JP4383593B2 - Production method of epoxy resin - Google Patents

Production method of epoxy resin Download PDF

Info

Publication number
JP4383593B2
JP4383593B2 JP24562799A JP24562799A JP4383593B2 JP 4383593 B2 JP4383593 B2 JP 4383593B2 JP 24562799 A JP24562799 A JP 24562799A JP 24562799 A JP24562799 A JP 24562799A JP 4383593 B2 JP4383593 B2 JP 4383593B2
Authority
JP
Japan
Prior art keywords
epoxy resin
reaction
solution
water
epihalohydrins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24562799A
Other languages
Japanese (ja)
Other versions
JP2001064355A (en
Inventor
敏 岡本
伸幸 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chang Chun Plastics Co Ltd
Original Assignee
Chang Chun Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Chun Plastics Co Ltd filed Critical Chang Chun Plastics Co Ltd
Priority to JP24562799A priority Critical patent/JP4383593B2/en
Publication of JP2001064355A publication Critical patent/JP2001064355A/en
Application granted granted Critical
Publication of JP4383593B2 publication Critical patent/JP4383593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エポキシ樹脂の製造方法に関する。さらに詳しくは、全塩素含有量の少ない高品質のエポキシ樹脂の製造法に関する。エポキシ樹脂は、封止材料、積層板材料などの電子部品材料をはじめ、複合材料、接着剤材料、塗料材料、等に用いられている。
【0002】
【従来の技術】
従来、エポキシ樹脂の製造方法としては、原料の多価フェノール類とエピハロヒドリン類とを、アルカリ金属水酸化物の存在下に加熱しながら還流条件下に、反応させる方法が知られている。かかる方法に於いては、アルカリ金属水酸化物としてその水溶液が用いられ、また反応により水が生成することから、これらの水分をエピハロヒドリン類と共に留出させ、該留出物を有機層と水層とに分離し、水層を除去し、有機層を系内に戻す方法が取られている(例えば、特開昭63−54417号公報、特公平2−4224号公報、特公平7−59616号公報等)。
しかしながら、このような従来のエポキシ樹脂の製造方法を用いた場合、得られるエポキシ樹脂は、品質、特に全塩素含有量の点で満足できるものではなく、電子部品材料、特に高集積度の半導体封止用または積層板用に用いた場合、硬化物の電気絶縁性、低腐食性等が必ずしも十分ではなかった。
【0003】
【発明が解決しようとする課題】
本発明の目的は、全塩素含有量の少ないエポキシ樹脂を製造する方法を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、多価フェノール類とエピハロヒドリン類とを、アルカリ金属水酸化物の存在下に、系内の水をエピハロヒドリン類と共に留出させながら、反応させてエポキシ樹脂を製造する方法において、該留出物を実質的に系内に戻さないことにより、全塩素含有量の少ない高純度のエポキシ樹脂が得られることを見出し、本発明を完成するに至った。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で用いる多価フェノール類としては、例えば、フェノール類とアルデヒド類やケトン類などのカルボニル化合物との縮合物が挙げられる。フェノール類としては、例えば、フェノール、オルトクレゾール、メタクレゾール、パラクレゾール、2−t−ブチルフェノール、2−フェニルフェノール、4−ノニルフェノール、2,3−ジメチルフェノール、2,5−ジメチルフェノール、3,4−ジメチルフェノール、2−t−ブチル−5−メチルフェノール、2,3,5−トリメチルフェノール、1−ナフトール、2−ナフトール、1−メチル−2−ナフトール、2−メチル−1−ナフトール、等が挙げられる。アルデヒド類としては、例えば、ホルムアルデヒド、アクロレイン、クロトンアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、グリオキザール、グルタルアルデヒド、テレフタルアルデヒド、等が挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。これらのフェノール類およびカルボニル化合物は、それぞれ、必要に応じ、その2種以上を用いることもできる。
【0006】
上記フェノール類とカルボニル化合物との縮合物としては、例えば、フェノールノボラックやクレゾールノボラックなどのノボラック類、ビスフェノールAやビスフェノールFなどのビスフェノール類、トリス(ヒドロキシフェニル)アルカン類、テトラキス(ヒドロキシフェニル)アルカン類、等が挙げられ、必要に応じ、その2種以上を用いることもできる。
【0007】
また、フェノール類とカルボニル化合物との縮合物以外の多価フェノール類としては、例えば、4,4’−ジヒドロキシビフェニルや4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニルなどのジヒドロキシビフェニル類、4,4’−ジヒドロキシスチルベンや4,4’−ジヒドロキシ−2,2’,5,5’−テトラメチルスチルベンなどのジヒドロキシスチルベン類、フェノール類とジシクロペンタジエンとの付加物、フルオレン誘導体、フェノールアラルキル樹脂、等が挙げられ、必要に応じ、その2種以上を用いることもできる。
【0008】
本発明で用いるエピハロヒドリン類としては、例えば、エピクロロヒドリン、エピブロモヒドリン、等が挙げられ、必要に応じ、その2種以上を用いることもできる。中でも、反応性の観点から、エピクロロヒドリンが好ましい。エピハロヒドリン類の使用量は、多価フェノール類のフェノール性水酸基に対して、通常3〜15モル当量、好ましくは5〜10モル当量である。
【0009】
本発明の反応には、取り扱い性の観点から、溶媒を用いてもよい。溶媒としては、例えば、ジメチルスルホキシド、ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジン、等の非プロトン性極性溶媒;ジプロピレングリコールモノメチルエーテル、メチルセロソルブ、等のアルコキシアルコール類;ジエチルエーテル、ジオキサン、等のエーテル類;等が挙げられ、必要に応じ、その2種以上を用いることもできる。中でも、得られるエポキシ樹脂の全塩素含有量低減の観点から、非プロトン性極性溶媒が好ましい。溶媒の使用量は、エピハロヒドリン類100重量部に対して、通常10〜300重量部、好ましくは20〜100重量部である。
【0010】
本発明で用いるアルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、等が挙げられ、必要に応じ、その2種以上を用いることもできる。中でも、工業的な入手性の観点から、水酸化ナトリウムが好ましい。アルカリ金属水酸化物は、通常、固体または5〜50重量%の水溶液として用いられ、容積効率と反応性の観点から、固体または20〜50重量%の水溶液が好ましい。アルカリ金属水酸化物の使用量は、多価フェノール類の水酸基に対して、通常0.8〜1.3モル当量、好ましくは0.9〜1.1モル当量である。
【0011】
本発明の反応において、多価フェノール類、エピハロヒドリン類、アルカリ金属水酸化物、および必要に応じて用いる溶媒の添加順序としては、例えば、多価フェノール類、エピハロヒドリン類および溶媒を混合した中に、アルカリ金属水酸化物を連続的にまたは間欠的に添加しても良いし、エピハロヒドリン類および溶媒を混合した中に、アルカリ金属水酸化物と多価フェノール類とを別々にまたは混合して、連続的または間欠的に添加してもよい。
【0012】
反応温度は、通常10〜80℃、好ましくは30〜60℃の範囲である。
反応時間としては、例えば、多価フェノール類、エピハロヒドリン類および溶媒を混合した中に、アルカリ金属水酸化物を添加する場合、添加時間は、通常0.5〜20時間、好ましくは2〜8時間である。
反応圧については、反応液の組成および温度に応じて、反応液が沸騰する様に設定するのが好ましい。
【0013】
本発明方法を実施するに際しては、多価フェノール類とエピハロヒドリン類とを、アルカリ金属水酸化物の存在下に、系内の水がエピハロヒドリン類と共に留出する条件下に反応させ、通常、反応槽から発生する水およびエピハロヒドリン類を含む蒸気を、冷却器にて凝縮させ、該凝縮液を受器に受け、該受器内の凝縮液が反応槽に戻らない様にすることにより、該留出物を実質的に系内に戻さないことにより行われる。
なお、留出物は、通常、水層と有機層に分離するので、エピハロヒドリン類を含む有機層は、必要に応じて蒸留等で精製し、再使用することができる。
【0014】
反応液の後処理方法としては、例えば、以下に示す公知の方法を採用することができる。
即ち、反応液を濃縮し、エピハロヒドリン類および溶媒の全部または一部を留去させ、エポキシ樹脂と副生アルカリ塩を含む濃縮液を得る。濃縮は、通常、減圧下、160℃以下の温度で行う。また、濃縮時間は、エピハロヒドリン類やエポキシ樹脂の劣化を防ぐために、短時間であるのが望ましい。エピハロヒドリン類を含む留出液は、必要に応じて蒸留等で精製し、再使用することができる。
【0015】
このようにして得られた濃縮液に、通常、メチルイソブチルケトン、トルエン、キシレン、等の有機溶媒を添加、混合してエポキシ樹脂を溶解し、濾過、水洗等により、副生アルカリ塩、残存溶媒等を除去する等して、エポキシ樹脂の溶液を得、次いで該溶液から蒸留等により、溶媒を除去すれば、エポキシ樹脂を得ることができる。
【0016】
また、上記のエポキシ樹脂の溶液に、水酸化ナトリウム、水酸化カリウム、等のアルカリ金属水酸化物の固体または水溶液を添加し、通常50〜90℃の範囲で1〜3時間処理しても良い。アルカリ金属水酸化物の使用量は、反応に用いた多価フェノール類のフェノール性水酸基に対して、通常0.001〜0.2モル当量である。この処理を行うことにより、得られるエポキシ樹脂の全塩素含有量をさらに低減することができる。
【0017】
上記処理液を、通常、必要に応じて濾過、水洗等により、副生アルカリ塩、残存溶媒等を除去した後、過剰のアルカリ金属水酸化物をリン酸、炭酸ガス等により中和する。中和の際にさらに生成したアルカリ塩を濾過、水洗等により除去し、得られるエポキシ樹脂の溶液から、蒸留等により溶媒を除去すれば、エポキシ樹脂を得ることができる。
【0018】
【実施例】
以下実施例を示すが、本発明はこれらに限定されるものではない。
なお、実施例中、反応液中の水分はカールフィッシャー法で測定し、エポキシ樹脂の全塩素含有量は、以下の方法で測定した。
・全塩素含有量:エポキシ樹脂約1gを正確に秤量し、ジメチルスルホキシド30mLに溶解し、1N水酸化カリウム/エタノール溶液5mLを加え、50℃で40分間加熱した時に脱離する塩素イオンを、酢酸酸性下、N/100硝酸銀水溶液で滴定し、エポキシ樹脂中の塩素原子の重量分率(ppm)として表した。
【0019】
合成例1
温度計、攪拌機、およびディーンスターク水分離器を装着したフラスコを反応容器として用い、これに2−t−ブチル−5−メチルフェノール657g(4モル)、p−ヒドロキシベンズアルデヒド256g(2.1モル)、トルエン1Lおよびp−トルエンスルホン酸一水和物2.6g(0.014モル)を入れ、112〜114℃の範囲で、反応により副時生成した水とトルエンを留出させ、該留出物の有機層を反応系内に戻しながら6時間反応させた。反応液を10%水酸化ナトリウム水溶液で中和し、油層を水洗後(2回×1L)、減圧下に濃縮し、トルエンおよび未反応原料を留去し、残渣として多価フェノール化合物(2−t−ブチル−5−メチルフェノールとp−ヒドロキシベンズアルデヒドとの縮合物)841gを得た。
【0020】
実施例1
温度計、滴下漏斗、攪拌機、バッフル、圧力調整器、および揮発成分を留出除去するための冷却管を介して受容器が連結されたト字型管を装着した1lセパラブルフラスコを反応容器として用い、これに合成例1で合成した多価フェノール化合物140g(フェノール性水酸基1モル)、エピクロロヒドリン741g(8モル)およびジメチルスルホキシド278gを入れ、窒素置換し、48℃、43mmHgに調整した。その中へ49%水酸化ナトリウム水溶液78g(0.94モル)を5時間かけて連続的に滴下した。反応終了後、反応液中の水分は1.5%であった。反応液を減圧濃縮して未反応のエピクロロヒドリンを留去した後、残渣にメチルイソブチルケトン457gを添加混合し、該溶液を水洗して副生塩化ナトリウムとジメチルスルホキシドを除去した。次いで、得られたメチルイソブチルケトン溶液に、80℃にて49%水酸化ナトリウム水溶液1g(0.01モル)を添加し、2時間経過後、炭酸ガスを吹き込み中和し、副生ナトリウム塩を濾別した。得られた濾液を減圧下に濃縮し、メチルイソブチルケトンを留去し、残渣としてエポキシ樹脂165gを得た。得られたエポキシ樹脂の全塩素含有量を表1に示す。
【0021】
実施例2
温度計、攪拌機、バッフル、圧力調整器、および揮発成分を留出除去するための冷却管を介して受容器が連結されたト字型管を装着した1lセパラブルフラスコを反応容器として用い、これに合成例1で合成した多価フェノール化合物140g(フェノール性水酸基1モル)、エピクロロヒドリン741g(8モル)およびジメチルスルホキシド278gを入れ、窒素置換し、48℃、43mmHgに調整した。その中へ固形水酸化ナトリウム38g(0.94モル)を3分割して1時間毎に添加した。反応終了後、反応液中の水分は1.4%であった。反応液を減圧濃縮して未反応のエピクロロヒドリンを留去した後、残渣にメチルイソブチルケトン457gを添加混合し、該溶液を水洗して副生塩化ナトリウムとジメチルスルホキシドを除去した。次いで、得られたメチルイソブチルケトン溶液に、80℃にて49%水酸化ナトリウム水溶液1g(0.01モル)を添加し、2時間経過後、炭酸ガスを吹き込み中和し、副生ナトリウム塩を濾別した。得られた濾液を減圧下に濃縮し、メチルイソブチルケトンを留去し、残渣としてエポキシ樹脂163gを得た。得られたエポキシ樹脂の全塩素含有量を表1に示す。
【0022】
実施例3
温度計、攪拌機、バッフル、圧力調整器、および揮発成分を留出除去するための冷却管を介して受容器が連結されたト字型管を装着した1lセパラブルフラスコを反応容器として用い、これに合成例1で合成した多価フェノール化合物140g(フェノール性水酸基1モル)、エピクロロヒドリン833g(8モル)およびジプロピレングリコールモノメチルエーテル416gを入れ、窒素置換し、60℃、83mmHgに調整した。その中へ固形水酸化ナトリウム38g(0.94モル)を3分割して1時間毎に添加した。反応終了後、反応液中の水分は0.6%であった。反応液を減圧濃縮して未反応のエピクロロヒドリンを留去た後、残渣にメチルイソブチルケトン656gを添加混合し、該溶液を水洗して副生塩化ナトリウムを除去した。次いで、得られたメチルイソブチルケトン溶液に、80℃にて49%水酸化ナトリウム水溶液4g(0.05モル)を添加し、2時間経過後、炭酸ガスを吹き込み中和し、副生ナトリウム塩を濾別した。得られた濾液を減圧下に濃縮し、メチルイソブチルケトンを留去し、残渣としてエポキシ樹脂176gを得た。得られたエポキシ樹脂の全塩素含有量を表1に示す。
【0023】
比較例1
実施例1において、冷却管を介して受容器が連結されたト字型管に代えて、ディーンスターク水分離器様の器具を装着し、該分離器に留出される揮発成分の中の有機層を反応系内に戻しながら反応を行った以外は、実施例1と同様の方法で行い、エポキシ樹脂163gを得た。得られたエポキシ樹脂の全塩素含有量を表1に示す。なお、反応終了後、反応液中の水分は1.9%であった。
【0024】
比較例2
実施例2において、冷却管を介して受容器が連結されたト字型管に代えて、ディーンスターク水分離器様の器具を装着し、該分離器に留出される揮発成分の中の有機層を反応系内に戻しながら反応を行った以外は、実施例2と同様の方法で行い、エポキシ樹脂161gを得た。得られたエポキシ樹脂の全塩素含有量を表1に示す。なお、反応終了後、反応液中の水分は1.9%であった。
【0025】
比較例3
実施例3において、冷却管を介して受容器が連結されたト字型管に代えて、ディーンスターク水分離器様の器具を装着し、該分離器に留出される揮発成分の中の有機層を反応系内に戻しながら反応を行った以外は、実施例3と同様の方法で行い、エポキシ樹脂172gを得た。得られたエポキシ樹脂の全塩素含有量を表1に示す。なお、反応終了後、反応液中の水分は0.8%であった。
【0026】
【表1】

Figure 0004383593
【0027】
【発明の効果】
本発明の方法によれば、従来より全塩素含有量の低減されたエポキシ樹脂を得ることができる。得られたエポキシ樹脂は、高品質のエポキシ樹脂として、電子部品材料用に、特に高集積度の半導体封止用または積層板用に好適に用いられる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an epoxy resin. More specifically, the present invention relates to a method for producing a high-quality epoxy resin having a low total chlorine content. Epoxy resins are used in electronic component materials such as sealing materials and laminated plate materials, composite materials, adhesive materials, paint materials, and the like.
[0002]
[Prior art]
Conventionally, as a method for producing an epoxy resin, a method of reacting raw material polyhydric phenols and epihalohydrins under reflux conditions while heating in the presence of an alkali metal hydroxide is known. In such a method, an aqueous solution thereof is used as an alkali metal hydroxide, and water is produced by the reaction. Therefore, these waters are distilled together with epihalohydrins, and the distillate is separated into an organic layer and an aqueous layer. And removing the aqueous layer and returning the organic layer to the system (for example, JP-A-63-54417, JP-B-2-4224, JP-B-7-59616). Gazette).
However, when such a conventional method for producing an epoxy resin is used, the resulting epoxy resin is not satisfactory in terms of quality, particularly in terms of total chlorine content, and it is not suitable for electronic component materials, particularly highly integrated semiconductor encapsulation. When used for fastening or for laminates, the electrical insulation and low corrosivity of the cured product are not always sufficient.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an epoxy resin having a low total chlorine content.
[0004]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventors have distilled polyhydric phenols and epihalohydrins together with epihalohydrins in the presence of alkali metal hydroxides. In the process of producing an epoxy resin by reacting, the present inventors have found that a high-purity epoxy resin with a low total chlorine content can be obtained by substantially not returning the distillate into the system, and the present invention has been completed. It came to do.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of polyhydric phenols used in the present invention include condensates of phenols with carbonyl compounds such as aldehydes and ketones. Examples of phenols include phenol, orthocresol, metacresol, paracresol, 2-t-butylphenol, 2-phenylphenol, 4-nonylphenol, 2,3-dimethylphenol, 2,5-dimethylphenol, 3,4 -Dimethylphenol, 2-t-butyl-5-methylphenol, 2,3,5-trimethylphenol, 1-naphthol, 2-naphthol, 1-methyl-2-naphthol, 2-methyl-1-naphthol, etc. Can be mentioned. Examples of aldehydes include formaldehyde, acrolein, crotonaldehyde, benzaldehyde, hydroxybenzaldehyde, glyoxal, glutaraldehyde, terephthalaldehyde, and the like. Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Two or more of these phenols and carbonyl compounds can be used as necessary.
[0006]
Examples of the condensates of phenols and carbonyl compounds include novolaks such as phenol novolak and cresol novolak, bisphenols such as bisphenol A and bisphenol F, tris (hydroxyphenyl) alkanes, and tetrakis (hydroxyphenyl) alkanes. , Etc., and two or more of them can be used as necessary.
[0007]
Examples of polyhydric phenols other than the condensate of phenols and carbonyl compounds include 4,4′-dihydroxybiphenyl and 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl. Dihydroxybiphenyls such as 4,4′-dihydroxystilbene and 4,4′-dihydroxy-2,2 ′, 5,5′-tetramethylstilbene and the like, and adducts of phenols and dicyclopentadiene , A fluorene derivative, a phenol aralkyl resin, and the like, and two or more of them can be used as necessary.
[0008]
Examples of the epihalohydrins used in the present invention include epichlorohydrin, epibromohydrin, and the like, and two or more of them can be used as necessary. Among these, epichlorohydrin is preferable from the viewpoint of reactivity. The usage-amount of epihalohydrins is 3-15 molar equivalent normally with respect to the phenolic hydroxyl group of polyhydric phenol, Preferably it is 5-10 molar equivalent.
[0009]
In the reaction of the present invention, a solvent may be used from the viewpoint of handleability. Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, dimethylformamide, and 1,3-dimethyl-2-imidazolidine; alkoxy alcohols such as dipropylene glycol monomethyl ether and methyl cellosolve; diethyl ether and dioxane , Etc .; and two or more of them can be used as necessary. Among these, an aprotic polar solvent is preferable from the viewpoint of reducing the total chlorine content of the obtained epoxy resin. The usage-amount of a solvent is 10-300 weight part normally with respect to 100 weight part of epihalohydrins, Preferably it is 20-100 weight part.
[0010]
Examples of the alkali metal hydroxide used in the present invention include lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like, and two or more of them can be used as necessary. Among these, sodium hydroxide is preferable from the viewpoint of industrial availability. The alkali metal hydroxide is usually used as a solid or a 5 to 50% by weight aqueous solution, and is preferably a solid or a 20 to 50% by weight aqueous solution from the viewpoint of volume efficiency and reactivity. The usage-amount of an alkali metal hydroxide is 0.8-1.3 molar equivalent normally with respect to the hydroxyl group of polyhydric phenol, Preferably it is 0.9-1.1 molar equivalent.
[0011]
In the reaction of the present invention, the addition order of the polyhydric phenols, epihalohydrins, alkali metal hydroxide, and solvent used as necessary is, for example, while mixing the polyhydric phenols, epihalohydrins and solvent. Alkali metal hydroxide may be added continuously or intermittently, or the mixture is mixed with epihalohydrins and solvent, while alkali metal hydroxide and polyhydric phenols are separately or mixed and continuously. May be added periodically or intermittently.
[0012]
The reaction temperature is usually in the range of 10 to 80 ° C, preferably 30 to 60 ° C.
As the reaction time, for example, when an alkali metal hydroxide is added to a mixture of polyhydric phenols, epihalohydrins and a solvent, the addition time is usually 0.5 to 20 hours, preferably 2 to 8 hours. It is.
The reaction pressure is preferably set so that the reaction liquid boils in accordance with the composition and temperature of the reaction liquid.
[0013]
In carrying out the method of the present invention, a polyhydric phenol and an epihalohydrin are reacted in the presence of an alkali metal hydroxide under conditions in which water in the system is distilled together with the epihalohydrin, and usually a reaction vessel. The vapor containing water and epihalohydrin generated from the reactor is condensed in a cooler, the condensate is received in a receiver, and the condensate in the receiver is not returned to the reaction tank, thereby This is done by not returning the material substantially into the system.
In addition, since a distillate is normally isolate | separated into an aqueous layer and an organic layer, the organic layer containing epihalohydrins can be refine | purified by distillation etc. as needed, and can be reused.
[0014]
As a post-treatment method of the reaction solution, for example, a known method shown below can be adopted.
That is, the reaction solution is concentrated, and all or part of the epihalohydrin and the solvent are distilled off to obtain a concentrated solution containing an epoxy resin and a by-product alkali salt. Concentration is usually performed at a temperature of 160 ° C. or lower under reduced pressure. The concentration time is preferably a short time in order to prevent deterioration of epihalohydrins and epoxy resins. The distillate containing epihalohydrins can be purified by distillation or the like and reused as necessary.
[0015]
Usually, an organic solvent such as methyl isobutyl ketone, toluene, xylene or the like is added to and mixed with the concentrated solution thus obtained to dissolve the epoxy resin, and filtered, washed with water, etc. to produce by-product alkali salts and residual solvents. An epoxy resin can be obtained by obtaining a solution of an epoxy resin by removing etc., and then removing the solvent from the solution by distillation or the like.
[0016]
Further, a solid or aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide may be added to the above epoxy resin solution, and the treatment may be carried out usually in the range of 50 to 90 ° C. for 1 to 3 hours. . The usage-amount of an alkali metal hydroxide is 0.001-0.2 molar equivalent normally with respect to the phenolic hydroxyl group of the polyhydric phenol used for reaction. By performing this treatment, the total chlorine content of the resulting epoxy resin can be further reduced.
[0017]
The treatment solution is usually neutralized with phosphoric acid, carbon dioxide gas, etc., after removing by-product alkali salts, residual solvent and the like by filtration, washing with water, etc. as necessary. An epoxy resin can be obtained by removing the alkali salt further generated during the neutralization by filtration, washing with water, etc., and removing the solvent from the resulting epoxy resin solution by distillation or the like.
[0018]
【Example】
Examples are shown below, but the present invention is not limited thereto.
In the examples, the moisture in the reaction solution was measured by the Karl Fischer method, and the total chlorine content of the epoxy resin was measured by the following method.
-Total chlorine content: About 1 g of epoxy resin is accurately weighed, dissolved in 30 mL of dimethyl sulfoxide, 5 mL of 1N potassium hydroxide / ethanol solution is added, and chlorine ions desorbed when heated at 50 ° C for 40 minutes are converted into acetic acid. The solution was titrated with an N / 100 aqueous silver nitrate solution under acidic conditions and expressed as a weight fraction (ppm) of chlorine atoms in the epoxy resin.
[0019]
Synthesis example 1
A flask equipped with a thermometer, a stirrer, and a Dean-Stark water separator was used as a reaction vessel, to which 657 g (4 mol) of 2-t-butyl-5-methylphenol and 256 g (2.1 mol) of p-hydroxybenzaldehyde were added. , 1 L of toluene and 2.6 g (0.014 mol) of p-toluenesulfonic acid monohydrate were added, and water and toluene produced by the reaction were distilled in the range of 112 to 114 ° C. The organic layer of the product was reacted for 6 hours while returning to the reaction system. The reaction solution was neutralized with a 10% aqueous sodium hydroxide solution, the oil layer was washed with water (twice × 1 L), concentrated under reduced pressure, toluene and unreacted raw materials were distilled off, and a polyphenol compound (2- 841 g of a condensate of t-butyl-5-methylphenol and p-hydroxybenzaldehyde).
[0020]
Example 1
A 1 liter separable flask equipped with a thermometer, a dropping funnel, a stirrer, a baffle, a pressure regulator, and a toroidal tube connected to a receiver through a cooling tube for distilling off volatile components was used as a reaction vessel. Used, 140 g of the polyhydric phenol compound synthesized in Synthesis Example 1 (1 mol of phenolic hydroxyl group), 741 g (8 mol) of epichlorohydrin and 278 g of dimethyl sulfoxide were added, and the atmosphere was replaced with nitrogen and adjusted to 48 ° C. and 43 mmHg. . Into this, 78 g (0.94 mol) of 49% aqueous sodium hydroxide solution was continuously added dropwise over 5 hours. After completion of the reaction, the water content in the reaction solution was 1.5%. After the reaction solution was concentrated under reduced pressure to remove unreacted epichlorohydrin, 457 g of methyl isobutyl ketone was added to and mixed with the residue, and the solution was washed with water to remove by-product sodium chloride and dimethyl sulfoxide. Next, 1 g (0.01 mol) of a 49% aqueous sodium hydroxide solution was added to the obtained methyl isobutyl ketone solution at 80 ° C., and after 2 hours, carbon dioxide gas was blown to neutralize the by-product sodium salt. Filtered off. The obtained filtrate was concentrated under reduced pressure, and methyl isobutyl ketone was distilled off to obtain 165 g of an epoxy resin as a residue. Table 1 shows the total chlorine content of the obtained epoxy resin.
[0021]
Example 2
A 1 liter separable flask equipped with a thermometer, a stirrer, a baffle, a pressure regulator, and a toroidal tube connected to a receiver through a cooling tube for distilling off volatile components was used as a reaction vessel. Into this, 140 g of the polyphenol compound synthesized in Synthesis Example 1 (1 mol of phenolic hydroxyl group), 741 g (8 mol) of epichlorohydrin and 278 g of dimethyl sulfoxide were placed, and the atmosphere was replaced with nitrogen, and adjusted to 48 ° C. and 43 mmHg. Thereto, 38 g (0.94 mol) of solid sodium hydroxide was added in 3 divided portions every hour. After completion of the reaction, the water content in the reaction solution was 1.4%. After the reaction solution was concentrated under reduced pressure to remove unreacted epichlorohydrin, 457 g of methyl isobutyl ketone was added to and mixed with the residue, and the solution was washed with water to remove by-product sodium chloride and dimethyl sulfoxide. Next, 1 g (0.01 mol) of a 49% aqueous sodium hydroxide solution was added to the obtained methyl isobutyl ketone solution at 80 ° C., and after 2 hours, carbon dioxide gas was blown to neutralize the by-product sodium salt. Filtered off. The obtained filtrate was concentrated under reduced pressure, methyl isobutyl ketone was distilled off, and 163 g of epoxy resin was obtained as a residue. Table 1 shows the total chlorine content of the obtained epoxy resin.
[0022]
Example 3
A 1 liter separable flask equipped with a thermometer, a stirrer, a baffle, a pressure regulator, and a toroidal tube connected to a receiver through a cooling tube for distilling off volatile components was used as a reaction vessel. 140 g (1 mol of phenolic hydroxyl group) synthesized in Synthesis Example 1, 833 g (8 mol) of epichlorohydrin and 416 g of dipropylene glycol monomethyl ether were substituted with nitrogen, and adjusted to 60 ° C. and 83 mmHg. . Thereto, 38 g (0.94 mol) of solid sodium hydroxide was added in 3 divided portions every hour. After completion of the reaction, the water content in the reaction solution was 0.6%. After the reaction solution was concentrated under reduced pressure to remove unreacted epichlorohydrin, 656 g of methyl isobutyl ketone was added to and mixed with the residue, and the solution was washed with water to remove by-product sodium chloride. Next, 4 g (0.05 mol) of a 49% aqueous sodium hydroxide solution was added to the obtained methyl isobutyl ketone solution at 80 ° C., and after 2 hours, carbon dioxide gas was blown to neutralize the by-product sodium salt. Filtered off. The obtained filtrate was concentrated under reduced pressure, methyl isobutyl ketone was distilled off, and 176 g of epoxy resin was obtained as a residue. Table 1 shows the total chlorine content of the obtained epoxy resin.
[0023]
Comparative Example 1
In Example 1, a Dean-Stark water separator-like device is installed in place of the toroidal tube to which the receiver is connected via a cooling tube, and organics in the volatile components distilled into the separator are attached. Except having reacted while returning a layer in a reaction system, it carried out by the same method as Example 1, and obtained 163g of epoxy resins. Table 1 shows the total chlorine content of the obtained epoxy resin. In addition, after completion | finish of reaction, the water | moisture content in a reaction liquid was 1.9%.
[0024]
Comparative Example 2
In Example 2, a Dean-Stark water separator-like device is installed in place of the toroidal tube to which the receiver is connected via a cooling tube, and organics in the volatile components distilled into the separator are attached. Except that the reaction was performed while returning the layer to the reaction system, the same method as in Example 2 was performed to obtain 161 g of an epoxy resin. Table 1 shows the total chlorine content of the obtained epoxy resin. In addition, after completion | finish of reaction, the water | moisture content in a reaction liquid was 1.9%.
[0025]
Comparative Example 3
In Example 3, a Dean-Stark water separator-like device is installed in place of the toroidal tube to which the receiver is connected via a cooling tube, and organics in the volatile components distilled into the separator are attached. Except having reacted while returning a layer in a reaction system, it carried out by the method similar to Example 3, and obtained 172 g of epoxy resins. Table 1 shows the total chlorine content of the obtained epoxy resin. In addition, after completion | finish of reaction, the water | moisture content in a reaction liquid was 0.8%.
[0026]
[Table 1]
Figure 0004383593
[0027]
【The invention's effect】
According to the method of the present invention, an epoxy resin having a reduced total chlorine content can be obtained. The obtained epoxy resin is suitably used as a high-quality epoxy resin for electronic component materials, particularly for highly integrated semiconductor sealing or laminates.

Claims (1)

多価フェノール類とエピハロヒドリン類とを、アルカリ金属水酸化物の存在下に反応させてエポキシ樹脂を製造する方法であって、系内の水をエピハロヒドリン類と共に留出させ、水、エピハロヒドリン類を含む留出物のいずれをも系内に戻さず、かつ系内の水分含有率を1.5%以下にすることを特徴とする、方法。And polyhydric phenols and epihalohydrins to a method of producing a reaction is allowed to epoxy resin in the presence of an alkali metal hydroxide, to distill water in the system together with the epihalohydrin, water, an epihalohydrin without returning to any of the well system of the distillate containing the water content in and system characterized by a 1.5% or less, methods.
JP24562799A 1999-08-31 1999-08-31 Production method of epoxy resin Expired - Lifetime JP4383593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24562799A JP4383593B2 (en) 1999-08-31 1999-08-31 Production method of epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24562799A JP4383593B2 (en) 1999-08-31 1999-08-31 Production method of epoxy resin

Publications (2)

Publication Number Publication Date
JP2001064355A JP2001064355A (en) 2001-03-13
JP4383593B2 true JP4383593B2 (en) 2009-12-16

Family

ID=17136497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24562799A Expired - Lifetime JP4383593B2 (en) 1999-08-31 1999-08-31 Production method of epoxy resin

Country Status (1)

Country Link
JP (1) JP4383593B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433368B2 (en) * 2003-04-08 2010-03-17 ジャパンエポキシレジン株式会社 Epoxy resin granulated product and production method thereof
KR101408535B1 (en) * 2006-08-17 2014-06-17 니뽄 가야쿠 가부시키가이샤 Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
WO2008143314A1 (en) * 2007-05-24 2008-11-27 Nippon Kayaku Kabushiki Kaisha Liquid epoxy resin, epoxy resin composition, and cured product

Also Published As

Publication number Publication date
JP2001064355A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP6925853B2 (en) New benzoxazine resin composition and cured product thereof
TWI465488B (en) Novolac resin and method for producing the same
WO1990015832A1 (en) Phenolic novolac resin, product of curing thereof, and method of production thereof
JP2008184570A (en) Purification method of epoxy resin
JP4383593B2 (en) Production method of epoxy resin
JPH069595A (en) Production of epoxy resin containing biphenyl skeleton
US5028686A (en) Concurrent addition process for preparing high purity epoxy resins
JP2874547B2 (en) Manufacturing method of epoxy resin
US6015873A (en) Polyphenol composition and method of producing the same
JPH0321627A (en) Phenol-novolak type epoxy resin and production thereof
JPH0791360B2 (en) Process for producing glycidyl ether of polyphenol
JPH04323214A (en) Novolak resin, its production, epoxy resin, resin composition and its cured product
JP2732162B2 (en) Manufacturing method of high purity epoxy resin
JPH11106472A (en) Production of epoxy resin
JP2887213B2 (en) New compounds, resins, resin compositions and cured products
JP3845198B2 (en) Method for producing phenolic resin
JP2887214B2 (en) Naphthol compound, its production method, epoxy compound, composition and cured product
JP5306427B2 (en) Production method of epoxy resin
CN116261573B (en) Process for producing triphenolmethane
JP3604866B2 (en) Method for producing phenol-novolak condensate
JPH07196800A (en) Thermosetting resin and its production
JP2000273144A (en) Preparation of epoxy resin
JPH06329741A (en) Resin, epoxy resin, its production, resin composition and cured product of said composition
JPH0748425A (en) Production of novolak resin glycidyl ether
JP2003226738A (en) Method for manufacturing epoxy resin

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term