necessary process such as etching.

次に、このような磁性膜5の製造方法について、図2及び図3を参照し、説明する。
まず、図2に示すように、基板1の上面に下地層2を形成する。下地層2が、貴金属及び卑金属を含む合金材料から構成されることは前述した通りである。このような下地層2は、真空蒸着法、スパッタ法、めっき法などによって形成することができる。
Next, a method for manufacturing such a magnetic film 5 will be described with reference to FIGS.
First, as shown in FIG. 2, the base layer 2 is formed on the upper surface of the substrate 1. As described above, the underlayer 2 is made of an alloy material containing a noble metal and a base metal. Such an underlayer 2 can be formed by vacuum deposition, sputtering, plating, or the like.

次に、下地層2の上面にめっき層を形成すべく、めっきを行う。めっき工程を図3に示す。図3を参照すると、めっき槽41の中にめっき液42が入れられている。めっき液42の成分は、形成すべきめっき層の組成に応じて定まる。例えば、CoFeのめっき層を形成したい場合、めっき液42は、Coイオン及びFeイオンを含有するように調製される。Coイオンの供給源としては、硫酸コバルトや塩化コバルトなどが、Feイオンの供給源としては、硫酸鉄や、塩化鉄などが用いられる。電極板43は、電源44に接続されている。   Next, plating is performed to form a plating layer on the upper surface of the base layer 2. The plating process is shown in FIG. Referring to FIG. 3, a plating solution 42 is placed in the plating tank 41. The component of the plating solution 42 is determined according to the composition of the plating layer to be formed. For example, when it is desired to form a CoFe plating layer, the plating solution 42 is prepared to contain Co ions and Fe ions. Cobalt sulfate and cobalt chloride are used as the Co ion supply source, and iron sulfate and iron chloride are used as the Fe ion supply source. The electrode plate 43 is connected to a power source 44.

そして、下地層2が形成された基板1をめっき液42に浸漬し、下地層2にパルスめっきを施す。パルスめっきの具体的手法としては、下地層2をめっき液中に浸漬した状態で、電極板43を電源44の正極、下地層2を電源44の負極に接続し、電極板43に、パルス状の波形を有する電圧V1を印加する。   Then, the substrate 1 on which the underlayer 2 is formed is immersed in a plating solution 42, and the underlayer 2 is subjected to pulse plating. As a specific method of pulse plating, the electrode plate 43 is connected to the positive electrode of the power source 44 and the base layer 2 is connected to the negative electrode of the power source 44 in a state where the base layer 2 is immersed in the plating solution. A voltage V1 having the following waveform is applied.

電圧V1の波形の例を図4に示す。但し、図4では横軸に時間を、縦軸に電圧をとってある。図3及び図4を参照すると、まず、第1の期間T1で、電極板43に一定の正電圧Vaを印加する。下地層2からみると、一定の負電圧が印加されることになるので、下地層2上でめっき層3を成長させることができる。第1の期間T1の長さは、例えば5ms〜1000ms程度に設定される。また、正電圧Vaを印加するときのめっき電流の値は、形成すべきめっき層の組成にも依るが、例えば0.01A/cm〜0.1A/cm程度に設定される。 An example of the waveform of the voltage V1 is shown in FIG. However, in FIG. 4, the horizontal axis represents time and the vertical axis represents voltage. 3 and 4, first, a constant positive voltage Va is applied to the electrode plate 43 in the first period T1. When viewed from the underlayer 2, a constant negative voltage is applied, so that the plating layer 3 can be grown on the underlayer 2. The length of the first period T1 is set to about 5 ms to 1000 ms, for example. The value of the plating current when applying a positive voltage Va, depending on the composition to be formed plating layer is set to be, for example, 0.01A / cm 2 ~0.1A / cm 2 approximately.

次に、第2の期間T2で、電極板に一定の負電圧Vbを印加する。下地層2からみると、印加される電圧が負となるので、めっき層3がエッチングされる。負電圧Vbの大きさは、正電圧Vaの大きさよりも小さい。第2の期間T2の長さの、第1の期間T1の長さに対する比T2/T1は、例えば1〜200程度に設定される。また、負電圧Vbを印加するときのめっき電流の値は、正電圧Vaを印加するときのめっき電流の値にも依るが、例えば0〜0.03A/cm程度に設定される。 Next, in the second period T2, a constant negative voltage Vb is applied to the electrode plate. Since the applied voltage becomes negative when viewed from the underlayer 2, the plating layer 3 is etched. The magnitude of the negative voltage Vb is smaller than the magnitude of the positive voltage Va. The ratio T2 / T1 of the length of the second period T2 to the length of the first period T1 is set to about 1 to 200, for example. Further, the value of the plating current when the negative voltage Vb is applied depends on the value of the plating current when the positive voltage Va is applied, but is set to, for example, about 0 to 0.03 A / cm 2 .

そして、めっき層3の厚さを確保しながら結晶粒の成長を抑えるため、所定時間T0の間に、第1、第2の期間T1、T2を交互に繰り返す。   Then, in order to suppress the growth of crystal grains while ensuring the thickness of the plating layer 3, the first and second periods T1 and T2 are alternately repeated during the predetermined time T0.

図4に示された波形において、仮に、下地層2が貴金属のみから構成されたことで下地層2の標準電極電位が高い場合を考える。この場合、第2の期間T2で、下地層2に印加される正の電圧に、下地層自体が持つ高い標準電極電位が加算されるので、下地層2の電位は、本来よりも高い正の値となる。このため、下地層2の周囲のめっき液42が分解されて、酸素ガス等の気泡が発生する。そして、その後の第1の期間T1でめっき層3を成長させる際、めっき層3に気泡が取り込まれてピンホールが発生するという問題が生じる。   In the waveform shown in FIG. 4, let us consider a case where the standard electrode potential of the underlayer 2 is high because the underlayer 2 is composed of only a noble metal. In this case, since the high standard electrode potential of the base layer itself is added to the positive voltage applied to the base layer 2 in the second period T2, the potential of the base layer 2 is higher than the original positive potential. Value. For this reason, the plating solution 42 around the underlayer 2 is decomposed to generate bubbles such as oxygen gas. Then, when the plating layer 3 is grown in the first period T1 thereafter, there is a problem that bubbles are taken into the plating layer 3 to generate pinholes.

電圧V1の波形の別の例を図5に示す。まず、第1の期間T1で、電極板43に一定の正電圧Vaを印加する点については、図4に示された波形と同様である。   Another example of the waveform of the voltage V1 is shown in FIG. First, the point that a constant positive voltage Va is applied to the electrode plate 43 in the first period T1 is the same as the waveform shown in FIG.

次に、第2の期間T2で、電極板43に対する印加電圧をゼロとする。下地層2からみると、印加される電圧がゼロとなるので、めっき層3の成長が停止する。第1、第2の期間T1、T2を交互に繰り返す点については、図4に示された波形と同様である。   Next, the applied voltage to the electrode plate 43 is set to zero in the second period T2. When viewed from the underlayer 2, the applied voltage becomes zero, and the growth of the plating layer 3 is stopped. The first and second periods T1 and T2 are alternately repeated in the same manner as the waveform shown in FIG.

図5に示された波形でも、めっき層3にピンホールが発生するという問題が生じる。すなわち、下地層2の標準電極電位が高い場合、第2の期間T2で、下地層2に印加される電圧がゼロであっても、下地層自体が持つ高い標準電極電位が加算される。このため、下地層2の電位は、本来よりも高い正の値となり、めっき層3にピンホールが発生する。   Even in the waveform shown in FIG. 5, there is a problem that pinholes are generated in the plating layer 3. That is, when the standard electrode potential of the foundation layer 2 is high, even if the voltage applied to the foundation layer 2 is zero in the second period T2, the high standard electrode potential of the foundation layer itself is added. For this reason, the electric potential of the base layer 2 becomes a positive value higher than the original value, and a pinhole is generated in the plating layer 3.

図6は、貴金属のみから構成された下地層にパルスめっきを適用した場合のめっき層の状態を示す断面写真である。図6に示すように、下地層61の上に析出されためっき層62には、ピンホール63が発生しており、ピンホール63よりも上側ではめっき層62が成長していないことがわかる。なお、線64は、ピンホール63がFIB加工(集束イオンビーム加工)に影響したために生じた線であり、ピンホールや腐食ではない。   FIG. 6 is a cross-sectional photograph showing the state of the plating layer when pulse plating is applied to the underlayer composed only of the noble metal. As shown in FIG. 6, it can be seen that a pinhole 63 is generated in the plating layer 62 deposited on the base layer 61, and the plating layer 62 is not grown above the pinhole 63. The line 64 is a line generated because the pinhole 63 has an influence on the FIB processing (focused ion beam processing), and is not a pinhole or corrosion.

再び図3を参照すると、発明者らは、パルスめっきによるピンホール発生を抑制するための手段として、貴金属及び卑金属を含有する合金材料から構成された下地層2を採用した。かかる下地層2は、貴金属のみからなる下地層と比較して標準電極電位が低くなる。よって、下地層2にパルスめっきを施しても、めっき層3のピンホール発生を抑制することができるので、めっき層3を、厚くかつ緻密に形成することができる。   Referring to FIG. 3 again, the inventors employed the underlayer 2 made of an alloy material containing a noble metal and a base metal as a means for suppressing the generation of pinholes due to pulse plating. Such a base layer 2 has a lower standard electrode potential than a base layer made of only a noble metal. Therefore, even if pulse plating is applied to the underlayer 2, the generation of pinholes in the plating layer 3 can be suppressed, so that the plating layer 3 can be formed thick and dense.

また、下地層2は貴金属を含有しているから、磁気材料からなるめっき層3の軟磁気特性を向上させることができる。   Moreover, since the underlayer 2 contains a noble metal, the soft magnetic characteristics of the plating layer 3 made of a magnetic material can be improved.

更に発明者が検討したところ、下地層2の標準電極電位が高い場合、腐食という別の問題も生じる。即ち、下地層2の標準電極電位が高い場合、下地層2の標準電極電位と、めっき層3の標準電極電位との差が大きくなる。このため、図3に示した工程の後の段階で、下地層2及びめっき層3がめっき液またはエッチング液にさらされると、下地層2とめっき層3との間に、電池効果による腐食が発生するという問題がある。   Furthermore, as a result of investigation by the inventors, when the standard electrode potential of the underlayer 2 is high, another problem of corrosion also occurs. That is, when the standard electrode potential of the base layer 2 is high, the difference between the standard electrode potential of the base layer 2 and the standard electrode potential of the plating layer 3 increases. For this reason, if the foundation layer 2 and the plating layer 3 are exposed to a plating solution or an etching solution at a later stage of the process shown in FIG. 3, corrosion due to the battery effect occurs between the foundation layer 2 and the plating layer 3. There is a problem that occurs.

図7は、貴金属のみから構成された下地層にパルスめっきを適用した後の、下地層及びめっき層の状態を示す断面写真である。図7に示すように、パルスめっきを行った後、下地層71とめっき層72との間に腐食73が生じる。   FIG. 7 is a cross-sectional photograph showing the state of the underlayer and the plating layer after applying pulse plating to the underlayer composed only of the noble metal. As shown in FIG. 7, after pulse plating, corrosion 73 occurs between the base layer 71 and the plating layer 72.

この腐食の問題に関し、本発明では、図3を参照して説明したように、下地層2の標準電極電位を下げることができるので、下地層2の標準電極電位と、めっき層3の標準電極電位との差を縮めることができる。よって、電池効果による腐食を回避することができる。   Regarding the corrosion problem, in the present invention, as described with reference to FIG. 3, the standard electrode potential of the underlayer 2 can be lowered, so that the standard electrode potential of the underlayer 2 and the standard electrode of the plating layer 3 are reduced. The difference from the potential can be reduced. Therefore, corrosion due to the battery effect can be avoided.

また、別の実施形態として、下地層2上にめっき層3を析出させた後(図3)、めっき層3にめっきを施して、めっき層3上に、磁性材料からなる第2のめっき層を析出させてもよい。第2のめっき層を析出させるためのめっきとしては、上述したパルスめっき法のほか、一定の電圧もしくは電流を印加する通常のめっき法を採用することもできる。   As another embodiment, after depositing a plating layer 3 on the underlayer 2 (FIG. 3), the plating layer 3 is plated, and a second plating layer made of a magnetic material is formed on the plating layer 3. May be deposited. As plating for depositing the second plating layer, in addition to the pulse plating method described above, a normal plating method in which a constant voltage or current is applied may be employed.

以下、ピンホールや腐食の発生を防止する点、及び、軟磁気特性を向上させる点について、実験データを挙げて説明する。   Hereinafter, the points for preventing the occurrence of pinholes and corrosion and for improving the soft magnetic characteristics will be described with reference to experimental data.

<実験1>
まず、アルティックからなる基板上に、スパッタ法で下地層を形成した。下地層の組成としては、RhをベースとしCrを添加した組成を用いた。Cr添加量は、Rhに対して0at%〜100at%とした。また、下地層の層厚は20nmとした。
<Experiment 1>
First, an underlayer was formed on a substrate made of Altic by sputtering. As the composition of the underlayer, a composition in which Cr was added based on Rh was used. The amount of Cr added was 0 at% to 100 at% with respect to Rh. The layer thickness of the underlayer was 20 nm.

次に、下地層にパルスめっきを施し、下地層上に直接にめっき層を形成した。めっき層の組成としては、Fe75Co25を用い、めっき層の層厚は1.0μmとした。これにより、下地層及びめっき層を積層した構造の磁性膜を得た。   Next, pulse plating was applied to the underlayer, and a plating layer was formed directly on the underlayer. As the composition of the plating layer, Fe75Co25 was used, and the thickness of the plating layer was 1.0 μm. As a result, a magnetic film having a structure in which an underlayer and a plating layer were laminated was obtained.

次に、得られた磁性膜の軟磁気特性を調べた。具体的には、容易軸方向保磁力Hc(Oe)及び10MHzにおける透磁率u'を調べた。   Next, the soft magnetic characteristics of the obtained magnetic film were examined. Specifically, the easy axial direction coercive force Hc (Oe) and the magnetic permeability u ′ at 10 MHz were examined.

更に、下地層の結晶構造及びめっき層の不純物量(wt%)も調べた。めっき層の不純物量については、グロー放電質量分析法(GD−MS)にてめっき膜中の元素の定量を行い、不純物とみなされる元素(塩素、硫黄及び酸素)の合計量を求めることで、めっき層の不純物量とした。   Furthermore, the crystal structure of the underlayer and the impurity amount (wt%) of the plating layer were also examined. About the amount of impurities in the plating layer, the amount of elements in the plating film is determined by glow discharge mass spectrometry (GD-MS), and the total amount of elements (chlorine, sulfur and oxygen) regarded as impurities is obtained. The amount of impurities in the plating layer was used.

更に、ピンホールまたは腐食の有無についても調べた。実験結果を、下記の表1に示す。   Furthermore, the presence or absence of pinholes or corrosion was also examined. The experimental results are shown in Table 1 below.

表1に含まれる項目「下地層の結晶構造」について、hcpは六方最密構造、bccは体心立方構造、hcp-bccは六方最密構造と体心立方構造とが混在していることを表す。   Regarding the item “Crystal structure of the underlayer” included in Table 1, hcp is a hexagonal close-packed structure, bcc is a body-centered cubic structure, and hcp-bcc is a mixture of a hexagonal close-packed structure and a body-centered cubic structure. To express.

まず、ピンホールや腐食の発生について検討する。ピンホールや腐食の発生は、下地層の標準電極電位だけでなく、めっき層に取り込まれる不純物の量によっても影響を受ける。すなわち、めっき液中には、塩素、硫黄及び酸素等のガスが含まれている。そして、Cr添加量を少なくした下地層にパルスめっきを適用すると、ガスの発生が多くなり、めっき層中に不純物として多く取り込まれる。このめっき層中の不純物が、ピンホールや腐食の発生を招く。   First, the occurrence of pinholes and corrosion will be examined. The occurrence of pinholes and corrosion is affected not only by the standard electrode potential of the underlying layer but also by the amount of impurities taken into the plating layer. That is, the plating solution contains gases such as chlorine, sulfur and oxygen. When pulse plating is applied to the underlayer with a small amount of Cr added, gas generation increases and a large amount of impurities are taken into the plating layer. Impurities in the plating layer cause pinholes and corrosion.

Cr添加量を5at%未満とした場合、下地層の標準電極電位が高くなるとともに、めっき層の不純物量が多くなった。このため、ピンホールまたは腐食の何れかが発生した(サンプル1、2)。   When the amount of Cr added was less than 5 at%, the standard electrode potential of the underlayer increased and the amount of impurities in the plating layer increased. For this reason, either pinholes or corrosion occurred (Samples 1 and 2).

これに対し、Cr添加量を5at%以上とした場合、下地層の標準電極電位が低くなるとともに、めっき層の不純物量が少なくなった。よって、ピンホールまたは腐食の何れも抑制することができた(サンプル3〜15)。   On the other hand, when the Cr addition amount was 5 at% or more, the standard electrode potential of the underlayer was lowered and the impurity amount of the plating layer was reduced. Therefore, both pinholes and corrosion could be suppressed (Samples 3 to 15).

従って、ピンホールまたは腐食を防止する観点からは、Cr添加量を5at%以上とすればよいことがわかる。   Therefore, it can be seen that the Cr addition amount should be 5 at% or more from the viewpoint of preventing pinholes or corrosion.

次に、容易軸方向保磁力や透磁率などの軟磁気特性について検討する。Cr添加量を50at%以下とした場合、下地層の結晶構造は、貴金属Rhの結晶構造である六方最密構造(hcp)が支配的となった。このため、容易軸方向保磁力が40(Oe)以下、かつ、透磁率が600以上といった優れた軟磁気特性を確保することができた(サンプル1〜11)。   Next, soft magnetic properties such as easy axial coercivity and magnetic permeability will be examined. When the Cr addition amount was 50 at% or less, the crystal structure of the underlayer was dominated by the hexagonal close-packed structure (hcp), which is the crystal structure of the noble metal Rh. For this reason, it was possible to secure excellent soft magnetic characteristics such as an easy axial coercivity of 40 (Oe) or less and a magnetic permeability of 600 or more (Samples 1 to 11).

これに対し、Cr添加量を50at%よりも大きくした場合、下地層の結晶構造は、卑金属Crの結晶構造である体心立方構造(bcc)が支配的となった。このため、容易軸方向保磁力が40(Oe)を超え、透磁率が600未満となるといった、軟磁気特性の劣化が生じた(サンプル12〜15)。   On the other hand, when the Cr addition amount is larger than 50 at%, the body-centered cubic structure (bcc), which is the crystal structure of the base metal Cr, is dominant in the crystal structure of the underlayer. For this reason, the soft magnetic characteristics were deteriorated such that the easy axial coercive force exceeded 40 (Oe) and the magnetic permeability was less than 600 (samples 12 to 15).

従って、優れた軟磁気特性を確保する観点からは、Cr添加量を50at%以下とすればよいことがわかる。   Therefore, from the viewpoint of securing excellent soft magnetic properties, it is understood that the Cr addition amount should be 50 at% or less.

以上の結果から、ピンホールまたは腐食を防止すると同時に、優れた軟磁気特性を確保するには、Cr添加量を5at%以上50at%以下とすればよい。より好ましくは、軟磁気特性を更に向上させるため、Cr添加量を5at%以上20at%以下とする。   From the above results, in order to prevent pinholes or corrosion and at the same time ensure excellent soft magnetic properties, the Cr addition amount may be 5 at% or more and 50 at% or less. More preferably, in order to further improve the soft magnetic characteristics, the Cr addition amount is set to 5 at% or more and 20 at% or less.

<実験2>
実験2において、先の実験1と重複する点については以下説明を省略することがある。実験2では、下地層の組成として、PdをベースとしTiを添加した組成を用いた。Ti添加量は、Pdに対して0at%〜100at%とした。また、めっき層の組成としては、先の実験1と同様、Fe75Co25を用いた。
<Experiment 2>
In Experiment 2, the description of the same points as in Experiment 1 may be omitted below. In Experiment 2, a composition in which Ti was added based on Pd was used as the composition of the underlayer. The amount of Ti added was 0 at% to 100 at% with respect to Pd. Further, as the composition of the plating layer, Fe75Co25 was used as in Experiment 1 above.

実験結果を、下記の表2に示す。但し、実験2では、めっき層の不純物量(wt%)については調べなかった。   The experimental results are shown in Table 2 below. However, in Experiment 2, the amount of impurities (wt%) in the plating layer was not examined.

表2の項目「下地層の結晶構造」について、fccは面心立方構造、hcpは六方最密構造、fcc-hcpは面心立方構造と六方最密構造とが混在していることを表す。   Regarding the item “Crystal structure of the underlayer” in Table 2, fcc indicates a face-centered cubic structure, hcp indicates a hexagonal close-packed structure, and fcc-hcp indicates that a face-centered cubic structure and a hexagonal close-packed structure are mixed.

まず、ピンホールや腐食の発生について検討する。Ti添加量を5at%未満とした場合、ピンホールまたは腐食の何れかが発生した。これは、下地層の標準電極電位が高くなるとともに、めっき層の不純物量が多くなったためと考えられる(サンプル16、17)。   First, the occurrence of pinholes and corrosion will be examined. When the amount of Ti added was less than 5 at%, either pinholes or corrosion occurred. This is presumably because the standard electrode potential of the underlayer increased and the amount of impurities in the plating layer increased (samples 16 and 17).

これに対し、Ti添加量を5at%以上とした場合、ピンホールまたは腐食の何れも抑制することができた。これは、下地層の標準電極電位が低くなるとともに、めっき層の不純物量が少なくなったためと考えられる(サンプル18〜30)。   On the other hand, when the Ti addition amount was 5 at% or more, both pinholes and corrosion could be suppressed. This is presumably because the standard electrode potential of the underlying layer was lowered and the amount of impurities in the plating layer was reduced (Samples 18 to 30).

従って、ピンホールまたは腐食を防止する観点からは、Ti添加量を5at%以上とすればよいことがわかる。   Therefore, it can be seen that the amount of Ti added should be 5 at% or more from the viewpoint of preventing pinholes or corrosion.

次に、容易軸方向保磁力や透磁率などの軟磁気特性について検討する。Ti添加量を50at%以下とした場合、下地層の結晶構造は、貴金属Pdの結晶構造である面心立方構造が支配的となった。このため、容易軸方向保磁力が40(Oe)以下、かつ、透磁率が600以上といった優れた軟磁気特性を確保することができた(サンプル16〜26)。   Next, soft magnetic properties such as easy axial coercivity and magnetic permeability will be examined. When the Ti addition amount was 50 at% or less, the crystal structure of the underlayer was dominated by the face-centered cubic structure that is the crystal structure of the noble metal Pd. For this reason, it was possible to ensure excellent soft magnetic properties such as an easy axial coercive force of 40 (Oe) or less and a magnetic permeability of 600 or more (Samples 16 to 26).

これに対し、Ti添加量を50at%よりも大きくした場合、下地層の結晶構造は、卑金属Tiの結晶構造である六方最密構造が支配的となった。このため、容易軸方向保磁力が40(Oe)を超え、透磁率が600未満となるといった、軟磁気特性の劣化が生じた(サンプル27〜30)。   On the other hand, when the Ti addition amount was larger than 50 at%, the crystal structure of the underlayer was dominated by the hexagonal close-packed structure that is the crystal structure of the base metal Ti. For this reason, the soft magnetic characteristics were deteriorated such that the easy axial coercive force exceeded 40 (Oe) and the magnetic permeability was less than 600 (samples 27 to 30).

従って、優れた軟磁気特性を確保する観点からは、Ti添加量を50at%以下とすればよいことがわかる。   Therefore, from the viewpoint of securing excellent soft magnetic properties, it can be seen that the Ti addition amount should be 50 at% or less.

以上の結果から、ピンホールまたは腐食を防止すると同時に、優れた軟磁気特性を確保するには、Ti添加量を5at%以上50at%以下とすればよい。より好ましくは、軟磁気特性を更に向上させるため、Ti添加量を5at%以上20at%以下とする。   From the above results, in order to prevent pinholes or corrosion and at the same time ensure excellent soft magnetic properties, the amount of Ti added may be 5 at% or more and 50 at% or less. More preferably, in order to further improve the soft magnetic characteristics, the amount of Ti added is set to 5 at% or more and 20 at% or less.

<実験3>
実験3において、先の実験2と重複する点については以下説明を省略することがある。実験3では、下地層の組成として、RuをベースとしCrを添加した組成を用いた。Cr添加量は、Ruに対して0at%〜100at%とした。また、めっき層の組成としては、先の実験2と同様、Fe75Co25を用いた。実験結果を、下記の表3に示す。
<Experiment 3>
In Experiment 3, the description of points that overlap with the previous Experiment 2 may be omitted. In Experiment 3, as the composition of the underlayer, a composition in which Cr was added based on Ru was used. The amount of Cr added was 0 at% to 100 at% with respect to Ru. Further, as the composition of the plating layer, Fe75Co25 was used as in Experiment 2 above. The experimental results are shown in Table 3 below.

表3の項目「下地層の結晶構造」について、hcpは六方最密構造、bccは体心立方構造、hcp-bccは六方最密構造と体心立方構造とが混在していることを表すことは表1と同様である。   Regarding the item “Crystal structure of the underlayer” in Table 3, hcp indicates a hexagonal close-packed structure, bcc indicates a body-centered cubic structure, and hcp-bcc indicates that a hexagonal close-packed structure and a body-centered cubic structure are mixed. Is the same as in Table 1.

まず、ピンホールや腐食の発生について検討する。Cr添加量を5at%未満とした場合、ピンホールまたは腐食の何れかが発生した。これは、下地層の標準電極電位が高くなるとともに、めっき層の不純物量が多くなったためと考えられる(サンプル31、32)。   First, the occurrence of pinholes and corrosion will be examined. When the amount of Cr added was less than 5 at%, either pinholes or corrosion occurred. This is presumably because the standard electrode potential of the underlayer increased and the amount of impurities in the plating layer increased (samples 31 and 32).

これに対し、Cr添加量を5at%以上とした場合、ピンホールまたは腐食の何れも抑制することができた。これは、下地層の標準電極電位が低くなるとともに、めっき層の不純物量が少なくなったためと考えられる(サンプル33〜41)。   On the other hand, when the amount of Cr added is 5 at% or more, both pinholes and corrosion could be suppressed. This is presumably because the standard electrode potential of the underlying layer was lowered and the amount of impurities in the plating layer was reduced (Samples 33 to 41).

従って、ピンホールまたは腐食を防止する観点からは、Cr添加量を5at%以上とすればよいことがわかる。   Therefore, it can be seen that the Cr addition amount should be 5 at% or more from the viewpoint of preventing pinholes or corrosion.

次に、容易軸方向保磁力や透磁率などの軟磁気特性について検討する。Cr添加量を55at%以下とした場合、下地層の結晶構造は、貴金属Ruの結晶構造である六方最密構造(hcp)が支配的となる。従って、Cr添加量の余裕分を考慮して、Cr添加量を50at%以下とすれば、容易軸方向保磁力が40(Oe)以下、かつ、透磁率が600以上といった優れた軟磁気特性を確保することができる(サンプル31〜38)。   Next, soft magnetic properties such as easy axial coercivity and magnetic permeability will be examined. When the Cr addition amount is 55 at% or less, the crystal structure of the underlayer is dominated by the hexagonal close-packed structure (hcp), which is the crystal structure of the noble metal Ru. Therefore, considering the margin of the Cr addition amount, if the Cr addition amount is 50 at% or less, excellent soft magnetic characteristics such as easy axial coercive force of 40 (Oe) or less and permeability of 600 or more are obtained. (Samples 31 to 38) can be secured.

これに対し、Cr添加量を50at%よりも大きくした場合、下地層の結晶構造は、卑金属Crの結晶構造である体心立方構造(bcc)が支配的となった。このため、容易軸方向保磁力が40(Oe)を超え、透磁率が600未満となるといった、軟磁気特性の劣化が生じた(サンプル39〜41)。   On the other hand, when the Cr addition amount is larger than 50 at%, the body-centered cubic structure (bcc), which is the crystal structure of the base metal Cr, is dominant in the crystal structure of the underlayer. For this reason, the soft magnetic characteristics were deteriorated such that the easy axial coercive force exceeded 40 (Oe) and the magnetic permeability was less than 600 (samples 39 to 41).

従って、優れた軟磁気特性を確保する観点からは、Cr添加量を50at%以下とすればよいことがわかる。   Therefore, from the viewpoint of securing excellent soft magnetic properties, it is understood that the Cr addition amount should be 50 at% or less.

以上の結果から、ピンホールまたは腐食を防止すると同時に、優れた軟磁気特性を確保するには、Cr添加量を5at%以上50at%以下とすればよい。より好ましくは、軟磁気特性を更に向上させるため、Cr添加量を5at%以上20at%以下とする。   From the above results, in order to prevent pinholes or corrosion and at the same time ensure excellent soft magnetic properties, the Cr addition amount may be 5 at% or more and 50 at% or less. More preferably, in order to further improve the soft magnetic characteristics, the Cr addition amount is set to 5 at% or more and 20 at% or less.

<実験4>
実験4において、先の実験2と重複する点については以下説明を省略することがある。実験4では、下地層の組成として、PtをベースとしCrを添加した組成を用いた。Cr添加量は、Ptに対して0at%〜100at%とした。また、めっき層の組成としては、先の実験2と同様、Fe75Co25を用いた。実験結果を、下記の表4に示す。
<Experiment 4>
In Experiment 4, the description of points overlapping with the previous Experiment 2 may be omitted. In Experiment 4, a composition in which Cr was added based on Pt was used as the composition of the underlayer. The amount of Cr added was 0 at% to 100 at% with respect to Pt. Further, as the composition of the plating layer, Fe75Co25 was used as in Experiment 2 above. The experimental results are shown in Table 4 below.

表4の項目「下地層の結晶構造」について、fccは面心立方構造、bccは体心立方構造、fcc-bccは面心立方構造と体心立方構造とが混在していることを表す。   Regarding the item “Crystal structure of the underlayer” in Table 4, fcc indicates a face-centered cubic structure, bcc indicates a body-centered cubic structure, and fcc-bcc indicates that a face-centered cubic structure and a body-centered cubic structure are mixed.

まず、ピンホールや腐食の発生について検討する。Cr添加量を5at%未満とした場合、ピンホールまたは腐食の何れかが発生した。これは、下地層の標準電極電位が高くなるとともに、めっき層の不純物量が多くなったためと考えられる(サンプル42、43)。   First, the occurrence of pinholes and corrosion will be examined. When the amount of Cr added was less than 5 at%, either pinholes or corrosion occurred. This is presumably because the standard electrode potential of the underlayer increased and the amount of impurities in the plating layer increased (samples 42 and 43).

これに対し、Cr添加量を5at%以上とした場合、ピンホールまたは腐食の何れも抑制することができた。これは、下地層の標準電極電位が低くなるとともに、めっき層の不純物量が少なくなったためと考えられる(サンプル44〜52)。   On the other hand, when the amount of Cr added is 5 at% or more, both pinholes and corrosion could be suppressed. This is presumably because the standard electrode potential of the underlying layer was lowered and the amount of impurities in the plating layer was reduced (samples 44 to 52).

従って、ピンホールまたは腐食を防止する観点からは、Cr添加量を5at%以上とすればよいことがわかる。   Therefore, it can be seen that the Cr addition amount should be 5 at% or more from the viewpoint of preventing pinholes or corrosion.

次に、容易軸方向保磁力や透磁率などの軟磁気特性について検討する。Cr添加量を55at%以下とした場合、下地層の結晶構造は、貴金属Ruの結晶構造である六方最密構造(hcp)が支配的となる。従って、Cr添加量の余裕分を考慮して、Cr添加量を50at%以下とすれば、容易軸方向保磁力が40(Oe)以下、かつ、透磁率が600以上といった優れた軟磁気特性を確保することができる(サンプル31〜38)。   Next, soft magnetic properties such as easy axial coercivity and magnetic permeability will be examined. When the Cr addition amount is 55 at% or less, the crystal structure of the underlayer is dominated by the hexagonal close-packed structure (hcp), which is the crystal structure of the noble metal Ru. Therefore, considering the margin of the Cr addition amount, if the Cr addition amount is 50 at% or less, excellent soft magnetic characteristics such as easy axial coercive force of 40 (Oe) or less and permeability of 600 or more are obtained. (Samples 31 to 38) can be secured.

従って、優れた軟磁気特性を確保する観点からは、Cr添加量を50at%以下とすればよいことがわかる。   Therefore, from the viewpoint of securing excellent soft magnetic properties, it is understood that the Cr addition amount should be 50 at% or less.

以上の結果から、ピンホールまたは腐食を防止すると同時に、優れた軟磁気特性を確保するには、Cr添加量を5at%以上50at%以下とすればよい。より好ましくは、軟磁気特性を更に向上させるため、Cr添加量を5at%以上20at%以下とする。   From the above results, in order to prevent pinholes or corrosion and at the same time ensure excellent soft magnetic properties, the Cr addition amount may be 5 at% or more and 50 at% or less. More preferably, in order to further improve the soft magnetic characteristics, the Cr addition amount is set to 5 at% or more and 20 at% or less.

<実験5>
実験5において、先の実験2と重複する点については以下説明を省略することがある。実験5では、下地層の組成として、PtをベースとしTiを添加した組成を用いた。Ti添加量は、Ptに対して0at%〜100at%とした。また、めっき層の組成としては、先の実験2と同様、Fe75Co25を用いた。実験結果を、下記の表5に示す。
<Experiment 5>
In Experiment 5, the same points as in Experiment 2 above may not be described below. In Experiment 5, a composition in which Ti was added based on Pt was used as the composition of the underlayer. The amount of Ti added was 0 at% to 100 at% with respect to Pt. Further, as the composition of the plating layer, Fe75Co25 was used as in Experiment 2 above. The experimental results are shown in Table 5 below.

表5の項目「下地層の結晶構造」について、hcpは六方最密構造、fccは面心立方構造、bccは体心立方構造、fcc-bccは面心立方構造と体心立方構造とが混在していることを表す。   Regarding the item “Crystal structure of the underlayer” in Table 5, hcp is a hexagonal close-packed structure, fcc is a face-centered cubic structure, bcc is a body-centered cubic structure, and fcc-bcc is a mixture of face-centered cubic structure and body-centered cubic structure. Represents that you are doing.

まず、ピンホールや腐食の発生について検討する。Ti添加量を5at%未満とした場合、ピンホールまたは腐食の何れかが発生した。これは、下地層の標準電極電位が高くなるとともに、めっき層の不純物量が多くなったためと考えられる(サンプル53、54)。   First, the occurrence of pinholes and corrosion will be examined. When the amount of Ti added was less than 5 at%, either pinholes or corrosion occurred. This is presumably because the standard electrode potential of the underlayer increased and the amount of impurities in the plating layer increased (samples 53 and 54).

これに対し、Ti添加量を5at%以上とした場合、ピンホールまたは腐食の何れも抑制することができた。これは、下地層の標準電極電位が低くなるとともに、めっき層の不純物量が少なくなったためと考えられる(サンプル55〜63)。   On the other hand, when the Ti addition amount was 5 at% or more, both pinholes and corrosion could be suppressed. This is presumably because the standard electrode potential of the underlying layer was lowered and the amount of impurities in the plating layer was reduced (Samples 55 to 63).

従って、ピンホールまたは腐食を防止する観点からは、Ti添加量を5at%以上とすればよいことがわかる。   Therefore, it can be seen that the amount of Ti added should be 5 at% or more from the viewpoint of preventing pinholes or corrosion.

次に、容易軸方向保磁力や透磁率などの軟磁気特性について検討する。Ti添加量を50at%以下とした場合、容易軸方向保磁力が40(Oe)以下、かつ、透磁率が600以上といった優れた軟磁気特性を確保することができた(サンプル53〜60)。   Next, soft magnetic properties such as easy axial coercivity and magnetic permeability will be examined. When the Ti addition amount was 50 at% or less, excellent soft magnetic properties such as easy axial coercivity of 40 (Oe) or less and permeability of 600 or more could be secured (Samples 53 to 60).

これに対し、Ti添加量を50at%よりも大きくした場合、容易軸方向保磁力が40(Oe)を超え、透磁率が600未満となるといった、軟磁気特性の劣化が生じた(サンプル61〜63)。   On the other hand, when the Ti addition amount is larger than 50 at%, the soft magnetic characteristics are deteriorated such that the easy axial coercive force exceeds 40 (Oe) and the magnetic permeability is less than 600 (Samples 61 to 61). 63).

従って、優れた軟磁気特性を確保する観点からは、Cr添加量を50at%以下とすればよいことがわかる。   Therefore, from the viewpoint of securing excellent soft magnetic properties, it is understood that the Cr addition amount should be 50 at% or less.

以上の結果から、ピンホールまたは腐食を防止すると同時に、優れた軟磁気特性を確保するには、Ti添加量を5at%以上50at%以下とすればよい。より好ましくは、軟磁気特性を更に向上させるため、Ti添加量を5at%以上20at%以下とする。   From the above results, in order to prevent pinholes or corrosion and at the same time ensure excellent soft magnetic properties, the amount of Ti added may be 5 at% or more and 50 at% or less. More preferably, in order to further improve the soft magnetic characteristics, the amount of Ti added is set to 5 at% or more and 20 at% or less.

<実験6>
実験6において、先の実験2と重複する点については以下説明を省略することがある。実験6では、下地層の組成として、RuをベースとしTiを添加した組成を用いた。Ti添加量は、Ruに対して0at%〜100at%とした。また、めっき層の組成としては、先の実験2と同様、Fe75Co25を用いた。実験結果を、下記の表6に示す。
<Experiment 6>
In the experiment 6, the description overlapping with the previous experiment 2 may be omitted below. In Experiment 6, a composition in which Ti was added based on Ru was used as the composition of the underlayer. The amount of Ti added was 0 at% to 100 at% with respect to Ru. Further, as the composition of the plating layer, Fe75Co25 was used as in Experiment 2 above. The experimental results are shown in Table 6 below.

まず、ピンホールや腐食の発生について検討する。Ti添加量を5at%未満とした場合、ピンホールまたは腐食の何れかが発生した。これは、下地層の標準電極電位が高くなるとともに、めっき層の不純物量が多くなったためと考えられる(サンプル64、65)。 First, the occurrence of pinholes and corrosion will be examined. When the amount of Ti added was less than 5 at%, either pinholes or corrosion occurred. This is presumably because the standard electrode potential of the underlayer increased and the amount of impurities in the plating layer increased (samples 64 and 65).

これに対し、Ti添加量を5at%以上とした場合、ピンホールまたは腐食の何れも抑制することができた。これは、下地層の標準電極電位が低くなるとともに、めっき層の不純物量が少なくなったためと考えられる(サンプル66〜74)。   On the other hand, when the Ti addition amount was 5 at% or more, both pinholes and corrosion could be suppressed. This is presumably because the standard electrode potential of the underlying layer was lowered and the amount of impurities in the plating layer was reduced (Samples 66 to 74).

従って、ピンホールまたは腐食を防止する観点からは、Ti添加量を5at%以上とすればよいことがわかる。   Therefore, it can be seen that the amount of Ti added should be 5 at% or more from the viewpoint of preventing pinholes or corrosion.

次に、容易軸方向保磁力や透磁率などの軟磁気特性について検討する。Ti添加量を50at%以下とした場合、容易軸方向保磁力が40(Oe)以下、かつ、透磁率が600以上といった優れた軟磁気特性を確保することができた(サンプル64〜71)。   Next, soft magnetic properties such as easy axial coercivity and magnetic permeability will be examined. When the Ti addition amount was 50 at% or less, excellent soft magnetic characteristics such as an easy axial coercive force of 40 (Oe) or less and a magnetic permeability of 600 or more could be secured (Samples 64-71).

これに対し、Ti添加量を50at%よりも大きくした場合、容易軸方向保磁力が40(Oe)を超え、透磁率が600未満となるといった、軟磁気特性の劣化が生じた(サンプル72〜74)。   On the other hand, when the Ti addition amount is larger than 50 at%, soft magnetic characteristics are deteriorated such that the easy axial coercive force exceeds 40 (Oe) and the magnetic permeability becomes less than 600 (samples 72 to 72). 74).

従って、優れた軟磁気特性を確保する観点からは、Cr添加量を50at%以下とすればよいことがわかる。   Therefore, from the viewpoint of securing excellent soft magnetic properties, it is understood that the Cr addition amount should be 50 at% or less.

以上の結果から、ピンホールまたは腐食を防止すると同時に、優れた軟磁気特性を確保するには、Ti添加量を5at%以上50at%以下とすればよい。より好ましくは、軟磁気特性を更に向上させるため、Ti添加量を5at%以上20at%以下とする。   From the above results, in order to prevent pinholes or corrosion and at the same time ensure excellent soft magnetic properties, the amount of Ti added may be 5 at% or more and 50 at% or less. More preferably, in order to further improve the soft magnetic characteristics, the amount of Ti added is set to 5 at% or more and 20 at% or less.

図8は本発明に係る薄膜磁気ヘッドの一実施形態を示す媒体対向面側の平面図、図9は図8に示した薄膜磁気ヘッドの正面断面図、図10は図8及び図9に示した薄膜磁気ヘッドの素子部分の拡大断面図である。何れの図面においても、寸法、プロポーション等は、図示の都合上、誇張されまたは省略されている。   8 is a plan view of the medium facing surface side showing an embodiment of a thin film magnetic head according to the present invention, FIG. 9 is a front sectional view of the thin film magnetic head shown in FIG. 8, and FIG. 10 is shown in FIGS. 2 is an enlarged cross-sectional view of an element portion of a thin film magnetic head. In any of the drawings, dimensions, proportions, etc. are exaggerated or omitted for convenience of illustration.

まず、図8及び図9を参照すると、スライダ基体100は、例えば、アルティック(Al−TiC)等のセラミック材料からなり、媒体対向面に浮上特性制御用の幾何学的形状を有している。そのような幾何学的形状の代表例として、実施例では、スライダ基体100の基底面10に、第1の段部11、第2の段部12、第3の段部13、第4の段部14、及び、第5の段部15を備える例を示してある。基底面10は、矢印Aで示す空気の流れ方向に対する負圧発生部となり、第2の段部12及び第3の段部13は、第1の段部11から立ち上がるステップ状の空気軸受けを構成する。第2の段部12及び第3の段部13の表面はABSとなる。 First, referring to FIGS. 8 and 9, the slider base 100 is made of a ceramic material such as AlTiC (Al 2 O 3 —TiC), for example, and has a geometric shape for controlling the flying characteristics on the medium facing surface. is doing. As a representative example of such a geometric shape, in the embodiment, a first step portion 11, a second step portion 12, a third step portion 13, and a fourth step are formed on the base surface 10 of the slider base 100. The example provided with the part 14 and the 5th step part 15 is shown. The basal plane 10 becomes a negative pressure generating portion with respect to the air flow direction indicated by the arrow A, and the second step portion 12 and the third step portion 13 constitute a stepped air bearing rising from the first step portion 11. To do. The surfaces of the second step portion 12 and the third step portion 13 are ABS.

第4の段部14は、基底面10からステップ状に立ち上がり、第5の段部15は第4の段部14からステップ状に立ちあがっている。書込み素子200及び読取素子300は第5の段部15に設けられている。   The fourth step portion 14 rises in a step shape from the base surface 10, and the fifth step portion 15 rises in a step shape from the fourth step portion 14. The writing element 200 and the reading element 300 are provided in the fifth step portion 15.

次に、図10を参照すると、読取素子300は、MR素子30と、下部シールド膜31と、上部シールド膜33とを含む。図示実施形態の場合、MR素子30は、CIPタイプのGMR素子でなる。CIPタイプのGMR素子でなるMR素子30は、MR素子の下面と下部シールド膜31との間に絶縁ギャップを生じ、かつ、MR素子の上面と上部シールド膜33との間に絶縁ギャップを生じるように、絶縁ギャップ膜32の内部に配置されている。   Next, referring to FIG. 10, the reading element 300 includes an MR element 30, a lower shield film 31, and an upper shield film 33. In the illustrated embodiment, the MR element 30 is a CIP type GMR element. The MR element 30 that is a CIP type GMR element generates an insulating gap between the lower surface of the MR element and the lower shield film 31 and generates an insulating gap between the upper surface of the MR element and the upper shield film 33. The insulating gap film 32 is disposed inside.

図示実施形態と異なり、MR素子30が、CPPタイプのTMR素子またはGMR素子でなってもよい。CPPタイプのTMR素子またはGMR素子でなるMR素子30は、MR素子の下面と下部シールド膜31との間に絶縁ギャップを介さず、かつ、MR素子の上面と上部シールド膜33との間に絶縁ギャップを介さない態様で配置される。   Unlike the illustrated embodiment, the MR element 30 may be a CPP type TMR element or GMR element. The MR element 30 formed of a CPP type TMR element or GMR element is not insulated between the lower surface of the MR element and the lower shield film 31 and is insulated between the upper surface of the MR element and the upper shield film 33. It arrange | positions in the aspect which does not pass through a gap.

書込み素子200は、下部磁性膜21と、上部磁性膜22と、薄膜コイル231、232と、書込みギャップ膜24とを含む。下部磁性膜21は、下部ヨーク部210と、下部ポール部211とを有する。下部ポール部211は、記録媒体に対向する側、即ち、ABS12、13の側において下部ヨーク部210の端部に突出して備えられている。そして、下部ポール部211は、上部シールド膜33に隣接させた絶縁膜34の上に、下地膜215を介して設けられている。参照符号213は、下部ヨーク部210に設けられた凹部、参照符号270は、凹部213を埋めるように設けられた絶縁膜である。   The write element 200 includes a lower magnetic film 21, an upper magnetic film 22, thin film coils 231 and 232, and a write gap film 24. The lower magnetic film 21 has a lower yoke part 210 and a lower pole part 211. The lower pole portion 211 is provided so as to protrude from the end of the lower yoke portion 210 on the side facing the recording medium, that is, on the ABS 12 and 13 side. The lower pole portion 211 is provided on the insulating film 34 adjacent to the upper shield film 33 via a base film 215. Reference numeral 213 is a recess provided in the lower yoke part 210, and reference numeral 270 is an insulating film provided so as to fill the recess 213.

上部磁性膜22は、上部ヨーク部221と、上部ポール部(222、223)とを有している。ヨーク部とポール部の区別は、磁気回路上、必ずしも明確ではないが、面積の大小によって区別することができる。すなわち、広い面積を有する部分をヨーク部と称し、この広い面積の部分から絞り込まれた結果、小面積となった部分を、ポール部と称する。上部磁性膜22は、アルミナなどの絶縁膜274によって覆われている。   The upper magnetic film 22 has an upper yoke portion 221 and upper pole portions (222, 223). The distinction between the yoke part and the pole part is not necessarily clear on the magnetic circuit, but can be distinguished by the size of the area. That is, a portion having a large area is referred to as a yoke portion, and a portion having a small area as a result of being narrowed down from the large area portion is referred to as a pole portion. The upper magnetic film 22 is covered with an insulating film 274 such as alumina.

上部ヨーク部221は、下部ヨーク部210から間隔を隔て、記録媒体に対向するABS12、13の側から見て後方に位置する後方結合部26により、下部ヨーク部210と磁気的に結合されている。薄膜コイル231、232は、下部ヨーク部210及び上部ヨーク部221の間に存在する絶縁膜25、271、272、275、276によって、電気的に絶縁されている。絶縁膜25、271、272、275、276は、有機絶縁膜、無機絶縁膜又はそれらの組み合わせによって構成される。   The upper yoke portion 221 is magnetically coupled to the lower yoke portion 210 by a rear coupling portion 26 that is spaced from the lower yoke portion 210 and is located rearward when viewed from the ABSs 12 and 13 facing the recording medium. . The thin film coils 231 and 232 are electrically insulated by insulating films 25, 271, 272, 275 and 276 existing between the lower yoke part 210 and the upper yoke part 221. The insulating films 25, 271, 272, 275, and 276 are formed of an organic insulating film, an inorganic insulating film, or a combination thereof.

上部ポール部(222、223)は、上部ポール端部223と、上部ポール後部222とを含み、下地膜225及び書込みギャップ膜24を挟んで下部ポール部211と向き合っている。   The upper pole portion (222, 223) includes an upper pole end portion 223 and an upper pole rear portion 222, and faces the lower pole portion 211 with the base film 225 and the write gap film 24 interposed therebetween.

上述した薄膜磁気ヘッドにおいて、書込み素子200の下部ポール部211または上部ポール端部223は、図1の磁性膜5に示された構成を採用することができる。例えば、下部ポール部211及び下地膜215が、それぞれ、図1に示した磁性膜5のめっき層3及び下地層2に相当する構成となる。また、上部ポール端部223及び下地膜225が、それぞれ、図1に示した磁性膜5のめっき層3及び下地層2に相当する構成となる。このように、書込み素子200の下部ポール部211または上部ポール端部223として、図1の磁性膜5に示された構成を採用することにより、書込み素子の性能を向上させることができる。   In the above-described thin film magnetic head, the configuration shown in the magnetic film 5 of FIG. 1 can be adopted for the lower pole portion 211 or the upper pole end portion 223 of the write element 200. For example, the lower pole portion 211 and the base film 215 correspond to the plating layer 3 and the base layer 2 of the magnetic film 5 shown in FIG. Further, the upper pole end portion 223 and the base film 225 are configured to correspond to the plating layer 3 and the base layer 2 of the magnetic film 5 shown in FIG. Thus, by adopting the configuration shown in the magnetic film 5 of FIG. 1 as the lower pole portion 211 or the upper pole end portion 223 of the write element 200, the performance of the write element can be improved.

また、読取素子300の下部シールド膜31または上部シールド膜33は、図1の磁性膜5に示された構成を採用することができる。例えば、下部シールド膜31及びその下地膜310が、それぞれ、図1に示した磁性膜5のめっき層3及び下地層2に相当する構成となる。また、上部シールド膜33及びその下地膜330が、それぞれ、図1に示した磁性膜5のめっき層3及び下地層2に相当する構成となる。このように、読取素子300の下部シールド膜31または上部シールド膜33として、図1の磁性膜5に示された構成を採用し、透磁率を上げることにより、読取素子の性能を向上させることができる。   Further, the lower shield film 31 or the upper shield film 33 of the reading element 300 can adopt the configuration shown in the magnetic film 5 of FIG. For example, the lower shield film 31 and the underlying film 310 have a configuration corresponding to the plating layer 3 and the underlying layer 2 of the magnetic film 5 shown in FIG. Further, the upper shield film 33 and the base film 330 thereof correspond to the plating layer 3 and the base layer 2 of the magnetic film 5 shown in FIG. As described above, by adopting the configuration shown in the magnetic film 5 of FIG. 1 as the lower shield film 31 or the upper shield film 33 of the reading element 300 and increasing the magnetic permeability, the performance of the reading element can be improved. it can.

また、図示の薄膜磁気ヘッドは、面内磁気記録用の薄膜磁気ヘッドであるが、これに限らず、垂直磁気記録用の薄膜磁気ヘッドでも、図1に示した磁性膜5を採用することができる。   The illustrated thin film magnetic head is a thin film magnetic head for in-plane magnetic recording. However, the present invention is not limited to this, and the thin film magnetic head for perpendicular magnetic recording can employ the magnetic film 5 shown in FIG. it can.

以上、実施の形態を参照して説明したが、本発明はこの実施形態に限定されるものではなく、特許請求の範囲内において、種々の変形、変更が可能であることは言うまでもない。   While the present invention has been described with reference to the embodiment, it is needless to say that the present invention is not limited to this embodiment, and various modifications and changes can be made within the scope of the claims.

本発明に係る磁性膜の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the magnetic film which concerns on this invention. 本発明に係る磁性膜の製造方法の一実施形態を説明する図である。It is a figure explaining one Embodiment of the manufacturing method of the magnetic film which concerns on this invention. 図2に示した工程の後の工程を示す図である。It is a figure which shows the process after the process shown in FIG. パルスめっきにおける電圧波形の例を示す図である。It is a figure which shows the example of the voltage waveform in pulse plating. パルスめっきにおける電圧波形の別の例を示す図である。It is a figure which shows another example of the voltage waveform in pulse plating. 貴金属のみから構成された下地層にパルスめっきを適用した場合のめっき層の状態を示す断面写真である。It is a cross-sectional photograph which shows the state of the plating layer at the time of applying pulse plating to the base layer comprised only from the noble metal. 貴金属のみから構成された下地層にパルスめっきを適用した後の、下地層及びめっき層の状態を示す断面写真である。It is a cross-sectional photograph which shows the state of a base layer and a plating layer after applying pulse plating to the base layer comprised only from the noble metal. 本発明に係る薄膜磁気ヘッドの一実施形態を示す媒体対向面側の平面図である。1 is a plan view of a medium facing surface side showing an embodiment of a thin film magnetic head according to the present invention. FIG. 図8に示した薄膜磁気ヘッドの正面断面図である。FIG. 9 is a front sectional view of the thin film magnetic head shown in FIG. 8. 図8及び図9に示した薄膜磁気ヘッドの素子部分の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of an element portion of the thin film magnetic head shown in FIGS. 8 and 9.

符号の説明Explanation of symbols

1 基板
2 下地層
3 めっき層
1 Substrate 2 Underlayer 3 Plating layer

Claims (7)

下地層にパルスめっきを施して、前記下地層上に磁性材料からなるめっき層を析出させる磁性膜の製造方法であって、
前記下地層は、貴金属元素及び卑金属元素を含む合金材料からなり、
前記貴金属元素及び前記卑金属元素の組み合わせは、(Rh、Cr)、(Ru、Cr)、(Pt、Cr)、(Pd、Ti)、(Pt、Ti)又は(Ru、Ti)の何れかであり、
前記貴金属元素に対する前記卑金属元素の添加量が、5at%以上50at%以下の範囲にある、
磁性膜の製造方法。
A method for producing a magnetic film, comprising subjecting an underlayer to pulse plating and depositing a plating layer made of a magnetic material on the underlayer,
The underlayer is made of an alloy material containing a noble metal element and a base metal element,
The combination of the noble metal element and the base metal element is (Rh, Cr), (Ru, Cr), (Pt, Cr), (Pd, Ti), (Pt, Ti) or (Ru, Ti). Yes,
The amount of the base metal element added to the noble metal element is in the range of 5 at% to 50 at%.
Manufacturing method of magnetic film.
請求項1に記載された磁性膜の製造方法であって、前記下地層の標準電極電位は、−1.00V以上0.70V以下の範囲にある、磁性膜の製造方法。 2. The method of manufacturing a magnetic film according to claim 1, wherein the standard electrode potential of the underlayer is in a range of −1.00 V to 0.70 V. 3 . 請求項1又は2に記載された磁性膜の製造方法であって、
前記下地層上に磁性材料からなる前記めっき層を析出させた後、前記めっき層にめっきを施して、前記めっき層上に、磁性材料からなる第2のめっき層を析出させる、
磁性膜の製造方法。
A method of manufacturing a magnetic film according to claim 1 or 2 ,
After the plating layer made of a magnetic material is deposited on the underlayer, the plating layer is plated to deposit a second plating layer made of a magnetic material on the plating layer.
Manufacturing method of magnetic film.
下地層と、前記下地層上に形成され、磁性材料からなるめっき層とを備えた磁性膜であって、A magnetic film comprising an underlayer and a plating layer formed on the underlayer and made of a magnetic material,
前記下地層は、貴金属元素及び卑金属元素を含む合金材料からなり、The underlayer is made of an alloy material containing a noble metal element and a base metal element,
前記貴金属元素及び前記卑金属元素の組み合わせは、(Rh、Cr)、(Ru、Cr)、(Pt、Cr)、(Pd、Ti)、(Pt、Ti)又は(Ru、Ti)の何れかであり、、The combination of the noble metal element and the base metal element is (Rh, Cr), (Ru, Cr), (Pt, Cr), (Pd, Ti), (Pt, Ti) or (Ru, Ti). Yes,
前記貴金属元素に対する前記卑金属元素の添加量が、5at%以上50at%以下の範囲にある、The amount of the base metal element added to the noble metal element is in the range of 5 at% to 50 at%.
磁性膜。Magnetic film.
請求項4に記載された磁性膜であって、前記下地層の標準電極電位は、−1.00V以上0.70V以下の範囲にある、磁性膜。   5. The magnetic film according to claim 4, wherein a standard electrode potential of the underlayer is in a range of −1.00V to 0.70V. 請求項4又は5に記載された磁性膜であって、前記めっき層上に形成され、磁性材料からなる第2のめっき層を備えた磁性膜。   6. The magnetic film according to claim 4, comprising a second plating layer formed on the plating layer and made of a magnetic material. 書込み素子と、読取素子と、スライダとを含む薄膜磁気ヘッドであって、
前記書込み素子または前記読取素子は、請求項4乃至6の何れかに記載された磁性膜を含み
前記スライダは、前記書込み素子及び前記読取素子を支持する、
薄膜磁気ヘッド。
A thin film magnetic head including a writing element, a reading element, and a slider,
The write element or the read element includes a magnetic film according to any one of claims 4 to 6, wherein the slider supports the write element and the read element.
Thin film magnetic head.
JP2006251390A 2006-09-15 2006-09-15 Magnetic film manufacturing method and magnetic film Active JP4385043B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006251390A JP4385043B2 (en) 2006-09-15 2006-09-15 Magnetic film manufacturing method and magnetic film
US11/765,069 US8568908B2 (en) 2006-09-15 2007-06-19 Method for manufacturing magnetic film and magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251390A JP4385043B2 (en) 2006-09-15 2006-09-15 Magnetic film manufacturing method and magnetic film

Publications (2)

Publication Number Publication Date
JP2008072055A JP2008072055A (en) 2008-03-27
JP4385043B2 true JP4385043B2 (en) 2009-12-16

Family

ID=39188978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251390A Active JP4385043B2 (en) 2006-09-15 2006-09-15 Magnetic film manufacturing method and magnetic film

Country Status (2)

Country Link
US (1) US8568908B2 (en)
JP (1) JP4385043B2 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757934A (en) 1993-08-20 1995-03-03 Matsushita Electric Ind Co Ltd Soft magnetic laminate film and production thereof
JP3799168B2 (en) * 1998-08-20 2006-07-19 株式会社日立グローバルストレージテクノロジーズ Magnetic recording / reproducing device
JP3455155B2 (en) * 1999-06-28 2003-10-14 アルプス電気株式会社 Thin film magnetic head and method of manufacturing the same
JP2001134910A (en) * 1999-08-26 2001-05-18 Tdk Corp Magneto resistance sensor and thin film magnetic head
US6686072B2 (en) * 2000-08-29 2004-02-03 Showa Denko Kabushiki Kaisha Magnetic recording medium, process and apparatus for producing the same, and magnetic recording and reproducing apparatus
US20070111035A1 (en) * 2000-12-28 2007-05-17 Showa Denko K.K. Magnetic recording medium, method of producing the same and magnetic recording and reproducing device
JP3708827B2 (en) 2001-02-06 2005-10-19 アルプス電気株式会社 Thin film magnetic head and manufacturing method thereof
EP1401031A1 (en) * 2001-06-26 2004-03-24 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device and its producing method
JP2003123220A (en) * 2001-10-18 2003-04-25 Fuji Electric Co Ltd Magnetic recording medium, method of manufacturing the same and magnetic recording device
JP2003346317A (en) * 2002-05-23 2003-12-05 Fuji Photo Film Co Ltd Perpendicular magnetic recording medium
JP2005025890A (en) 2003-07-04 2005-01-27 Fujitsu Ltd Magnetic film for magnetic head
JP2005085338A (en) * 2003-09-05 2005-03-31 Fujitsu Ltd Magnetic recording medium, magnetic storage device , and method of recording
JP2005086012A (en) 2003-09-09 2005-03-31 Fujitsu Ltd Magnetic thin film, manufacturing method thereof, and magnetic head using the magnetic thin film
JP2005268571A (en) * 2004-03-19 2005-09-29 Hitachi Global Storage Technologies Netherlands Bv Magnetic film and its manufacturing method, and thin film magnetic head
JP4444182B2 (en) * 2005-07-26 2010-03-31 株式会社東芝 Perpendicular magnetic recording medium tilted in the direction of easy magnetization, its manufacturing method, and magnetic recording / reproducing apparatus including the same
JP2007035139A (en) * 2005-07-26 2007-02-08 Hitachi Global Storage Technologies Netherlands Bv Vertical magnetic recording medium and magnetic recording and reproducing apparatus
JP2007184022A (en) 2006-01-04 2007-07-19 Alps Electric Co Ltd Manufacturing method of main magnetic pole of perpendicular magnetic recording head
US7675717B2 (en) * 2006-12-12 2010-03-09 Hitachi Global Storage Technologies Netherlands B.V. Magnetic read head having increased electron exchange

Also Published As

Publication number Publication date
US20080070064A1 (en) 2008-03-20
JP2008072055A (en) 2008-03-27
US8568908B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
US8705212B2 (en) Magnetic element with enhanced coupling portion
JP2008146801A (en) Magnetic recording medium, sputtering target and manufacturing method of magnetic recording medium
US6828046B2 (en) Soft magnetic film of FeCoMO having a high saturation flux density, a moderate soft magnetism and a uniaxial magnetic anisotropy
JP2008135137A (en) Magnetic recording medium, method of manufacturing magnetic recording medium and magnetic recording device
US7684151B2 (en) Soft magnetic film and method of manufacturing same, thin-film magnetic head and method of manufacturing same, head arm assembly and magnetic disk drive
US8405931B2 (en) Magnetic main write pole
US7288333B2 (en) Magnetic film and thin film magnetic head using this magnetic film
JP2007302998A (en) Method of controlling magnetic property of electroplated layer, electroplating method of magnetic layer, manufacturing method of magnetic layer, manufacturing method of magnetic head and plating bath used therefor
US7101633B2 (en) Electroplated magnetic thin film, method of manufacturing the same, electroplating bath and thin film magnetic head
US7995311B2 (en) Magnetic shield, manufacturing method thereof and thin film magnetic head employing the same
JP4523460B2 (en) Magnetic film, manufacturing method thereof, thin film magnetic head and magnetic disk apparatus using the same
JP2003157509A (en) Thin film magnetic head and manufacturing method thereof, and magnetic disk device mounted therewith
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
JP2004152454A (en) Magnetic head and its manufacturing method
US7842408B2 (en) Magnetic film, manufacturing method thereof and thin film magnetic head
JP4385043B2 (en) Magnetic film manufacturing method and magnetic film
US6809901B2 (en) Low moment material for magnetic recording head write pole
JP4220475B2 (en) Magnetic recording medium and method for manufacturing the same, magnetic recording apparatus and magnetic recording method
US20060078762A1 (en) Magnetic film for a magnetic device, magnetic head for a hard disk drive, and solid-state device
JP3679730B2 (en) SOFT MAGNETIC FILM, THIN FILM MAGNETIC HEAD USING THE SOFT MAGNETIC FILM, MANUFACTURING METHOD OF THE SOFT MAGNETIC FILM, AND MANUFACTURING METHOD OF THE THIN FILM MAGNETIC HEAD
JP3774200B2 (en) Electrodeposited magnetic thin film, manufacturing method thereof, and thin film magnetic head
JP2006147786A (en) Soft magnetism film, its manufacturing method, and manufacturing method of thin film magnetic head
JP2003022909A (en) Magnetic thin film, its manufacturing method and magnetic head using the same
JP3129049B2 (en) High corrosion resistant metals and their manufacturing methods and applications
JP2003059717A (en) Soft magnetic film, thin film magnetic head, and method of manufacturing them

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4385043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250