JP4383627B2 - Air conditioner and on-off valve - Google Patents

Air conditioner and on-off valve Download PDF

Info

Publication number
JP4383627B2
JP4383627B2 JP2000115074A JP2000115074A JP4383627B2 JP 4383627 B2 JP4383627 B2 JP 4383627B2 JP 2000115074 A JP2000115074 A JP 2000115074A JP 2000115074 A JP2000115074 A JP 2000115074A JP 4383627 B2 JP4383627 B2 JP 4383627B2
Authority
JP
Japan
Prior art keywords
valve
indoor unit
opening
indoor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000115074A
Other languages
Japanese (ja)
Other versions
JP2001304713A (en
Inventor
省吾 坂下
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000115074A priority Critical patent/JP4383627B2/en
Publication of JP2001304713A publication Critical patent/JP2001304713A/en
Application granted granted Critical
Publication of JP4383627B2 publication Critical patent/JP4383627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、室外機に複数の室内機を並列に接続して暖房運転を行う空気調和装置、および、室内機の暖房運転時に冷媒の入側となるガス冷媒配管に設けられる開閉弁に関するものである。
【0002】
【従来の技術】
図18に従来の空気調和装置の構成図を示す。図18において、1は室外機、2は圧縮機、3は四方弁、4は室外熱交換器、5は室外機1と室内機を接続するガス冷媒配管、6は室外機1と室内機を接続する液冷媒配管、7,8,9は運転・停止を個別自由に行うことのできる室内機、10,11,12はそれぞれ室内機7,8,9の絞り装置、13,14,15はそれぞれ室内機7,8,9の室内熱交換器を表す。また、5aは各室内熱交換器13,14,15へ分岐するガス冷媒配管5の分岐部、6aは各絞り装置10,11,12から合流する液冷媒配管6の合流部である。
【0003】
次に、図18の空気調和装置の暖房運転時の動作を説明する。圧縮機2で圧縮された高温高圧のガス冷媒は四方弁3で流れ方向をガス冷媒配管5の方に切り替えられ、ガス冷媒配管5を通過して室内機7,8,9へ流入し、室内熱交換器13,14,15で凝縮液化する。凝縮液化した冷媒は絞り装置10,11,12で減圧されて低圧二相状態となり、液冷媒配管6を通過して室外機1に戻り、室外熱交換器4で蒸発して低圧ガス状態となって圧縮機2に吸入される。
図18の空気調和装置において、例えば室内機7および室内機8が暖房運転を行い、室内機9が停止する場合を想定すると、絞り装置10および絞り装置11は暖房運転を行うのに必要な所定の開度となるように制御され、絞り装置12は全閉の状態、もしくは冷媒が室内熱交換器15に溜まり込むのを防ぐために微少開度開いた状態にされる。
【0004】
【発明が解決しようとする課題】
上記した従来の空気調和装置において、停止中の室内機以外に運転中の室内機が存在する場合、停止中の室内機の室内熱交換器で冷媒が凝縮して溜まり込むことにより冷凍サイクル内を流通する冷媒が不足することがある。かかる場合には、例えば圧縮機の吐出温度が上昇しすぎて圧縮機が損傷するという不具合がある。また、停止中の室内機の室内熱交換器で冷媒が凝縮するため、無駄な熱エネルギーが発生する。加えて、停止中であるにもかかわらず室内機の設置された部屋の室温が上昇するという不具合もあった。
【0005】
【課題を解決するための手段】
上述した問題を解決するために、この発明の第1の発明に係わる空気調和装置は、ガス冷媒を吐出する圧縮機、および、圧縮機の冷媒吸込側に接続された室外熱交換器を有する室外機に対し、室外機の圧縮機の冷媒吐出側にガス冷媒配管を介して接続された室内暖房用の室内熱交換器、および、室内熱交換器の冷媒出側と室外機の室外熱交換器の冷媒入側へつながる液冷媒配管との間に設けられた絞り装置を有する室内機を、複数台並列に接続して成る空気調和装置において、各室内機へ分岐するガス冷媒配管の分岐部よりも各室内熱交換器寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁と、ガス冷媒圧力を検知する圧力検知手段と、をそれぞれ設け、開閉弁を全開状態と全閉状態のほか微少開度開くように構成し、少なくとも1台の室内機が暖房運転中であり、かつ、少なくとも1台の他の室内機が停止中である状態から、停止中の室内機が暖房運転を開始するにあたり、停止中の室内機の圧力検知手段により検知された検知圧力が予め設定された所定条件を満たさない間は開閉弁を微少開度だけ開き、圧力検知手段の検知圧力が所定条件を満たしたときに開閉弁を全開にするものである。
【0009】
また、この発明の第の発明に係わる空気調和装置は、ガス冷媒を吐出する圧縮機、および、圧縮機の冷媒吸込側に接続された室外熱交換器を有する室外機に対し、室外機の圧縮機の冷媒吐出側にガス冷媒配管を介して接続された室内暖房用の室内熱交換器、および、室内熱交換器の冷媒出側と室外機の室外熱交換器の冷媒入側へつながる液冷媒配管との間に設けられた絞り装置を有する室内機を、複数台並列に接続して成る空気調和装置において、各室内機へ分岐するガス冷媒配管の分岐部よりも各室内熱交換器寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁と、ガス冷媒温度を検知する温度検知手段と、をそれぞれ設け、開閉弁を全開状態と全閉状態のほか微少開度開くように構成し、少なくとも1台の室内機が暖房運転中であり、かつ、少なくとも1台の他の室内機が停止中である状態から、停止中の室内機が暖房運転を開始するにあたり、停止中の室内機の温度検知手段により検知された検知温度が予め設定された所定条件を満たさない間は開閉弁を微少開度だけ開き、温度検知手段の検知温度が所定条件を満たしたときに開閉弁を全開にするものである。
【0010】
そして、この発明の第の発明に係わる空気調和装置は、ガス冷媒を吐出する圧縮機、および、圧縮機の冷媒吸込側に接続された室外熱交換器を有する室外機に対し、室外機の圧縮機の冷媒吐出側にガス冷媒配管を介して接続された室内暖房用の室内熱交換器、および、室内熱交換器の冷媒出側と室外機の室外熱交換器の冷媒入側へつながる液冷媒配管との間に設けられた絞り装置を有する室内機を、複数台並列に接続して成る空気調和装置において、各室内機へ分岐するガス冷媒配管の分岐部よりも各室内熱交換器寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁をそれぞれ設け、各室内機毎の停止時間を計時する停止時間タイマを備え、開閉弁を全開状態と全閉状態のほか微少開度開くように構成し、少なくとも1台の室内機が暖房運転中であり、かつ、少なくとも1台の他の室内機が停止中である状態から、停止中の室内機が暖房運転を開始するにあたり、停止時間タイマにより計時された室内機の停止時間が予め設定された所定条件を満たさない間は当該室内機の開閉弁を微少開度だけ開き、停止時間タイマにより計時された停止時間が所定条件を満たしたときに開閉弁を全開にするものである。
【0012】
また、この発明の第の発明に係わる空気調和装置は、前記した各構成において、開閉弁を微少開度開いた状態から全開の状態へ開くにあたり、開閉弁を微少開度開いた状態から全開の状態まで時間経過につれてステップ状に変化させるものである。
【0013】
そして、この発明の第の発明に係わる空気調和装置は、前記した各構成において、複数台の室内機を、運転と停止が同期して行われる室内機から成るグループにグループ分けするとともに、各グループへ分岐するガス冷媒配管の分岐部よりも各室内機寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁をそれぞれ設けたものである。
【0015】
また、この発明の第の発明に係わる開閉弁は、前記した各構成による空気調和装置に用いられる開閉弁であって、ガス冷媒配管がそれぞれ接続されるガス冷媒入側穴およびガス冷媒出側穴を有する弁ケーシングと、弁ケーシングに形成されたロータ収容空間内に回動自在に配備されて連通穴を有するロータ弁体と、ロータ収容空間内のロータ弁体を回転駆動し、ガス冷媒入側穴およびガス冷媒出側穴に対し当該連通穴の冷媒流路断面積を変化させるモータと、弁ケーシングに形成され、絞り装置の絞り弁体を移動自在の状態で収容する絞り弁収容空間と、絞り弁収容空間内に形成されて絞り弁体により開閉される弁座と、を備えて成り、ロータ弁体を回転駆動するモータにより絞り弁収容空間内の絞り弁体を弁座に対し開閉駆動するように構成するとともに、モータの駆動連結先をロータ弁体または絞り弁体に切り替える駆動切替手段を備えているものである。
【0016】
そして、この発明の第の発明に係わる開閉弁は、前記した各構成において、ロータ弁体に連通穴を複数設けるとともに、弁ケーシングにはロータ弁体のそれぞれの連通穴と開閉可能に連通する冷媒入側穴および冷媒出側穴を複数組設けたものである。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳しく説明する。
【0018】
発明の実施の形態1.
図1はこの発明の実施の形態1に係る空気調和装置の冷媒系を中心とする全体構成図である。
図1において、1は室外機、2はガス冷媒を吐出する圧縮機、3は冷媒流れ方向を切換える四方弁、4は圧縮機2の冷媒吸込側に配管接続された室外熱交換器、5は圧縮機2の冷媒出側と室内暖房用の室内機とを接続するガス冷媒配管、6は室内機の冷媒出側と室外機1の室外熱交換器4の冷媒入側とを接続する液冷媒配管、7,8,9は運転・停止を個別自由に行うことのできる室内機、13,14,15は室内熱交換器、10,11,12はそれぞれ室内熱交換器13,14,15の冷媒出側の液冷媒配管6に設けられた絞り装置を表している。
前記の室外機1は、圧縮機2と、四方弁3と、室外熱交換器4とから構成されている。各室内機7,8,9は、それぞれ、室内熱交換器13,14,15と、絞り装置10,11,12とを備えている。
そして、この空気調和装置の各室内機7,8,9には、各室内熱交換器13,14,15へ分岐する分岐部5aよりも室内熱交換器寄りの各ガス冷媒配管5,5,5に、それぞれの冷媒流路を開閉する開閉弁16,17,18が設けられている。これら開閉弁16,17,18、絞り装置10,11,12、四方弁3の動作や、圧縮機2の運転容量は、マイクロコンピュータなどに代表される制御装置90により制御される。
【0019】
次に、図1の空気調和装置による暖房運転時の冷媒回路動作を説明する。圧縮機2で圧縮された高温高圧のガス冷媒は四方弁3で流れ方向をガス冷媒配管5の方に切り替えられ、ガス冷媒配管5を通過して室内機7,8,または9へ流入し、開閉弁16,17,または18を通過して室内熱交換器13,14,または15で凝縮液化する。凝縮液化した冷媒は絞り装置10,11,または12で減圧されて低圧二相状態となり、液冷媒配管6を通過して室外機1に戻り、室外熱交換器4で蒸発して低圧ガス状態となったのち、圧縮機2に吸入される。
【0020】
次に、図1の空気調和装置における開閉弁16,17,18の制御方法を説明する。室内機7,8,9のうち何れかの室内機、またはすべての室内機が暖房運転を行う場合に、制御装置90は暖房運転を行う室内機の開閉弁を開弁し、何れかの室内機、またはすべての室内機が停止する場合には、停止する室内機の開閉弁を閉弁する。
また、絞り装置10,11,12についても開閉弁16,17,18と同様に、制御装置90は室内機7,8,または9のうち何れかの室内機、またはすべての室内機が暖房運転を行う場合に、暖房運転を行う室内機の絞り装置が暖房運転に必要な所定の開度となるように制御し、何れかの室内機、またはすべての室内機が停止する場合には、停止する室内機の絞り装置が全閉となるように制御する。例えば、すべての室内機7,8,9が暖房運転をしているときに室内機7を停止させる場合、制御装置90は室内機7の開閉弁16を閉弁し、絞り装置10を全閉にするのである。
尚、ここでは室内機の総数が3台の場合を考えたが、室内機の総数が2台以下、または4台以上の場合も同様である。
【0021】
上記のように構成すると、室内機の停止中は開閉弁と絞り装置が全閉となり、停止中の室内機に冷媒が流入しなくなる。そのため、室内熱交換器で冷媒が凝縮して冷媒が溜まり込むのを防ぐことができる。これにより停止中の室内機に冷媒が溜まり込んで冷凍サイクル内を流通する冷媒の量が不足するということがなくなるため、例えば圧縮機の吐出温度が上昇し過ぎて圧縮機が損傷するといった、冷凍サイクル内の冷媒不足に起因する不具合を回避することができる。
また、停止中の室内機の室内熱交換器で冷媒が凝縮しなくなるため、冷媒が凝縮するときの熱エネルギーの発生がなくなる。従って、停止中の室内機における熱エネルギーロスを解消することができ、省エネルギーにつながる。
更には、前記のように停止中の室内機から熱が発生しなくなるため、室内機が停止中にもかかわらず室内機の設置された部屋の室温が上昇するといったことがなくなるという利点もある。
【0022】
発明の実施の形態2.
この発明の実施の形態2による空気調和装置では、弁開度全開時における開閉弁16,17,または18の冷媒流路断面積が、当該開閉弁16,17,または18が配備されるガス冷媒配管5,5,5の冷媒流路断面積とほぼ同じに設定されている。例えば、後述する図14から図16に示した連通穴33,40,52,53と、配管5,50,51との関係と同様に設定されている。
【0023】
上記のように構成したことにより、室内機が室外機よりも高所に設置された場合や、室外機と室内機が遠距離に離れて設置された場合などで室内機と室外機を結ぶ延長配管による圧力損失が大きい場合に、全開時の圧力損失が大きい開閉弁を用いると発生するような、冷凍サイクル全体の圧力損失の過大に起因する圧縮機の吸入圧力低下に伴う圧縮機損傷などの不具合、または冷凍サイクルの冷媒循環量の低下に伴う室内機の暖房能力または冷房能力の低下といった不具合を回避することができる。尚、開閉弁16,17,18の冷媒流路断面積は、ガス冷媒配管5,5,5の冷媒流路断面積以上に設定したものでも構わない。
【0024】
発明の実施の形態3.
この発明の実施の形態3による空気調和装置では、開閉弁16,17,または18が全開状態と全閉状態のほか、微少開度だけ開くようにも構成されている。
この開閉弁を用いた空気調和装置の制御を図2のフローチャートを用いて説明する。図2のフローチャートでは制御の対象となる開閉弁が設置されている室内機を、「対象室内機」と表記している。そこで、制御装置90は、ステップS1において対象室内機が暖房運転を開始するかを判定し、開始しなければ開始するまで判定を続け、開始すればステップS2へ進む。ステップS2では対象室内機の他に暖房運転中の室内機が存在するかを判定し、存在する場合にはステップS3へ、存在しない場合にはステップS5へ進む。ステップS3では対象室内機の開閉弁をいったん微少開度に開いてそのまま保持し、ステップS4へ進む。ステップS4では予め設定された所定条件(他の所要運転条件)を満足するかの判定を行い、その条件を満足しない場合には満足するまで判定を続け、その条件を満足する場合にはステップS5へ進む。その後、ステップS5では対象室内機の開閉弁を全開とし、ステップS6へ進む。ステップS6では対象室内機が停止するかを判定し、停止しない場合には停止するまで判定を続け、停止する場合にはステップS7へ進む。ステップS7では対象室内機の開閉弁を全閉とし、ステップS1へ戻る。
【0025】
上記のように構成したことにより、停止中の室内機が暖房運転を開始する際、開閉弁を全閉状態から全開状態へ直接移行させるのではなく、まず初めに開閉弁をいったん微少開度だけ開けて保持したのち開閉弁前後の圧力差を均圧にしてから開閉弁を全開とすることができる。これにより、開閉弁前後に圧力差がある場合で開閉弁を全閉状態から全開状態へ直接移行させる際に発生するバランス音を解消することができる。
【0026】
発明の実施の形態4.
図3はこの発明の実施の形態4に係る空気調和装置の冷媒系を中心とする全体構成図である。図3中、図1に示した空気調和装置との同一部分には同一符号を付し、説明を省略する。図3の分岐部5aから室内熱交換器13,14,15寄りの各ガス冷媒配管5,5,5において、19は室内熱交換器13と開閉弁16の間のガス冷媒配管5に取り付けられた圧力検知手段、20は室内熱交換器14と開閉弁17の間のガス冷媒配管5に取り付けられた圧力検知手段、21は室内熱交換器15と開閉弁18の間のガス冷媒配管5に取り付けられた圧力検知手段を表す。
【0027】
次に、図3の空気調和装置における開閉弁の制御を図4のフローチャートを用いて説明する。図4中、図2にて説明したフローチャートとの同一部分には同一符号を付し、説明を省略する。制御装置90は、ステップS3で対象室内機の開閉弁を微少開度だけ開いてステップS8に進む。ステップS8では対象室内機の圧力検知手段で検知されたガス冷媒圧力が予め設定された所定条件を満足しない間は満足するまで判定を繰り返し、満足する場合はステップS5へ進んで対象室内機の開閉弁を全開にしたのち、ステップS6,S7を経てステップS1へ戻る。
ここでいう「所定条件」とは、例えば「停止中の対象室内機が暖房運転を開始しようとするとき、既に暖房運転中である、対象室内機以外の室内機の圧力検知手段で検知された圧力に対し、もしくは既に暖房運転中の室内機が複数の場合における室内機それぞれの圧力検知手段で検知されたガス冷媒圧力の平均値に対し、対象室内機の圧力検知手段で検知された圧力が所定の範囲以内に接近するという条件」や、あるいは「室外機に設けられた高圧側の圧力検知手段で検知されたガス冷媒圧力に対し、対象室内機の圧力検知手段で検知されたガス冷媒圧力が所定の範囲以内に接近するという条件」などである。すなわち、「対象室内機の室内熱交換器内の圧力が運転中室内機の室内熱交換器内の圧力に対し所定の範囲内に接近し、対象室内機の開閉弁前後の圧力差がバランス音が発生しなくなる圧力差にまで均圧されたと判定することが可能な条件」である。
【0028】
上記のように構成したことにより、開閉弁を微少開度だけ開いている時間を圧力検知手段の検知圧力に基づいて知り得るので、バランス音発生防止のために開閉弁を微少開度とする必要のある時間を正確に検知することができる。これによって、室内熱交換器へは微少流量しか冷媒が流入しなくなるため、室内機の暖房能力が非常に小さくなる、すなわち開閉弁が微少開度である時間を必要最小限に抑えることが可能となる。
【0029】
発明の実施の形態5.
図5はこの発明の実施の形態5に係る空気調和装置の冷媒系を中心とする全体構成図である。図5中、図1に示した空気調和装置との同一部分には同一符号を付し、説明を省略する。図5の分岐部5aから室内熱交換器13,14,15寄りの各ガス冷媒配管5,5,5において、22は室内熱交換器13と開閉弁16の間のガス冷媒配管5に取り付けられた温度検知手段、23は室内熱交換器14と開閉弁17の間のガス冷媒配管5に取り付けられた温度検知手段、24は室内熱交換器15と開閉弁18の間のガス冷媒配管5に取り付けられた温度検知手段を表す。
【0030】
次に、図5の空気調和装置における開閉弁の制御を図6のフローチャートを用いて説明する。図6中、図2にて説明したフローチャートとの同一部分には同一符号を付し、説明を省略する。制御装置90は、ステップS3で対象室内機の開閉弁を微少開度だけ開いてステップS9に進む。ステップS9では対象室内機の温度検知手段で検知されたガス冷媒温度が所定条件を満足しない間は満足するまで判定を繰り返し、満足する場合はステップS5へ進んで対象室内機の開閉弁を全開にしたのち、ステップS6,S7を経てステップS1へ戻る。
ここでいう「所定条件」とは、例えば「停止中の対象室内機が暖房運転を開始しようとするとき既に暖房運転中である、対象室内機以外の室内機の温度検知手段で検知されたガス冷媒温度に対し、もしくは既に暖房運転中の室内機が複数の場合における室内機それぞれの温度検知手段で検知されたガス冷媒温度の平均値に対し、対象室内機の温度検知手段で検知されたガス冷媒温度が所定の範囲以内に接近するという条件」や、あるいは「室外機の圧縮機吐出部からガス側延長配管までの所定の場所に設けられた温度検知手段で検知されたガス冷媒温度と、対象室内機の圧力検知手段で検知されたガス冷媒圧力が所定の範囲以内に接近するという条件」などである。すなわち、「対象室内機の室内熱交換器内の温度が運転中室内機の室内熱交換器内の温度に対し所定の範囲内に接近(つまり、冷媒がガス状態の場合は温度と圧力は一定の関係となるため、対象室内機の室内熱交換器内の圧力が運転中室内機の室内熱交換器内の圧力と所定の範囲内に接近すること)し、圧力差対象室内機の開閉弁前後の圧力差がバランス音を生じなくなる圧力差にまで均圧されたと判定することが可能な条件」である。
【0031】
上記のように構成したことにより、開閉弁を微少開度だけ開いている時間を温度検知手段の検知温度に基づいて知り得るので、バランス音発生防止のために開閉弁を微少開度とする必要のある時間を正確に検知することができる。従って、室内熱交換器へは微少流量しか冷媒が流入しなくなるため、室内機の暖房能力が非常に小さくなる、すなわち開閉弁が微少開度である時間を必要最小限に抑えることが可能となる。
【0032】
発明の実施の形態6.
図7はこの発明の実施の形態6に係る空気調和装置の冷媒系を中心とする全体構成図である。図7中、図1に示した空気調和装置との同一部分には同一符号を付し、説明を省略する。図7において、25は室内機7の暖房運転と暖房運転の間の停止時間を計時する停止時間タイマ、26は室内機8の暖房運転と暖房運転の間の停止時間を計時する停止時間タイマ、27は室内機9の暖房運転と暖房運転の間の停止時間を計時する停止時間タイマを表す。
また、図9は図8のフローチャートにおけるステップS10の所定条件の一例を説明するための図であり、グラフの横軸は対象室内機の停止時間タイマにより検知された停止時間、縦軸は開閉弁を微少開度にする時間である。また、T1は対象室内機の停止時間タイマにより検知された、開閉弁が閉弁状態から開弁状態へ直接移行してもバランス音が発生しない時間、T3はこの時間以上が経過すると開閉弁前後の圧力差が所定の値以上に大きくならなくなる時間、T2はT1<T2<T3の条件を満たす時間である。また、t1,t2,t3はそれぞれ時間T1,T2,T3に対応する開閉弁を微少開度の状態に保持する時間を表す。
【0033】
次に、図7の空気調和装置における開閉弁の制御を図8のフローチャートを用いて説明する。図8中、図2にて説明したフローチャートとの同一部分には同一符号を付し、説明を省略する。制御装置90は、ステップS3で対象室内機の開閉弁を微少開度だけ開いてステップS10に進む。ステップS10では対象室内機の停止時間タイマにより検知された時間が予め設定された所定条件を満足しない間は満足するまで判定を繰り返し、満足する場合はステップS5へ進んで対象室内機の開閉弁を全開にしたのち、ステップS6,S7を経てステップS1へ戻る。
ここでいう「所定条件」とは、例えば図9のように、「対象室内機の停止時間タイマにより検知された時間がT1となるまでは開閉弁を微少開度にする時間をt1のように0もしくはごく短くし、対象室内機の停止時間タイマにより検知された時間がT2までの間は開閉弁を微少開度にする時間をt2のように、T2の大きさに例えば比例するよう増加させ、対象室内機の停止時間タイマにより検知された時間がT3以上となった後は開閉弁を微少開度にする時間をt3のように所定の値で一定にするといった条件」、すなわち「バランス音が発生しなくなるように開閉弁を微少開度とする必要がある時間の長さを、対象室内機の停止時間を基準として判定するような条件」である。
【0034】
上記のように構成したことにより、開閉弁を微少開度だけ開いている時間を、停止時間タイマの計時時間に基づいて知り得るので、バランス音発生防止のために開閉弁を微少開度とする必要のある時間を正確に検知することができる。これにより、室内熱交換器へは微少流量しか冷媒が流入しなくなるため、室内機の暖房能力が非常に小さくなる、すなわち開閉弁が微少開度である時間を必要最小限に抑えることが可能となる。
【0035】
発明の実施の形態7.
この発明の実施の形態7では、各室内機7,8,9毎の開閉弁16,17,18が微少開度に保持される保持時間を計時する保持時間タイマを備えている。この保持時間タイマは前述した停止時間タイマ25,26,27をそれぞれ兼用しても構わない。
【0036】
次に、段落[0035]で説明した開閉弁の制御を図10のフローチャートを用いて説明する。図10中、図2にて説明したフローチャートとの同一部分には同一符号を付し、説明を省略する。制御装置90は、ステップS3で対象室内機の開閉弁を微少開度だけ開いてステップS11に進む。ステップS11では予め設定された所定時間が経過したかを判定し、経過していない場合は経過するまで判定を繰り返し、所定時間が経過した場合はステップS5へ進んで対象室内機の開閉弁を全開にしたのち、ステップS6,S7を経てステップS1へ戻る。
すなわち、この空気調和装置では、停止中の室内機が暖房運転を開始してその開閉弁が微少開度に保持されたときから保持時間タイマで計時された保持時間が、予め設定された所定時間を経過しない間は、当該室内機の開閉弁を微少開度に保持する。一方、保持時間タイマにより計時された保持時間が所定時間を経過したときに、開閉弁を全開にするようになっている。
【0037】
上記のように、開閉弁を微少開度に保持する保持時間を予め設定された所定の時間とすると、発明の実施の形態4で説明したような圧力検知手段19,20,21、発明の実施の形態5で説明したような温度検知手段22,23,24、発明の実施の形態6で説明したような停止時間タイマ25,26,27などを各室内機7,8,9に新たに設ける必要が無く、比較的単純な制御システムでバランス音発生を防止することが可能となる。
【0038】
発明の実施の形態8.
この発明の実施の形態8では、発明の実施の形態4から発明の実施の形態7までで説明した開閉弁16,17、または18を、微少開度だけ開いた状態から全開の状態へ開くにあたり、微少開度開いた状態から全開の状態までの時間経過につれてステップ状に開度を変化させるように構成されている。
【0039】
次に、段落[0038]で説明した開閉弁の制御を図11のフローチャートを用いて説明する。図11中、図2にて説明したフローチャートとの同一部分には同一符号を付し、説明を省略する。制御装置90は、ステップS3で対象室内機の開閉弁を微少開度だけ開いてステップS12に進む。ステップS12では、図4のフローチャート中のステップS8の条件、図6中のステップS9の条件、図8中のステップS10の条件、もしくは、図10中のステップS11の条件を満たさない場合はステップS13へ進み、満たす場合はステップS5へ進む。ステップS13では対象室内機の開閉弁の開度をバランス音が発生しない範囲で増加させてステップS14へ進む。ステップS14では対象室内機の開閉弁が全開か否かの判定を行い、全開の場合はステップS6へ進み、全開でない場合はステップS12へ戻る。
【0040】
次に、段落[0039]で説明した開閉弁の制御を行った際の開閉弁の開度の変化を図12を用いて説明する。図12において、グラフの横軸は図4中のステップS8の条件、図6中のステップS9の条件、図8中のステップS10の条件、もしくは、図10中のステップS11の条件がステップS5に進む方へ近付く方向を正とした軸を表し、縦軸は開閉弁の開度を表す。
【0041】
上記のようにして、開閉弁を微少開度に開いて保持したままバランス音がしなくなる条件まで待つのではなく、バランス音が発生しない範囲で開閉弁の開度をステップ状に少しずつ開けていくことにより、バランス音の発生を防止しつつも開閉弁を全開とするまでの時間を短縮することが可能となる。
【0042】
発明の実施の形態9.
図13はこの発明の実施の形態9に係る空気調和装置の冷媒系を中心とする全体構成図である。図13中、図1に示した空気調和装置との同一部分には同一符号を付し、説明を省略する。図13において、例えば3台の室内機7,8,9は、ガス冷媒配管5の分岐部5aにより、運転と停止が同期して行われる室内機7,8のグループと、室内機9のグループとにグループ分けして配管接続されている。室内機7,8へのガス冷媒配管5は分岐部5bで分岐している。この場合、分岐部5aから各グループへ分岐したガス冷媒配管5,5に、各グループへの冷媒流路を開閉する開閉弁28,18がそれぞれ設けられている。そして、室内機7,8からの液冷媒配管6,6は合流部6bで合流し、更に合流部6bと室内機9からの液冷媒配管6,6は合流部6aで合流している。
【0043】
次に、図13の空気調和装置の暖房運転時の動作を説明する。尚、図13の空気調和装置の暖房運転時の動作において、図1の空気調和装置で説明した動作と同様の部分は省略する。図13において、室外機1からのガス冷媒は、まず分岐部5aにより分配され開閉弁18と開閉弁28へ向かう。開閉弁18を通過した冷媒はそのまま室内機9の室内熱交換器15へ流入する。一方、開閉弁28を通過した冷媒は分岐部5bで分配されて室内機7の室内熱交換器13と室内機8の室内熱交換器14へ流入する。
【0044】
次に、図13の空気調和装置における開閉弁18および開閉弁28の制御方法を説明する。いま、室内機9が暖房運転を行い、同期して運転・停止が行われる室内機7および室内機8が停止するという場合を考える。すなわち、制御装置90は、室内機9が暖房運転を行うにあたり開閉弁18を開弁し、運転・停止が同期して行われる室内機7および室内機8を停止する際に開閉弁28を閉弁するのである。
尚、ここでは室外機に接続される室内機の総数が3台、同期して運転・停止が行われる室内機が2台、暖房運転を行う室内機が1台、停止する室内機が2台の場合を考えたが、室外機に接続される室内機の総数が4台以上、同期して運転・停止が行われる室内機が3台以上、暖房運転を行う室内機が2台以上、停止する室内機が1台もしくは3台以上とした場合も同様である。
【0045】
上記のように同期して運転・停止を行う室内機を一つのグループとし、そのグループ毎に一つの開閉弁を設ければ、発明の実施の形態1記載の空気調和装置と同等の効果を得つつも各室内機それぞれに開閉弁を設ける場合と比べて開閉弁の数を低減できるという利点がある。更には、発明の実施の形態4で説明した圧力検知手段19,20,21、発明の実施の形態5で説明した温度検知手段22,23,24、あるいは、発明の実施の形態6で説明した停止時間タイマ25,26,27を設ける場合にも、同様にそれぞれの数を低減することが可能となる。
【0046】
発明の実施の形態10.
図14は発明の実施の形態1乃至発明の実施の形態9で説明してきた開閉弁の内部構造の一例を示すものである。
図14において、開閉弁16aは、ガス冷媒配管5,5がそれぞれ接続されるガス冷媒入側穴71およびガス冷媒出側穴72を有する弁ケーシング70と、弁ケーシング70に形成されたロータ収容空間73内に回動自在に配備されたロータ弁体32と、ロータ弁体32をロータ収容空間73内で回転駆動するモータ29とを備えている。
また、図において、30はモータ29のモータ駆動軸の周りに取り付けられた磁石、31は複数のギアを組み合わせたものからなり磁石30とロータ弁体32を駆動連結するギア部、33はガス冷媒配管5,5の管内径とほぼ同径でロータ弁体32に形成された連通穴、74は弁ケーシング70の上方に設置されて前記のモータ29,磁石30,ギア部31を内蔵する本体ケースを表す。
【0047】
次に、開閉弁16aの動作について説明する。図14において、まずモータ29が駆動すると、磁石30がモータ駆動軸の回転に追従回転する。磁石30の回転力はギア部31で拡大されることによりロータ弁体32を回転させる。そして、ロータ弁体32の回転角度により、ガス冷媒入側穴71およびガス冷媒出側穴72に対する連通穴33の開口面積(冷媒流路断面積)を変化させるようになっている。
【0048】
段落[0046]および[0047]で説明した開閉弁16aは、従来用いられてきたパイロット作動方式の開閉弁に比べると、開弁動作および閉弁動作を流体の流れてくる方向に依存することなく行えるので、特殊な構造をとる必要がなく、流体に対する開口面積を大きくとることができる。また、全開状態と全閉状態だけでなく、モータ29の回転を制御することにより連通穴33の開口面積を変化させて流体の流量調節をすることが可能である。更には、開弁状態もしくは閉弁状態を維持するために開閉弁16aに通電しつづける必要がなく、電力が必要なのはロータ弁体32を回転させる間のみであるため、省エネルギーにつながるといった利点がある。
【0049】
発明の実施の形態11.
図15は図14で説明した開閉弁16aの構造を応用したものであり、例えば図1中の開閉弁16と絞り装置10を一体化した装置を示している。
図15に示す一体化装置では、弁ケーシング75内の一側部に、絞り装置10aの絞り弁体44を上下移動自在の状態で収容する絞り弁収容空間76と、絞り弁収容空間76内に形成されて絞り弁体44により開閉される弁座45とが設けられている。前記の絞り弁収容空間76は液冷媒配管6と連通している。
また、図において、34は図中の左右方向にスライドさせることが可能な機構を持つモータ、35はモータ34に追従して図中の左右方向にスライドする磁石、36は磁石35の回転力を伝えるギア、37はギア36と係脱可能に噛合して開閉弁16bへ磁石35の回転力を伝えるためのギア、39はロータ弁体、38は複数のギアを組み合わせたものでギア37からの回転力をロータ弁体39に伝えるギア部、40はガス冷媒配管5,5(ここでは図示せず)の配管径とほぼ同径でロータ弁体39に設けられた連通穴、41はギア36と係脱可能に噛合して磁石35の回転力を絞り装置10aに伝えるギア、42はギア41の回転により上下動して絞り弁体44を押下するニードル、43は絞り弁体44を弾性保持するベローズ、45は弁座、77はロータ弁体39を回動自在に収容するロータ収容空間78を有する弁ケーシングを表す。前記の弁ケーシング77は弁ケーシング75の下方で絞り弁収容空間76の側方に配備されている。また、モータ34の駆動連結先をロータ弁体39または絞り弁体44に切り替える駆動切替手段79を備えている。
【0050】
次に、図15に示した開閉弁16bと絞り装置10aの一体化装置の動作について説明する。前記装置が開閉弁として動作する場合には、駆動切替手段79の駆動により、モータ34、磁石35、ギア36が一体で図中の右方向にスライドし、ギア36とギア37が噛合することにより、磁石35の回転力がギア部38を介してロータ弁体39へ伝えられる。以下、発明の実施の形態10で説明したのと同様の開閉弁動作が行われる。
一方、前記装置が絞り装置として動作する場合には、駆動切替手段79の反対方向駆動により、モータ34、磁石35、およびギア36が一体で図中の左方向にスライドし、ギア37とギア41が噛合する。これにより、磁石35の回転力でギア41が回転すると、閉弁時にはネジ機構によりニードル42が図中の手前方向に押し下げられ絞り弁体44と接触して下へ押し下げ、絞り弁体44と便座45との隙間を小さくしていく。他方、開弁時にはネジ機構によりニードル42が図中の奥向きに押し上げられて絞り弁体44と接触しなくなり、絞り弁体44はベローズ43による図中上向きの反発力により押し上げられて、弁座45との隙間が大きくされる。
【0051】
段落[0049]および[0050]で説明した開閉弁16bと絞り装置10aの一体化装置は、開閉弁と絞り装置を個別にした場合と比べ、モータ34が共通であるため、部品点数が少なくてコストを低減でき、また設置スペースおよび重量の低減につながるという利点がある。
【0052】
発明の実施の形態12.
図16は図14で説明した開閉弁16aの構造を応用して、開閉弁16aの動作を2本の配管に対して同時に行えるようにし、更に2本の配管の流路をバイパスさせることを可能としたものである。尚、図16では配管が2本の場合を示しているが、配管が3本以上の場合も同様である。
図16に示す開閉弁16cにおいては、ロータ弁体49に複数(例えば2つ)の連通穴52,53が設けられている。ロータ弁体49を回動自由に収容する弁ケーシング83のロータ収容空間88には、ロータ弁体49のそれぞれの連通穴52,53と開閉可能に連通する2組の冷媒入側穴84,85および冷媒出側穴86,87が設けられている。
また、図16において、46はモータ、47は磁石、48は複数のギアを組み合わせたものからなるギア部、50は連通穴52と連通する第1の配管、51は連通穴53と連通する第2の配管、54は配管51と配管52をバイパスさせるためにロータ弁体49に設けられたバイパス路、89はモータ46,磁石47,ギア部48を内蔵する本体ケースを表す。
そして、図17は図16中のロータ弁体49のA−B線断面図であり、55は連通穴53の断面、56はバイパス路54の断面、57,58,59,60の矢印はロータ弁体49が回転した際に流体が流れてくる方向を表す。
【0053】
次に、図16の開閉弁16cの動作について説明する。図16において、まずモータ46が回転駆動すると、モータ駆動軸の周りに取り付けられた磁石47がモータ46の回転に追従回転する。磁石47の回転力はギア部48で拡大されることによりロータ弁体49を回転させる。いま、ロータ弁体49が図17において時計回りに回転するとする。このとき、流体の流れてくる方向が図17の矢印58になると、開閉弁は配管50および配管51に対して全開となる。更に、ロータ弁体49が回転して徐々に開度が小さくなっていき、流体の流れてくる方向が図17の矢印59になると、開閉弁は配管50および配管51に対して全閉となる。引き続き回転すると徐々に開度が大きくなっていき、流体の流れてくる方向が図17の矢印60になると、開閉弁は再び配管50および配管51に対して全開となる。更に回転して流体の流れてくる方向が図17の矢印57になると、開閉弁はバイパス路54により配管50と配管51のバイパス路を形成するのである。
【0054】
段落[0052]および[0053]で説明した開閉弁16cは、発明の実施の形態10で説明した開閉弁16aの動作を2本の配管に対して同時に行えるため、開閉弁を2本の配管に個別に設置した場合と比べ、部品点数が少なくてコストを低減でき、また設置スペースおよび重量の低減につながるという利点がある。そのうえ、発明の実施の形態10で説明した開閉弁16aの動作を行えるだけでなく、2本の配管をバイパスさせるという機能も有しているため、例えば冷媒回路を保護するためのバイパス弁の機能を開閉弁に持たせることが可能となり、バイパス弁を別個に設ける場合と比べて、部品点数が少なくてコストを低減でき、また設置スペースおよび重量の低減につながるという利点がある。
【0055】
【発明の効果】
以上詳述したように、この発明の第1の発明に係わる空気調和装置によれば、各室内機の暖房運転時に室内熱交換器の冷媒入口となるガス冷媒配管に開閉弁をそれぞれ設けたことにより、他に運転中の室内機が存在する場合でも停止中の室内機の室内熱交換器で冷媒が凝縮するのを防止することができる。これにより、停止中の室内機で発生する熱エネルギーのロスを解消することができ、省エネルギにつながる。更には、前述のように、停止中の室内機から熱が発生しなくなるため、室内機が停止中にもかかわらず当該室内機が設置された部屋の室温が上昇するということがなくなるという効果もある。
【0057】
また、停止中の室内機の暖房運転を開始するにあたり、当該室内機の開閉弁をまず微少開度だけ開き、その後、全開にすることにより、暖房運転開始時に開閉弁を全閉状態から全開状態へ直接移行させた場合に発生するバランス音の発生を解消することが可能である。これにより、静粛性の高い室内機を実現できるという効果がある。
【0058】
また、暖房運転の開始にあたり停止中の室内機の圧力検知手段により検知された検知圧力が予め設定された所定条件を満たさない間は当該室内機の開閉弁を微少開度だけ開き、圧力検知手段の検知圧力が所定条件を満たしたときに開閉弁を全開にするようにしたことにより、室内機の暖房能力が非常に小さくなるような、開閉弁が微少開度である時間を必要最小限にすることができる。従って、静粛性が高く、かつ、暖房運転を開始してから温風が出るまでの時間の短い室内機を実現できるという効果がある。
【0059】
この発明の第の発明に係わる空気調和装置によれば、暖房運転の開始にあたり停止中の室内機の温度検知手段により検知された検知温度が予め設定された所定条件を満たさない間は当該室内機の開閉弁を微少開度だけ開き、温度検知手段の検知温度が所定条件を満たしたときに開閉弁を全開にするようにしたことにより、室内機の暖房能力が非常に小さくなるような、開閉弁が微少開度である時間を必要最小限にすることができる。従って、静粛性が高く、かつ、暖房運転を開始してから温風が出るまでの時間の短い室内機を実現できるという効果がある。
【0060】
この発明の第の発明に係わる空気調和装置によれば、暖房運転の開始にあたり停止時間タイマにより計時された停止中の室内機の停止時間が予め設定された所定条件を満たさない間は当該室内機の開閉弁を微少開度だけ開き、停止時間タイマにより計時された停止時間が所定条件を満たしたときに開閉弁を全開にするようにしたことにより、室内機の暖房能力が非常に小さくなるような、開閉弁が微少開度である時間を必要最小限にすることができる。従って、静粛性が高く、かつ、暖房運転を開始してから温風が出るまでの時間の短い室内機を実現できるという効果がある。
【0062】
この発明の第の発明に係わる空気調和装置によれば、第の発明乃至第の発明の空気調和装置において、開閉弁を微少開度開いた状態から全開の状態まで直接移行させるのではなく、時間経過につれてステップ状に変化させることにより、開閉弁を微少開度から全開とするまでの時間を短縮することができる。従って、静粛性が高く、かつ、暖房運転を開始してから温風が出るまでの時間の短い室内機を実現できるという効果がある。
【0063】
この発明の第の発明に係わる空気調和装置によれば、第1の発明乃至第の発明の空気調和装置において、グループ分けされた各グループへ分岐するガス冷媒配管の、分岐部よりも各室内機寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁をそれぞれ設けたことにより、開閉弁の数を低減することができる。これによって、開閉弁の数の低減によるコストの低減、設置スペースの低減、および、設備重量の低減を実現できるという効果がある。
【0064】
この発明の第の発明に係わる空気調和装置に用いられる開閉弁によれば、弁ケーシングのガス冷媒入側穴およびガス冷媒出側穴に対しモータ駆動でロータ弁体を回転させて当該連通穴の冷媒流路断面積を変化させるようにしたことにより、弁全開時の流体の圧力損失が小さく、また、微少開度とすることも可能で、更には開弁動作、閉弁動作、および、微少開度にする動作などのように、弁開度を変化させる動作を流体の流れてくる方向に依存せずに行うことができる。これにより、従来のパイロット作動方式の開閉弁と比較して構成が簡単、かつ、低コストで実現することが可能となる。加えて、開弁状態もしくは閉弁状態を維持するために開閉弁に通電し続ける必要が無く、電力が必要なのはロータ弁体を回転させる間のみであるため、省エネルギにつながる開閉弁を実現できるという効果がある。
【0065】
また、絞り弁収容空間内の絞り弁体を弁座に対し開閉駆動するように構成し、モータの駆動連結先をロータ弁体または絞り弁体に切り替えるようにしたことで、部品点数の低減によるコストの低減、設置スペースの低減、および、設備重量の低減を実現できるという効果がある。
【0066】
この発明の第の発明に係わる空気調和装置に用いられる開閉弁によれば、第の発明の開閉弁において、ロータ弁体に連通穴を複数設けるとともに、弁ケーシングにはロータ弁体のそれぞれの連通穴と開閉可能に連通する冷媒入側穴および冷媒出側穴を複数組設けたことにより、複数の冷媒配管に対して同時に第10の発明における開閉弁の動作を行うことが可能となる。これにより、部品点数の低減によるコストの低減、設置スペースの低減、および、設備重量の低減を実現できるという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施の形態1,2,3に係わる空気調和装置の構成図である。
【図2】 本発明の実施の形態3に係わる空気調和装置に用いる開閉弁の制御方式を表すフローチャートである。
【図3】 本発明の実施の形態4に係わる空気調和装置の構成図である。
【図4】 本発明の実施の形態4に係わる空気調和装置に用いる開閉弁の制御方式を表すフローチャートである。
【図5】 本発明の実施の形態5に係わる空気調和装置の構成図である。
【図6】 本発明の実施の形態5に係わる空気調和装置に用いる開閉弁の制御方式を表すフローチャートである
【図7】 本発明の実施の形態6に係わる空気調和装置の構成図である。
【図8】 本発明の実施の形態6に係わる空気調和装置に用いる開閉弁の制御方式を表すフローチャートである
【図9】 本発明の実施の形態6に係わる空気調和装置に用いる開閉弁の経時動作を表す図である
【図10】 本発明の実施の形態7に係わる空気調和装置に用いる開閉弁の制御方式を表すフローチャートである
【図11】 本発明の実施の形態8に係わる空気調和装置に用いる開閉弁の制御方式を表すフローチャートである
【図12】 本発明の実施の形態8に係わる空気調和装置に用いる開閉弁の経時動作を表す図である
【図13】 本発明の実施の形態9に係わる空気調和装置の構成図である。
【図14】 本発明の実施の形態10に係わる開閉弁の構成図である。
【図15】 本発明の実施の形態11に係わる開閉弁の構成図である。
【図16】 本発明の実施の形態12に係わる開閉弁の構成図である。
【図17】 図16におけるA−B線断面図である。
【図18】 従来の空気調和装置の構成図である。
【符号の説明】
1 室外機、2 圧縮機、4 室外熱交換器、5 ガス冷媒配管、5a 分岐部、6 液冷媒配管、7 室内機、8 室内機、9 室内機、10 絞り装置、10a 絞り装置、11 絞り装置、12 絞り装置、13 室内熱交換器、14 室内熱交換器、15 室内熱交換器、16 開閉弁、16a 開閉弁、16b 開閉弁、16c 開閉弁、17 開閉弁、18 開閉弁、19 圧力検知手段、20 圧力検知手段、21 圧力検知手段、22 温度検知手段、23 温度検知手段、24 温度検知手段、25 停止時間タイマ、26 停止時間タイマ、27 停止時間タイマ、28 開閉弁、29 モータ、32 ロータ弁体、33 連通穴、34 モータ、39 ロータ弁体、40 連通穴、44 絞り弁体、45 弁座、46 モータ、49 ロータ弁体、52 連通穴、53 連通穴、70 弁ケーシング、71 ガス冷媒入側穴、72 ガス冷媒出側穴、73ロータ収容空間、75 弁ケーシング、76 絞り弁収容空間、79 駆動切換手段、83 弁ケーシング、84 冷媒入側穴、85 冷媒入側穴、86 冷媒出側穴、87 冷媒出側穴、90 制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that performs a heating operation by connecting a plurality of indoor units in parallel to an outdoor unit, and an on-off valve that is provided in a gas refrigerant pipe that is on the refrigerant inlet side during the heating operation of the indoor unit. is there.
[0002]
[Prior art]
FIG. 18 shows a configuration diagram of a conventional air conditioner. In FIG. 18, 1 is an outdoor unit, 2 is a compressor, 3 is a four-way valve, 4 is an outdoor heat exchanger, 5 is a gas refrigerant pipe connecting the outdoor unit 1 and the indoor unit, and 6 is an outdoor unit 1 and the indoor unit. Liquid refrigerant pipes to be connected, 7, 8, 9 are indoor units that can be freely operated and stopped, 10, 11, 12 are throttle devices for indoor units 7, 8, 9, respectively, 13, 14, 15 are Respective indoor heat exchangers for the indoor units 7, 8, and 9 are shown. Reference numeral 5a denotes a branch portion of the gas refrigerant pipe 5 that branches to the indoor heat exchangers 13, 14, and 15, and reference numeral 6a denotes a joining portion of the liquid refrigerant pipe 6 that joins from the expansion devices 10, 11, and 12.
[0003]
Next, the operation | movement at the time of the heating operation of the air conditioning apparatus of FIG. 18 is demonstrated. The high-temperature and high-pressure gas refrigerant compressed by the compressor 2 is switched to the gas refrigerant pipe 5 by the four-way valve 3, passes through the gas refrigerant pipe 5, flows into the indoor units 7, 8, and 9. It is condensed and liquefied by heat exchangers 13, 14 and 15. The condensed and liquefied refrigerant is decompressed by the expansion devices 10, 11, and 12 to be in a low pressure two-phase state, passes through the liquid refrigerant pipe 6, returns to the outdoor unit 1, and is evaporated in the outdoor heat exchanger 4 to be in a low pressure gas state. And sucked into the compressor 2.
In the air conditioner of FIG. 18, for example, when it is assumed that the indoor unit 7 and the indoor unit 8 perform the heating operation and the indoor unit 9 stops, the expansion device 10 and the expansion device 11 are required to perform the heating operation. The throttle device 12 is fully closed, or is opened slightly to prevent refrigerant from accumulating in the indoor heat exchanger 15.
[0004]
[Problems to be solved by the invention]
In the above-described conventional air conditioner, when there is an operating indoor unit in addition to the stopped indoor unit, the refrigerant is condensed and accumulated in the indoor heat exchanger of the stopped indoor unit, so that the inside of the refrigeration cycle There may be a shortage of circulating refrigerant. In such a case, for example, there is a problem that the compressor discharge temperature is excessively increased and the compressor is damaged. Moreover, since the refrigerant condenses in the indoor heat exchanger of the stopped indoor unit, useless heat energy is generated. In addition, there was a problem that the room temperature of the room in which the indoor unit was installed rose even though it was stopped.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problem, an air conditioner according to a first aspect of the present invention includes an outdoor unit having a compressor for discharging a gas refrigerant and an outdoor heat exchanger connected to the refrigerant suction side of the compressor. An indoor heat exchanger for indoor heating connected to the refrigerant discharge side of the compressor of the outdoor unit through a gas refrigerant pipe, and the refrigerant outlet side of the indoor heat exchanger and the outdoor heat exchanger of the outdoor unit In an air conditioner in which a plurality of indoor units having throttle devices provided in parallel with a liquid refrigerant pipe connected to the refrigerant inlet side of the refrigerant are connected in parallel, from a branch portion of the gas refrigerant pipe that branches to each indoor unit Open / close valve that opens and closes the refrigerant flow path of each gas refrigerant pipe near each indoor heat exchanger Pressure detecting means for detecting the gas refrigerant pressure; Provided The open / close valve is configured to be opened by a small opening in addition to the fully open state and the fully closed state, and at least one indoor unit is in a heating operation and at least one other indoor unit is stopped. Therefore, when the stopped indoor unit starts the heating operation, the opening / closing valve is opened by a minute opening while the detected pressure detected by the pressure detecting means of the stopped indoor unit does not satisfy the predetermined condition. When the detected pressure of the pressure detection means satisfies a predetermined condition, the on-off valve is fully opened. Is.
[0009]
In addition, the present invention 2 The air conditioner according to the invention of Connected to the refrigerant discharge side of the compressor of the outdoor unit via the gas refrigerant pipe, with respect to the outdoor unit having the compressor discharging the gas refrigerant and the outdoor heat exchanger connected to the refrigerant suction side of the compressor An indoor unit having an indoor heat exchanger for indoor heating and a throttling device provided between a refrigerant outlet side of the indoor heat exchanger and a liquid refrigerant pipe connected to a refrigerant inlet side of the outdoor heat exchanger of the outdoor unit An on-off valve for opening and closing a refrigerant flow path of each gas refrigerant pipe closer to each indoor heat exchanger than a branch part of the gas refrigerant pipe branched to each indoor unit in the air conditioner connected in parallel , Temperature detection means for detecting gas refrigerant temperature When, Provided The open / close valve is configured to be opened by a small opening in addition to the fully open state and the fully closed state, and at least one indoor unit is in a heating operation and at least one other indoor unit is stopped. From when the indoor unit that is stopped starts heating operation, When the detected temperature detected by the temperature detecting means of the stopped indoor unit does not satisfy the predetermined condition set in advance, the opening / closing valve is opened by a minute opening degree, and the detected temperature of the temperature detecting means satisfies the predetermined condition The on-off valve is fully opened.
[0010]
And the first of this invention 3 The air conditioner according to the invention of Connected to the refrigerant discharge side of the compressor of the outdoor unit via the gas refrigerant pipe, with respect to the outdoor unit having the compressor discharging the gas refrigerant and the outdoor heat exchanger connected to the refrigerant suction side of the compressor An indoor unit having an indoor heat exchanger for indoor heating and a throttling device provided between a refrigerant outlet side of the indoor heat exchanger and a liquid refrigerant pipe connected to a refrigerant inlet side of the outdoor heat exchanger of the outdoor unit In the air conditioner that is connected in parallel, a switching valve that opens and closes the refrigerant flow path of each gas refrigerant pipe is closer to each indoor heat exchanger than the branch part of the gas refrigerant pipe that branches to each indoor unit. Each provided, Equipped with a stop time timer that measures the stop time of each indoor unit The open / close valve is configured to be opened by a small opening in addition to the fully open state and the fully closed state, and at least one indoor unit is in a heating operation and at least one other indoor unit is stopped. From when the indoor unit that is stopped starts heating operation, While the stop time of the indoor unit timed by the stop time timer does not satisfy the predetermined condition set in advance, the on-off valve of the indoor unit is opened by a minute opening, and the stop time timed by the stop time timer satisfies the predetermined condition. When the condition is satisfied, the on-off valve is fully opened.
[0012]
In addition, the present invention 4 In the air conditioning apparatus according to the invention, in each configuration described above, when opening the on-off valve from the slightly opened state to the fully opened state, the on-off valve is opened from the slightly opened state to the fully opened step as time elapses. To change the shape.
[0013]
And the first of this invention 5 In the air conditioning apparatus according to the invention, in each configuration described above, a plurality of indoor units are grouped into a group consisting of indoor units that are operated and stopped synchronously, and gas refrigerant pipes branch to each group An opening / closing valve for opening and closing the refrigerant flow path of each gas refrigerant pipe is provided closer to each indoor unit than the branch portion.
[0015]
In addition, the present invention 6 The on-off valve according to the invention is An on-off valve used in the air conditioner having the above-described configurations, which includes a gas casing having a gas refrigerant inlet side hole and a gas refrigerant outlet side hole to which a gas refrigerant pipe is respectively connected, and a rotor housing formed in the valve casing A rotor valve body that is rotatably disposed in the space and has a communication hole, and rotationally drives the rotor valve body in the rotor housing space, and the refrigerant in the communication hole with respect to the gas refrigerant inlet side hole and the gas refrigerant outlet side hole Formed in the motor and the valve casing to change the cross-sectional area of the flow path, A throttle valve housing space for accommodating the throttle valve body of the throttle device in a freely movable state, and a valve seat formed in the throttle valve housing space and opened and closed by the throttle valve body; Comprising A drive switching means configured to open and close the throttle valve body in the throttle valve housing space with respect to the valve seat by a motor that rotationally drives the rotor valve body, and to switch the drive connection destination of the motor to the rotor valve body or the throttle valve body It is equipped with.
[0016]
And the first of this invention 7 The on-off valve according to the present invention is provided with a plurality of communication holes in the rotor valve body in each of the above-described configurations, and the valve casing has a refrigerant inlet side hole and a refrigerant outlet that communicate with each communication hole of the rotor valve body in an openable and closable manner. A plurality of side holes are provided.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018]
Embodiment 1 of the Invention
1 is an overall configuration diagram centering on a refrigerant system of an air-conditioning apparatus according to Embodiment 1 of the present invention.
In FIG. 1, 1 is an outdoor unit, 2 is a compressor that discharges gas refrigerant, 3 is a four-way valve that switches the direction of refrigerant flow, 4 is an outdoor heat exchanger that is connected to the refrigerant suction side of the compressor 2, and 5 A gas refrigerant pipe connecting the refrigerant outlet side of the compressor 2 and the indoor unit for indoor heating, and 6 a liquid refrigerant connecting the refrigerant outlet side of the indoor unit and the refrigerant inlet side of the outdoor heat exchanger 4 of the outdoor unit 1 Piping, 7, 8, 9 are indoor units that can be operated and stopped individually, 13, 14, 15 are indoor heat exchangers, 10, 11, 12 are indoor heat exchangers 13, 14, 15, respectively. The throttle device provided in the liquid refrigerant piping 6 on the refrigerant outlet side is shown.
The outdoor unit 1 includes a compressor 2, a four-way valve 3, and an outdoor heat exchanger 4. Each indoor unit 7, 8, 9 includes indoor heat exchangers 13, 14, 15 and expansion devices 10, 11, 12.
And in each indoor unit 7,8,9 of this air conditioning apparatus, each gas refrigerant piping 5,5,5 closer to an indoor heat exchanger than the branch part 5a branched to each indoor heat exchanger 13,14,15. 5 is provided with on-off valves 16, 17, 18 for opening and closing the respective refrigerant flow paths. The operations of the on-off valves 16, 17, 18, the throttle devices 10, 11, 12, and the four-way valve 3 and the operation capacity of the compressor 2 are controlled by a control device 90 represented by a microcomputer.
[0019]
Next, the refrigerant circuit operation at the time of heating operation by the air conditioner of FIG. 1 will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 2 is switched to the gas refrigerant pipe 5 by the four-way valve 3, passes through the gas refrigerant pipe 5, and flows into the indoor unit 7, 8, or 9. It passes through the on-off valve 16, 17, or 18 and is condensed and liquefied by the indoor heat exchanger 13, 14, or 15. The condensed and liquefied refrigerant is decompressed by the expansion device 10, 11, or 12 to be in a low pressure two-phase state, passes through the liquid refrigerant pipe 6, returns to the outdoor unit 1, and evaporates in the outdoor heat exchanger 4 to be in a low pressure gas state. After that, it is sucked into the compressor 2.
[0020]
Next, a method for controlling the on-off valves 16, 17, 18 in the air conditioner of FIG. 1 will be described. When any one of the indoor units 7, 8, and 9 or all the indoor units perform the heating operation, the control device 90 opens the opening / closing valve of the indoor unit that performs the heating operation, When a unit or all indoor units stop, the on-off valve of the indoor unit to be stopped is closed.
As for the throttle devices 10, 11, and 12, similarly to the on-off valves 16, 17, and 18, the control device 90 is configured so that any one of the indoor units 7, 8, or 9, or all the indoor units are in heating operation When the indoor unit that performs the heating operation is controlled so as to have a predetermined opening required for the heating operation, if any indoor unit or all indoor units stop, stop The throttle device of the indoor unit to be controlled is fully closed. For example, when stopping the indoor unit 7 when all the indoor units 7, 8, 9 are in the heating operation, the control device 90 closes the opening / closing valve 16 of the indoor unit 7 and fully closes the expansion device 10. To do.
Although the case where the total number of indoor units is three is considered here, the same applies to the case where the total number of indoor units is two or less, or four or more.
[0021]
When configured as described above, the on-off valve and the throttle device are fully closed while the indoor unit is stopped, and the refrigerant does not flow into the stopped indoor unit. Therefore, it can prevent that a refrigerant | coolant condenses with an indoor heat exchanger and a refrigerant | coolant accumulates. This prevents the refrigerant from accumulating in the stopped indoor unit and the amount of refrigerant flowing through the refrigeration cycle from being insufficient, so that, for example, the refrigeration in which the compressor discharge temperature increases excessively and the compressor is damaged. Problems caused by a shortage of refrigerant in the cycle can be avoided.
Further, since the refrigerant does not condense in the indoor heat exchanger of the stopped indoor unit, the generation of thermal energy when the refrigerant condenses is eliminated. Therefore, the heat energy loss in the stopped indoor unit can be eliminated, leading to energy saving.
Furthermore, since heat is not generated from the stopped indoor unit as described above, there is an advantage that the room temperature of the room in which the indoor unit is installed does not increase even though the indoor unit is stopped.
[0022]
Embodiment 2 of the Invention
In the air conditioner according to Embodiment 2 of the present invention, the refrigerant flow passage cross-sectional area of the on-off valve 16, 17, or 18 when the valve opening is fully opened is the gas refrigerant in which the on-off valve 16, 17, or 18 is deployed. It is set to be substantially the same as the refrigerant flow path cross-sectional area of the pipes 5, 5, and 5. For example, it is set similarly to the relationship between the communication holes 33, 40, 52, and 53 and the pipes 5, 50, and 51 shown in FIGS.
[0023]
By configuring as described above, the extension between the indoor unit and the outdoor unit when the indoor unit is installed at a higher position than the outdoor unit or when the outdoor unit and the indoor unit are installed at a long distance. When pressure loss due to piping is large, use of an on-off valve that has a large pressure loss when fully opened, such as compressor damage caused by a reduction in compressor suction pressure due to excessive pressure loss of the entire refrigeration cycle It is possible to avoid a problem such as a defect or a decrease in the heating capacity or cooling capacity of the indoor unit due to a decrease in the refrigerant circulation amount of the refrigeration cycle. It should be noted that the refrigerant passage cross-sectional area of the on-off valves 16, 17, 18 may be set to be equal to or larger than the refrigerant passage cross-sectional area of the gas refrigerant pipes 5, 5, 5.
[0024]
Embodiment 3 of the Invention
In the air conditioner according to Embodiment 3 of the present invention, the on-off valve 16, 17, or 18 is configured to be opened by a minute opening in addition to the fully open state and the fully closed state.
Control of the air conditioner using this on-off valve will be described with reference to the flowchart of FIG. In the flowchart of FIG. 2, an indoor unit in which an on-off valve to be controlled is installed is denoted as “target indoor unit”. Therefore, the control device 90 determines whether the target indoor unit starts the heating operation in step S1, and if not, continues the determination until it starts, and if it starts, proceeds to step S2. In step S2, it is determined whether there is an indoor unit that is in the heating operation in addition to the target indoor unit. If it exists, the process proceeds to step S3, and if not, the process proceeds to step S5. In step S3, the opening / closing valve of the target indoor unit is once opened to a minute opening and held, and the process proceeds to step S4. In step S4, it is determined whether or not a predetermined condition (other required operating conditions) set in advance is satisfied. If the condition is not satisfied, the determination is continued until it is satisfied. If the condition is satisfied, step S5 is performed. Proceed to Thereafter, in step S5, the open / close valve of the target indoor unit is fully opened, and the process proceeds to step S6. In step S6, it is determined whether the target indoor unit is to be stopped. If not, the determination is continued until it is stopped, and if it is to be stopped, the process proceeds to step S7. In step S7, the open / close valve of the target indoor unit is fully closed, and the process returns to step S1.
[0025]
By configuring as described above, when the stopped indoor unit starts the heating operation, the opening / closing valve is not shifted directly from the fully closed state to the fully opened state, but first, the opening / closing valve is temporarily set to a minute opening degree. After opening and holding, the opening / closing valve can be fully opened after equalizing the pressure difference before and after the opening / closing valve. Thereby, when there is a pressure difference before and after the on-off valve, it is possible to eliminate the balance sound that is generated when the on-off valve is directly shifted from the fully closed state to the fully open state.
[0026]
Embodiment 4 of the Invention
FIG. 3 is an overall configuration diagram centering on a refrigerant system of an air-conditioning apparatus according to Embodiment 4 of the present invention. In FIG. 3, the same parts as those of the air conditioner shown in FIG. In each of the gas refrigerant pipes 5, 5, 5 near the indoor heat exchangers 13, 14, 15 from the branch portion 5 a in FIG. 3, 19 is attached to the gas refrigerant pipe 5 between the indoor heat exchanger 13 and the on-off valve 16. The pressure detecting means 20 is a pressure detecting means 20 attached to the gas refrigerant pipe 5 between the indoor heat exchanger 14 and the on-off valve 17, and 21 is on the gas refrigerant pipe 5 between the indoor heat exchanger 15 and the on-off valve 18. Represents attached pressure sensing means.
[0027]
Next, the control of the on-off valve in the air conditioner of FIG. 3 will be described using the flowchart of FIG. 4, the same parts as those in the flowchart described in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. In step S3, the control device 90 opens the opening / closing valve of the target indoor unit by a minute opening, and proceeds to step S8. In step S8, the determination is repeated until the gas refrigerant pressure detected by the pressure detection means of the target indoor unit does not satisfy the predetermined condition set in advance, and if satisfied, the process proceeds to step S5 to open / close the target indoor unit. After fully opening the valve, the process returns to step S1 through steps S6 and S7.
The “predetermined condition” here is, for example, “detected by the pressure detection means of an indoor unit other than the target indoor unit that is already in the heating operation when the target indoor unit being stopped is about to start the heating operation. The pressure detected by the pressure detection means of the target indoor unit with respect to the pressure or the average value of the gas refrigerant pressure detected by the pressure detection means of each indoor unit when there are a plurality of indoor units already in heating operation “Conditions for approaching within a predetermined range” or “the gas refrigerant pressure detected by the pressure detection means of the target indoor unit relative to the gas refrigerant pressure detected by the pressure detection means on the high pressure side provided in the outdoor unit” For example, a condition that the is approaching within a predetermined range. That is, “the pressure in the indoor heat exchanger of the target indoor unit approaches a predetermined range with respect to the pressure in the indoor heat exchanger of the operating indoor unit, and the pressure difference before and after the opening / closing valve of the target indoor unit It is a condition capable of determining that the pressure has been equalized to a pressure difference at which no occurrence occurs.
[0028]
By configuring as described above, it is possible to know the time during which the opening / closing valve is opened by a minute opening based on the detection pressure of the pressure detecting means, so it is necessary to make the opening / closing valve a minute opening to prevent the generation of a balance sound. It is possible to accurately detect a certain time. As a result, only a very small amount of refrigerant flows into the indoor heat exchanger, so that the heating capacity of the indoor unit becomes very small, that is, it is possible to minimize the time during which the on-off valve is at a very small opening. Become.
[0029]
Embodiment 5 of the Invention
FIG. 5 is an overall configuration diagram centering on a refrigerant system of an air-conditioning apparatus according to Embodiment 5 of the present invention. In FIG. 5, the same parts as those of the air conditioner shown in FIG. In the gas refrigerant pipes 5, 5, 5 near the indoor heat exchangers 13, 14, 15 from the branch part 5 a in FIG. 5, 22 is attached to the gas refrigerant pipe 5 between the indoor heat exchanger 13 and the on-off valve 16. The temperature detecting means 23 is a temperature detecting means 23 attached to the gas refrigerant pipe 5 between the indoor heat exchanger 14 and the on-off valve 17, and 24 is on the gas refrigerant pipe 5 between the indoor heat exchanger 15 and the on-off valve 18. Represents attached temperature sensing means.
[0030]
Next, the control of the on-off valve in the air conditioner of FIG. 5 will be described using the flowchart of FIG. In FIG. 6, the same parts as those in the flowchart described with reference to FIG. In step S3, the control device 90 opens the opening / closing valve of the target indoor unit by a minute opening, and proceeds to step S9. In step S9, the determination is repeated until the gas refrigerant temperature detected by the temperature detecting means of the target indoor unit does not satisfy the predetermined condition until it is satisfied, and if satisfied, the process proceeds to step S5 to fully open the open / close valve of the target indoor unit. After that, the process returns to step S1 through steps S6 and S7.
The “predetermined condition” here is, for example, “gas detected by the temperature detection means of an indoor unit other than the target indoor unit that is already in the heating operation when the target indoor unit being stopped is about to start the heating operation. The gas detected by the temperature detection means of the target indoor unit with respect to the refrigerant temperature or the average value of the gas refrigerant temperature detected by the temperature detection means of each indoor unit when there are a plurality of indoor units already in heating operation The condition that the refrigerant temperature approaches within a predetermined range, or "the gas refrigerant temperature detected by the temperature detection means provided in a predetermined place from the compressor discharge section of the outdoor unit to the gas side extension pipe, and “Condition that the gas refrigerant pressure detected by the pressure detection means of the target indoor unit approaches within a predetermined range”. That is, “the temperature in the indoor heat exchanger of the target indoor unit approaches a predetermined range with respect to the temperature in the indoor heat exchanger of the operating indoor unit (that is, the temperature and pressure are constant when the refrigerant is in a gas state). Therefore, the pressure in the indoor heat exchanger of the target indoor unit approaches the pressure in the indoor heat exchanger of the operating indoor unit within a predetermined range), and the open / close valve of the pressure differential target indoor unit This is a condition under which it is possible to determine that the pressure difference before and after the pressure difference is equalized to a pressure difference at which no balance sound is generated.
[0031]
By configuring as described above, it is possible to know the time during which the opening / closing valve is opened by a minute opening based on the detected temperature of the temperature detecting means, so it is necessary to make the opening / closing valve a minute opening to prevent the generation of a balance sound. It is possible to accurately detect a certain time. Accordingly, since the refrigerant flows into the indoor heat exchanger only at a very small flow rate, the heating capacity of the indoor unit becomes very small, that is, the time during which the on-off valve is at a very small opening can be minimized. .
[0032]
Embodiment 6 of the Invention
FIG. 7 is an overall configuration diagram centering on a refrigerant system of an air-conditioning apparatus according to Embodiment 6 of the present invention. In FIG. 7, the same parts as those of the air conditioner shown in FIG. In FIG. 7, 25 is a stop time timer that measures the stop time between the heating operation of the indoor unit 7, 26 is a stop time timer that measures the stop time between the heating operation and the heating operation of the indoor unit 8, Reference numeral 27 denotes a stop time timer for measuring the stop time between the heating operation of the indoor unit 9.
FIG. 9 is a diagram for explaining an example of the predetermined condition of step S10 in the flowchart of FIG. 8. The horizontal axis of the graph is the stop time detected by the stop time timer of the target indoor unit, and the vertical axis is the on-off valve. Is the time to make the opening slightly. T1 is a time detected by the stop time timer of the target indoor unit, and a time when no balance sound is generated even when the on-off valve directly shifts from the closed state to the open state. T3 is the time before and after the on-off valve. T2 is a time during which the pressure difference does not increase beyond a predetermined value, and T2 is a time that satisfies the condition of T1 <T2 <T3. Further, t1, t2, and t3 represent times during which the on-off valves corresponding to the times T1, T2, and T3 are held in a minute opening state, respectively.
[0033]
Next, the control of the on-off valve in the air conditioner of FIG. 7 will be described using the flowchart of FIG. In FIG. 8, the same parts as those in the flowchart described with reference to FIG. The control device 90 opens the opening / closing valve of the target indoor unit by a minute opening in step S3, and proceeds to step S10. In step S10, while the time detected by the stop time timer of the target indoor unit does not satisfy the predetermined condition set in advance, the determination is repeated until the predetermined condition is satisfied. If satisfied, the process proceeds to step S5 and the on / off valve of the target indoor unit is turned on. After fully opening, the process returns to step S1 through steps S6 and S7.
The “predetermined condition” here means, for example, as shown in FIG. 9, “the time for which the opening / closing valve is slightly opened until the time detected by the stop time timer of the target indoor unit reaches T1, as indicated by t1. 0 or very short, and until the time detected by the stop time timer of the target indoor unit until T2, the time for which the opening / closing valve is slightly opened is increased, for example, in proportion to the size of T2, such as t2. After the time detected by the stop time timer of the target indoor unit becomes equal to or greater than T3, the condition that the time during which the on-off valve is slightly opened is kept constant at a predetermined value as shown by t3, that is, “balance sound The condition is such that the length of time for which the opening / closing valve needs to be set to a very small opening so as to prevent occurrence of occurrence of the problem is determined based on the stop time of the target indoor unit.
[0034]
By configuring as described above, the opening time of the opening / closing valve can be known based on the time measured by the stop time timer. The necessary time can be accurately detected. As a result, only a very small flow rate of refrigerant flows into the indoor heat exchanger, so that the heating capacity of the indoor unit becomes very small, that is, it is possible to minimize the time during which the on-off valve is at a very small opening. Become.
[0035]
Embodiment 7 of the Invention
In the seventh embodiment of the present invention, there is provided a holding time timer for measuring the holding time during which the on-off valves 16, 17, 18 for each of the indoor units 7, 8, 9 are held at a minute opening. This holding time timer may also be used as the above-mentioned stop time timers 25, 26, and 27, respectively.
[0036]
Next, the control of the on-off valve described in paragraph [0035] will be described using the flowchart of FIG. In FIG. 10, the same parts as those in the flowchart described in FIG. In step S3, the control device 90 opens the opening / closing valve of the target indoor unit by a minute opening, and proceeds to step S11. In step S11, it is determined whether a preset predetermined time has elapsed. If it has not elapsed, the determination is repeated until the predetermined time has elapsed. If the predetermined time has elapsed, the process proceeds to step S5 to fully open the open / close valve of the target indoor unit. After that, the process returns to step S1 through steps S6 and S7.
That is, in this air conditioner, the holding time measured by the holding time timer from the time when the stopped indoor unit starts the heating operation and the on-off valve is held at a slight opening is a predetermined time set in advance. As long as the period does not elapse, the opening / closing valve of the indoor unit is held at a slight opening degree. On the other hand, when the holding time counted by the holding time timer has passed a predetermined time, the on-off valve is fully opened.
[0037]
As described above, when the holding time for holding the opening / closing valve at a minute opening is a predetermined time set in advance, the pressure detection means 19, 20, 21 as described in the fourth embodiment of the invention, and the implementation of the invention. The temperature detection means 22, 23, 24 as described in the fifth embodiment, the stop time timers 25, 26, 27 as described in the sixth embodiment of the invention are newly provided in the indoor units 7, 8, 9 There is no need, and it is possible to prevent the generation of a balance sound with a relatively simple control system.
[0038]
Embodiment 8 of the Invention
In the eighth embodiment of the present invention, the on-off valve 16, 17 or 18 described in the fourth to seventh embodiments of the present invention is opened from a state where it is opened by a small opening degree to a fully opened state. The opening is changed stepwise as time elapses from the minute opening to the fully opening state.
[0039]
Next, the control of the on-off valve described in paragraph [0038] will be described using the flowchart of FIG. In FIG. 11, the same parts as those in the flowchart described with reference to FIG. The control device 90 opens the opening / closing valve of the target indoor unit by a minute opening in step S3, and proceeds to step S12. In step S12, if the condition of step S8 in the flowchart of FIG. 4, the condition of step S9 in FIG. 6, the condition of step S10 in FIG. 8, or the condition of step S11 in FIG. If the condition is satisfied, the process proceeds to step S5. In step S13, the opening degree of the opening / closing valve of the target indoor unit is increased within a range where no balance sound is generated, and the process proceeds to step S14. In step S14, it is determined whether the open / close valve of the target indoor unit is fully opened. If fully open, the process proceeds to step S6. If not fully open, the process returns to step S12.
[0040]
Next, a change in the opening degree of the on-off valve when the on-off valve control described in paragraph [0039] is performed will be described with reference to FIG. In FIG. 12, the horizontal axis of the graph indicates the condition at step S8 in FIG. 4, the condition at step S9 in FIG. 6, the condition at step S10 in FIG. 8, or the condition at step S11 in FIG. The axis that is positive in the direction approaching the forward direction is represented, and the vertical axis represents the opening degree of the on-off valve.
[0041]
Instead of waiting for the condition that the balance sound does not occur while opening and holding the opening / closing valve at a minute opening as described above, the opening degree of the opening / closing valve is gradually opened step by step within the range where no balance sound is generated. Thus, it is possible to shorten the time until the on-off valve is fully opened while preventing the generation of the balance sound.
[0042]
Embodiment 9 of the Invention
FIG. 13 is an overall configuration diagram centering on a refrigerant system of an air-conditioning apparatus according to Embodiment 9 of the present invention. In FIG. 13, the same parts as those of the air conditioner shown in FIG. In FIG. 13, for example, three indoor units 7, 8, 9 include a group of indoor units 7, 8 and a group of indoor units 9 that are operated and stopped synchronously by the branch portion 5 a of the gas refrigerant pipe 5. The pipes are divided into groups. The gas refrigerant pipe 5 to the indoor units 7 and 8 is branched at a branch portion 5b. In this case, the gas refrigerant pipes 5 and 5 branched from the branch part 5a to the respective groups are provided with on-off valves 28 and 18 for opening and closing the refrigerant flow paths to the respective groups. The liquid refrigerant pipes 6 and 6 from the indoor units 7 and 8 merge at the junction 6b, and the liquid refrigerant pipes 6 and 6 from the junction unit 6b and the indoor unit 9 merge at the junction 6a.
[0043]
Next, the operation | movement at the time of the heating operation of the air conditioning apparatus of FIG. 13 is demonstrated. In addition, in the operation | movement at the time of the heating operation of the air conditioning apparatus of FIG. 13, the part similar to the operation | movement demonstrated with the air conditioning apparatus of FIG. 1 is abbreviate | omitted. In FIG. 13, the gas refrigerant from the outdoor unit 1 is first distributed by the branch portion 5 a and travels to the on-off valve 18 and the on-off valve 28. The refrigerant that has passed through the on-off valve 18 flows directly into the indoor heat exchanger 15 of the indoor unit 9. On the other hand, the refrigerant that has passed through the opening / closing valve 28 is distributed by the branching portion 5 b and flows into the indoor heat exchanger 13 of the indoor unit 7 and the indoor heat exchanger 14 of the indoor unit 8.
[0044]
Next, a method for controlling the on-off valve 18 and the on-off valve 28 in the air conditioner of FIG. 13 will be described. Consider a case where the indoor unit 9 performs a heating operation and the indoor unit 7 and the indoor unit 8 that are operated and stopped synchronously are stopped. That is, the control device 90 opens the opening / closing valve 18 when the indoor unit 9 performs the heating operation, and closes the opening / closing valve 28 when stopping the indoor unit 7 and the indoor unit 8 that are operated and stopped synchronously. I speak.
Here, the total number of indoor units connected to the outdoor unit is three, two indoor units that are operated and stopped synchronously, one indoor unit that performs heating operation, and two indoor units that are stopped However, the total number of indoor units connected to the outdoor unit is 4 or more, 3 or more indoor units that are operated and stopped in synchronization, and 2 or more indoor units that perform heating operation are stopped. The same applies when the number of indoor units to be used is one or three or more.
[0045]
If the indoor units that operate and stop synchronously as described above are grouped together and one on-off valve is provided for each group, an effect equivalent to that of the air-conditioning apparatus described in Embodiment 1 of the invention can be obtained. However, there is an advantage that the number of open / close valves can be reduced as compared with the case where open / close valves are provided in each indoor unit. Furthermore, the pressure detection means 19, 20, 21 described in the fourth embodiment of the invention, the temperature detection means 22, 23, 24 described in the fifth embodiment of the invention, or the sixth embodiment of the invention. Similarly, when the stop time timers 25, 26, and 27 are provided, the number of each can be reduced.
[0046]
Embodiment 10 of the Invention
FIG. 14 shows an example of the internal structure of the on-off valve described in the first to ninth embodiments of the present invention.
In FIG. 14, the on-off valve 16 a includes a valve casing 70 having a gas refrigerant inlet side hole 71 and a gas refrigerant outlet side hole 72 to which the gas refrigerant pipes 5 and 5 are connected, respectively, and a rotor accommodating space formed in the valve casing 70. The rotor valve body 32 is rotatably provided in the rotor 73, and the motor 29 is configured to rotationally drive the rotor valve body 32 in the rotor housing space 73.
In the figure, 30 is a magnet attached around the motor drive shaft of the motor 29, 31 is a combination of a plurality of gears, and a gear portion that drives and connects the magnet 30 and the rotor valve body 32, and 33 is a gas refrigerant. A communication hole 74 formed in the rotor valve body 32 having substantially the same diameter as the pipe inner diameters of the pipes 5 and 5 is installed above the valve casing 70 and incorporates the motor 29, magnet 30, and gear portion 31. Represents.
[0047]
Next, the operation of the on-off valve 16a will be described. In FIG. 14, when the motor 29 is first driven, the magnet 30 rotates following the rotation of the motor drive shaft. The rotational force of the magnet 30 is expanded by the gear portion 31 to rotate the rotor valve body 32. The opening area (refrigerant channel cross-sectional area) of the communication hole 33 with respect to the gas refrigerant inlet side hole 71 and the gas refrigerant outlet side hole 72 is changed according to the rotation angle of the rotor valve body 32.
[0048]
The on-off valve 16a described in the paragraphs [0046] and [0047] has a valve opening operation and a valve closing operation that do not depend on the direction in which the fluid flows, as compared with a pilot-operated on-off valve that has been conventionally used. Since it can be performed, it is not necessary to adopt a special structure, and the opening area for the fluid can be increased. Further, it is possible to adjust the flow rate of the fluid by changing the opening area of the communication hole 33 by controlling the rotation of the motor 29 as well as the fully open state and the fully closed state. Furthermore, it is not necessary to continue energizing the on-off valve 16a in order to maintain the valve open state or the valve closed state, and only the electric power is required during the rotation of the rotor valve body 32, leading to energy saving. .
[0049]
Embodiment 11 of the Invention
FIG. 15 is an application of the structure of the on-off valve 16a described in FIG. 14, and shows, for example, an apparatus in which the on-off valve 16 and the throttle device 10 in FIG.
In the integrated device shown in FIG. 15, a throttle valve housing space 76 for housing the throttle valve body 44 of the throttle device 10 a in a vertically movable state and a throttle valve housing space 76 in one side portion in the valve casing 75. A valve seat 45 formed and opened and closed by a throttle valve body 44 is provided. The throttle valve accommodating space 76 communicates with the liquid refrigerant pipe 6.
In the figure, 34 is a motor having a mechanism capable of sliding in the left-right direction in the figure, 35 is a magnet that slides in the left-right direction in the figure following the motor 34, and 36 is the rotational force of the magnet 35. The transmission gear 37 is engaged with the gear 36 in a detachable manner to transmit the rotational force of the magnet 35 to the on-off valve 16b, 39 is a rotor valve body, 38 is a combination of a plurality of gears, A gear portion for transmitting the rotational force to the rotor valve body 39, 40 is a communication hole provided in the rotor valve body 39 having substantially the same diameter as that of the gas refrigerant pipes 5 and 5 (not shown here), and 41 is a gear 36. , A gear that transmits the rotational force of the magnet 35 to the throttle device 10a, 42 is a needle that moves up and down by the rotation of the gear 41 and presses down the throttle valve body 44, and 43 elastically holds the throttle valve body 44 Bellows, 45 is a valve , 77 denotes a valve casing having a rotor accommodating space 78 for accommodating the rotor valve body 39 rotatably. The valve casing 77 is disposed on the side of the throttle valve accommodating space 76 below the valve casing 75. Further, drive switching means 79 for switching the drive connection destination of the motor 34 to the rotor valve body 39 or the throttle valve body 44 is provided.
[0050]
Next, the operation of the integrated device of the on-off valve 16b and the expansion device 10a shown in FIG. 15 will be described. When the device operates as an on-off valve, the drive switching unit 79 drives the motor 34, the magnet 35, and the gear 36 integrally to slide to the right in the figure, and the gear 36 and the gear 37 are engaged. The rotational force of the magnet 35 is transmitted to the rotor valve body 39 via the gear portion 38. Hereinafter, the on-off valve operation similar to that described in the tenth embodiment of the invention is performed.
On the other hand, when the device operates as a diaphragm device, the motor 34, the magnet 35, and the gear 36 are integrally slid leftward in the drawing by driving in the opposite direction of the drive switching means 79, and the gear 37 and the gear 41 are driven. Mesh. As a result, when the gear 41 is rotated by the rotational force of the magnet 35, the needle 42 is pushed down toward the front in the figure by the screw mechanism when the valve is closed, and is brought into contact with the throttle valve body 44 to be pushed down, thereby reducing the throttle valve body 44 and the toilet seat. Reduce the gap with 45. On the other hand, when the valve is opened, the needle 42 is pushed up in the drawing by the screw mechanism and does not come into contact with the throttle valve body 44, and the throttle valve body 44 is pushed up by the upward repulsive force in the drawing by the bellows 43, and the valve seat The gap with 45 is increased.
[0051]
Since the integrated device of the on-off valve 16b and the throttling device 10a described in the paragraphs [0049] and [0050] has a common motor 34 as compared with the case where the on-off valve and the throttling device are separately provided, the number of parts is small. There is an advantage that the cost can be reduced and the installation space and weight can be reduced.
[0052]
Embodiment 12 of the Invention
FIG. 16 applies the structure of the on-off valve 16a described in FIG. 14 so that the operation of the on-off valve 16a can be performed simultaneously on two pipes, and further, the flow paths of the two pipes can be bypassed. It is what. FIG. 16 shows the case where there are two pipes, but the same applies to the case where there are three or more pipes.
In the on-off valve 16c shown in FIG. 16, the rotor valve body 49 is provided with a plurality of (for example, two) communication holes 52, 53. In the rotor accommodating space 88 of the valve casing 83 that accommodates the rotor valve body 49 so as to freely rotate, two sets of refrigerant inlet side holes 84 and 85 that communicate with the respective communication holes 52 and 53 of the rotor valve body 49 in an openable and closable manner. And the refrigerant | coolant exit side holes 86 and 87 are provided.
In FIG. 16, 46 is a motor, 47 is a magnet, 48 is a gear portion formed by combining a plurality of gears, 50 is a first pipe communicating with the communication hole 52, and 51 is a first pipe communicating with the communication hole 53. Reference numeral 2 denotes a bypass passage provided in the rotor valve body 49 for bypassing the pipe 51 and the pipe 52, and 89 denotes a main body case in which the motor 46, the magnet 47, and the gear portion 48 are built.
17 is a cross-sectional view taken along line AB of the rotor valve body 49 in FIG. 16, 55 is a cross section of the communication hole 53, 56 is a cross section of the bypass passage 54, and arrows 57, 58, 59, and 60 are rotors. It represents the direction in which the fluid flows when the valve body 49 rotates.
[0053]
Next, the operation of the on-off valve 16c in FIG. 16 will be described. In FIG. 16, when the motor 46 is first rotationally driven, the magnet 47 attached around the motor drive shaft rotates following the rotation of the motor 46. The rotational force of the magnet 47 is expanded by the gear portion 48 to rotate the rotor valve body 49. Now, it is assumed that the rotor valve body 49 rotates clockwise in FIG. At this time, when the direction in which the fluid flows becomes an arrow 58 in FIG. 17, the on-off valve is fully opened with respect to the pipe 50 and the pipe 51. Further, when the rotor valve body 49 rotates and the opening degree gradually decreases, and the direction in which the fluid flows becomes an arrow 59 in FIG. 17, the on-off valve is fully closed with respect to the pipe 50 and the pipe 51. . When the rotation continues, the opening gradually increases, and when the direction in which the fluid flows becomes an arrow 60 in FIG. 17, the on-off valve is fully opened again with respect to the pipe 50 and the pipe 51. When the direction in which the fluid further flows and becomes an arrow 57 in FIG. 17, the on-off valve forms a bypass path between the pipe 50 and the pipe 51 by the bypass path 54.
[0054]
The on-off valve 16c described in paragraphs [0052] and [0053] can perform the operation of the on-off valve 16a described in the tenth embodiment of the invention on two pipes at the same time. Compared to the case of individual installation, there are advantages that the number of parts is small, the cost can be reduced, and the installation space and weight are reduced. In addition, since the on-off valve 16a described in the tenth embodiment of the invention can be operated, it also has a function of bypassing two pipes, and thus, for example, a function of a bypass valve for protecting the refrigerant circuit As compared with the case where a bypass valve is provided separately, there is an advantage that the number of parts can be reduced and the cost can be reduced, and the installation space and weight can be reduced.
[0055]
【The invention's effect】
As described above in detail, according to the air conditioner according to the first aspect of the present invention, the on-off valves are respectively provided in the gas refrigerant pipes serving as the refrigerant inlets of the indoor heat exchangers during the heating operation of the indoor units. Thus, it is possible to prevent the refrigerant from condensing in the indoor heat exchanger of the stopped indoor unit even when there are other indoor units in operation. Thereby, the loss of the heat energy which generate | occur | produces with the indoor unit in the stop can be eliminated, and it leads to energy saving. Furthermore, as described above, since heat is not generated from the stopped indoor unit, the room temperature of the room in which the indoor unit is installed does not increase even though the indoor unit is stopped. is there.
[0057]
Also, When starting the heating operation of a stopped indoor unit, the opening / closing valve of the indoor unit is first opened by a slight opening, and then fully opened, so that the opening / closing valve is directly changed from the fully closed state to the fully opened state when heating operation starts. It is possible to eliminate the generation of the balance sound that occurs when the transition is made. Thereby, there exists an effect that an indoor unit with high silence can be realized.
[0058]
Also As long as the detected pressure detected by the pressure detecting means of the indoor unit being stopped at the start of the heating operation does not satisfy the predetermined condition set in advance, the opening / closing valve of the indoor unit is opened by a minute opening degree. By opening the on-off valve fully when the detected pressure meets the specified conditions, the time that the on-off valve is at a very small opening is minimized so that the heating capacity of the indoor unit becomes very small. be able to. Therefore, there is an effect that it is possible to realize an indoor unit that is highly quiet and has a short time from the start of the heating operation until the warm air is emitted.
[0059]
No. 1 of this invention 2 According to the air conditioner according to the invention of Warm While the detected temperature detected by the temperature detecting means of the indoor unit that is stopped at the start of the cell operation does not satisfy the predetermined condition set in advance, the opening / closing valve of the indoor unit is opened by a minute opening degree and the temperature detecting means detects By opening the on-off valve fully when the temperature meets the specified conditions, the time required for the on-off valve to be slightly open is minimized so that the heating capacity of the indoor unit becomes very small. Can do. Therefore, there is an effect that it is possible to realize an indoor unit that is highly quiet and has a short time from the start of the heating operation until the warm air is emitted.
[0060]
No. 1 of this invention 3 According to the air conditioner according to the invention of Warm While the stop time of the indoor unit being stopped, which is counted by the stop time timer at the start of the cell operation, does not satisfy the predetermined condition set in advance, the opening / closing valve of the indoor unit is opened by a minute opening and timed by the stop time timer The opening and closing valve is fully opened when the specified stop time meets the specified condition, so that the opening and closing valve is at a very small opening so that the heating capacity of the indoor unit becomes very small. Can be. Therefore, there is an effect that it is possible to realize an indoor unit that is highly quiet and has a short time from the start of the heating operation until the warm air is emitted.
[0062]
No. 1 of this invention 4 According to the air conditioner of the invention, 1 Invention thru | or 3 In the air conditioner of the invention, the on-off valve is changed from stepped to fully opened by changing in a stepped manner as time elapses, rather than directly shifting from a slightly opened state to a fully opened state. Can be shortened. Therefore, there is an effect that it is possible to realize an indoor unit that is highly quiet and has a short time from the start of the heating operation until the warm air is emitted.
[0063]
No. 1 of this invention 5 According to the air conditioner of the invention, the first invention to the first invention 4 In the air conditioner of the invention, on-off valves for opening and closing the refrigerant flow paths of the gas refrigerant pipes are provided closer to the indoor units than the branch portions of the gas refrigerant pipes branched to the grouped groups. As a result, the number of on-off valves can be reduced. As a result, it is possible to reduce costs by reducing the number of on-off valves, reduce installation space, and reduce equipment weight.
[0064]
No. 1 of this invention 6 According to the on-off valve used in the air conditioner according to the invention, the rotor valve body is rotated by a motor to the gas refrigerant inlet side hole and the gas refrigerant outlet side hole of the valve casing to cut off the refrigerant flow path of the communication hole. By changing the area, the pressure loss of the fluid when the valve is fully opened is small, and it is also possible to make the opening slightly, and further, the valve opening operation, the valve closing operation, and the minute opening are made. Like the operation, the operation of changing the valve opening can be performed without depending on the direction in which the fluid flows. As a result, it is possible to realize a simpler configuration and at a lower cost as compared with a conventional pilot operated on-off valve. In addition, there is no need to continue energizing the on-off valve in order to maintain the valve open state or the valve closed state, and power is required only during the rotation of the rotor valve body, so an on-off valve that leads to energy saving can be realized. There is an effect.
[0065]
Also squeeze The throttle valve body in the valve housing space is configured to open and close with respect to the valve seat, and the drive connection destination of the motor is switched to the rotor valve body or the throttle valve body, thereby reducing the cost by reducing the number of parts. There is an effect that reduction, reduction of installation space, and reduction of equipment weight can be realized.
[0066]
No. 1 of this invention 7 According to the on-off valve used in the air conditioner according to the invention, 6 In the on-off valve of the invention, the rotor valve body is provided with a plurality of communication holes, and the valve casing is provided with a plurality of sets of refrigerant inlet side holes and refrigerant outlet side holes communicating with the respective communication holes of the rotor valve body in an openable and closable manner. This makes it possible to simultaneously operate the on-off valve in the tenth invention for a plurality of refrigerant pipes. Thereby, there is an effect that it is possible to realize cost reduction by reducing the number of parts, installation space, and equipment weight.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an air-conditioning apparatus according to Embodiments 1, 2, and 3 of the present invention.
FIG. 2 is a flowchart showing a control method for an on-off valve used in an air-conditioning apparatus according to Embodiment 3 of the present invention.
FIG. 3 is a configuration diagram of an air-conditioning apparatus according to Embodiment 4 of the present invention.
FIG. 4 is a flowchart showing an on-off valve control method used in an air conditioner according to Embodiment 4 of the present invention.
FIG. 5 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5 of the present invention.
FIG. 6 is a flowchart showing a control method for an on-off valve used in an air-conditioning apparatus according to Embodiment 5 of the present invention.
FIG. 7 is a configuration diagram of an air-conditioning apparatus according to Embodiment 6 of the present invention.
FIG. 8 is a flowchart showing a control method of an on-off valve used in an air conditioner according to Embodiment 6 of the present invention.
FIG. 9 is a diagram illustrating the temporal operation of an on-off valve used in an air conditioner according to Embodiment 6 of the present invention.
FIG. 10 is a flowchart showing a control method of an on-off valve used in an air conditioner according to Embodiment 7 of the present invention.
FIG. 11 is a flowchart showing a control method of an on-off valve used in an air conditioner according to Embodiment 8 of the present invention.
FIG. 12 is a diagram illustrating the time-dependent operation of the on-off valve used in the air-conditioning apparatus according to Embodiment 8 of the present invention.
FIG. 13 is a configuration diagram of an air-conditioning apparatus according to Embodiment 9 of the present invention.
FIG. 14 is a configuration diagram of an on-off valve according to Embodiment 10 of the present invention.
FIG. 15 is a configuration diagram of an on-off valve according to an eleventh embodiment of the present invention.
FIG. 16 is a configuration diagram of an on-off valve according to a twelfth embodiment of the present invention.
17 is a cross-sectional view taken along line AB in FIG.
FIG. 18 is a configuration diagram of a conventional air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outdoor unit, 2 compressor, 4 outdoor heat exchanger, 5 gas refrigerant | coolant piping, 5a branch part, 6 liquid refrigerant piping, 7 indoor unit, 8 indoor unit, 9 indoor unit, 10 throttle device, 10a throttle device, 11 throttle Device, 12 throttle device, 13 indoor heat exchanger, 14 indoor heat exchanger, 15 indoor heat exchanger, 16 on-off valve, 16a on-off valve, 16b on-off valve, 16c on-off valve, 17 on-off valve, 18 on-off valve, 19 pressure Detection means, 20 Pressure detection means, 21 Pressure detection means, 22 Temperature detection means, 23 Temperature detection means, 24 Temperature detection means, 25 Stop time timer, 26 Stop time timer, 27 Stop time timer, 28 On-off valve, 29 Motor, 32 rotor valve body, 33 communication hole, 34 motor, 39 rotor valve body, 40 communication hole, 44 throttle valve body, 45 valve seat, 46 motor, 49 rotor valve body, 52 communication hole, 53 communication hole, 7 Valve casing, 71 Gas refrigerant inlet side hole, 72 Gas refrigerant outlet side hole, 73 Rotor accommodating space, 75 Valve casing, 76 Throttle valve accommodating space, 79 Drive switching means, 83 Valve casing, 84 Refrigerant inlet side hole, 85 Refrigerant inlet Side hole, 86 Refrigerant outlet side hole, 87 Refrigerant outlet side hole, 90 Control device.

Claims (7)

ガス冷媒を吐出する圧縮機、および、前記圧縮機の冷媒吸込側に接続された室外熱交換器を有する室外機に対し、
前記室外機の圧縮機の冷媒吐出側にガス冷媒配管を介して接続された室内暖房用の室内熱交換器、および、前記室内熱交換器の冷媒出側と前記室外機の室外熱交換器の冷媒入側へつながる液冷媒配管との間に設けられた絞り装置を有する室内機を、
複数台並列に接続して成る空気調和装置において、
各室内機へ分岐する前記ガス冷媒配管の分岐部よりも各室内熱交換器寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁と、ガス冷媒圧力を検知する圧力検知手段と、をそれぞれ設け
開閉弁を全開状態と全閉状態のほか微少開度開くように構成し、
少なくとも1台の室内機が暖房運転中であり、かつ、少なくとも1台の他の室内機が停止中である状態から、前記停止中の室内機が暖房運転を開始するにあたり、
前記停止中の室内機の圧力検知手段により検知された検知圧力が予め設定された所定条件を満たさない間は開閉弁を微少開度だけ開き、前記圧力検知手段の検知圧力が前記所定条件を満たしたときに前記開閉弁を全開にすることを特徴とする空気調和装置。
A compressor that discharges a gas refrigerant, and an outdoor unit having an outdoor heat exchanger connected to the refrigerant suction side of the compressor,
An indoor heat exchanger for indoor heating connected to a refrigerant discharge side of a compressor of the outdoor unit via a gas refrigerant pipe, and a refrigerant outlet side of the indoor heat exchanger and an outdoor heat exchanger of the outdoor unit An indoor unit having a throttling device provided between the liquid refrigerant pipe connected to the refrigerant inlet side,
In an air conditioner configured by connecting multiple units in parallel,
Each indoor heat exchanger nearer bifurcation of the gas refrigerant pipe branched into each indoor unit, an opening and closing valve for opening and closing the refrigerant flow paths of the gas refrigerant pipe, a pressure detecting portion for detecting a gas refrigerant pressure, the Each provided ,
The on-off valve is configured to open a small opening in addition to the fully open state and the fully closed state,
When at least one indoor unit is in a heating operation and at least one other indoor unit is stopped, the stopped indoor unit starts a heating operation.
While the detected pressure detected by the pressure detecting means of the stopped indoor unit does not satisfy the predetermined condition set in advance, the on-off valve is opened by a minute opening, and the detected pressure of the pressure detecting means satisfies the predetermined condition. air conditioner you characterized by fully opening the opening and closing valve when the.
ガス冷媒を吐出する圧縮機、および、前記圧縮機の冷媒吸込側に接続された室外熱交換器を有する室外機に対し、
前記室外機の圧縮機の冷媒吐出側にガス冷媒配管を介して接続された室内暖房用の室内熱交換器、および、前記室内熱交換器の冷媒出側と前記室外機の室外熱交換器の冷媒入側へつながる液冷媒配管との間に設けられた絞り装置を有する室内機を、
複数台並列に接続して成る空気調和装置において、
各室内機へ分岐する前記ガス冷媒配管の分岐部よりも各室内熱交換器寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁と、ガス冷媒温度を検知する温度検知手段と、をそれぞれ設け
開閉弁を全開状態と全閉状態のほか微少開度開くように構成し、
少なくとも1台の室内機が暖房運転中であり、かつ、少なくとも1台の他の室内機が停止中である状態から、前記停止中の室内機が暖房運転を開始するにあたり、
前記停止中の室内機の温度検知手段により検知された検知温度が予め設定された所定条件を満たさない間は開閉弁を微少開度だけ開き、前記温度検知手段の検知温度が前記所定条件を満たしたときに前記開閉弁を全開にすることを特徴とする空気調和装置。
A compressor that discharges a gas refrigerant, and an outdoor unit having an outdoor heat exchanger connected to the refrigerant suction side of the compressor,
An indoor heat exchanger for indoor heating connected to a refrigerant discharge side of a compressor of the outdoor unit via a gas refrigerant pipe, and a refrigerant outlet side of the indoor heat exchanger and an outdoor heat exchanger of the outdoor unit An indoor unit having a throttling device provided between the liquid refrigerant pipe connected to the refrigerant inlet side,
In an air conditioner configured by connecting multiple units in parallel,
An opening / closing valve for opening / closing a refrigerant flow path of each gas refrigerant pipe and a temperature detecting means for detecting a gas refrigerant temperature closer to each indoor heat exchanger than a branch portion of the gas refrigerant pipe branching to each indoor unit ; Each provided ,
The on-off valve is configured to open a small opening in addition to the fully open state and the fully closed state,
When at least one indoor unit is in a heating operation and at least one other indoor unit is stopped, the stopped indoor unit starts a heating operation.
While the detected temperature detected by the temperature detecting means of the stopped indoor unit does not satisfy the predetermined condition set in advance, the opening / closing valve is opened by a minute opening degree, and the detected temperature of the temperature detecting means satisfies the predetermined condition. air conditioner you characterized by fully opening the opening and closing valve when the.
ガス冷媒を吐出する圧縮機、および、前記圧縮機の冷媒吸込側に接続された室外熱交換器を有する室外機に対し、
前記室外機の圧縮機の冷媒吐出側にガス冷媒配管を介して接続された室内暖房用の室内熱交換器、および、前記室内熱交換器の冷媒出側と前記室外機の室外熱交換器の冷媒入側へつながる液冷媒配管との間に設けられた絞り装置を有する室内機を、
複数台並列に接続して成る空気調和装置において、
各室内機へ分岐する前記ガス冷媒配管の分岐部よりも各室内熱交換器寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁をそれぞれ設け、
各室内機毎の停止時間を計時する停止時間タイマを備え
開閉弁を全開状態と全閉状態のほか微少開度開くように構成し、
少なくとも1台の室内機が暖房運転中であり、かつ、少なくとも1台の他の室内機が停止中である状態から、前記停止中の室内機が暖房運転を開始するにあたり、
前記停止時間タイマにより計時された前記室内機の停止時間が予め設定された所定条件を満たさない間は当該室内機の開閉弁を微少開度だけ開き、前記停止時間タイマにより計時された停止時間が前記所定条件を満たしたときに前記開閉弁を全開にすることを特徴とする空気調和装置。
A compressor that discharges a gas refrigerant, and an outdoor unit having an outdoor heat exchanger connected to the refrigerant suction side of the compressor,
An indoor heat exchanger for indoor heating connected to a refrigerant discharge side of a compressor of the outdoor unit via a gas refrigerant pipe, and a refrigerant outlet side of the indoor heat exchanger and an outdoor heat exchanger of the outdoor unit An indoor unit having a throttling device provided between the liquid refrigerant pipe connected to the refrigerant inlet side,
In an air conditioner configured by connecting multiple units in parallel,
An opening / closing valve for opening and closing the refrigerant flow path of each gas refrigerant pipe is provided closer to each indoor heat exchanger than the branch part of the gas refrigerant pipe branching to each indoor unit,
Equipped with a stop time timer that measures the stop time of each indoor unit ,
The on-off valve is configured to open a small opening in addition to the fully open state and the fully closed state,
When at least one indoor unit is in a heating operation and at least one other indoor unit is stopped, the stopped indoor unit starts a heating operation.
While the stop time of the indoor unit timed by the stop time timer does not satisfy a predetermined condition set in advance, the on-off valve of the indoor unit is opened by a minute opening, and the stop time timed by the stop time timer is air conditioner you characterized in that the fully open the open-close valve when satisfying the predetermined condition.
開閉弁を微少開度開いた状態から全開の状態へ開くにあたり、前記開閉弁を微少開度開いた状態から全開の状態まで時間経過につれてステップ状に変化させることを特徴とする請求項第項乃至第項のいずれかに記載の空気調和装置。Upon opening the on-off valve from a minute opening open state to the fully opened, it claims paragraph 1, wherein the changing stepwise the lapse time to fully open from the state of the on-off valve open small opening The air conditioning apparatus in any one of thru | or 3rd term | claim. 複数台の室内機を、運転と停止が同期して行われる室内機から成るグループにグループ分けするとともに、各グループへ分岐するガス冷媒配管の分岐部よりも各室内機寄りに、各ガス冷媒配管の冷媒流路を開閉する開閉弁をそれぞれ設けたことを特徴とする請求項第1項乃至第項のいずれかに記載の空気調和装置。A plurality of indoor units are grouped into groups of indoor units that are operated and stopped synchronously, and each gas refrigerant pipe is closer to each indoor unit than a branch portion of the gas refrigerant pipe that branches to each group. The air conditioning apparatus according to any one of claims 1 to 4 , further comprising an on-off valve that opens and closes the refrigerant flow path. 請求項第1項乃至第5項のいずれかに記載の空気調和装置に用いられる開閉弁であって、
ガス冷媒配管がそれぞれ接続されるガス冷媒入側穴およびガス冷媒出側穴を有する弁ケーシングと、
前記弁ケーシングに形成されたロータ収容空間内に回動自在に配備されて連通穴を有するロータ弁体と、
前記ロータ収容空間内のロータ弁体を回転駆動し、前記ガス冷媒入側穴および前記ガス冷媒出側穴に対し当該連通穴の冷媒流路断面積を変化させるモータと、
前記弁ケーシングに形成され、絞り装置の絞り弁体を移動自在の状態で収容する絞り弁収容空間と、
前記絞り弁収容空間内に形成されて前記絞り弁体により開閉される弁座と
を備えて成り、
ロータ弁体を回転駆動するモータにより前記絞り弁収容空間内の絞り弁体を前記弁座に対し開閉駆動するように構成するとともに、前記モータの駆動連結先を前記ロータ弁体または前記絞り弁体に切り替える駆動切替手段を備えていることを特徴とする開閉弁。
An on-off valve used in the air conditioner according to any one of claims 1 to 5,
A valve casing having a gas refrigerant inlet side hole and a gas refrigerant outlet side hole to which gas refrigerant pipes are respectively connected;
A rotor valve body rotatably disposed in a rotor housing space formed in the valve casing and having a communication hole;
A motor that rotationally drives a rotor valve body in the rotor accommodating space and changes a refrigerant flow path cross-sectional area of the communication hole with respect to the gas refrigerant inlet side hole and the gas refrigerant outlet side hole;
A throttle valve housing space formed in the valve casing for housing the throttle valve body of the throttle device in a movable state;
A valve seat formed in the throttle valve housing space and opened and closed by the throttle valve body ;
Comprising
A motor that rotationally drives the rotor valve body is configured to open and close the throttle valve body in the throttle valve housing space with respect to the valve seat, and the drive connection destination of the motor is the rotor valve body or the throttle valve body open closed you characterized by comprising a drive switching means for switching to.
ロータ弁体に連通穴を複数設けるとともに、弁ケーシングには前記ロータ弁体のそれぞれの連通穴と開閉可能に連通する冷媒入側穴および冷媒出側穴を複数組設けたことを特徴とする請求項第項に記載の開閉弁。The rotor valve body is provided with a plurality of communication holes, and the valve casing is provided with a plurality of sets of refrigerant inlet side holes and refrigerant outlet side holes communicating with the respective communication holes of the rotor valve body in an openable and closable manner. The on-off valve according to Item 6 .
JP2000115074A 2000-04-17 2000-04-17 Air conditioner and on-off valve Expired - Lifetime JP4383627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000115074A JP4383627B2 (en) 2000-04-17 2000-04-17 Air conditioner and on-off valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000115074A JP4383627B2 (en) 2000-04-17 2000-04-17 Air conditioner and on-off valve

Publications (2)

Publication Number Publication Date
JP2001304713A JP2001304713A (en) 2001-10-31
JP4383627B2 true JP4383627B2 (en) 2009-12-16

Family

ID=18626782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000115074A Expired - Lifetime JP4383627B2 (en) 2000-04-17 2000-04-17 Air conditioner and on-off valve

Country Status (1)

Country Link
JP (1) JP4383627B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4043244B2 (en) * 2002-01-29 2008-02-06 三菱重工業株式会社 Air conditioner
JP3772777B2 (en) * 2002-03-27 2006-05-10 ダイキン工業株式会社 Air conditioner and control method of air conditioner
KR20060012837A (en) * 2004-08-04 2006-02-09 삼성전자주식회사 A multi air conditioner and a driving method of it
WO2017017847A1 (en) * 2015-07-30 2017-02-02 三菱電機株式会社 Heat exchanger unit and refrigeration cycle system
CN106352488A (en) * 2016-09-29 2017-01-25 广东美的制冷设备有限公司 Method and device for opening control over multi-split air conditioner and multi-split air conditioner

Also Published As

Publication number Publication date
JP2001304713A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP6081033B1 (en) Air conditioner
JP3816860B2 (en) Heat pump air conditioner
JP6479162B2 (en) Air conditioner
CN110260553B (en) Air conditioner and control method thereof
JP5581987B2 (en) Air conditioner
JP2007051825A (en) Air-conditioner
WO2006013861A1 (en) Refrigeration unit
WO1998009118A1 (en) Air conditioner
WO2006057224A1 (en) Freezing apparatus
JP2006071137A (en) Refrigeration unit
JP2014070582A (en) Electric compressor and air conditioner
CN105757798A (en) Air-conditioning system and control method of air-conditioning system
AU2003246248A1 (en) Refrigeration equipment
JP4383627B2 (en) Air conditioner and on-off valve
JP3738299B2 (en) Heat pump type heat supply device
JP2000314575A (en) Flow path control valve, air conditioner, and multi- chamber type air conditioner
KR20060067543A (en) Heat exchanger of air conditioner
JP4269476B2 (en) Refrigeration equipment
JP2014119150A (en) Air conditioner
JP2014119154A (en) Air conditioner
JP4687326B2 (en) Air conditioner
JP3143142B2 (en) Refrigeration equipment
JP2004003692A (en) Refrigerating device
JP3584514B2 (en) Refrigeration equipment
JP2022181077A (en) air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4383627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term